
University of Utah
Department of Computer Science

Async Tutorial
1

Tutorial

Introduction
to

Asynchronous Circuits and Systems

Erik Brunvand
University of Utah

USA

University of Utah
Department of Computer Science

Async Tutorial
2

What are Asynchronous Circuits?

❏ They are circuits that are not synchronous!

❏ Synchronous: Circuits that use a clock to
separate consecutive system states from one
another.

❏ Asynchronous: Circuits that define states in
terms of input values and internal actions

University of Utah
Department of Computer Science

Async Tutorial
3

Another Definition

❏ Synchronous: Time Domain
• Assert signals at a specific time, and for a specific

duration

❏ Asynchronous: Sequence Domain
• Assert signals after some event, and retain until

some other event

University of Utah
Department of Computer Science

Async Tutorial
4

What Are They Good For?

❏ Top Ten List (From Al Davis, Async94)

Asynchronous Advantages, Often Cited:

•

•

•

University of Utah
Department of Computer Science

Async Tutorial
5

Top Ten List - Async Advantages

1: Achieve Average Case Performance
• Exploit data-dependent processing times

• Best if difference between average and worst
case is large

• Be careful not to spend too much time on
completion detection

University of Utah
Department of Computer Science

Async Tutorial
6

Top Ten List - Async advantages

2: Consume power only when needed
• CMOS, in particular, consumes power only during

transitions

• Clocks make a lot of transitions, not all of them do
useful work

• Demonstrated ability for async circuits to
consume power only on demand

3: Provide easy modular composition
• LEGO approach

• Allows incremental improvement

• Object-oriented approach to hardware

• Operating parameter robustness

University of Utah
Department of Computer Science

Async Tutorial
7

Top Ten List - Async Advantages

4: Do not require clock alignment at interfaces
• Synchronizing an incoming signal to a clock

requires great care, and wastes time

• Metastability can cause hard-to-find errors

• Naturally adaptive to a variety of data rates

5: Metastability has time to resolve
• Any bistable device can get caught in a metastable

region for an unpredictable amount of time

• Assuming fixed resolution time leaves possibility of
errors

• Arbiters can be used to ensure correctness

University of Utah
Department of Computer Science

Async Tutorial
8

Top Ten List - Async Advantages

6: Avoid clock distribution problems
• Major design time drain

• Major power budget drain

• Major chip area drain

7: Exploit concurrency more gracefully
• Natural way to describe systems with lots of

concurrency

• Let concurrency happen rather than plan all
interleavings

University of Utah
Department of Computer Science

Async Tutorial
9

Top Ten List - Async Advantages

8: Provide intellectual Challenge
• Lots of good puzzles

• Informal reasoning is dangerous

• Room for innovation

9: Exhibit intrinsic elegance
• Provide direct mapping of sequence domain

• Tangible target for theoretical work

• Correct-by-construction design

• Measurement vs. trust

University of Utah
Department of Computer Science

Async Tutorial
10

Top Ten List - Async Advantages

10: Global synchrony does not exist anyway!
• High clock speeds, large chips, and even larger

systems

• Global synchrony is a useful abstraction, but it’s not
reality

• May as well admit it, and figure out where async
techniques can help solve problems

University of Utah
Department of Computer Science

Async Tutorial
11

A Trio of Taxonomies

❏ Timing Models

❏ Signaling Protocols

❏ System Specification and Structure

University of Utah
Department of Computer Science

Async Tutorial
12

Taxonomy #1: Timing Models

❏ Bounded Delays
• Similar to synchronous circuits

• Measure maximum delay of each circuit piece,
or assume a range of delays

• Model with extra delay (if required)

Logic

Inputs Outputs

Req Ack
Delay

University of Utah
Department of Computer Science

Async Tutorial
13

More Timing Models

❏ Speed Independent Circuits
• Arbitrary delays in gates

• Wires have no delay

❏ Delay Insensitive
• Arbitrary delays on gates and wires

• Very appealing model, but the class of circuits for
which this really holds is small

University of Utah
Department of Computer Science

Async Tutorial
14

Even More Timing Models

❏ Quasi Delay Insensitive
• Delay insensitive, but with isochronous forks

• Delay in isochronous forks assumed to be similar

• In practice, very close to Speed Independent

Fork

C

A
B

University of Utah
Department of Computer Science

Async Tutorial
15

Combinations of Timing Models

❏ In practice, SI or DI within a range of delay
possibilities seems useful

❏ Careful design of circuit modules can allow DI
assumption at interface, SI, qDI, or Bounded
Delay inside modules

❏ Use Bounded Delay for data path, some other
model for control (i.e. Bundled Data)

University of Utah
Department of Computer Science

Async Tutorial
16

Taxonomy #2: Signaling Protocols

❏ Layer a protocol on top of signal transitions
❏ Request/Acknowledge is a popular structure
❏ Usually referred to as Self-Timed

Sender Receiver

Req

Ack

Data

University of Utah
Department of Computer Science

Async Tutorial
17

Control Signaling

❏ Four-Phase / Return to Zero / Level Signaling
❏ Specific protocol determines data release point

One
Transaction

Req

Ack

Data

University of Utah
Department of Computer Science

Async Tutorial
18

Control Signaling

❏ Two-Phase / Non-Return to Zero / Transition
Signaling)

One
Transaction

Req

Ack Another
Transaction

Data

University of Utah
Department of Computer Science

Async Tutorial
19

Data Signaling

❏ Bundled Data
• “Normal” data wires, one per bit

• Associated control that signals validity of data

Sender Receiver

Req

Ack

Data

University of Utah
Department of Computer Science

Async Tutorial
20

Data Signaling

❏ Dual-Rail Data
• Two wires per bit, encoded to show validity

• 00 = no data, 01 = 0, 10 = 1, 11 = error (4Φ)
• Single acknowledge control wire

Ack

Req

Dual Rail Data

CS
e
n
d
e
r

R
e
c
e
i
v
e
r

University of Utah
Department of Computer Science

Async Tutorial
21

Possible Combinations

Table 1:
Bundled Dual-Rail

Four-Phase Amulet 2 Martin synthesis
Tangram

Two-Phase Micropipelines
Amulet 1

LEDR

University of Utah
Department of Computer Science

Async Tutorial
22

Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation

University of Utah
Department of Computer Science

Async Tutorial
23

Finite State Machines

❏ Classical asynchronous technique
❏ Huffman-style state machine

Comb
Logic

Inputs

Outputs

State

D
e

la
y

Huffman Async State Machine

Comb
Logic

L
a
tc

h

Clock

Inputs

Outputs

State

Synchronous State Machine

University of Utah
Department of Computer Science

Async Tutorial
24

Asynchronous FSM Models (AFSM)

❏ Fundamental mode operation
• After an input change, AFSM must settle into

new stable state before the next input change

• Similar to setup and hold restrictions in
synchronous machines

❏ Different conditions on input changes
• Single input change (SIC)

• Multiple input change (MIC)

• Unrestricted input change (UIC)

University of Utah
Department of Computer Science

Async Tutorial
25

AFSM Design Method

❏ Generate primitive flow table

❏ Minimize states => reduced flow table

❏ Do state assignment

❏ Generate logic
• Logic must be hazard-free for every input transition

(under some input model and timing model)

University of Utah
Department of Computer Science

Async Tutorial
26

Extending AFSM to Burst Mode

❏ Problem: SIC is too slow, MIC is too hard, UIC
is much too hard.
• SIC forces too much sequencing

❏ Solution: Operate in fundamental mode, but on
bursts of inputs rather than single inputs
• Allow inputs to change in any order inside the burst

• A burst of outputs may be required

• Outputs must be allowed to settle before another
input burst is allowed

University of Utah
Department of Computer Science

Async Tutorial
27

Burst Mode AFSM

-
c-

y-
a-

y+
c+

z+
a+c-

z-
c+

z+
b-c+

y+z-

a+b+

F

E

D

C

B

A

University of Utah
Department of Computer Science

Async Tutorial
28

Burst Mode Properties

❏ Bursts follow a set of rules:
• Inputs in burst may arrive in any order and at

arbitrary times

• Each state has a unique entry point

• No input burst may be a subset of another in a
given state

❏ Various techniques to build the circuits:
locally clocked, unclocked, 3-D machines

University of Utah
Department of Computer Science

Async Tutorial
29

Extended Burst Mode

Add a couple of features to burst mode
specifications:

❏ Directed don’t-cares
• Input edges that may or may not occur

• Terminated by a definitive transition

❏ Level condition signals
• Level signals that are sampled to determine state

change direction

• Must be distinct from transition signals

University of Utah
Department of Computer Science

Async Tutorial
30

Extended Burst Mode Notation

ConditionalDirected

<A+>b+

c-d-

<A->b+

c-

e+f- c+

e-b-
g+

e*f+

g-

Don’t Care 1

234

5

University of Utah
Department of Computer Science

Async Tutorial
31

Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation

University of Utah
Department of Computer Science

Async Tutorial
32

Techniques Based on Petri Nets

❏ These techniques are based on signal
transitions (i.e. traces), rather than on system
states

❏ Traces are a representation of the interface
behavior of a circuit

❏ Petri-net based methods includes I-nets,
Signal Transition Graphs (STG), Change
Diagrams, Commands, etc...

University of Utah
Department of Computer Science

Async Tutorial
33

I-nets (Interface Nets)

❏ Petri nets with transitions labeled with
interface signal names

b

x

a J
a

b
x

Or

C
a

b
x

University of Utah
Department of Computer Science

Async Tutorial
34

I-net Descriptions

❏ The I-net describes the allowed interface
behavior

❏ Note that it may impose restrictions on the
environment

❏ Can be translated into a state machine for
implementation (I-net => Interface State
Graph (ISG))

University of Utah
Department of Computer Science

Async Tutorial
35

ISG Model

❏ Execute the I-net to generate ISG

A

A

B

B

X

1

2 3

4

J
A

B
X

University of Utah
Department of Computer Science

Async Tutorial
36

Encoded ISG (EISG)

❏ Encode states of the ISG

is ABX
111

011101
110

001
100 010

000

X

X
B A

A B

J
A

B
X

State Vector

University of Utah
Department of Computer Science

Async Tutorial
37

I-net Generality

❏ Very general specification, can describe choice

meR1

G1

D1

R2

G2

D2

R1

R2

G1
D1

G2
D2

A
R
B

University of Utah
Department of Computer Science

Async Tutorial
38

Signal Transition Graphs

Like I-nets, STGs focus on interface signal
transitions, but:

❏ Use graph theory to reason about properties
represented in the STG

❏ Restrict the allowable forms of STGs such that
they are implementable

❏ Signal transitions are annotated with
directions

University of Utah
Department of Computer Science

Async Tutorial
39

Example STG

❏ Underlined signals are inputs
❏ Balls are like Petri-net tokens

J
A

B
X

B-

A-

B+

A+

X+ X-

University of Utah
Department of Computer Science

Async Tutorial
40

Properties of STGs

❏ Can be checked for liveness (deadlock free),
persistency (hazard free)

❏ Requires only syntactic check of the STG

❏ A live, persistent STG can be implemented as a
speed-independent circuit

❏ STGs have been extended to handle various
forms of choice, and to check for many more
properties that influence behavior and circuits

University of Utah
Department of Computer Science

Async Tutorial
41

Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation

University of Utah
Department of Computer Science

Async Tutorial
42

Macromodules

❏ Like standard cells (the LEGO approach)

❏ A set of building blocks that can be assembled
into asynchronous systems

❏ Usually considered delay-insensitive at the
module interface

❏ Module internals designed using one of the
previously defined techniques

University of Utah
Department of Computer Science

Async Tutorial
43

Sutherland’s Micropipelines

❏ Popular macromodule library
❏ Two-phase transition signaling

Arb

R2

R1

G2

G1

D2

D1

AS

RS

R1

A1

Call

A2

R2

CLR

SEL

IN

OUTF

OUTT

SELECT

OUT0

CLR

TOGGLE

IN

OUT1

C

D

C

P

Q

TL

University of Utah
Department of Computer Science

Async Tutorial
44

Basic Micropipeline

❏ Looks like a FIFO with processing

Req

Ack

L
a
t
c
h

A
C
K

R
E
Q

C

C
L
a
t
c
hA
C
K

R
E
QL
a
t
c
hA
C
K

R
E
Q L
a
t
c
h

A
C
K

R
E
Q

L
o
g
i
c

Delay

L
o
g
i
cData-In Data-Out

Req-In Req-Out

Ack-In Ack Out

C

C

University of Utah
Department of Computer Science

Async Tutorial
45

More Complicated Circuits

❏ Branching and Merging FIFOs

FIFO

FIFO

FIFO
Branch

FIFO
Merge

University of Utah
Department of Computer Science

Async Tutorial
46

FIFO Toggle Branch

CLR

AIN

OUT[7:0]IN[7:0]

RIN

C

ROUT0

AOUT0

AOUT1

I
N
[
7
:
0
]

O
U
T
[
7
:
0
]

T
L
N
T

C
D

P
P
DC

OUT0

CLR

TOGGLE

IN

OUT1

XOR

ROUT1

CLR

University of Utah
Department of Computer Science

Async Tutorial
47

FIFO Toggle Merge

AOUT

ROUT

CLR

IN1[7:0]

RIN1

AIN1

CLR

C

AIN0

RIN0

OUT0

CLR

TOGGLE

IN

OUT1

A
[
7
:
0
]

Q
[
7
:
0
]

B
[
7
:
0
]

S
M
U
X

I
N
[
7
:
0
]

O
U
T
[
7
:
0
]

T
L
N
T

C
D

P
P
DC

CLR

XOR

CLR

OUT0

CLR

TOGGLE

IN

OUT1

C

XOR

OUT[7:0]

IN0[7:0]

University of Utah
Department of Computer Science

Async Tutorial
48

Taxonomy #3: System Specification and
Structure

❏ Finite State Machine

❏ Petri-Net Based

❏ Macromodules

❏ Syntax-Directed Program Translation

University of Utah
Department of Computer Science

Async Tutorial
49

Syntax Directed Program Translation

❏ Start with program description

❏ Translate to asynchronous circuit
automatically

❏ Program notation should be capable of
describing concurrency

❏ Basic communication structure is a channel

❏ CSP, OCCAM, and Tangram are popular
starting points

University of Utah
Department of Computer Science

Async Tutorial
50

Overview of One Method

❏ Write an OCCAM program

❏ Use syntax-directed translation from that
program to a collection of macromodules

❏ Perform peephole optimization of that circuit

❏ Place and route resulting circuit

University of Utah
Department of Computer Science

Async Tutorial
51

Example: FIFO Buffer

(PROC buffer ((CHAN A B)) ; define a buffer
(WHILE TRUE ; repeat forever

(SEQ ((VAR temp<8>)) ; do in sequence
(? A temp) ; input from A
(! B temp)))) ; output to B

; define a parallel composition of two buffers

(PAR ((CHAN input mid output))
(buffer input mid)
(buffer mid output))

University of Utah
Department of Computer Science

Async Tutorial
52

FIFO Buffer Translation 1

Channel
A

B
Channel

Sequential construct

Body of WHILE is a

AckReq

Ack

While

M Sel
T

F
True

Start

Seq

University of Utah
Department of Computer Science

Async Tutorial
53

FIFO Buffer Translation 2

Channel
A

B

Primitives

are Input and Output
Body processes of SEQ

Ack

ReqAck

Req

Ack

Channel

Output

While
Seq

Input

M Sel
T

F
True

Start

University of Utah
Department of Computer Science

Async Tutorial
54

FIFO Buffer Translation 3

B
Channel

C Call

En
Channel

A

AckReq

Ack

While
Seq

Input Variable

Call

M

M Sel
T

F
True

Start

Output

University of Utah
Department of Computer Science

Async Tutorial
55

FIFO Buffer Translation 4

En

Call
B

Channel
CA

Ack

Channel

Call

Output

While
Seq

Input Variable
Reg

Call

M

M Sel
T

F
True

Start

En

University of Utah
Department of Computer Science

Async Tutorial
56

Peephole Optimization

❏ Identify circuit structure that can be improved

❏ Substitute “better” circuit

University of Utah
Department of Computer Science

Async Tutorial
57

Optimized FIFO Circuit

C

M

Out
ChannelChannel

In

Start

AR

Reg

University of Utah
Department of Computer Science

Async Tutorial
58

Recall the Program Text

(PROC buffer ((CHAN A B)) ; define a buffer
(WHILE TRUE ; repeat forever

(SEQ ((VAR temp<8>)) ; do in sequence
(? A temp) ; input from A
(! B temp)))) ; output to B

; define a parallel composition of two buffers

(PAR ((CHAN input mid output))
(buffer input mid)
(buffer mid output))

University of Utah
Department of Computer Science

Async Tutorial
59

Parallel Composition

C
Channel

Mid

ChannelOut

ChannelIn

Ack

Buffer 2

Buffer 1

Start

University of Utah
Department of Computer Science

Async Tutorial
60

Final Circuit

CC

Channel Channel
Mid

Channel

Reg

R AAR

Reg

OutIn

Buffer 2Buffer 1

University of Utah
Department of Computer Science

Async Tutorial
61

Program Transformation

❏ Higher level description

❏ Correct by compilation circuits

❏ Lots of variations on this scheme
• Different specification languages

• Different libraries

• Different compilation strategies

University of Utah
Department of Computer Science

Async Tutorial
62

Conclusions (at last!)

❏ Asynchronous circuits research area is
becoming too large to talk about in an hour!

❏ Topics that I have not talked about
• Formal methods
• Verification
• Testing
• Circuit techniques
• Arbitration
• Synchronous-Asynchronous interfacing
• Datapath design
• Low power circuits
• Large case studies and landmark results

University of Utah
Department of Computer Science

Async Tutorial
63

More Conclusions

❏ Asynchronous circuits and systems seem to
have some compelling advantages

❏ So far, most are just potential, not
demonstrated

❏ Don’t be misled by the Top Ten List. There are
plenty of significant problems left to solve!

University of Utah
Department of Computer Science

Async Tutorial
64

Required Reading List

❏ S. Unger. Asynchronous Sequential Switching
Circuits, Wiley-Interscience, 1969

❏ T. Chaney and C. Molnar. Anomalous behavior
of synchronizer and arbiter circuits, IEEE
Transactions on Computers, April 1973

❏ C. Seitz. System Timing, Chapter 7 of
Introduction to VLSI Systems by Mead and
Conway, 1980

❏ I. Sutherland. Micropipelines,
Communications of the ACM, June 1989

University of Utah
Department of Computer Science

Async Tutorial
65

Supplemental Reading List

❏ Finite State Machines
• S. M. Nowick and D. L. Dill. Automated synthesis of

locally-clocked asynchronous state machines,
ICCAD-91

• S. M. Nowick and D. L. Dill. Exact two-level
minimization of hazard-free logic with multiple-
input changes, ICCAD-92

• K. Y. Yun and D. L. Dill. Unifying synchronous/
asynchronous state machine synthesis, ICCAD-93

• A. Marshall, B. Coates, and P. Siegel. The design of
an asynchronous communications chip, IEEE
Design and Test, Summer 1994

University of Utah
Department of Computer Science

Async Tutorial
66

Supplemental Reading List

❏ Petri-Net Based Approaches
• C. Molnar, T. Fang, and F. Rosenberger. Synthesis of

delay-insensitive modules. In Chapel Hill Conference on
VLSI, 1985

• T.-A. Chu. Synthesis of self-timed VLSI circuits from
graph-theoretic specifications. Ph.D. Thesis, MIT,
(Technical Report MIT-LCS-TR-393)

• T. Meng, R. Broderson, and D. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level
specifications. IEEE Transactions on CAD, Nov. 1989

• M. Kishinevsky, A. Kondratyev, A. Taubin, and V.
Varshavsky. Concurrent Hardware: The Theory and
Practice of Self-Timed Design. John Wiley and Sons,
1993.

University of Utah
Department of Computer Science

Async Tutorial
67

Supplemental Reading List

❏ Macromodules
• W. Clark. Macromodular computer systems. In

Proceedings of the Spring Joint Computer
Conference. AFIPS, April 1967

• I. Sutherland, R. Sproull, I. Jones. Standard
Asynchronous Modules. Technical Memo #4662,
Sutherland, Sproull, and Associates, 1986

• J. Ebergen. A formal approach to designing delay-
insensitive circuits. Distributed Computing 5(3),
1991

• S. Furber, P. Day, J. Garside, N. Paver, J. Woods.
A Micropiplined ARM. in Proceedings of VLSI ‘93,
Grenoble, 1993

University of Utah
Department of Computer Science

Async Tutorial
68

Supplemental Reading List

❏ Program Translation Approaches
• A. Martin. Compiling communicating processes into

delay insensitive circuits. Distributed Computing,
1(3), 1986

• S. Burns and A. Martin. Syntax-directed
translation of concurrent programs into self-timed
circuits. In Fifth MIT Conference on Advanced
Research in VLSI, 1988

• K. van Berkel and R. Saeijs. Compilation of
communicating processes into delay-insensitive
circuits. ICCD-88

• E. Brunvand and R. Sproull. Translating concurrent
programs into delay-insensitive circuits, ICCAD-89

University of Utah
Department of Computer Science

Async Tutorial
69

Further Pointers

❏ This list only scratches the surface. For further
pointers, try:
• Proceedings of the International Symposium on

Advanced Research in Asynchronous Circuits and
Systems (Async94). Salt Lake City, 1994
(Async96 to be held in Aizu, Japan, March 1996!)

• A. Davis and S. Nowick, eds. Asynchronous Digital
Circuit Design, Springer-Verlag, 1994

• S. Hauck, Asynchronous design methodologies: An
overview. Proceedings of the IEEE, Jan 1995

• Asynchronous logic WWW home page
http://www.cs.man.ac.uk/amulet/async/index.html

