
EDA FLOWS are industry driven, and thus use

synchronous methodologies as de facto stan-

dards. However, implementation problems arise

from imposing a synchronous model of opera-

tion on deep-submicron circuits. This problem

motivates the investigation of other, asynchro-

nous, modes of operation. Acceptance of new

design methodologies, including asynchronous

ones, by engineering and industrial communities

depends on three major issues:

� added value of the methodology in terms of

area, power, speed, electromagnetic inter-

ference (EMI), noise immunity, and so on;

� tradeoffs, which design parameters often

worsen to achieve added values, such as

speed versus power, and area versus EMI;

and

� the cost of switching to the new methodolo-

gy, including training time, development of

new libraries, and time spent dealing with

CAD tool immaturity.

Researchers have demonstrated that asyn-

chronous designs can deliver higher speeds

because they can latch values as the computa-

tion finishes, unlike synchronous design, which

must wait for all computations to finish before

latching. This improves overall performance

when the average case finishes much earlier

than the worst case.1 Researchers have also

shown that, because of the absence of a clock

and natural support of idle mode, such designs

might consume less power than synchronous

designs.2,3 Finally, asynchronous designs incur

low EMI and noise, thanks to their even time

distribution of switching activities.4 (See the

“Practical asynchronous circuits and tools”

sidebar for another perspective on asynchro-

nous design from a leading expert in the field.)

Nevertheless, industry acceptance of asyn-

chronous designs has been slow because most

success stories have thus far not delivered

everything they’ve promised. Asynchronous

high-speed circuits are custom designs,1 incor-

porating complicated timing assumptions

about circuit delays and thus blurring the

boundary between asynchronous and syn-

chronous styles. CAD support for such method-

ologies is even more problematic than for

custom synchronous designs.

Thus, low-power asynchronous circuits usu-

ally compromise by using asynchronous meth-

Design of Asynchronous
Circuits Using Synchronous
CAD Tools

Special DAC Section

2

Poor CAD support hinders wide acceptance of

asynchronous methodologies, and asynchronous

design tools are far behind synchronous

commercial tools. A new design flow, NCL_X,

based entirely on commercial CAD tools, targets a

subclass of asynchronous circuits called null

convention logic. NCL_X shows significant area

improvement over other flows for this subclass.

Alex Kondratyev

Cadence Berkeley Laboratories
Kelvin Lwin

Reshape Inc.

0740-7475/02/$17.00 © 2002 IEEE IEEE Design & Test of Computers



ods for control synthesis and synchronous

methods for data path design. Communication

among these circuit elements rests on timing

assumptions and delay-matching mechanisms.

The latter makes verifying such circuits difficult.

To further complicate the situation, a lack of

commercial CAD support for asynchronous

synthesis sometimes forces designers to use in-

house specification languages and design

tools.2,3 This chronic deficiency is a major road-

block to wider acceptance of asynchronous

methodologies.

Low EMI and noise coefficients are the only

“free” advantages of asynchronous circuits.

3July–August 2002

Alain J. Martin, California Institute of Technology

After looking like a pipe dream for many years, asyn-
chronous technology is becoming a viable—and perhaps
unavoidable—alternative to clocked design for large VLSI
systems. Asynchronous technology rests on local com-
munications among concurrent units. Handshake proto-
cols implement communication and synchronization
among those units. There is no concept of global time—no
clocks—and no assumptions about the duration of an
action or communication. Asynchronous circuits have sev-
eral advantages:

� They avoid all issues related to distributing a clock sig-
nal reliably and efficiently across a large chip.
� Because they can be largely insensitive to delay varia-
tions, asynchronous circuits can tolerate large variations in
a design’s physical parameters, which are difficult to con-
trol in deep-submicron technology.
� They offer, to the designer of low-power systems, auto-
matic and perfect shut-off of idle parts.
� Asynchronous technology lends itself to high-level syn-
thesis and modular design.

The asynchronous community has made spectacular
progress in the last decade, and today we know how to
design correct and efficient asynchronous circuits. The
correctness issue mostly concerned designing glitch-free
circuits. The efficiency issue related to the cost of hand-
shake protocols and completion detection.

To appreciate this progress, consider the family of asyn-
chronous chips designed at the California Institute of
Technology between 1989 and 1999. Researchers at
Caltech designed the world’s first asynchronous micro-
processor in 1989. The chip had 20,000 transistors and was
a simple 16-bit machine. Its peak performance was 5 MIPS
at 2 V drawing 10 mW, and 18 MIPS at 5 V drawing 225
mW, in 1.6-micron CMOS. It was correct on first silicon, and
its performance was competitive with designs of that time.

In 1994, Caltech presented an asynchronous, pipelined
lattice structure filter, the first example of very fine pipelining.
The chip had 250,000 transistors. In 0.9-micron CMOS and
at 3.3 V, the throughput was 130 MHz—that is, 500 million
12-bit additions or multiplications per second. In liquid nitro-
gen, the filter executed 1 billion operations per second. The
chip worked correctly from 1 V to 5 V. At 1.1 V, it operated at
36 million operations per second and consumed 20 mW.

Between 1995 and 1998, Caltech researchers designed
the MiniMIPS, an asynchronous MIPS R3000. As of today, it
is still the most efficient asynchronous chip ever designed.
The R3000 is a classic 32-bit RISC processor with two 4-
Kbyte caches. Caltech fabricated the chip in 0.6-micron
CMOS. The transistor count was 2 million. All chips were
functional, except one with a defective package. The test
performance on small programs was 180 MIPS and 4 W at
3.3 V, 100 MIPS and 850 mW at 2.0 V, and 60 MIPS and 220
mW at 1.5 V. The performance figures running Dhrystone
benchmarks were 185 MHz at 3.3 V (165 VAX MIPS).

So, if researchers have resolved most of the issues
regarding the design of asynchronous circuits, why is the
industry so slow in adopting the technology? There are cer-
tainly sociological and other nontechnical answers to the
question. But Kondratyev and Lwin are correct in identify-
ing the absence of design tools as the single most impor-
tant technical stumbling block. As long as there is no
market for asynchronous EDA tools, the EDA industry will
not create these tools. But as long as there are no tools for
asynchronous design, there will be no market for the tools!
Kondratyev and Lwin aim to break free from this vicious
cycle by adapting existing tools to the asynchronous
design flow. Whether they can accomplish this without too
high a performance penalty remains to be seen. But the
experiment is worth watching.

Alain J. Martin is a professor of computer science at the
California Institute of Technology. Contact him at
alain@async.caltech.edu.

Practical asynchronous circuits and tools



Without the clock, noise and EMI spectrums are

significantly flatter across the entire frequency

domain. For noise, this can be a 10-dB drop,

according to McCardle and Chester.4

Until recently, EMI and noise metrics were

second-class citizens; everybody focused on

power and performance. But EMI and noise met-

rics are garnering more attention because of two

emerging applications: mixed-signal design and

smart cards. In the former, analog functions are

particularly sensitive to clock-correlated, digital-

switching noise. Reducing noise and EMI signif-

icantly boosts both precision and performance.

In smart cards, EMI doesn’t affect functionality

but has a significant impact on security.

Noninvasive security attacks depend on moni-

toring a smart card’s power rail, or EMI signature,

to decipher information on the card. Even dis-

tribution of circuit-switching activities vastly

improves security.

We propose an automatic design flow for

asynchronous circuits, with the following

features:

� Its added value rests on its low EMI and/or

higher security level.

� This value comes at the expense of an area

penalty.

� The flow has low switching costs because it

closely mimics the conventional synchro-

nous hardware description language (HDL)

methodology and relies on commercial

design tools.

The last feature is key for asynchronous design.

It removes the roadblock of reeducating design-

ers and shifts the criteria for choosing whether

to use asynchronous circuits toward an objec-

tive estimation of their tradeoffs: area, speed,

power, and so on. This new design flow,

NCL_X, targets a subclass of asynchronous cir-

cuits called null convention logic (NCL).

Asynchronous design styles
Clocking is a common, simple abstraction

for representing the timing issues in the behav-

ior of real circuits. Generally speaking, it lets

designers ignore timing when considering sys-

tem functions. Designers can describe both the

functions performed and the circuits them-

selves in terms of logical equations (Boolean

algebra). In general, synchronous designers

don’t need to worry about the exact sequence

of gate switching as long as the outputs are cor-

rect at the clock pulses.

In contrast, asynchronous circuits must

strictly coordinate their behavior. Logic syn-

thesis for asynchronous circuits not only must

handle circuit functionality but also must prop-

erly order gate activity (switching). The solu-

tion is to use functional redundancy to

explicitly model computation flows without

using abstract means such as clocks. Using

logic to ensure correct circuit behavior under

any delay distribution can be costly and

impractical. Therefore, most asynchronous

design styles use certain timing assumptions to

correctly align functions.

These assumptions can have different

degrees of locality—from matching delays on

some wire forks to balancing all system paths

(as in synchronous methodologies). Localized

assumptions are easier to meet in a design

because they simplify timing convergence

problems and provide more modularity. But

ensuring the correctness of such assumptions

can be costly because it requires more system

redundancy at the functional level. Asynchro-

nous design styles differ in the way they handle

the tradeoff between locality of timing assump-

tions and design cost.

Existing asynchronous design flows include

the following:

� Delay-insensitive (DI) circuits impose no tim-

ing assumptions, allowing arbitrary gate and

wire delays.5 Unfortunately, the class of DI

implementations is limited and impractical.

� Quasi-delay-insensitive (QDI) circuits parti-

tion wires into critical and noncritical cate-

gories.6 Designers of such circuits consider

forks in critical wires to be safe by assuming

that the skew caused by their wire delays is

less than the minimum gate delay. Designers

thus assume these wires to be isochronic. In

contrast, noncritical wires can have arbitrary

delays.

� Speed-independent (SI) circuits let gates have

any length of delay, but wire delays must be

negligible.5

Special DAC Section

4 IEEE Design & Test of Computers



� Burst-mode (BM) circuits rely on the funda-

mental mode protocol, which applies a new

input pattern to the circuit only when the cir-

cuit has completely settled to its steady state

after the previous pattern.7

As Figure 1 shows, the locality of timing

assumptions decreases, from DI systems (which

incorporate no assumptions) to burst-mode cir-

cuits (in which timing assumptions involve

global characteristics of system behavior, and

the environment’s response is slower than the

module’s delay).

Our work targets NCL,8,9 which fits the QDI

methodology because it imposes timing

assumptions only on wire forks. However, rather

than assuming isochronic forks, NCL requires

the skew after the fork to be less than the circuit

response time. This change makes it far easier

for the design to satisfy timing constraints.

However, NCL doesn’t distinguish between

critical and noncritical wires, and thus design-

ers must ensure that all wire forks meet timing

assumptions. Although this change requires

more work, it relieves designers from having to

determine whether a fork is critical or not. In

this way, the NCL design flow is more likely to

produce an acceptable design, but it must

check more timing assumptions than a typical

QDI design flow.

Delay-insensitive combinational
circuits

A combinational gate output reflects the

gate’s Boolean function after its gate delay.

Certain functions let you infer the input state

by observing the output. For example, output

0 for a two-input OR gate means both inputs

are 0. For the other three possible inputs, the

output is 1. When transitioning from one set of

inputs to another, the output can temporarily

become 0 before returning to its proper value

of 1. This behavior constitutes a hazard. A cir-

cuit in which hazards cannot occur under any

distribution of gate and wire delays is delay

insensitive.

Imagine a circuit in which false transitions

don’t occur and where you can always infer the

inputs by merely observing the outputs. You

could say that the output of such a circuit has

full acknowledgment of all its inputs. The notion

of acknowledgment is key to ensuring delay

insensitivity. If every transition at a wire or gate

in a circuit translates its firing results into

changes in the primary outputs, the circuit

behavior does not depend on transition timing

and is delay insensitive.

Figure 2 illustrates the acknowledgment con-

cept. In Figure 2a, the transition at y does not

properly acknowledge the rising input transi-

tions at both a and b, because y changes as

soon as any one of its inputs transitions, regard-

less of the value at the other input. Output y

properly acknowledges the same input transi-

tions in the circuit in Figure 2b because, in this

5July–August 2002

F
un

ct
io

na
l r

ed
un

da
nc

y

Nonlocality of timing assumptions

Null
convergence logic

Quasi
delay insensitive

Speed independent

Delay sensitive

Burst mode
Synchronous

Figure 1. Functional redundancy and the nonlocality of timing

assumptions for different asynchronous design flows. The gray

area indicates that NCL has more assumptions than in typical

quasi-delay-insensitive circuits but that each assumption is safer.

(b)(a)

a

b 

a

b y

y

Figure 2. Illustration of acknowledgment by outputs. The transition

at y does not acknowledge the input transitions at a and b (a);

output y properly acknowledges the same input transitions (b).



case, y does not change until the circuit asserts

both a and b as 1.

Null convention logic
NCL is a specific way of implementing data

communication based on DI encoding. Data

changes from the spacer (Null) to a proper code

word (Data) in the set phase, and then back to

Null in the reset phase. NCL targets simple DI

encoding in which Data code words are one-hot

codes (only 1 bit of the code can be asserted to

1), and a vector with all entries equal to 0 rep-

resents the spacer Null. For example, in dual-rail

encoding, two wires, a.0 and a.1, represent each

signal, a. Thus, this method encodes a = 1 as a.0

= 0 and a.1 = 1, and a = 0 as a.0 = 1 and a.1 = 0.

DI encoding lets the receiver determine that a

code word has arrived by observing the code

word itself, without appealing to timing assump-

tions. In particular, for dual-rail signals a.0 and

a.1, an OR gate (a.0 + a.1) is the simplest detec-

tor for validating a code word at a.0 and a.1.

At an architectural level, NCL systems clear-

ly separate sequential and combinational parts,

much in the same way as with synchronous sys-

tems, as Figure 3 shows.

NCL systems borrow the idea of organizing

register interaction in DI fashion from micro-

pipeline architectures.10 The main difference

concerns data path implementation: It is delay

insensitive for NCL and synchronous for

micropipelines.11

To understand how the NCL system func-

tions, assume that all registers are initially in the

Null state and that the circuit has

asserted Ack signals to 0. When

Data arrives, a register’s outputs

change from Null to Data, and the

Data wave front propagates

through a combinational circuit to

the next register’s inputs. Simulta-

neously, a completion detector

checks for a Data code word at its

inputs, and replies by raising the

Ack signal. This signal disables the

previous register’s request line and

prepares the register for storing the

next Null wave front. The request-

acknowledgement mechanism of

register interaction ensures a two-

phase discipline in NCL system functioning and

prevents collisions between different Data

wave fronts.10

Guaranteed implementation of this behavior

requires gates, such as those based on NCL, that

satisfy the following properties:

� Monotonic Null → Data (Data → Null) tran-

sitions at a combinational circuit’s inputs

result in monotonic Null → Data (Data →
Null) transitions at its outputs. These prop-

erties are achievable by using gates that

implement a positively unate function (all

inputs in an inversionless function). Each

gate can then make at most one transition in

the set or reset phases, much like in

precharge dynamic circuits.

� For intermediate states of the Null → Data

input transition, a combinational circuit

must keep some of its outputs in Null (so

that it does not produce Data prematurely).

For intermediate states of the Data → Null

input transition, the circuit must keep some

of its outputs in Data (so that it does not pro-

duce Null prematurely). Thus, NCL gates

must track the current function; that is, gates

must have internal memory.

These conditions lead to a general repre-

sentation of an NCL gate as g = S + gR′, where

S and R are the unate set and reset functions.

Because there’s only one designated value for

Null (the vector with all 0s), the system must

uniformly reset every gate by changing its out-

Special DAC Section

6 IEEE Design & Test of Computers

Request

Register A

Request

Register B

Completion
detector

Completion
detector

Combinational
logic

Ack_a

Ack_b

Figure 3. NCL system implementation.



put to 0 only when all inputs to

that gate are 0. 

This refines the representation

of gate g to the threshold function

g(x1, x2, …, xn) = S + g

(x1 + x2 + … + xn). Figure 4a shows

a semistatic CMOS implementa-

tion of an NCL gate. Figures 4b and

4c show an implementation and

notation for a particular NCL gate

with the function g = x1x2 + g(x1 +

x2), known from literature as a

Muller’s C-element.

NCL design flow
NCL is coded at the register-

transfer level (RTL). To synthesize and simulate

an NCL circuit at the RTL using commercial

tools, the tools must handle the Null value and

sequential behavior of threshold gates.

Designers must

� separate combinational logic and registers,

writing combinational logic as concurrent

signal assignments or in processes; and

� instantiate NCL registers and provide a sim-

ulation-only model for sequential behavior

of NCL gates but ignore the simulation

model during synthesis. For synthesis,

threshold gates are represented by their set

functions and look like Boolean gates.

As Figure 5 shows, the NCL design flow uses

off-the-shelf simulation and synthesis

components.

The flow executes two synthesis steps. The

first step treats NCL variables as single wires.

The synthesis tool performs HDL optimizations

and outputs a network built from components

in the Synopsys GTech (generic technology)

library, as if it were a conventional Boolean RTL

circuit. The second step expands the interme-

diate GTech netlist into a dual-rail NCL by mak-

ing dual-rail expansions and mapping them

into the threshold library. The details of these

two implementation steps can affect the quali-

ty of the final results.

Ligthart et al. suggested a regular method for

NCL implementation,8 which we call NCL_D,

based on delay-insensitive minterm synthesis

(DIMS).1 This method implements these two

steps as follows:

1. It maps the optimized network into two-

input NAND, NOR, and XOR gates.

2. It first represents each wire as a dual-rail

pair, a.0 and a.1, and then directly translates

two-input Boolean gates into threshold gate

pairs with limited optimization of a thresh-

old network.

7July–August 2002

x1
x1

x2

x1

x2

xn

n-tree
unate

function

(a) (b) (c)

g g
g

C

Figure 4. Semistatic CMOS NCL gate implementation (a), a particular NCL

gate known as Muller’s C-element (b), and its notation (c).

VHDL RTL
simulation

Cell
library

Cell
library

DesignWare

DesignWare

RTL
synthesis

Two-rail expansion
and synthesis

GTech netlist

NCL netlist

Figure 5. RTL flow for NCL.



Figure 6 shows a step-2 implementation for

two-input NAND gate c = (a, b). (In the remain-

ing figures, a “T” inside a gate symbol indicates

a threshold gate; a “C” indicates a Muller’s C-

element.)

Therefore, for gates and wires before forks,

this translation scheme supports circuits that

are delay insensitive by construction; for wires

after forks, justifying correctness requires a

review of timing assumptions.

The main advantages of NCL_D circuits are

the translation scheme’s simplicity and the

automatic verification of DI properties during

implementation. Unfortunately, NCL_D circuits

incur significant overhead, which comes from

two main sources:

� over designing because of the locality of DI

property verification (no sharing in the

acknowledgment is allowed), and

� little room for optimization (optimization

can easily destroy DI properties).

NCL flow with explicit
completeness

Our design flow, NCL_X, exploits the idea of

separate implementations for functionality and

delay insensitivity. NCL_X partitions an NCL cir-

cuit into functional and completion parts,

allowing independent optimization of each.

Modifying the flow’s implementation steps per-

mits this separate implementation and opti-

mization. In step 1, designers perform a

conventional logic synthesis (with optimiza-

tion) from the RTL specification of an NCL cir-

cuit. This step also maps the resulting network

into a GTech library, using gates that implement

set functions of threshold gates. Step 2 involves

the following substeps:

� reducing the logic network to unate gates by

using two different variables, a.0 and a.1, for

direct and inverse values of signal a (the

obtained unate network implements rail.1 of

a dual-rail combinational circuit);

� enabling dual-rail expansion of the combi-

national logic by creating a corresponding

dual gate in the rail.0 network for each gate

in the rail.1 network; and

Special DAC Section

8 IEEE Design & Test of Computers

Request

Register A

Request

Register B
Combinational

logic

C

C

C

C

Completion detectors
for register and
combinational logic

done

Ack_b b.go

Ack_a a.go

Figure 7. NCL_X produces an NCL system with explicit completion detection.

C

T

c.0
a.1

b.2

a.0

a
c

b

b.0

c.1

Figure 6. Dual-rail expansion for a NAND gate.



� ensuring delay insensitivity by providing

local completion detectors (OR gates) for

each pair of dual gates and connecting them

in a completion network (multi-input C ele-

ment) with a single output, done.

Implementing the NCL_X design flow

requires a minor modification of interfacing

conventions within the NCL system. We assume

that for each two-rail primary input (a.0, a.1),

explicit signal a.go exists such that a.0 ≠ a.1 →
a.go = 1 (set phase), whereas a.0 = a.1 = 0 →
a.go = 0 (reset phase). Figure 7 (next page)

shows the modified organization of the NCL sys-

tem. Unlike the system in Figure 3, this system

has separate completion detectors for combi-

national logic and registers.

Designing the combinational logic for a 4-to-

2 encoder illustrates this design flow. Figure 8

gives the RTL specification for this encoder.

Figure 9 (next page) shows the design steps

in the NCL_X implementation of the encoder.

C-element In.go provides information about the

validity of input code words. This element com-

bines all completion signals for primary inputs.

Output I.go connects to C-element done.

In an NCL_X implementation, the only unac-

knowledged transitions possible occur at wires

after a fork. For these transitions, correct circuit

behavior depends on the timing assumption

that bounds the possible skew of wire delays

after the fork for the duration of the set (reset)

phase. This assumption is very conservative

and easily testable. Apart from wire fork points,

an NCL_X circuit is delay insensitive.

A clear boundary between a circuit’s func-

tional and completion parts significantly sim-

plifies optimization procedures.

Completion part optimization
Some internal gates can receive an acknowl-

edgment through the functional parts. In these

cases, their local completion detectors are

redundant, and thus removable without any

influence on DI properties. Such an analysis

can be automatic and help optimize the com-

pletion network. The 4-to-2 encoder example

illustrates this specific type of optimization.

For the functional part, gate pairs (x.0, x.1)

and (y.0, y.1) cannot switch until primary inputs

in1, in2, and in3 receive the settled dual-rail val-

ues. Hence, (x.0, x.1) and (y.0, y.1) provide an

acknowledgment for in1, in2, and in3; and signals

in1.go, in2.go, and in3.go can be removed from

input completion detector In.go. This in turn sim-

plifies In.go to a single wire, providing significant

area savings (about 35%) for the completion part.

Beyond QDI class
Accepting more stringent timing assumptions

than QDI provides further opportunities. Many

designs simplify asynchronous circuits by using

timing assumptions1. The common bottleneck

in such designs is in analysis and justification of

the imposed assumptions. Fortunately, the strict

separation between the set and reset phases in

NCL system behavior is sufficient for verifying

timing assumptions within the boundaries of a

single phase. In this way, timing analysis for NCL

systems strongly resembles static timing analy-

sis for synchronous circuits.

If, for example, the done signal comes earli-

er than a register’s acknowledgment signal, the

entire completion network atop the functional

part is redundant. This condition is easy to

check through static timing analysis:

longest_functional_path +

CL_compl_detector <
shortest_functional_path + register

+reg_compl_detector.

If this check fails, you could split the func-

tional part’s completion network into pieces

and use the weaker timing conditions for the

subnetworks.

9July–August 2002

encode : process(din)
begin

if din = “1000” then
d <= “11”;

elsif din = “0100” then
d <= “10”;

elsif din = “0010” then
d <= “01”;

elsif din= “0001” then
d <= “00”;

else
d <= (others => ‘0’);

end if;

Figure 8. RTL specification for a 4-to-2

encoder.



Comparison of NCL_D and NCL_X
We compared NCL_X with Ligthart’s

NCL_D,8 based on area and power consump-

tion. Speed estimation was less of an issue

because our design flow does not target high-

speed applications. However, preliminary

data shows that NCL_X circuits do not

degrade performance any more than NCL_D

circuits.

Area
We kept the front-end RTL coding style for

the NCL_X the same as for the NCL_D. This let

us synthesize the same designs for, and make

fair comparisons between, these two design

flows. Table 1 lists the designs chosen as the

benchmark suite for this comparison. Designs

with large combinational-circuit components,

such as AND4 (a four-input AND function),

Special DAC Section

10 IEEE Design & Test of Computers

in1
in2

out1

out2

out1.1

out2.1

in4

in3

in1.1
x.1

y.1

in2.0
in2.1
in1.0

in4.0

in3.1

in3.0

out1.1

out1.0

out1.1

out1.0

out2.1

out2.0

done

out1.go

out2 .go

out2.1

out2.0

in1.0

x.1

x.0

x.1

x.0

x.go

In.go

y.1

y.0

y.go
y.1

y.0

in2.1

in3.0
in4.0

in3.0
in4.0

in3.1
in4.1

in2.0
in4.0

in2.1

in4.1

in3.1
in4.1

in2.0
in4.0

in2.1

in4.1

in1.1
in2.0

in1.0
in2.1
in1.1
in2.0

in1.go
in2.go
in3.go
in4.go

in3.0
in1.1
in1.0
in3.1

in3.0
in1.1
in1.0
in3.1

y

x

(a) (b)

(c) (d)

C

C

C

C

C

C

T

T

T

T

T

T

T

T

Figure 9. Encoder is first mapped into a GTech library (a). After the automatic tool reduces the logic network to

unate gates and provides a dual function for each gate in unate representation (b), it can expand the network

into a dual-rail implementation (c). Each gate pair contributes an output through a local completion detector (OR

gate) that goes to a multi-input C element, which provides the done output signal (d).



achieved the highest area reduction. Register-

dominant designs, such as SET_CNT (a three-

stage ring register that counts up to a certain

number), achieved the least reduction. Area

measurements represent the transistor count of

physical cells in the threshold library. Based on

this benchmark suite, NCL_X achieved an aver-

age area reduction of 28%.

Power consumption
The wavelet design comprises two data path

blocks (address and data) and one control

block (a finite-state machine). Table 2 gives

results from PowerMill simulations of the

NCL_D and NCL_X versions. The nominal sup-

ply voltage for the design is 2.5 V. However, the

design is also fully operational under reduced

supply voltages 1.8 V and 1.1 V. This addition-

al advantage comes from the asynchronous

implementation: Reducing power degrades

performance but does not cause a design mal-

function. Energy values are relative to the nom-

inal supply voltage and to the NCL_D

implementation.

According to Table 2, NCL_D and NCL_X

designs consume about the same amount of

power. We also confirmed this observation by

analyzing the switching activities for NCL_D and

NCL_X design styles. The additional switching

in the NCL_X circuit comes from the completion

network, but you can offset this by eliminating

switches in the functional part.

NCL_X IMPLEMENTATIONS have significantly

lower area overhead, are faster, and consume

approximately the same power as NCL_D imple-

mentations. However, compared with synchro-

nous circuits, NCL_X implementations suffer

from a 2- to 2.5-times area penalty and could

consume more power. Power consumption

might be less of an issue, because NCL_X

implementations have natural support for idle

mode and use a four-rail (instead of two-rail)

communication scheme. But further reduction

of the area penalty is unlikely, because it is close

to a theoretical lower bound of 2 times the area

penalty with respect to single-rail designs.

Nevertheless, NCL_X circuits still have the

advantages of extremely low noise and EMI, and

higher levels of security and reliability during

circuit operation. These advantages could make

NCL_X circuits a good match for emerging

mixed-signal and smart-card applications. �

Acknowledgments
We thank Karl Fant, Michiel Ligthart, Ross

Smith, and Alexander Taubin for their invaluable

help in discussing and implementing the NCL_X

design flow.

References
1. I. Sutherland and J. Lexau, “Designing Fast Asyn-

chronous Circuits,” Proc. 7th Int’l Symp. Advanced

Research in Asynchronous Circuits and Systems

11July–August 2002

Table 1. Area comparison of NCL_D and NCL_X design flows.

Area (transistor count) Reduction 

Circuit NCL_D NCL_X (%)

AND4 96 30 69

AND16 480 186 61

BIT_CNT 2,779 2,432 12

CLIPPER 448 237 47

FA 176 118 33

FSM_DataPATH 10,260 9,290 9

HA 72 56 22

IF_THEN_ELSE 72 38 47

MUX_DECODER 456 352 23

NCL_ADDRCONV 1,356 1,045 23

NCL_X1 18,606 12,724 32

NCL_X2 15,338 13,852 10

SERIAL_CRC 2,010 1,936 4

SET_CNT 490 456 7

SYNC_STATE 2,402 1,934 19

USHIFT 1,264 762 40

VITERBI DECODER 45,198 38,130 16

Average 28

Table 2. Energy comparison of circuits produced by NCL_D and NCL_X design

flows.

Energy (%) for        Energy (%) for           Energy (%) for 

VDD = 2.5 V VDD = 1.8 V                 VDD = 1.1 V

Design NCL_D NCL_X NCL_D NCL_X NCL_D NCL_X

Address 100 109 46 52 14 19

Data 100 90 55 46 12 5

Wavelet 100 102 47 50 38 29



(ASYNC 01), IEEE CS Press, Los Alamitos, Calif.,

2001, pp. 184-193.

2. K. van Berkel et al., “A Fully-Asynchronous Low-

Power Error Corrector for the DCC Player,” Proc.

IEEE Int’l Solid-State Circuits Conf. (ISSCC 94),

IEEE Press, Piscataway, N.J., 1994, pp. 88-89.

3. S.B. Furber, D.A. Edwards, and J.D. Garside,

“AMULET3: A 100 MIPS Asynchronous Embed-

ded Processor,” Proc. Int’l Conf. Computer Design

(ICCD 00), IEEE CS Press, Los Alamitos, Calif.,

2000, pp. 329-334.

4. J. McCardle and D. Chester, “Measuring an Asyn-

chronous Processor’s Power and Noise,” Proc.

Synopsys Users Group Conf. (SNUG 01), Synop-

sys, Mountain View, Calif., 2001, pp. 66-70.

5. D.E. Muller and W.S. Bartky, “A Theory of Asyn-

chronous Circuits,” Proc. Int’l Symp. Theory of

Switching, Harvard University Press, Cambridge,

Mass., 1959, pp. 204-243.

6. A.J. Martin, “Programming in VLSI: From Commu-

nicating Processes to Delay-Insensitive Circuits,”

Developments in Concurrency and Communica-

tion, C.A.R. Hoare, ed., Addison-Wesley, Read-

ing, Mass., 1990, pp. 1-64.

7. S.M. Nowick and D.L. Dill, “Automatic Synthesis

of Locally Clocked Asynchronous State Machine,”

Proc. Int’l Conf. Computer-Aided Design (ICCAD

91), IEEE CS Press, Los Alamitos, Calif., 1991,

pp. 318-321.

8. M. Ligthart et al., “Asynchronous Design Using

Commercial HDL Synthesis Tools,” Proc. Int’l

Symp. Advanced Research in Asynchronous Cir-

cuits and Systems (ASYNC 00), IEEE CS Press,

Los Alamitos, Calif., 2000, pp. 114-125.

9. K. Fant and S.A. Brandt, “Null Conventional Logic:

A Complete and Consistent Logic for

Asynchronous Digital Circuit Synthesis,” Proc. Int’l

Conf. Application-Specific Systems, Architectures,

and Processors (ASAP 96), IEEE CS Press, Los

Alamitos, Calif., 1996, pp. 261-273.

10. I.E. Sutherland, “Micropipelines,” Comm. ACM,

vol. 32, no. 6, June 1989, pp. 720-738.

11. I. Blunno and L. Lavagno, “Automated Synthesis of

Micro-Pipelines from Behavioral Verilog HDL,”

Proc. Int’l Symp. Advanced Research in Asynchro-

nous Circuits and Systems (ASYNC 00), IEEE CS

Press, Los Alamitos, Calif., 2000, pp. 84-92.

12. J. Sparso and J. Staunstrup, “Delay-Insensitive

Multi-Ring Structures,” Integration, the VLSI J.,

vol. 15, no. 3, Oct. 1993, pp. 313-340.

Alex Kondratyev is a
research scientist at Cadence
Berkeley Laboratories. His
research interests include
asynchronous design, theory
of concurrency, and embed-

ded systems. Kondratyev has an MS and PhD in
computer science from the Electrotechnical Uni-
versity of St. Petersburg, Russia. He is a senior
member of the IEEE and a member of the ACM.

Kelvin Lwin is an R&D
engineer at Reshape Inc. His
research interests include
asynchronous design auto-
mation and system-on-a-chip
design integration. Lwin has

a BS in electrical engineering and computer sci-
ence from the University of California, Berkeley.

Direct questions and comments about this
article to Alex Kondratyev, Cadence Berkeley
Laboratory, 2001 Addison Street, 3rd floor,
Berkeley, CA 94704; kalex@cadence.com.

For further information on this or any other com-

puting topic, visit our Digital Library at http://com-

puter.org/publications/dlib.

Special DAC Section

12 IEEE Design & Test of Computers


