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Chapter 1: Introduction

“If I had a million pounds I would be a student” Paul Capewell

1.1 Overview

1.1.1 Justification

For a number of years the VLSI community have been looking towards asynchro

logic to solve some of the problems that appear when using global clocks on very

circuits[1]. There are some adv antages inherent in asynchronous circuits above

synchronous counterparts: lower emissions of electromagnetic noise, no

distribution, no clock skew, robustness to environmental veriations (e.g. temperatur

power supply) or fabrication faults, better modularity and better security are just som

the properties where asynchronous designs have a definite advantage in. These pro

are now widely accepted amongst the asynchronous community. Low po

consumption [2], low latency and high throughput [3] are three properties which h

been claimed but need to be specifically targeted in order to exploit them. It is impo

to distinguish the difference between throughput and latency rather than just calling

speed. The Amulet group has in the past created three low power microprocessors

low power asynchronous techniques [2][4]. Others have used fine grain pipelinin

achieve high throughput at the cost of latency and power consumption[3]. By tryin

exploit all three properties the final design will hold little if any advantage over

synchronous implementation. Alternatively by trying to exploit just one of the

properties it is possible to gain it at cost of the others. Low latency can be achieve

exploiting the average case performance present in some asynchronous circuits

throughput is present is asynchronous circuits with very high density pipelining, whic

made difficult with global clock skew. The power consumption of synchronous circui

often higher as the full global clock network has to be driven at a very high rate and m

pipeline stages are executed where the result is not desired.
Chapter 1:  Introduction 12



1.2 Synchronous logic
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1.2 Synchronous logic

1.2.1 Synchronous logic construction

Synchronous circuits rely on external timing to determine the completion of each pip

stage and D-type flip-flops to stop data from one stage overwriting the data in the

stage. In the figure of a synchronous pipeline (Figure 1.1) the clock net is connect

every flip-flop. As the clock ‘ticks’ the data changes from being the results of one s

to the inputs of the next. Figure 1.2 shows how data moves from one stage to the n

shifting all data to the next stage at the rise of the clock. Using a global clock ensure

the result will be correct by the time it is accepted by the next stage and a stage hold

one data entry.

1.2.2 Synchronous pipeline properties

In figure 1.2 the shaded areas of each stage represent the stage having comple

logical operation, the result being valid but waiting for the clock before moving to the n

stage. When ‘D0’ passes through Stage 1 its result is ready 0.25 of a clock cycle b

the next clock edge arrives. During this time the data is unable to progress to the

stage. When ‘D0’ passes through Stage 3 it requires the entire clock cycle to perfo

operation. This operation is known as the worst case pipeline stage as if the

frequency was increased then the operation would fail because the result of the lo

operation would not be ready in time to be accepted into the next latch. These oper

may occur very rarely but they still force the clock to be slower to guarantee co

D-type
flip-flop

Stage 1

D-type
flip-flop

Stage 2

D-type
flip-flop

Stage 3

Logic D-type
flip-flop

Stage 4

Logic Logic

Global Clock

Figure 1.1: Synchronous pipeline
Chapter 1:  Introduction 13
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operation in this event. Additional to this performance hit the chip will run slower a

higher temperature or a lower voltage so these parameters have to be considered

choosing a clock speed. This approach gives worst case performance regardl

external conditions and operations executed.

1.3 Asynchronous circuits

1.3.1 What is asynchronous logic?

Asynchronous logic is a very broad term which can be used to describe any circuit w

has the ability to keep and change state without the use of a global clock. This mean

even if a chip has an internally generated clock signal it would still not be asynchron

1.3.2 Requirements of asynchronous circuits

As stated above the synchronous approach gives a timing which estimates the comp

of a stage and the fact that the clock is global keeps data in separate stages. If the

properties can be reproduced without using a global clock it will allow the pipeline

execute faster than worst case performance. The stage completion can be derived in

ways. The easiest method is a matched delay; this is a line of gates that runs alon

the data logic and matches the logic depth. When external variables sutch as tempe

or voltage slow down the circuit this delay increases to allow the logic extra tim

resolve the result. A more complex method is to use a data dependent matched dela

D0 D1 D2 D3 D4 D5

Time

Stage 1

Stage 2

Stage 3

Stage 4

Clock

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

0 1 2 3 4 5 6 7 8 9
Time

Figure 1.2: Synchronous pipeline occupancy diagram
Chapter 1:  Introduction 14
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method uses a several matched delay lines of which one is chosen depending on th

For example if an ALU stage executed a fast, logical rather than a slow, arithm

operation then a shorter delay would be chosen.

The most precise method of completion detection is not to use matched delays but u

logic to create a completion signal. The last two methods allow the data dependent

improvements. Figure 1.3 shows an example of an asynchronous pipeline. The g

clock is replaced with a set of asynchronous pipeline control elements. Once new

enters a stage the request signal is generated and on the wire labelled Req1 in figu

This signal goes through a matched delay or is combined with a completion dete

signal and when the logic function has evalusted the request signal is emitted on

Req2. The data is now ready to be accepted for use in the next stage.

This approach solves the completion detection problem but there is still the proble

one piece of data over writing another piece of data in the next pipeline stage. To

this problem an acknowledge signal (Ack) is sent back to the requesting control u

inform it that it has accepted the data and the stage can be used for the next set of d

turn the data that has been accepted is used in the next stage by emitting its reque

the cycle then repeats in the next stage.

1.3.3 Properties of asynchronous pipelines

Figure 1.4 shows an asynchronous pipeline executing the same computation a

synchronous pipeline in figure 1.2. There are noticeable differences between the

Asynchronous
Latch

Stage 1

Logic Logic LogicAsynchronous
Latch

Stage 2

Asynchronous
Latch

Stage 3

Asynchronous
Latch

Stage 4

Req

Ack

Req

Ack

Req

Ack

Req

Ack

Req1 Req2

Ack

Data1 Data2

Figure 1.3: Asynchronous pipeline
Chapter 1:  Introduction 15
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diagrams. Firstly the asynchronous pipeline is faster as the optimizations described

are implemented. Unlike the synchronous pipeline there are two different types of

in the asynchronous pipeline both of which were dealt with simply by using a clock in

synchronous version. The first is demonstrated in stage 2 after D0 has moved to st

Here the hardware is ready to accept new data but D1 has not completed ints funct

stage 1. This is a ‘hardware stall’ as the hardware has to wait for the data to be

available. In the figure this is demonstrated with the dashed lines across the stalling

The second type of stall is shown where D2 is trying to move from stage 1 to stage

the stage is not ready to accept new data as it is still processing D1. This causes a

stall’ as the data is ready but has to wait for the hardware to become available. In the

it is shown with dashed lines across the stalling area with the data shading still pre

When the pipeline is too empty then hardware stalls are common and the through

low. When the pipeline is too full then data stalls appear more often and causes

latency. A balanced pipeline would have low latency and high throughput and so avo

these stalls is important.

1.3.4 Asynchronous protocols

There are many asynchronous protocols but this thesis will concentrate on the four-

early protocol [5] as shown in figure 1.5. In this protocol the sender asserts the re

signal once the data is placed on the data bus. When the data is latched by the ta

responds by rasing the acknowledge line. The sender drops its request and can now

Time

Stage 1

Stage 2

Stage 3

Stage 4

D0 D1 D2

D3

D4 D5

D0

D0

D0

D1

D1

D1

D2

D2

D2

D3

D3

D3

D4

D4

D4

D5

D5

D5

0 1 2 3 4 5 6 7
Time

Figure 1.4: Asynchronous pipeline occupancy diagram
Chapter 1:  Introduction 16
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new data on the bus. The target then drops its acknowledge when it is ready to acce

data.

Figure 1.5 shows the protocol without a matched delay on the request signal. S

system is only useful for making a FIFO and cannot complete any computation.

request signal may be delayed to allow time for the computation. Figure 1.6 show

asynchronous protocol with a delay on the request line[1]. Req1 reaches Req2 w

delay D. This delay should be equal or greater than the maximum delay of data thr

the logic function (Data1 to Data2). This delay can be asymmetric witch means Req

to Req2 low delay can be much shorter.

This is a bundled data protocol as the data is bundled with some control signals

creation of asymmetric matched delays requires the designer to ensure that the del

has a longer delay than the logic which could change at the implementation level. T

to keep the request delay the same size as the data requires a lot of experience a

accurate back annotated timing models.

Figure 1.5: Four phase early protocol

Req

Ack

Data Valid Valid

Req1

Ack

Data1 Valid

Data2 Valid

Req2

D

D D

Valid

Valid

D

Figure 1.6: Asynchronous protocol with a delay
Chapter 1:  Introduction 17
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1.4 Dual-rail

1.4.1 Dual rail return to zero protocol

To bypass the delay matching problem another method can be used where the

encoded in the request signal [6]. Dual rail data encoding, when combined with the

four phase protocol, solves this problem but uses two wires to represent one bit of d

the sender wishes to send a 0 the it will assert the Data_0 line and if it wishes to sen

it will assert the Data_1 line. As in the bundled data protocol the target send

acknowledge. This protocol is return to zero (RTZ) based as after the target

acknowledged the data lines should return to zero. This can be seen in figure 1.7.

1.4.2 C-elements

The Muller C-element [6] is a very commonly used component when design

asynchronous circuits. Figure 1.8 shows the construction and symbol of a two inp

Data_0

Data_1

Ack

N I NON
Figure 1.7: Dual-rail protocol
Chapter 1:  Introduction 18
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element. When all of the inputs into a C-element are high then the output will switch h

The output will stay high until all of the inputs are low again.

1.4.3 Dual rail half latch

To create circuits using this protocol, gates and data storing elements are required.

1.9 shows a dual rail half latch. This latch is used to store the data simmilarly to a m

slave flip-flop in a synchronous circuit. If there is no acknowledgement on the ou

(Q_A is low) any data on the input will progress through the C-elements to the ou

Once one of the data outputs is active the latch will acknowledge its input. The data o

line will stay high until the target acknowledges and the source has returned to zero.

the outputs have returned to zero both the acknowledge in and out lines will drop to a

the cycle to repeat. The acknowledge input wire (D_A) stays high while the latc

outputting valid data. Also while acknowledge in is high (Q_A) the latch cannot ac

any data. If these latches are placed in a pipeline then the maximum occupancy wo

50% as for each latch that holds data, another separates the data with a null from

data in the pipeline. If arranged into a loop with X data tokens there would need to be

O

I0

I1

INV

I1

I0

AND2

AND2
OR3

O

INV

AND2

Figure 1.8: Gate and transistor level implementations and symbol of a C-eleme
Chapter 1:  Introduction 19



1.4 Dual-rail

r this
than twice as many half latches to keep the system from deadlocking. The reason fo

is explained in secstion 1.4.5.

1.4.4 Return To Zero FIFO

Figure 1.10 shows data flowing through an RTZ

FIFO. The RTZ protocol forces data to be

followed with a return to zero which can be

thought of as a null signal. In position 1 the

pipeline is all reset to zero. There is a data value

(O) entering the pipeline. As the first element

contains the same value as the next element (they

both contain null) the ‘O’ is allowed to propagate

to this stage. At time 2 the ‘O’ has propagated into

the first latch. It can now carry on propagating as

again the next two latches hold the same values.

At time 3 the ‘O’ has propagated to the next latch

but left its value in the previous latch. This trail of

values can be overwritten by a null entering the

stage after the ‘O’. The only value that cannot be

over written is the leading value. For this reason

these stages are shaded to show that they cannot

be overwritten. The ‘O’ will carry on propagating

until it meets the last null token. As the next two

stages differ (null followed by a one) the zero is

D_A

Q_A

D_0

D_1

Q_1

Q_0

OR2

INV

D_0
D_1

D_A

Q_0
Q_1

FD Q_A

Figure 1.9: Dual rail half latch schematic and symbol
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Figure 1.10: FIFO pipeline
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blocked from entering the next stage. Any value (in dual rail ‘I’ or ‘O’) must be follow

by a null. At time 5 the null is about to enter the pipeline. Again as before the same

apply and it will propagate until it meets a leading value. The ‘O’ stops the null at tim

When the ‘I’ enters the pipeline at time 8 the pipeline is full and cannot accept any m

tokens. If one of the values is allowed to leave the pipeline at time 9 then a bubb

formed and each value shifts one forward moving the bubble backwards one spac

time. The bubble eventually allows a token to enter the pipeline at time 12. When

pipeline is very full, throughput becomes very low. The values are allowed to exit ou

the pipeline at the maximum rate starting at time 14. The values separate themselve

a bubble when travelling at maximum speed which can be seen from time 15 to tim

Talk about tokens!!!

1.4.5 Minimum RTZ pipeline loop

A loop containing a number of data items must have two times this number of latch

order to hold all data and null signals in separate latches [1]. The first diagram in fi

1.11 shows a loop of two latches and one data signal. Neither the data nor the nu

move as the places they want to move to are occupied by each other. A situation w

circuit cannot move from one state to another irrespective of any inputs is call

deadlock. In the loop of three latches the data is able to move freely. Once the one m

to the next stage it leaves a bubble for the null to move to. The general rule is for a

with X pieces of data at least 2X+1 latches are required to avoid deadlock.

1.4.6 RTZ pipeline properties

The above examples show many important properties about RTZ pipelines.

• One signal will not be overwritten by another coming in behind it.

O N NNI
Figure 1.11: Two and three latch RTZ pipeline loops
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• The maximum occupation of a pipeline is one signal per latch. Each piece of

consists of a data signal and a null signal so maximum data occupancy is 50

• An over-saturated pipeline has a very slow throughput.

• Highest throughput pipeline will have a bubble between all signals which g

25% data occupancy.

• For a pipeline loop containing X data elements at least 2X+1 latches are neede

the loop not to deadlock.

1.4.7 Dual rail gates

The RTZ protocol needs to separate its data signals with null signals. When creating

using this protocol the output should only become valid when all the inputs are valid.

the output should remain valid until all inputs have returned to zero. Figure 1.12 sh

the construction of a dual rail AND gate [6]. The row of C-elements forces both of

inputs to switch before the output switches. The return to zero protocol assumes tha

a gate outputs a valid signal then all its inputs are valid. Also the data will not retur

zero until all inputs have returned to zero.

1.4.8 Acknowledge circuits

Talk about why guarding is required

C_1

C_0

B_0

B_1

A_1

A_0

A_1.B_0

A_0.B_0

A_0.B_1

A_1.B_1

OR3

Figure 1.12: Dual rail AND gate schematic and symbol
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1.4.9 Circuit reset

At reset time the circuit has to be primed for execution. Before the reset signal is ap

the latches can hold random data and gates may have some of their C-elements

order to reset the circuit so it contains no tokens a reset line is driven. One approac

attach a reset line to all C-elements and thus forcing all nets in the circuit to reset.

inputs to a dual-rail gate are low then the output will switch low. Using this assumptio

is possible to reset the whole circuit to just contain nulls by just resetting all latches. T

are two types of resettable latches. Firstly the hard reset latches make no assum

about the inputs and attach a reset line directly to the C-elements. This allows the la

be reset irrespective of the inputs but is slower than the soft reset approach. A sof

latch assumes that the inputs are low and the reset line is simply combined wit

acknowledge line using an OR gate. The latch will observe an an acknowledge an

remove its data from its output if its input is also low. A hard reset latch is guarantee

reset with its inputs in any state. Soft reset latches and gates are guaranteed to rese

all inputs are hard reset latches or reset guaranteed components.
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Chapter 2: Standard dual rail circuit
construction

“Where do we eat? I am hungry like a wolf!” Tomaz Felicijan

2.1 Direct translation

2.1.1 Overview

To quickly implement dual-rail circuits a tool called direct translation will be used

provide a higher level of abstaraction. This chapter will explain its operation and is

arising when implementing large asynchronous circuits.

2.1.2 Input design

Direct translation works on the principle of using single wires to repres

communications chanels. The input design thus looks very similar to a stan

synchronous schematic with the assumption that all flip-flops are clocked using a s

global clock. To demonstrate direct translation a simple design will be converted. F

2.1 shows an abstracted design.

OR2

INV

CB

A

FD

QD

C

FD

QD

C

FD

QD

C

D

FD

QD

C

Figure 2.1: Synchronous design
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2.1.3 Direct translation rules

Direct translation is intrinsically a simple process.

The tool simply has to replace all instances of

components and certain structures with their

asynchronous counterparts. The rules used for the

standard direct translation are shown in figure 2.2.

Acknowledge paths are distinguished by having

dashed lines.

Firstly all gates and latches need to be exchanged

for their asynchronous counterparts. Instead of one

wire linking components this method needs three.

Only one example of a gate is shown but any

number input gates can be implemented in this

approach simply by distributing the acknowledge

signal to all inputs. More difficult to find are instances of forks which have to comb

the acknowledge signals using C-elements.

2.1.4 Resultant asynchronous circuit

Figure 2.3 shows the resultant circuit. The four boxes show instances where a rul

applied. Box A shows where a flip-flop was replaced. Box B shows the replaceme

the OR gate which is replaced with a dual rail OR gate with the acknowledge si

passed back to both inputs. Box C is a replacement for the inverter which has onl

AsynchronousSynchronous

FD

QD

C

OR2

FD

Figure 2.2: Translation table
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input and so only needs to send an acknowledge to its one input. Box D show

replacement for the fork and it places a C-element to combine the acknowledge sig

2.1.5 Three stage counter

Consider if in figure 2.1 flip-flop A was the same as C and B was D. Now B outputs t

and A combined with B outputs to B. Figure 2.4 shows the translated asynchro

version of this circuit. It is important to note that the bottom latch outputs through a

back to itself making a very tight loop. The fact that a this pipeline stage feeds its ou

back to its inputs does not affect the direct translation.

2.1.6 Flip-flop replacement

As mentioned in section 1.4.5 the minimum number of latches for a loop with one ite

data is three. Because the user could wire the a output of a flip-flop back to its inpu

demonstrated in figure 2.4) the replacement must consist of at least three half la

FD

FD
FD

FD

Figure 2.3: Asynchronous circuit implementation

B C

DA

A_AI

B_A

A_A C_1
C_0

B_1
B_0

A_1
A_0

FD

FD

Figure 2.4: Asynchronous three stage counter
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Even if this is done there is still no data in the pipeline and so the circuit will not oper

In order for the circuit to start there must be some data tokens placed into the circ

reset time. A token should be placed in all flip-flop replacements. The flip-f

counterpart is made from three latches. One is a hard reset latch as shown in figur

This latch makes no assumptions on its inputs. At reset time one of the C-elements is

while the other is set by the global reset signal labelled “GSR”. To allow any soft r

latches or gates driven by the output of this latch to reset the zero output is gated wi

global reset signal. The other two latches in the flip-flop counterpart are standard soft

latches. This D-type flip-flop counterpart is will at reset hold a zero token but ther

another version which will hold a one token at reset.

2.2 Results

2.2.1 Simulation

Figure 2.6 shows the simulation of the three stage counter. The nine waves represe

nine labelled wires in figure 2.4. Dual rail net pairs A, B and C go through three sta

and each cycle a different pair contains the ‘I’ while the other two contain ‘O’. Th

values are marked on the graph. The circuit’s functional behaviour is as expected.

are visible differences in the arrival time of the signals. A arrives first as its input is v

GSR

D_A

D_1

Q_0

Q_1

GSR

D_0

AND2B1

Set

Reset

INV

OR2

Q_A

Figure 2.5: Hard reset zero initiating latch
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simple to calculate. B arrives second and lastly C is formed only after A and B h

become valid.

2.2.2 Simulation explanation

Figure 2.7 shows a more detailed wave trace. The sequence is started by A a

outputting data values. After both of these transitions have occurred the gates will pro

a data value on bus C. Bus B, which outputs directly to a latch, is acknowledged o

A_AI. A data value on bus C causes the latch to acknowledge on net A_A. Both o

latches which bus B feeds have acknowledged so the C-element driving net B_A bec

active. As bus A is only used to generate the value which has just been acknowledge

A_A it will return the bus to null. Bus B is also acknowledged by B_A and returns to n

As both of the inputs to the gate have returned to zero the gate will also drop its ou

Both buses feeding the latches (B and C) have returned to zero so the latches dro

acknowledge signals (A_A and A_AI). B_A drops soon after to allow bus B to driv

new data value.

A_0

A_1

B_0

B_1

C_0

C_1

A_A

A_AI

B_A

GSR

0 5n 10n 15n 20n

Time (Seconds)

D

i

g

i

t

a

l

Figure 2.6: Simulation of the three stage counter
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Figure 2.7: Close-up of one data phase
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2.3 Summary

2.3.1 Results

In the Virtex library each gate has a delay of 0.1 ns (100 ps). Each cycle takes 4

complete. These times are very slow and will get much slower with introduction of m

complex logic as each gate is 3 times slower (delay of a C-element and a gate) t

conventional gate used in the synchronous version. The next chapter will detail a diff

approach which hopes to alleviate this problem.
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Chapter 3: Early output dual rail circuit
construction

3.1 Introduction

3.1.1 Motivation

As shown in the previous chapter the direct translation method can be used to co

synchronous circuits to dual rail asynchronous versions. The greatest weakness

standard dual rail approach is the construction of gates which require a large num

C-elements making them very large and slow. This chapter will show an alterna

selection of direct translation rules and elements to bypass these problems.

3.1.2 Overview

As described in section 1.4.8 the C-elements in all multiple input gates are need

ensure the output does not switch before all inputs have arrived or left. Allowing a

output to become valid before all inputs have become valid will cause a latch the

outputs to acknowledge latches which have not output a data signal. Raising

acknowledge line to a latch which has not placed a valid value on its output is

permitted by the protocol. This chapter shows how, with the use of guarding C-elem

gates can output early yet still obay the four phase protocol.

3.2 Early output dual rail circuits

3.2.1 Early output gates

A gate is desired which will output a valid signal once it has enough valid inputs to be

of the result. In the case of an OR gate, if either of the inputs is one then the outpu

be one. If one of the inputs is zero then the output cannot be determined until the s

input hes become valid. Only when both of the inputs are zero can the output safely s

to zero. Figure 3.1 shows a schematic and symbol of an early output dual rail AND

The zero output (C_0) will become valid if either of the inputs is zero (A_0 or B_0).
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one to be output both inputs have to be one. Another restriction which is still true,

the standard dual rail gates, is that the output cannot drop while either of the inputs i

valid. For this reason output one (C_1) has to be kept high even when one of the i

returns to null. This is done by using a C-element to create the one output.

3.2.2 Early output latches

In early output circuits the result may be created before all inputs to a logic block are v

Once the result is valid the latch will acknowledge. This acknowledge signal could be

to some latches which have still not output valid data. This acknowledge signal migh

be seen by the latches or could cause a glitch to enter the logic block. To ensu

acknowledge signal does not reach the input latches before they are valid it is com

with the validity of all input latches. Each latch creates a validity signal by using an

gate across the two output lines. There is already an OR gate with its inputs attach

the outputs of the latch to create the acknowledge signal. Figure 3.2 shows

construction of an early output latch. The only differences between this latch and th

used in the standard dual rail is an internal acknowledge wire being output for use

valid signal.

OR2

C_0
A_0

A_1

B_0

B_1

C_1

Figure 3.1: Early output gate

D_0
D_1

D_A

Q_0
Q_1

Q_A

Q_VALID

FD

Figure 3.2: Early output latch
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3.2.3 Early output translation
rules

Figure 3.3 shows the rules for creating

early output designs. The difference

between these and the standard dual rail

rules is the presence of the validity nets. At

every instance of a gate the validity lines of

all inputs are combined using a C-element

to create the validity of the output. All

latches now combine their acknowledge

with their incoming validity to ensure the

valid acknowledge line does not raise until

all inputs are valid.

3.2.4 Acknowledge paths

Acknowledge paths in early output systems are similar to standard dual rail ones

main difference is that the validity of all inputting latches is combined with t

acknowledge of the latch using C-elements. Figure 3.4 shows an early output multip

If A outputs one, S outputs zero and B outputs NULL then the logic block will crea

valid result (one). Even if latch C acknowledges the data the acknowledge signal wi

OR2

FD

QD

C

Synchronous

FD

Asynchronous

Figure 3.3: Early output translation table
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reach the latches until all have become valid. This validity is checked by placing

element combining the validity of all inputs along side every gate.

3.3 Optimization

3.3.1 Validity C-element flattening

In figure 3.4 C-elements 1 to 3 create the valid signal which is combined with

acknowledge signal in C-element 4 to create the validated acknowledge. Elements 1

be flattened down to a single four input C-element. This increases speed and dec

size of the circuit. Figure 3.5 shows the only the acknowledge circuit of a different log

operation. The solid wires are the validity part of the acknowledge paths while the d

lines are the acknowledge nets. Unfortunately there is a fork coming out of C-elem

and now there are two approaches to flatten the acknowledge paths.

3.3.2 Flatten around the fork

The first approach is to keep the fork in the validity tree and flatten C-elements either

of it. This would flatten C-elements 1 and 2 together and 3 and 4 in separate C-elem

This approach will keep the circuit small but also make the C-element tree more tha

level deep and so make the validity path slower than the next approach.

FD

FD

FD

FD

Figure 3.4: Early output multiplexer

1

2

3

4

A

B

S

C
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3.3.3 Duplicate common parts

The second approach duplicates the common parts of the trees and flattens

individually. The first validity C-element will be a combination 1,2, 3 and 4. The seco

will be the combination of 1, 2 and 5. This method will make all validity paths only o

deep at the expense of size as now a 5 input and a 4 input C-elements are needed. Thi

bigger than a 3 input and two 2 input C-elements.

3.3.4 Acknowledge tree flattening

The acknowledge tree flattening can be conducted in exactly the same manner in

standard dual rail or early output acknowledge circuits. By either flattening around f

to save space or duplicating common parts to create fast circuits. It is important n

flatten both of the validity and the acknowledge trees together unless ce

preconditions are met as this may result in malfunctioning circuits.

3.3.5 Hmmm. What happens if you flatten both trees together?

The acknowledge tree (6 in figure 3.5) should be flattened separately from the validity

(1-5 in figure 3.5). Figure 3.6 has an example synchronous circuit and its asynchro

counterpart before C-element flattening optimisation. C-elements 1 and 2 are

validating elements and which can be safely combined with 3 and 4 respectivel

FD

FD

FD

FDFD

FD

Figure 3.5: Example early output acknowledge paths

1
2

3

4

5

6
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element 5 is part of the acknowledge tree and should not be combined with 3 and

using the “duplicate common parts” strategy.

Figure 3.7 shows a correctly and an incorrectly flattened circuit. The first circuit

flattened but did not replicate C-elements 3 or 4. This circuit will function correctly. T

second circuit has duplicated and flattened the C-elements 1-4 and combined them

C-element 5 to create the middle C-element. The fault lies in the fact that the C-elem

3 and 4 have been duplicated. This allows one of these to switch and complete the

cycle while the other is still waiting for the last input. Considering a situation where d

has arrived on latches A and B but not on C. Latch X has received a valid result but

Y is still waiting for input C. In this situation latch A will be acknowledged as it has

inputs it requires to return to zero (X ack, A valid and B valid). Latch B is still waiting f

C valid and Y ack. Latch A will return to zero (A valid drops) and when value C arriv

latch B cannot reset as it will be waiting for A valid which will never come. To avoid th

error the function completion C-element should never be duplicated. The func

completion C-element is one which takes the acknowledge signal from the latch

combines it with the validity signal from the validity tree

FD

FD

FD

FD

FD

FD

QD

C

FD

QD

C

FD

QD

C

OR2

AND2

FD

QD

C

FD

QD

C

Figure 3.6: Synchronous circuit and its asynchronous acknowledge paths

1

2

3

45

FDFD

FD

FD

FDFD

FD

FD

FD FD

Figure 3.7: Correctly and incorrectly flattened acknowledge circuits

A

B

C

X

Y
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3.3.6 What does direct translation do?

Direct translation aims to make the fastest circuit and always flattens the validity

along with the function completion C-element into one C-element and the acknowl

tree into a separate C-element.
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Chapter 4: Early output protocol
extensions

4.1 Early output review

4.1.1 Overview

The previous chapter demonstrated the construction of early output circuits. This ch

will give a more detailed analysis of the protocol. It is imprtant to ensure all compon

obey their protocol and do not exibit hazardous behaviour. All the protocols describ

this chapter are based on the dual-rail, four-phase, return to zero protocol introd

earlier.

4.1.2 Logic

In a standard logic family it is often possible to determine the output of a gate befor

its inputs are valid. This a property of all gates with the exception of XOR and XNO

Early output gates take advantage of this and output as soon as the result is deter

An example of the differences in the behaveour is demonstrated in table 4.1. The

shows the outputs of the standard (ST) and early output (EO) dual rail logic OR ga

A B ST EO

0 0 0 0

N 0 N N

1 0 1 1

0 N N N

N N N N

1 N N 1

0 1 1 1

N 1 N 1

1 1 1 1

Table 4.1: Truth table for standard and early output dual rail OR gates
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The standard gates will only output once all inputs are valid. This can be seen in the

where if either of the inputs are NULL the output is NULL. The early output OR gate w

output as soon as the result can be determined. In the table this can be seen if one

inputs is NULL and the other is 1. The standard gate will wait for the second input bu

early output gate will output a 1.

4.1.3 Reset circuit

As a valid value can be output form a gate without the need of the second inpu

acknowledge signal must be delayed untill the late input arrives. In early output cir

this is done with the use of the valid signal. Validity circuit ensures that all inputs are

and when combined with the output latch acknowledge it is possible to ensure that ou

are low too. Only when the circuit is fully reset to zero can a new wave of data ente

circuit. The fact that all inputs and outputs are low does not mean that all nets in the c

are low too. The circuit can exibit some short term hysteresis as the prevous signals

not

4.1.4 Sender protocol

Although still ‘four-phase’, the early output protocol adds a validity net. Figure 4.1 sh

the early output protocol from the perspective of the sender. In the figure the st

arrows signify data-dependent causality. This happens when the data being transm

not required to create a result from the combinatorial logic. The reason for the validit
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is to protect the sending latch from receiving a transition on the acknowledge line b

it creates a transition on the data output.

4.1.5 Receiver protocol

The reason that the receiver protocol is different than that of the sender is simply be

two latches do not talkt to each other directly. Some signals pass through the validit

acknowledge C-elements before reaching the other latch. The receiver protocol

extension of the standard protocol. The acknowledge from the receiving latch is

passed directly back to the input latches but is combined with the validity net using

element. Combining the two signals using a C-element forces a transition to occur on

the validity input and data acknowledge from the latch before a valid acknowle

Data_0

Data_1

Ack

Valid

Figure 4.1: Early output sender protocol
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transition is sent back to the input latches. Unlike in the sender protocol there is no

dependent causality on any wires.

4.2 Comparison of behaviour

To demonstrate the behaviour of the different protocols a simple token based c

shown in figure 4.3 will be used. The test consists of having a token passed down o

the channels entering an OR gate. Different protocols and latch designs will demon

the different points where the circuit stops and unable to proceed without the se

token.

4.2.1 Standard dual rail

Figure 4.4 shows a logical diferal situation often arising in the standard dual rail de

The value entering the OR gate is sufficient to calculate the result of the logical func

but it will not switch until the second value enters it. This is because OR gate is made

Data_0

Data_1

Ack

Valid

Valid
Ack

Figure 4.2: Early output receiver protocol

N N

N N
N N

Figure 4.3: Small token circuit example
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guarding C-elements which prevent the output from rising before all inputs are valid.

design method causes many inflexible synchronisations.

4.2.2 Early output

The early output logic protocol allows the OR gate to switch once it is sure of the re

The data can then flow through the subsequent latches as shown in figure 4.5. The

accepting the result of the pipeline stage will now acknowledge, but the acknowl

signal will not be passed to the input latches until all the inputs are valid. The stage

the OR gate and any subsequent stages will be stuck in the data phase and will not b

to reset and start working on the next set of inputs. Once the second input enters the

and the validity signal rises then the stage can complete and enter the reset phase

4.3 Semi-decoupled latch construction

A latch is required which if placed at the output of the OR gate when acknowledged w

send a null and remember to wait for the input to drop before propagating another

to the output. This would decouple the output from the input (but not the input from

output thus the name ‘semi-decoupled’). The stages after the semi-decoupled latch w

able to reset and start processing the next set of inputs.

N N
N N

IN
Figure 4.4: Standard dual rail logical diferal

N N

IN
I I

Figure 4.5: Early output circuit stuck in data phase
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4.3.1 Standard half latch

A semi-decoupled latch can be designed by amending the design for the half-

described and used in the previous chapters. Figure 4.6 shows a specification of th

latch in an STG graph and a schematic created with the output from Petrify. The Ro

Ri signals have only one instance in the STG but two in the schematic. This is do

keep the STG design process simple. They are simply duplicated in the schematic d

The STG is composed of two interlinked loops which follow the return to zero proto

The first is the input cycle Ri+→ Ai- → Ri+ → Ai-. The second is the output loop Ro+

→ Ao+ → Ro- → Ao-. The loops are linked with several constraints. Firstly Ri+→ Ro+

ensures the output will come only after the input. There are two interlocks to synchro

the input handshake with the output handshake to lower the token storage requirem

These are Ao-→ Ai+ and Ao+→ Ai- and in the case of a half latch the token capacity

half. There is one more link which is only used to help with the state coding and to s

“marking exceeds the capacity for place <Ao-,Ai+>” error. The Ri-→ Ro- link also stops

the output stage from returning to zero while the input is high.

4.3.2 Standard semi-decoupled latch

Creating a semi-decoupled latch is not as simple as removing the Ri-→ Ro- link in the

STG description. As mentioned above, removing the link will cause a “marking exc

capacity error”. To solve the problem an internal state holding signal was created

‘csc’ signal was placed in the output loop to separate the Ao and Ro transitions to fo

Ro+→ Ao+ → csc+→ Ro-→ Ao- → csc- loop. The Ri+→ Ro+ link still exists but the

Ri+

Ai+

Ro+

Ri-

Ao+

Valid+

Ai-

Ro-

Ao-

Valid-

RO_1

RO_0

AO

AI

GSRA

VALID

RI_1

NOR2

OR2

BUF

RI_0

Figure 4.6: Standard half buffer STG and schematic
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Ri- → Ro- link can now be removed. Again some extra links were placed to keep the

sides synchronised. Figure 4.7 shows the final STG specification and the sche

created when the design was passed through Petrify and hand optimised.

4.3.3 Semi-decoupled latch behaviour

As before, because the OR gate is implemented using early output logic, the out

valid before all inputs have arrived. If the latch the OR gate outputs to is semi-decou

then when the latch’s output is acknowledged, it will return to NULL. In figure 4.8 t

can be seen where the latch inputs one value and outputs another. This allow

following stages to complete their reset phase and start working on the next set of in

The latch remembers not to allow the input request to propagate to the output by s

the csc signal. The csc signal will reset once the input requests have dropped.

4.3.4 Optimised semi-decoupled latch

Instead of using a csc signal to keep state, knowledge of the circuits surroundings c

used. The valid output goes to a C-element whose output returns as the Ao input. F

CSC

AND2B1

AND2B1

AI

RI_1

RI_0

RO_0

RO_1

VALID

OR2

OR2

Set

AO

GSRA

Ri+

Ai+

Ro+

Ri-

csc+

Ao+

Valid+

Ai-

Ro-

csc-

Ao-

Valid-

Figure 4.7: Standard semi-decoupled latch STG and schematic.

N N

IN
NNI

Figure 4.8: Semi-decoupled latch allowing following stages to return to zero
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reason all the STG graphs have the Valid -> Ao links. In all previous designs the v

signal was controlled by the Ro signal (Ro -> Valid). By attaching the valid signal to

transitions directly linking to the Ro signal it is possible to decouple the two signals.

Ri- -> Ro- link can now be broken, but by keeping the Ri- -> Valid- link the Ao- transiti

is dithered until the Ri- transition happens. This gives full state encoding and doesn’t

any “marking exceeds the capacity” errors when passed through petrify. Figure 4.9 s

the STG graph described above along with the schematic created from the petrify o

This latch design replaces a large and slow settable C-element with a relatively c

NOR gate which a future chapter will show can be optimised away. The Valid sign

now simply an identity of the Ai signal. The buffer in the schematic is only there to al

the net to have two names and will be optimised away. Compared with the standar

latch the optimised semi-decoupled latch adds only two AND gates which can

incorporated into the C-element design.

4.3.5 Optimised semi-decoupled latch behaviour

By keeping the valid signal high the stage which the latch outputs to cannot fully rese

start processing new data. But as the latch outputs a NULL which flows through

following latch it does allow subsequent stages to complete their reset stage and a

new data tokens.

Ri+

Ai+

Ro+ Valid+

Ri-

Ao+

Ai-

Valid-

Ro-

Ao-

BUF

GSRA

AND2

RO_0

AO

RO_1

AI

RI_1

RI_0

AND2
NOR2

OR2

VALID

Figure 4.9: Early output optimised semi-decoupled latch
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4.4 Semi-decoupled latch detailed overview

In section 4.1 the sender and receiver protocol were proven to be fully delay insens

In the sender protocol where the link between data and acknowledge can be

dependant and but the validity signal guards and stops the acknowledge signal

arriving early. To make hazard free circuits it is important to check the operation o

new latches.

4.4.1 Semi-decoupled protocol

Figure 4.10 shows the operation of a semi-decoupled latch. As before the dashed

represent the data dependant causality. As before if the Ao transition is not depend

the Ro transition then there is still a Valid transition dependency to ensure Ao comes

Ro. The second cycle in the diagram the Ri signal remains high for a long period of

but the Ro is decoupled and returns low. The Ro+ is caused by Ri+ but Ro- is caus

csc-. This allows Ro to return to NULL during long Ri high periods. The csc signal a

keeps state to enforce that Ri and Ai drop before a new cycle can begin. Because

STG the csc and the Valid signals were placed in sequence within output loop the

time increases considerably compared to the standard half latch. The results chapt

give more details.

4.4.2 Optimised semi-decoupled protocol

The operation of the early output optimised version of the semi-decoupled latch is s

in figure 4.11. This time the cycle time is visibly shorter due to more parallelisms in

STG specification. As before Ro+ is caused by Ri+ but this time Ro- is triggered by A

Valid signal is now totally decoupled from Ro. Ro is only observed by the output la

Ro

Ai

Ao

Valid

Ri

csc

Figure 4.10: Semi-decoupled latch protocol
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Because early output logic is used the target under certain conditions may not be a

observe the Ro transitioning. This is not a problem on the rising edge as if the target

is unable to observe one of the inputs rising then the data supplied to the other inpu

sufficient to already produce an output. But on the falling edge the input to the target

can fall without Ro falling. A different hazard can arise if the acknowledge signal co

directly after Ro has gone high. This would cause a glitch which can reach target

after its input has returned to zero.

4.5 Dual-rail gate overview

4.5.1 Standard dual rail gates

The gates used in standard dual rail have safe transitioning. To make a upwards

transition all inputs have to be valid. Even if a combination of inputs has concluded

result without all inputs being valid the output may not be driven high. Simmilarly in

reset phase the gate may not drop its output untill both its inputs have returned to

With the use of these two assumptions it is possible to draw that a pipeline stage wi

go to a reset phase while any gate has not transitioned high. Also it will not enter a

phase without its output returning low. Even if one of the inputs is very slow the cir

Ro

Ai

Ao

Valid

Ri

Figure 4.11: Optimised semi-decoupled latch protocol
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will still operate correctly. Figure 4.12 shows the transition sequence a gate with bot

input and output dual-rail wire pairs being abstracted to a single signal.

4.5.2 Early output gates

As shown above, the standard dual rail gates have a are fully delay insensitive. Any

signals can take an abitrary ammount of time and the operation will still be correct.

early output gates will only operate correctly if several timing assumptions are

Dashed lines in figure 4.13 examplify these assumptions. The output can become

when only one of the inputs is valid. In this situation the late signal might not reach

gate before the first signal drops again. The output can drop when only one of the i

has dropped. The validity circuit was built to ensure all inputs and outputs drop be

moving to the data state. Also all inputs and outputs have to become valid before en

the reset phase.

4.6 Summary

A more detailed look was taken of the early output logic methodology. The logic s

allows the system to bypass some of the synchronisations enforced by the standard

rail system. With the use of semi-decoupled latches the system can complete thei

B

C

A

Figure 4.12: Standard dual-rail gate operation

B

C

A

Figure 4.13: Early output dual-rail gate operation
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phase and advance to next set of inputs while some input stages are stuck in the data

of the previous operation. With the use of optimised early-output latches this can be

with the minimal space and latency overhead. Unfortunately this latch is not fully d

insensitive.
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Chapter 5: Anti-tokens

“Choice without arbitration is like perpetual motion machines and anti

gravity devices. It can’t be done!” James Garside

5.1 Overview

5.1.1 Introduction

The previous chapter described methods to reduce synchronisations with the use of

output logic and various semi-decoupled latch designs. Even if these approaches ar

pipeline stages will be forced to wait for the slow tokens to enter the stage before b

acknowledged. Ideally once the result of the stage is known without all inputs b

present, the stage should be able to continue with the next set of inputs. The late

will have to be acknowledged when they arrive and only the second set of these i

should be allowed to pass to the logic.

5.2 Anti-token latch specifications

5.2.1 Hazards of decoupling the valid signal

The only thing stopping the a stage which has a valid result but is still waiting for s

late inputs to arrive from acknowledging is the validity of these late inputs not being h

All validity lines need to be high to allow the validity C-element to switch to the re

phase. The validity created by a half latch or the standard semi-decoupled latch is c

by placing an OR gate across the two output signals. This ensures that the acknow

signal does not come before the output is valid. On the optimised semi-decoupled

the validity signal was set when the data out was set but was allowed to remain high

the data out dropped. This allows the latch to reset the stage and prime it for the next

while it waits for it’s input to drop. The following stages can fully complete their re

cycle. Decoupling the validity from the data out signal is allowed in the early out

protocol, as long as validity only drops when data out is already low. Dropping vali

while data out is still high can cause a logical hazard. This means that the reset cyc
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complete while the data signal remains high. This data signal now looks like it has ar

early for the set phase while in fact it is withdrawn late from the reset phase. This ha

will be discussed in more detail in the next chapter but until then it is important to n

that the only transition dependency between the valid and data out is for valid to drop

must be low.

5.2.2 Decoupling the valid signal

The valid signal controls the acknowledge out signal. The Acknowledge out signal

not transition without Valid transitioning. This allows the latch to control the output st

set and reset phases without the use of data out. This is necessary as data out

unrequired in the logical function and its rise or fall is unseen. The in the semi-decou

latch the valid signal was dropped late in order to stop the stage the latch outputs to

fully resetting. By delaying the validity signal the latch stops acknowledge fr

continuing. Only when the latch is ready to accept another acknowledge transition w

change the state of validity. When decoupled from the data signal the validity signal s

if the latch is ready to receive an acknowledge signal.

In latch designs presented so far the latch is only ready to be acknowledged whe

outputting data. Only then does it have a piece of data to destroy. By rising the valid s

the latch allows a rise on the acknowledge wire. Even if the data out wire remains

this is acceptable behaviour in the early output protocol. This can mean tha

acknowledge signal arrives before the data signal had been sent. Effectively the latc

now received an order to destroy the next token it receives. This can be thought of

latch holding an ‘anti-token’. A latch holding an anti-token must wait for a token to arr

and acknowledge it without allowing it to pass through the latch and effect the

pipeline stages. The latch can acknowledge its input even before it has received

signal. This would appear to the acknowledged latches as the logical function comp

without the need of their inputs. If these latches did place data on the outputs then thi

would be acknowledged. If they were standard semi-decoupled of half latches then

will stop the acknowledge signal from rising before they have a piece of data to des

Anti-token latches will allow the acknowledge line to raise before they have dat

destroy so they will accept an anti-token.
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5.2.3 Early acknowledge

An ‘early acknowledge’ is defined as an acknowledge before a data input. Althoug

early acknowledge is allowed in the early-output protocol, it is important to only asse

after the reset phase has completed. If the acknowledge signal is raised before the v

C-element output drops the stage will never leave the reset phase. This is because

the inputs to the validity C-element is the acknowledge. In normal token passing oper

the acknowledge will come only after the new data input has arrived. A new data i

can only arrive after the stage has completed its reset phase and entered the data

This ensures the acknowledge is not asserted while the stage is still in reset p

Additionally the reset signal should remain asserted until the stage moves into reset

The transition into reset phase is again shown by the state of the data in signal. Th

in signal will not drop until the stage has entered the reset phase and it is safe for the

to drop its acknowledge.

5.2.4 Snoop on valid-acknowledge

The latch holding an anti-token must wait for the stage to enter the data phase b

acknowledging it. The easiest way is to observe the data in line. The data in signa

only go high when its in the data phase and drop in reset phase. Unfortunately this w

force the latch to keep the anti-token until a token reaches it and only then destroy

Another way of finding the phase of the input stage is to snoop on the validity C-elem

output. The validity C-element output shows the stage phase. When the output is lo

stage is in data phase and when the output is high the stage is being reset. Figure 5.1

the arrangement of validity C-elements in a simple circuit. The C-element takes

validity of all inputs and combines them with the acknowledge signal from the latch.
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result is passed back to all inputs as an acknowledge and to the output latch to allow

snoop on the phase of the pipeline stage.

5.2.5 Acknowledge and validity sequencing

In an early acknowledge the acknowledge signal should not rise while the stage is s

reset phase. By snooping on the validity it is possible to enforce this by ensuring

acknowledge does not rise while validity remains high. When acknowledge is raise

latch must wait for the validity C-element to switch back to reset phase to ensure th

signal is acted upon by the C-element. The acknowledge signal places requests

stage to move between data and reset phases.

Similarly on the output of the latch the validity out signal controls the acknowledge

Again the signal coming in is created by a C-elements which can be controlled b

output. The output can only control the input by delaying a transition as shown in

optimised semi-decoupled latch. This ability of delaying token or an anti-token ena

the latch to stop an overflow of tokens or anti-tokens. A latch will not release

acknowledge in signal until it is ready to accept another token. Similarly the acknowl

out transition can be postponed until the latch is ready to be acknowledged.

5.2.6 Movement of anti-tokens

This organisation of C-elements outside the latches shown in figure 5.1 is very simi

a control pipeline shown in chapter 1. Using the validity C-elements the anti-token lat

are able to communicate acknowledge signals without the need of a data portion of

This allows the anti-tokens to be passed backwards through the pipeline without affe
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Figure 5.1: Anti-token latch example pipeline
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the logical part of the circuit. Instead of using gates to ensure all inputs are able to a

an acknowledge the early output circuit uses the validity tree.

An anti-token will cause the latch holding it to raise its acknowledge signal early. I

input latches are anti-token latches then an anti-token will be placed all that have no

to destroy. Once all latches have been acknowledged the input latches themselves

and acknowledge their inputs. While some input latches are trying to propagate their

tokens the stage is kept in reset phase. This is done to stop another anti-token

arriving while they are still trying to propagate the last one. This is done by not relea

the validity out signal until the input stage has entered the reset phase. Anti-token

therefore be separated by a NULL stage. This ensures that when anti-tokens are s

they remain separated and will not over write each other. The same method is use

data tokens. All data tokens are separated by a NULL stage to stop one token over w

another.

5.2.7 Anti-token deadlocks

Tokens will duplicate themselves across forks and combine across gates but en

certain rules like the minimum number of latches in a loop the circuit will never deadlo

A circuit ensures that for each fork that duplicates a token there is a gate which com

tokens. Although the number of tokens may rise and fall there is no way to create a c

which will create an unlimited number of tokens unless an output is blocking t

destruction. An output refusing to acknowledge is not a deadlock situation. And simi

a circuit can not unlimitedly destroy its tokens and deadlock it self through the lac

tokens.

Using the fact that in correct circuits for every fork there is a gate (not literally) i

possible to state these circuits will never deadlock. Anti-tokens flow backwards thro

the system. They duplicate across gates and combine across forks. If it is possible to

the assumption that tokens cannot deadlock the system because their number is

dues to forks and gates then it is also possible to state that anti-tokens will not dea

the system as they follow the exact opposite set of rules
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So far it has been shown that a token can be propagated backwards through a circ

duplicate it self across gates to create a set of anti-tokens which is equivalent to the

tokens when combined across gates would make the token the anti-token was cre

destroy.

5.2.8 Token and anti-token collisions

There are several possible ways that tokens and anti-tokens can meet. The destruc

both the token and the anti-token during collisions relies on the latch holding the tok

believe that the output is trying to acknowledge its token rather than pass an anti-t

This ability to use a signal for two distinct jobs which have the same effect allows the l

to be built without attributers. MORE HERE!

5.2.9 Anti-token propagation through complex circuits

All anti-token propitiations can be described in two models. A one to many circuit h

latch outputting to many latches. A many to one circuit takes the outputs of many la

and combines them using gates to feed a single latch. In the case of a many to one

the output latch holding the anti-token will first assert its acknowledgement signal. O

all input latches are ready to accept an acknowledgement the validity C-element goe

and input latches will either receive an anti-token or clear their token. In a one to m

circuit the input latch once ready to receive an anti-token will assert its validity out. O

some output latches receive their anti-token they will rise their acknowledge and sw

their validity C-element high. The input latch will only receive an acknowledge once

latches it outputs to have switched the validity C-element on. Only then will

acknowledgement C-element tree have all inputs needed to switch. Individual o

latches may drive their validity C-elements and snoop that they have switched on.

may then release their acknowledge signal but the C-elements will remain on unt

input latch releases its validity out. This stops the output latches from trying to

another anti-token into the stage while the previous anti-token is processed.

A many to many model follows rules of both models described above. An input latch

wait until all latches it outputs to have placed an acknowledge and an output latch

wait for all its input latches to accept the anti-token before driving another.
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5.2.10 Mixing anti-token latches with other latch designs

So far only communication between anti-token latches was described but one feat

anti-token latches is they can be safely mixed with other early output latches. Non

token latches will only receive an acknowledge once they drive the valid signal high. E

if they output to an anti-token latch which has driven its acknowledge signal early

validity C-element will only switch once all input latches are ready to be acknowled

A mixture of half, semi-decoupled and anti-token latches can be used as inputs to a

If a latch is capable of receiving an anti-token it will but if it is not then the stage is ha

until a token has arrived. Even though non anti-token latches can not propagate

tokens they can still create them by acknowledging a data token where an input anti-

latch has not contributed to the logical operation.

5.3 Anti-token latch design

The anti-token latch specifications were created using a minimalist description. This

done because the latch exhibits several non delay insensitive properties. These ma

process of designing the latch using pertify very difficult. Minimalist was able to acc

a very simple non delay insensitive description of the latch and synthesize a hazar

circuit.

5.3.1 Overview

Figure 5.2 shows the interface of an anti-token latch. In order to allow easier desig

Ri and Ro signals have been placed outside of the latch. To drive Ro the latch uses

S which controls the C-element which Ri needs to go through to transition Ro. Again

latch does not control the signal directly rather it can delay the transition until it is re

to be accepted. The state of Ri is not being monitored but the state of Ro is fed bac

the latch. As in the other latches the Vo signal passes through the validity C-elemen
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returns as the Ao signal. The latch monitors on the state of the previous stage by sno

on the output of the validity latch. This signal is input into the latch as ‘Vi’.

5.3.2 Token passing action

Figure 5.3 shows the minimalist description of the token path in the anti-token latch.

description is only able to handle passing tokens and not anti-tokens. In the initial s

the Vo signal is high. This allows the latch to receive an early acknowledge. As t

signal is also high in the initial state the latch may receive the Ro+ or Ao+ signals in

order. The normal token passing operation of the latch is to receive a Ri+ first. This ca

the latch to acknowledge its input by raising the Ai line. The stage may be still waiting

a late input so the latch is only allowed to drop Ai when it sees Vi rise. On the output

of the latch, once the Vo signal is raised the Ao may rise. Often this will not happen

the latch has contributed some information into the logical operation by rising Ro. O

Ao has risen the latch may drop Ro. This is done by dropping S. Ro will still remain h

while Ri is high so it is important not to drop Vo while Ro remains high. Only once

and Ao have risen can the latch drop both Ai and Vo. These signals are not dro

independently as this would require the latch to keep state. Once both validity C-elem

C

C C

Ao

VoAi

Vi

S

Ri Ro C

Figure 5.2: Anti-token latch interface
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have dropped the latch is ready for another token to pass through it. It can once aga

the S and Vo signals.

5.3.3 Anti-token passing action

Figure 5.4 shows the minimalist description of the full anti-token latch including the a

token passing path. From the initial state 0 the circuit now has a choice of going to

1 or state 4. In the initial state the latch can receive an early acknowledge signal. I

case of Ao rising before Ro does firstly S is withdrawn in order to stop transitions o

propagating into the next stage and then moves to execute the anti-token passin

starting with state 4. The latch then rises Ai to attempt an early acknowledge on the

stage. Again it can not drop the Ai signal until the Vi has risen. Only when the Vi line

risen is it safe to drop Ai and Vo. Once the validity C-elements in both stages h

dropped the latch can again enter its initial state by rising S and Vo.

Note that this time it is impossible to test for Ri returning to zero by observing Ro. L

in the chapter an explanation will be given of how it is possible to ensure Ri is low be

re-enabling S. Raising Ai early may be interpreted as an anti-token or as an acknow

Either way a token has been destroyed. The action of withdrawing S is very dang

and is not allowed in delay insensitive circuits. Thus the latch is not delay insensitiv

this S- transition is not acknowledged. It is possible to make very simple tim

Figure 5.3: Minimalist description of the token path in the anti-token latch

0
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2
3

Ao+/S-

Ro-Vi+/Ai-Vo-

Ao-Vi-/S+Vo+

Ro+/Ai+
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assumptions that S- will happen and the data C-element will be locked low stopping a

transition long before Vo drops.

5.3.4 Simultaneous token and anti-token requests

The above examples only describe situations where there is a clear distinction betw

request for a token or an anti-token. But as in the initial state both the data and validit

C-elements are primed to fire, both Ro+ and Ao+ transitions can happen simultaneo

In this situation the latch has to be able to choose the correct action. If the wrong a

is chosen then either one of the tokens can survive the collision or they can bypass

other.

In situations where there is a choice dependant on one of two actions happening fir

where the two actions can happen simultaneously the circuit must use some fo

arbitration to make a safe choice between the two requests. It does not matter in

order the requested tasks are completed as long as the fact that both requests

simultaneously does not perform a wrong action. In the anti-token latch the nee

arbitration is avoided by arranging the transitions so that both requests require the

actions to be performed. In the descriptions of the two transition sequences it is po

to see that from the initial state if either the Ao+ or the Ro+ transition happens the req

action (Ai+) is equivalent. There are two differences between the two sequences. F

from the initial state the first transition decides the choice of next state. If it is possib

0
1

2
3

Ao+/S-

Ro-Vi+/Ai-Vo-

Ao-Vi-/S+Vo+
4

Ao+/Ai+S-

Vi+/Ai-Vo-

Figure 5.4: Full minimalist description of the anti-token latch

Ro+/Ai+
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synthesize the description so that both paths share one state it will be possible to e

that there is no need for arbitration. To do this it is necessary to ensure that all int

state and output signals go through the same transition sequences in both paths. Th

signal transitions may vary but the operation of the circuit must remain the same so

possible to create the circuit without the need to record a difference in the state be

the two paths in an internal signal.

If the circuit does not distinguish between the two paths using an internal state signa

it is possible to create a circuit with choice but without arbiters and still ensure that

hazard free. The only other difference between the paths is the fact that the token p

path requires Ro to drop before progressing to state 3. This test for Ro low can be p

in the other path without any errors as Ro never made the upwards transition. It is s

say it is already low and the extra test will never fail.

5.3.5 Late Ro+ transition

Although S- transition should stop the Ro+ transition the circuit may have already m

to state 4 before it is noticed. As described above in order to ensure the correct ope

of the circuit the two paths must have the same state encoding. This means that s

must have the same internal state as state 2. So placing a test for Ro- in the tran

between state 4 and 3 will allow the state 4 and state 2 to be combined into

Unfortunately this is not allowed as minimalist needs a consistently enco

specification. This means when taking the anti-token path the Ro signal never raise

so cannot be tested for dropping. This situation can be solved by inserting a condi

state change into the minimalist specification. Shown in figure 5.5 the late Ro+ trans
Chapter 5:  Anti-tokens 59



5.3 Anti-token latch design

t this

e done

ut to

t but

s not

have

h later

le to

table is

in the

er to

ing

g the

l can

ore

rcuit.
in state 4 causes the circuit to move over to state 2. This way it is possible to inpu

description into minimalist and ensure a hazard free synthesized circuit.

5.3.6 Withdrawing S hazard

It is possible to say as the two paths have the same state and so the choice can b

without inducing hazards. It has been shown that by withdrawing S as Ri+ is abo

switch the data C-element, Ro can go high in state 4. This is protected agains

unfortunately the C-element can also go metastable. Although in this stage it doe

matter if Ro is high or low as both result in correct operations, the metastability can

two hazardous effects. Firstly the signal can seem to be a certain value and only muc

transition to a different value when the circuit has moved to a state where it is unab

deal with this transition. The second possible hazard when a signal becomes metas

that the signal can be observed as holding different values to different components

circuit. The problem of metastability can not be ignored and has to be solved in ord

create workable circuits. Additionally the inability to observe Ri returning to zero dur

an anti-token pass will have to be solved. These problems will be solved by alterin

circuit rather than by changing the minimalist description. This is because Ri signa

rise and drop while S is low which will make the minimalist description much m

complicated. Instead these hazards can be solved by analysing the synthesized ci

0
1

2
3

Ao+/S-

Ro-Vi+/Ai-Vo-

Ao-Vi-/S+Vo+
4

Ao+/Ai+S-

Vi+/Ai-Vo-

Figure 5.5: Late Ro+ transition example

Ro+/Ai+

Ro+/

Ro+!
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5.3.7 Minimalist synthesis

The burst-mode specification in figure 5.4 was entered into minimalist. The specifica

was synthesized with a number of complex gate suites with target optimization inclu

area and speed. Below is the set of equations which achieve the desired effect chose

the most optimal implementations created by the different target optimization strate

S = Vi’ Ao’

Ai = Ro + Vi’ Ao Vo

Vo = Ro + Vi’ Ao’ + Vi’ Vo

A generalised C-element suite was run on the specification and below is the resulta

and reset portions of the desired C-elements.

S_S = Vi’ Ao’

R_S = Ao

S_Ai = Ro + Ao S

R_Ai = Ro’ Vi

S_Vo = Vi’ Ao’

R_Vo = Ro’ Vi

Both proposed solutions are valid and even a combination of the two is possible. W

creating an implementation it is important to choose the smallest and fastest c

suggestions available.

S signal

The S signal can be much more easily implemented using a NOR gate suggested

complex gate implementation than using an asymmetric C-element. It is both smalle

faster than the alternative.
Chapter 5:  Anti-tokens 61



5.3 Anti-token latch design

y than

. This

ions

. The

nt fact

th set

round

lt for

ents

for

ately

ion

uit is

roves

haves
Vo signal

The Vo signal can be implemented using an asymmetric C-element much more easil

using a selection of gates. The C-element has two set inputs and two reset inputs

makes the element the same size and speed as a standard 2 input C-element.

Ai signal

In the case of the Ai signal both implementations are of similar size. Ignoring invers

the complex gate version requires a two input OR gate and a three input AND gate

general C-element version requires three set and two reset transistors. One importa

to note is that the set and reset sets are not mutually exclusive. This can lead to bo

and reset regions of the C-element being turned on and creating a direct power to g

connection. Additionally the asymmetric C-element requires a custom cell to be bui

this rare combination.

5.3.8 Minimalist generated circuit

The schematic shown in figure 5.6 is of the anti-token latch created by using the elem

synthesized in minimalist. For the Ai signal the gate implementation was chosen

clarity. The Vo circuit can be created using an asymmetric C-element but unfortun

this requires either an inversion on the output of the C-element or on all inputs.

This circuit is not the optimal implementation as it is impossible to input all informat

into the burst mode specification. The circuit does prove that a hazard free circ

possible and the fact that a circuit can be made without any state storing elements p

that the choice can be made safely. Although the circuit is hazard free and be
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correctly it is still too big and slow. Synthesizing the circuit by hand directly from t

behavioural description should give better results.

VI
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VO

AO
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AI

VO

O1

AO

VI
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VI
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NOR2
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NOR2

NAND2

NAND3B1
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Figure 5.6: Anti-token latch schematic
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Chapter 6: Optimised anti-token latch

6.1 Hand synthesis of the anti-token latch

6.1.1 Token passing behaviour

Figure 6.1 shows the behaviour of the anti-token latch while passing a token. In

diagram the Vi signal does not effect any latch signals. This is because the Vi sign

only used when passing an anti-token. Using this behaviour diagram it is possible to

synthesize a better anti-token latch circuit. This circuit will only be able to cope w

passing tokens. Later this will be corrected by analysing the anti-token passing beha

and combining the circuit created there with the token passing functions. This w

circuit can be made which works in both conditions but with the minimum comple

when designing.

S and Ai signals

The S signal transitions are always triggered by transitions on the Ao wire. Creatin

S signal can be simply done by inverting the Ao wire. The Ai also reflects the valu

another wire. The value on Ro can be used to create the Ai signal.

S = Ao’

Ai = Ro

Ro

Ai

S

Ao

Vo

Vi

State 0 1 2 3 0 1 2 3 0

Figure 6.1: Token passing behaviour
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Vo signal

Vo is triggered by both the Ro and Ao signals. The transitions of the Ro and Ao sig

are dependant on each other. An Ro transition relies on a Ao transition through S.

Ao transitions rely on Ro transitions (indirectly in the case of Ao- through Vo-). T

ensures transitions Ro+→ Ao+ → Ro-→ Ao- will happen in sequence. Vo needs to dro

on a Ro- and raise on a Ao-. This allows the signal to be generated much more si

The Vo signal needs to stay high except when Ro is low until Ao becomes low.

equation below satisfies this requirement.

Vo = Ro + Ao’

6.1.2 Anti-token passing behaviour

Figure 6.2 shows the behaviour of the anti-token latch passing an anti-token. This tim

Ro signal is ignored as it is not needed during an anti-token pass. The S signal is d

but will not have any effect as this signal is only used when passing tokens. The s

still has to be driven as the next transaction could be an token. Again similar method

be used to synthesize the circuits out of the behavioural description.

Ro

Ai

S

Ao

Vo

Vi

State 0 4 3 0 4 3

Figure 6.2: Anti-token passing behaviour
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S signal

As in the token passing behaviour the S signal is directly represented by invertin

value on Ao.

S = Ao’

Ai signal

Each Ai transition requires to be proceeded by a transition on Vi. Additionally the

transition must wait for a Ao+. Ao and Vi transition in sequence although Ao- and Vi-

happen in parallel. The sequence of transitions Ao+→ Vi+ → Ao- || Vi- → Ao+ can not

happen out of order. Although the easiest solution to the problem would be to use a

to combine the two inputs. ‘Ai = Vi’ Ao’ would unfortunately be incorrect as Vi cou

drop before Ao and cause the gate output to raise for the second time in the cycle

simple two input gate is no longer possible a more complex strategy must be

Because the two wires can enter the Ai switch state (Vi low Ao high) later in the c

when Ai should not transition, another wire must be used to keep state. The Vo s

drops when Vi raises. This Vi+ transition also causes Ai to drop. Vo remains low u

both Vi and Ao are low. The Ai switch state on wires Vi and Ao can only occur dur

the time that Vo is low. If the Vo signal is added to the gate creating the Ai signal then

Ai high Vi low state will not switch the gate.

Ai = Vi’ Ao Vo

This implementation is similar to that created by Minimalist. Unfortunately there is a r

between Vi and Vo. Vi can switch high, cause Ai to return low and itself switch l

before Vo had a chance to switch. This hazard can occur in the minimalist version o

circuit. Minimalist states that a delay between output bursts and input transitions mu

kept in order to create hazard free circuits. Luckily the problem can be easily so

Instead of watching Vi directly the state can be observed by watching Vo instead.

Ai and Vo need to wait for Vi+ before transitioning to low. The Vo signal is already

the Ai creating gate so using it to also observe Vi will not cost anything. This creat

simpler circuit.
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Ai = Ao Vo

This also removes the direct link between Vi and Ai. Instead Ai waits for and ensures

Vo transitions correctly before Vi is allowed to switch. This can make the circuit slo

but more simple.

Vo signal

The Vo+ transition requires Ao and Vi to be become low. Although the Vo- transit

requires both Ao and Vi to be high, Vi becomes high as an indirect consequence o

going high. Ao remains high until Vi does go high. It is possible to say that when Vi g

high only while Ao is high and so for a Vo- transition only Vi needs to be observed.

fact that for a Vi+ transition only one of the lines signals needs to be tested allow

removal of a gate or a transistor from the C-element in the circuit. The gate version o

circuit simply raises Vi when both Vi and Ao are low and only drops Vo when Vi rais

Vo = Vi’ Ao’ + Vi’ Vo

The asymmetric C-element uses two transistors for the set and one for reset sides

C-element. Unfortunately both inputs are inverted. Either the inputs need to be inv

before entering the C-element or the output of the C-element is inverted.

S_Vo = Vi’ Ao’

R_Vo = Vi

6.1.3 Combining and comparing implementations

The token and the anti-token implementations can now be combined. It is importan

the combined version is able to both pass tokens and anti-tokens.

S signal

In both the token and anti-token passing behaviours the S signal can be generated d

by inverting Ao. Minimalist did not generate this simpler circuit as the transition fr

state 3 to state 0 in the burst-mode specification requires both Ao- and Vi- to ha
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before S raises. The real requirement are: Ao drops for S to rise, Ao and Vi drop fo

to rise. Unfortunately Ao- and Vi- can happen in either order. The easiest metho

specify this behaviour is to describe it all in one transition. Unfortunately this imp

extra rules minimalist requires in the implementation.

S = Ao’

Ai signal

The Ai signal is generated by Ro in the token cycle and by Ao Vo in the anti-token cy

A combined circuit must be created which behaves like Ro during a token pass and

Vo during an anti token pass. Ro remains low during an anti-token pass so shou

effect the signal during an anti-token pass. In the token pass Ro rises before A

directly causes Vo to drop. The fact that Ao Vo will not raise before Ro goes high

drops directly after Ro drops allows the two functions to be passed to an OR gate

combined. The resultant circuit works but in the token pass the Ai- transition waits fo

to drop which happens a gate delay later than just waiting for Ro to drop. This remo

an inverted input into the and gate saving some area and power but possibly reduci

speed.

Ai = Ro + Ao Vo

Another circuit can be used for a possible speed improvement.

Ai = Ro + Vi’ Ao Vo

Vo signal

In the token pass the Vo+ transition needs Ao- to happen but in the anti-token pass

Ao- and Vi- need to occur. As Vo+ happens when the circuit is resetting back to its in

state it is impossible to tell which mode it is in, so the safe approach of waiting for b

Ao- and Vi- to occur must be taken. Vo- occurs when Ro drops in the token pass and

Vi rises in the anti-token pass. In the anti-token pass Ro- does not occur and in the

pass Vi+ occurs before Ro-. This stops the use of just one of the variables to cau

down transition. The second option to use one of the other variables is also not via
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the only other variable which exhibits the desired property (Ai drops when Vi is high

Ro is low) gets its order to transition from Vo. If Ai was used then both signals would w

for each other to drop and the circuit would deadlock. This means that the Vo signa

to wait for both Vi+ and Ro- before dropping.

S_Vo = Ao’ Vi’

R_Vo = Ro’ Vi

In this case no improvement could be made on the minimalist generated solutions

gate implementation is also a viable option for this signal.

Vo = Ro + Vi’ Ao’ + Vi’ Vo

6.1.4 Schematic

Figure 6.3 shows a schematic of the hand synthesized anti-token latch. Data C-ele

are now controlled directly by Ao. No improvements could be made in the Vo genera

circuit. Ai has one less input which would have needed an inverter. It is still possib

put the Vi input back into the Ai function to gain extra performance. This would decre

the delay between Vi+ and Ai- by one C-element delay but add one inverter and t

two input NAND gate into a three input gate.
AO

NAND2

AO

VO

VI

RO

VO

AO

I0

AI
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NOR2

O0

I1

RO

O1

NAND2

INV

INV

Figure 6.3: Hand synthesized anti-token latch schematic
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6.2 Removing hazards

6.2.1 Ri high during anti-token pass hazard

In an anti-token pass the input latch which is being acknowledged early can be hold

token so before the early acknowledge comes it may raise its data lines. As noted

previous chapter, during an anti-token pass the latch does not observe the Ri

Although at the sending latch the data lines are is dropped before the Vo drops the

through the logic before the signal gets to Ri may keep the lines high even whe

validity C-element drops. When the validity C-element drops Vo and Ao will drop t

causing S to be reasserted. This allows the data C-element to be switched on with th

from the previous stage which can cause incorrect circuit behaviour. In the token pa

action Vo is kept high until Ro drops. The Ri signal dropping is observed through R

Ro cannot drop before Ri. This stops Ao from dropping and re-enabling S. To stop th

high during anti-token pass hazard’ the Ao- transition must be delayed until both R

Ro have dropped. The Ao- transition is dependant on Vo-, so by delaying Vo-

possible to defer Ao- until it is ready to be accepted. In the circuit creating the Vo si

the condition that Ri is low before Vo- transition occurs can be easily added.

asymmetric C-element simply needs an extra pin connected to the plus side driven

NOR gate from with inputs from Ri. Alternatively a four input NOR gate combining bo

Ri and Ro signals can be used in place of the two input NOR gate driving the positiv

of the asymmetric C-element. Note that the Vo C-element is inverted before driving

Vo signal.

6.2.2 Metastability of Ro during an anti-token pass

During an anti-token pass the Ro C-element may be half way through switching wh

is withdrawn. This may move the data C-element into metastability. The above se

described how the Ri signal can be observed directly rather than through Ro. This a

Ri to be tested without the need to set Ro and observe it dropping each cycle. As

observed directly Ro can drop with out the need to wait for Ri to drop. If the S sig

dropping resets the data C-elements without the need for Ri to drop the metastabili

be removed. The original metastability was caused by S dropping and the C-ele

moving into its ‘keep state’ mode while not being fully switched. Now S dropping sign
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the C-element to reset rather than keep state. Figure 6.4 shows the updates schem

the interfacing of the latch to the rest of the circuit. The latch now snoops on Ri. Also

data C-element becomes asymmetric and the Ri signal only drives the plus side

causes the C-element to reset when S drops, even if Ri remains high.

6.2.3 Hazard free anti-token latch schematic

Figure 6.5 shows the implementation of the anti-token latch including the ha

removing features described above. The cost of the hazard removal is very low. Th

little or no cost in speed. Five extra transistors are added by the NOR gate and the

input into the Vo C-element but the data C-elements can now be made without the u

keeper inverters and saving one transistor on each.

C

C C

Ao

VoAi

Vi

S

Ri Ro

Figure 6.4: Anti-token latch interface
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Figure 6.5: Hazard free anti-token latch schematic
Chapter 6:  Optimised anti-token latch 71



6.2 Removing hazards

o to

e anti-

ad.

the

Ri

ill

fore

rter,

pass

aths

y safe

ard

The

stead

has

extra

four
6.2.4 Races

The Ro signal can be reset without Ri dropping first. Ai signal which observes R

ensure Ri has dropped can no longer do so as this assumption is no longer true. In th

token pass Ai rises without Ri ever transitioning as it is controlled by Ao and Vo inste

When either Vo and Ao are high the Ai signal will also be high. When Ro returns low

Vo and Ao signals should take over the control of Ai and only allow it to drop when

drops. The drop of Ro is caused by Ao rising. While Ao is high (along with Vo) Ai w

remain high. Unfortunately the Ro- transition can reach the Ai producing function be

Ao+. The Ao+ signal has to go through four inversions before Ro signal drops (inve

two inversions in the C-element and a sensing NOR gate). The Ao signal must

through a NAND gate before Ri drops or Ai may glitch. Figure 6.6 shows the two p

of the race. These race conditions can be easily met. A four to one race is generall

unless the final design is very badly routed. But if there is a possibility of this haz

occurring a safe circuit can be designed.

Figure 6.7 shows an implementation of the anti-token latch which is free of races.

race is easily be removed by not relying on Vo and Ao signals during a token pass. In

the Ri signal is observed directly and only releasing the Ai signal to drop when it

dropped. This design adds eight extra transistors (one NAND, one inverter and an

pin one a NAND). It is advised to not use this design as the race condition of

I1

I0

AO

NOR2

RO

AI

VO

INV

NAND2
NAND2

Figure 6.6: Race in the anti-token latch
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inversions to one can be easily met and the cost of ensuring hazard free using thi

token latch implementation is costly in both area and power.

Although the circuit is now fully functional and hazard free it still must initialise into t

correct state.

6.2.5 Reset state

When the reset signal is activated the latch should clear its state holding elemen

return to its initial state. To allow the external validity and acknowledge collection

elements to reset both Ai and Vo should be low at reset time. Also the data C-elem

should be reset to remove any token inside the latch. The latch can assume that th

in signals will be low but the other signals (Vi and Ao) can be in any state. As Ao ma

low at reset time and the data C-elements must be reset the Ao signal is passed thr

NOR gate along with the reset signal in place of the inverter to allow a manual reset.

will reset the data C-elements and ensures that Ro is low. In the initial state the Vo s

is high but in order to reset the validity C-elements it should be forced low. The Vo si

can be forced low using the same method used for the Ao signal. The inverter is rep

with a NOR gate which allows the second input (reset signal) to force the output low.

Vo C-element will eventually reset low as Vo and Ai are set low to allow the externa

elements to reset and so will eventually cause the drop of Vi and Ao. These are th
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Figure 6.7: Race free anti-token latch
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signals required to be low for the Vo C-element to drop. Ai will reset without help as b

Ro and Vo are low. Figure 6.8 shows the resettable anti-token latch. The overall co

inserting the reset signals is four extra transistors. The speed and power penalti

nearly zero.

6.3 Anti-token behaviour

6.3.1 Anti-token creation

Figure 6.9 shows the example from chapter 4 where the OR gate receives a token o

of its two inputs. The token is able to switch the gate to output a valid value. The ou

latch receives a token so it acknowledges. The as the late inputting latch is an anti-

latch it drives its validity line high before outputting valid data. This allows the valid
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Figure 6.8: Resettable anti-token latch
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C-element to switch and the latch receives an early acknowledge. This causes the la

hold an anti-token.

The acknowledge reaches the bottom latch and removes its data so the bottom pipe

ready to accept more tokens. The token in the result pipeline will move forward. The

token created in the top pipeline will move backwards trying to destroy a token. It

pass through logical stages as well as pipelines.

Anti-tokens are created by early output logic stages when an input into the stage

nessesary for the creation of a valid output. To increase the chance of anti-token cr

rather than blocking the stage it is important that the logic outputs early when

possible.

6.3.2 Anti-token movement

The anti-token while travelling backwards will be able to cross logic stages. In

example in figure 6.11 the anti-token will cause both of the input latches to accept an

token. If one of the input latches holds data then the data is removed and no anti-to

inserted. This allows the anti-token to unblock logic stages. Not only is the stage w

N

IN
I N

A

Figure 6.9: Anti-token creation

A N
IN

N N
Figure 6.10: Movement of an anti-token
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e anti-
created the anti-token freed to process a new set of inputs but other stages that th

token passes through are able to flush and process new data.

N
N

N
A

N

N
Figure 6.11: Anti-token propagation through logic
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Chapter 7: Conclusions

7.1 Overview

This thesis presented three main consepts which when combined can be very benifitial to

the asynchronous design community. The direct translation
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