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What are Asynchronous Circuits?

❏ They are circuits that are not synchronous!

❏ Synchronous: Circuits that use a clock to
separate consecutive system states from one
another.

❏ Asynchronous: Circuits that define states in
terms of input values and internal actions
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Another Definition

❏ Synchronous: Time Domain
•  Assert signals at a specific time, and for a specific

duration

❏ Asynchronous: Sequence Domain
•  Assert signals after some event, and retain until

some other event
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What Are They Good For?

❏ Top Ten List (From Al Davis, Async94)

Asynchronous Advantages, Often Cited:

•

•

•
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Top Ten List - Async Advantages

1: Achieve Average Case Performance
•  Exploit data-dependent processing times

•  Best if difference between average and worst
case is large

•  Be careful not to spend too much time on
completion detection
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Top Ten List - Async advantages

2: Consume power only when needed
•  CMOS, in particular, consumes power only during

transitions

•  Clocks make a lot of transitions, not all of them do
useful work

•  Demonstrated ability for async circuits to
consume power only on demand

3: Provide easy modular composition
• LEGO approach

•  Allows incremental improvement

•  Object-oriented approach to hardware

•  Operating parameter robustness
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Top Ten List - Async Advantages

4: Do not require clock alignment at interfaces
•  Synchronizing an incoming signal to a clock

requires great care, and wastes time

•  Metastability can cause hard-to-find errors

•  Naturally adaptive to a variety of data rates

5: Metastability has time to resolve
•  Any bistable device can get caught in a metastable

region for an unpredictable amount of time

•  Assuming fixed resolution time leaves possibility of
errors

•  Arbiters can be used to ensure correctness
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Top Ten List - Async Advantages

6: Avoid clock distribution problems
•  Major design time drain

•  Major power budget drain

•  Major chip area drain

7: Exploit concurrency more gracefully
•  Natural way to describe systems with lots of

concurrency

•  Let concurrency happen rather than plan all
interleavings
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Top Ten List - Async Advantages

8: Provide intellectual Challenge
•  Lots of good puzzles

•  Informal reasoning is dangerous

•  Room for innovation

9: Exhibit intrinsic elegance
•  Provide direct mapping of sequence domain

•  Tangible target for theoretical work

•  Correct-by-construction design

•  Measurement vs. trust
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Top Ten List - Async Advantages

10: Global synchrony does not exist anyway!
•  High clock speeds, large chips, and even larger

systems

•  Global synchrony is a useful abstraction, but it’s not
reality

•  May as well admit it, and figure out where async
techniques can help solve problems
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A Trio of Taxonomies

❏ Timing Models

❏ Signaling Protocols

❏ System Specification and Structure
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Taxonomy #1: Timing Models

❏ Bounded Delays
•  Similar to synchronous circuits

•  Measure maximum delay of each circuit piece,
or assume a range of delays

•  Model with extra delay (if required)

Logic

Inputs Outputs

Req Ack
Delay
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More Timing Models

❏ Speed Independent Circuits
•  Arbitrary delays in gates

•  Wires have no delay

❏ Delay Insensitive
•  Arbitrary delays on gates and wires

•  Very appealing model, but the class of circuits for
which this really holds is small
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Even More Timing Models

❏ Quasi Delay Insensitive
•  Delay insensitive, but with isochronous forks

•  Delay in isochronous forks assumed to be similar

•  In practice, very close to Speed Independent

Fork

C

A
B
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Combinations of Timing Models

❏ In practice, SI or DI within a range of delay
possibilities seems useful

❏ Careful design of circuit modules can allow DI
assumption at interface, SI, qDI, or Bounded
Delay inside modules

❏ Use Bounded Delay for data path, some other
model for control (i.e. Bundled Data)
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Taxonomy #2: Signaling Protocols

❏ Layer a protocol on top of signal transitions
❏ Request/Acknowledge is a popular structure
❏ Usually referred to as Self-Timed

Sender Receiver

Req

Ack

Data
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Control Signaling

❏ Four-Phase / Return to Zero / Level Signaling
❏ Specific protocol determines data release point

One
Transaction

Req

Ack

Data

University of Utah
Department of Computer Science

Async Tutorial
18

Control Signaling

❏ Two-Phase / Non-Return to Zero / Transition
Signaling)

One
Transaction

Req

Ack Another
Transaction

Data
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Data Signaling

❏ Bundled Data
•  “Normal” data wires, one per bit

•  Associated control that signals validity of data

Sender Receiver

Req

Ack

Data
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Data Signaling

❏ Dual-Rail Data
•  Two wires per bit, encoded to show validity

•  00 = no data, 01 = 0, 10 = 1, 11 = error (4Φ)
•  Single acknowledge control wire

Ack

Req

Dual Rail Data

CS
e
n
d
e
r

R
e
c
e
i
v
e
r



University of Utah
Department of Computer Science

Async Tutorial
21

Possible Combinations

Table 1:
Bundled Dual-Rail

Four-Phase Amulet 2 Martin synthesis
Tangram

Two-Phase Micropipelines
Amulet 1

LEDR
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Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation
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Finite State Machines

❏ Classical asynchronous technique
❏ Huffman-style state machine

Comb
Logic

Inputs

Outputs

State
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Huffman Async State Machine
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Clock
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Synchronous State Machine
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Asynchronous FSM Models (AFSM)

❏ Fundamental mode operation
•  After an input change, AFSM must settle into

new stable state before the next input change

•  Similar to setup and hold restrictions in
synchronous machines

❏ Different conditions on input changes
•  Single input change (SIC)

•  Multiple input change (MIC)

•  Unrestricted input change (UIC)
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AFSM Design Method

❏ Generate primitive flow table

❏ Minimize states => reduced flow table

❏ Do state assignment

❏ Generate logic
•  Logic must be hazard-free for every input transition

(under some input model and timing model)
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Extending AFSM to Burst Mode

❏ Problem: SIC is too slow, MIC is too hard, UIC
is much too hard.
•  SIC forces too much sequencing

❏ Solution: Operate in fundamental mode, but on
bursts of inputs rather than single inputs
•  Allow inputs to change in any order inside the burst

•  A burst of outputs may be required

•  Outputs must be allowed to settle before another
input burst is allowed
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Burst Mode AFSM
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Burst Mode Properties

❏ Bursts follow a set of rules:
•  Inputs in burst may arrive in any order and at

arbitrary times

•  Each state has a unique entry point

•  No input burst may be a subset of another in a
given state

❏ Various techniques to build the circuits:
locally clocked, unclocked, 3-D machines
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Extended Burst Mode

Add a couple of features to burst mode
specifications:

❏ Directed don’t-cares
•  Input edges that may or may not occur

•  Terminated by a definitive transition

❏ Level condition signals
•  Level signals that are sampled to determine state

change direction

•  Must be distinct from transition signals
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Extended Burst Mode Notation

ConditionalDirected

<A+>b+

c-d-

<A->b+

c-

e+f- c+

e-b-
g+

e*f+

g-

Don’t Care 1

234

5

University of Utah
Department of Computer Science

Async Tutorial
31

Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation
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Techniques Based on Petri Nets

❏ These techniques are based on signal
transitions (i.e. traces), rather than on system
states

❏ Traces are a representation of the interface
behavior of a circuit

❏ Petri-net based methods includes I-nets,
Signal Transition Graphs (STG), Change
Diagrams, Commands, etc...
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I-nets (Interface Nets)

❏ Petri nets with transitions labeled with
interface signal names
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I-net Descriptions

❏ The I-net describes the allowed interface
behavior

❏ Note that it may impose restrictions on the
environment

❏ Can be translated into a state machine for
implementation (I-net => Interface State
Graph (ISG))
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ISG Model

❏ Execute the I-net to generate ISG
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Encoded ISG (EISG)

❏ Encode states of the ISG
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I-net Generality

❏ Very general specification, can describe choice
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Signal Transition Graphs

Like I-nets, STGs focus on interface signal
transitions, but:

❏ Use graph theory to reason about properties
represented in the STG

❏ Restrict the allowable forms of STGs such that
they are implementable

❏ Signal transitions are annotated with
directions
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Example STG

❏ Underlined signals are inputs
❏ Balls are like Petri-net tokens

J
A

B
X

B-

A-

B+

A+

X+ X-

University of Utah
Department of Computer Science

Async Tutorial
40

Properties of STGs

❏ Can be checked for liveness (deadlock free),
persistency (hazard free)

❏ Requires only syntactic check of the STG

❏ A live, persistent STG can be implemented as a
speed-independent circuit

❏ STGs have been extended to handle various
forms of choice, and to check for many more
properties that influence behavior and circuits
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Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation
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Macromodules

❏ Like standard cells (the LEGO approach)

❏ A set of building blocks that can be assembled
into asynchronous systems

❏ Usually considered delay-insensitive at the
module interface

❏ Module internals designed using one of the
previously defined techniques
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Sutherland’s Micropipelines

❏ Popular macromodule library
❏ Two-phase transition signaling
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Basic Micropipeline

❏ Looks like a FIFO with processing
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More Complicated Circuits

❏ Branching and Merging FIFOs

FIFO

FIFO

FIFO
Branch

FIFO
Merge
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FIFO Toggle Branch
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FIFO Toggle Merge
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Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation
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Syntax Directed Program Translation

❏ Start with program description

❏ Translate to asynchronous circuit
automatically

❏ Program notation should be capable of
describing concurrency

❏ Basic communication structure is a channel

❏ CSP, OCCAM, and Tangram are popular
starting points

University of Utah
Department of Computer Science

Async Tutorial
50

Overview of One Method

❏ Write an OCCAM program

❏ Use syntax-directed translation from that
program to a collection of macromodules

❏ Perform peephole optimization of that circuit

❏ Place and route resulting circuit
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Example: FIFO Buffer

(PROC buffer ((CHAN A B)) ; define a buffer
(WHILE TRUE ; repeat forever

(SEQ ((VAR temp<8>)) ; do in sequence
(? A temp) ; input from A
(! B temp)))) ; output to B

; define a parallel composition of two buffers

(PAR ((CHAN input mid output))
(buffer input mid)
(buffer mid output))
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FIFO Buffer Translation 1

Channel
A

B
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Sequential construct

Body of WHILE is a 
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FIFO Buffer Translation 2

Channel
A

B

Primitives

are Input and Output
Body processes of SEQ

Ack

ReqAck
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Seq

Input

M Sel
T

F
True

Start

University of Utah
Department of Computer Science

Async Tutorial
54

FIFO Buffer Translation 3

B
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C Call

En
Channel

A

AckReq

Ack

While
Seq

Input Variable

Call

M

M Sel
T

F
True

Start

Output

University of Utah
Department of Computer Science

Async Tutorial
55

FIFO Buffer Translation 4
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Peephole Optimization

❏ Identify circuit structure that can be improved

❏ Substitute “better” circuit
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Optimized FIFO Circuit
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Recall the Program Text

(PROC buffer ((CHAN A B)) ; define a buffer
(WHILE TRUE ; repeat forever

(SEQ ((VAR temp<8>)) ; do in sequence
(? A temp) ; input from A
(! B temp)))) ; output to B

; define a parallel composition of two buffers

(PAR ((CHAN input mid output))
(buffer input mid)
(buffer mid output))
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Parallel Composition

C
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Final Circuit
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Program Transformation

❏ Higher level description

❏ Correct by compilation circuits

❏ Lots of variations on this scheme
•  Different specification languages

•  Different libraries

•  Different compilation strategies
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Conclusions (at last!)

❏ Asynchronous circuits research area is
becoming too large to talk about in an hour!

❏ Topics that I have not talked about
•  Formal methods
•  Verification
•  Testing
•  Circuit techniques
•  Arbitration
•  Synchronous-Asynchronous interfacing
•  Datapath design
•  Low power circuits
•  Large case studies and landmark results
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More Conclusions

❏ Asynchronous circuits and systems seem to
have some compelling advantages

❏ So far, most are just potential, not
demonstrated

❏ Don’t be misled by the Top Ten List. There are
plenty of significant problems left to solve!
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Required Reading List

❏ S. Unger. Asynchronous Sequential Switching
Circuits, Wiley-Interscience, 1969

❏ T. Chaney and C. Molnar. Anomalous behavior
of synchronizer and arbiter circuits, IEEE
Transactions on Computers, April 1973

❏ C. Seitz. System Timing, Chapter 7 of
Introduction to VLSI Systems by Mead and
Conway, 1980

❏ I. Sutherland. Micropipelines,
Communications of the ACM, June 1989
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Supplemental Reading List

❏ Finite State Machines
•  S. M. Nowick and D. L. Dill. Automated synthesis of

locally-clocked asynchronous state machines,
ICCAD-91

•  S. M. Nowick and D. L. Dill. Exact two-level
minimization of hazard-free logic with multiple-
input changes, ICCAD-92

•  K. Y. Yun and D. L. Dill. Unifying synchronous/
asynchronous state machine synthesis, ICCAD-93

•  A. Marshall, B. Coates, and P. Siegel. The design of
an asynchronous communications chip, IEEE
Design and Test, Summer 1994
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Supplemental Reading List

❏ Petri-Net Based Approaches
•  C. Molnar, T. Fang, and F. Rosenberger. Synthesis of

delay-insensitive modules. In Chapel Hill Conference on
VLSI, 1985

•  T.-A. Chu. Synthesis of self-timed VLSI circuits from
graph-theoretic specifications. Ph.D. Thesis, MIT,
(Technical Report MIT-LCS-TR-393)

•  T. Meng, R. Broderson, and D. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level
specifications. IEEE Transactions on CAD, Nov. 1989

•  M. Kishinevsky, A. Kondratyev, A. Taubin, and V.
Varshavsky. Concurrent Hardware: The Theory and
Practice of Self-Timed Design. John Wiley and Sons,
1993.
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Supplemental Reading List

❏ Macromodules
•  W. Clark. Macromodular computer systems. In

Proceedings of the Spring Joint Computer
Conference. AFIPS, April 1967

•  I. Sutherland, R. Sproull, I. Jones. Standard
Asynchronous Modules. Technical Memo #4662,
Sutherland, Sproull, and Associates, 1986

•  J. Ebergen. A formal approach to designing delay-
insensitive circuits. Distributed Computing 5(3),
1991

•  S. Furber, P. Day, J. Garside, N. Paver, J. Woods.
A Micropiplined ARM. in Proceedings of VLSI ‘93,
Grenoble, 1993
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Supplemental Reading List

❏ Program Translation Approaches
•  A. Martin. Compiling communicating processes into

delay insensitive circuits. Distributed Computing,
1(3), 1986

•  S. Burns and A. Martin. Syntax-directed
translation of concurrent programs into self-timed
circuits. In Fifth MIT Conference on Advanced
Research in VLSI, 1988

•  K. van Berkel and R. Saeijs. Compilation of
communicating processes into delay-insensitive
circuits. ICCD-88

•  E. Brunvand and R. Sproull. Translating concurrent
programs into delay-insensitive circuits, ICCAD-89
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Further Pointers

❏ This list only scratches the surface. For further
pointers, try:
•  Proceedings of the International Symposium on

Advanced Research in Asynchronous Circuits and
Systems (Async94). Salt Lake City, 1994
(Async96 to be held in Aizu, Japan, March 1996!)

•  A. Davis and S. Nowick, eds. Asynchronous Digital
Circuit Design, Springer-Verlag, 1994

•  S. Hauck, Asynchronous design methodologies: An
overview. Proceedings of the IEEE, Jan 1995

•  Asynchronous logic WWW home page
http://www.cs.man.ac.uk/amulet/async/index.html


