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Abstract. This paper approaches the problem of synthesising an asynchronous control circuit for a stage of the
Sproull Counterflow pipeline processor (CFPP) as an exercise in exploiting formal techniques available for Petri
nets. We first synthesise a Petri net model of the CFPP stage control from its original “five-state-five-event”
description due to Charles Molnar. Secondly, we implement that model in asynchronous circuits, using two-
phase and four-phase components. The latter stage involves synthesising circuits with arbitration elements from
behavioural descriptions with internal conflicts. This exercise appears to be quite instructive in the sense that it
helps to estimate the scope and power of formal methods and today’s automatic tools in assisting the process of
asynchronous design.
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1. Introduction

Asynchronous design technology is getting more mature both in designing industrial strength
circuits and developing design tools. Two recent processor design projects, the Amulet1
microprocessor [12] and Sproull’s counterflow pipeline processor (CFPP) [30], have drawn
attention of a much wider audience than what used to be a traditionally small “asynchronous
club”. On the tools front, there has also been much progress in the last five years. Amongst
at least a dozen of existing software packages are such systems as TANGRAM [1], sup-
porting syntax-driven design from high-level programming specifications, and SIS [29] and
FORCAGE [14], supporting circuit synthesis from interpreted Petri nets and their “close
relative”, Change Diagrams. The FORCAGE system also provides tools for verification of
speed-independence conditions in asynchronous designs.

There is still much to be done for the tools to enable practical circuit designers benefit
from them in their everyday experience. The major shortcomings of the existing tools are
following. Firstly, they are usually good in simple routine operations, such as translat-
ing high-level behavioural descriptions into specially structured circuits, e.g., converting
TANGRAM CSP-like expressions into interconnections of handshake components. The
resulting circuits can often be inefficient, both in speed and in size. Secondly, the synthesis-
oriented tools are capable of synthesising only from specifications which are special classes
of state-graphs (semi-modular) and Petri nets (free-choice and safe, or non-choice) and of
a fairly limited size. For example, today’s tools do not allow the designer to synthesise cir-
cuits with arbitration unless the designer uses special “tricks”, combining two approaches,
partly manual and partly automated.
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There has been some initial work on the methods that extend the class of specifications,
to allow designing circuits with arbitration components [9]. This work (a) needs further
formalisation and automation, and (b) it is limited to a particular modelling framework, all
transformations must be carried out at the Petri net level. Both these issues can be resolved
independently, and the latter one can possibly benefit from the recent developments in the
area of automated synthesis of Petri nets from state-based models.

Indeed, as can be seen in the model of a CFPP stage control circuit, devised by Charles
Molnar [30, 18], the designer may find it easier to define the behaviour in a state-transition
form. The stage control model is the one with an essential arbitration paradigm. Originally,
it looked doubtful that circuit synthesis techniques available for Petri nets [9] could be
directly applied to it. The way from the specification to the circuit, as outlined in [30], was
paved by manual effort. For example, the most crucial part of this design was a structural
decomposition of a stage into an inter-stage arbiter (called “cop”) and the remaining stage
circuitry. That has obviously been one of the ways (apparently a very successful one!) to
pursue the design. It would however probably be desirable to use amore formaltechnique
that would allow a set oftransformations at the behavioural level, in which this design
would be a natural option from the synthesis process. Such a wish creates the major goal
of this paper. The first draft version of our approach has been presented in [33]. Since the
SCPP-A problem was posed in [18] there have been two other attempts presented in [15, 16].
Both of them are based on a process algebraic framework.

This paper tackles the problem from the standpoint provided by Petri nets and Signal
Transition Graphs (STGs) [34]. The paper demonstrates the combined use of the following
two major constituents:

1. Synthesis of a Petri net specification amenable to subsequent circuit implementation.
This task includes two subtasks:

• Behaviour-preserving transformations at the state-transition level, which are aimed
at obtaining a state graph in such a form that can be converted into a Petri net.

• Actual conversion of the state graph into a behaviourally equivalent Petri net [4, 5];
the net must satisfy the requirements of subsequent circuit synthesis [9].

2. Synthesis of a circuit in one of the two potential approaches:

• The first one is a two-phase circuit consisting of special, micropipeline-like [31],
elements. Such a circuit can often be obtained by a relatively straightforward
conversion of the Petri net into an interconnection of macromodules, quite similar
to a syntax-driven approach of TANGRAM.

• The second approach, quite a challenge for today’s synthesis tools, is to refine the
net into a Signal Transition Graph (using the so-called “signalling expansion” [34])
and perform logic synthesis using one of theSTG-based tools (e.g., SIS).

These steps are not fully automated as yet but there is a good indication that design
examples like this one with CFPP create a good motivation and provide guidance for
further work on tools. For example, a new tool, calledpetrify, which is being developed by
J. Cortadella on the ideas of [4, 5], supports synthesis of Petri nets from state graphs and
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some behaviour-preserving transformations at the Petri net level. In its current statuspetrify
also allows many options for speed-independent logic synthesis fromSTGs, including the
so far most advanced method for resolving Complete State Coding problem [6, 7]. In
fact, the recent version ofpetrify [8] has helped to obtain the Petri net model shown in
Figure 10(c), which leads to the circuit shown in Figure 14. That net, synthesised originally
by hand, had some redundant places and arcs. The four-phased logic implementation of
the circuit has also been obtained bypetrify.

Hopefully, petrify will eventually provide an important link between circuit compila-
tion tools (e.g., TANGRAM) and circuit synthesis and verification tools (e.g., SIS and
FORCAGE).

The paper is organised as follows. Section 2 introduces the description of the CFPP stage
control circuit and formulates the problem. Section 3 provides the formal basis for the
behaviour-preserving transformations. In particular, it describes the procedure to synthesise
Petri net specifications from state-based models. Section 4 demonstrates the application of
this procedure to the state-based description of the CFPP stage control. Sections 5 and 6
present implementations of the Petri net models of the CFPP stage control. Finally, Section
7 draws conclusions.

2. CFPP stage control circuit. Original description

For a complete description of the CFPP architecture we refer the reader to [30]. Here, we
would like to abstract away from the details of instruction execution in the CFPP, and only
concentrate on the issue of the behavioural specification of control in a basic stage of the
CFPP.

The overall organisation of control in a CFPP is as follows. There are two mutually
synchronised pipelines, one for instructions and the other for results, where the results are
used by instructions and may be produced or updated by them. These pipelines allow
instructions and results to propagate in opposite directions, each of them operating as an
ordinary pipeline with data items passing between any pair of adjacent stages if one of the
stages is empty and the preceding stage holds a datum. Here, the role of data items is played
by instructions, in the instruction pipe, and by results, in the result pipe.

Mutual synchronisation between the two pipes is essential for the functionality of the
CFPP. The following important requirement is imposed on such a synchronisation:for every
instructionI, entering the instruction pipe from the bottom (by convention, instructions flow
“bottom-up”), and every resultR, entering the pipe at the top (results flow “top-down”)
while the instructionI is already in the pipe, there must be an opportunity to match in
one of the stages (the matching process, including potential execution if the address of the
operand inI matches the one inR, is calledgarnering).

Abiding by the above requirement, instructions and results happening to cohabit in the
counterflow pipeline must never miss each other. This requirement is met by organising the
pairs of adjacent stages in such a way that the state of control in these stages prevents certain
items from advancing along their pipes until the garnering process has been accomplished.

Figure 1 shows Molnar’s state diagram of a pipeline stage control. The states have the
following meaning:

E: Empty. Neither instruction nor result is present.
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Figure 1. Counterflow pipeline stage control: (a) structural view, (b) state diagram

I: Instruction. Only an instruction is present.

R: Result. Only a result is present.

F : Full. Both instruction and result have arrived.

C: Complete. The CFPP execution rules [30] have been enforced, and both instruction
and result are free to move on1.

The transitions in this state graph that involve motion of instructions and results are
labelledAI (accept instruction from below),PI (pass instruction upward),AR (accept
result from above),PR (pass result downward), andG (perform garnering, which is either
executing the instruction if its operand matches the result or release both instruction and
result).

Observing the state graph, we may note that there are two states in which dynamic
arbitration may take place. First, this is stateI, whereeither instruction may be passed
before result may arrive in the stageor result may arrive before instruction is allowed to
leave the stage. Similarly, in stateR, either result may be passed before instruction may
arrive in the stageor instruction may arrive before result is allowed to leave the stage.

Before we proceed with the design, let us be slightly “suspicious” and check that theTS
model indeed describes the behaviour which satisfies the original requirements imposed
on the CFPP interstage synchronisation. To do this, we can build a composition ofTSs of
several stages and formally check that the original requirements, outlined in Section 2, are
satisfied.

Such a check can be done for a simple version of the composition built for two adjacent
stages, each modelled by theTS shown in Figure 1,b, is shown in Figure 2. This is a parallel
FSM composition of stage 1 and stage 2 with a “rendez-vous” type of synchronisation on
the corresponding pairs of events, denoted asAI1 = PI2 = I andAR2 = PR1 = R.

Although the composedTS may appear somewhat complicated, one can check the crucial
synchronisation cases by examining groups of traces in it. For example, it clearly shows
that the system isdeadlock-free. The requirement of an instruction and result entering the
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Figure 2. Composition ofTSs of two adjacent stages

pipe tonever misseach other is seen from the following observation. Whenever bothAR1
(result enters the pipe) andAI2 (instruction enters the pipe) have occurred, the system
always passes through the states in which it performs garnering. It either happens in
stage 1 (eventG1) or in stage 2 (eventG2). It is also clear that, the system discriminates
neither the instruction nor the result pipes. For example, when the upper stage is full with
instruction, the environment can still choose whether to remove this instruction (execute
PI1) or push a datum into it (executeAR1). The latter possibility, although not obvious
from the synchronisation requirement in Section 2 (which was in some sense a “weak” form
of a progress property), is important to ensure that the system can “halt” an instruction in
the upper stage of the pipe temporarily until it has been garnered with some data.
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The presentation in [30] “jumped” from the definition of this state diagram directly to
its structural and circuit implementation. Our task here is to demonstrate the process of
deriving the specification in the form of a Petri net with signal events representeduniquely,
which would be more amenable to formal transformations. The latter would bring us to
a circuit solution, or a set of solutions, with standard arbitration elements (e.g., a 2-way
mutual exclusion element), following the technique described in [9].

3. Formal background for CFPP control circuit design

In this section we introduce some theoretical background of the model transformations
essential in performing our design task.

3.1. Basic outline of formal transformations

The brief outline of the basic idea for our model transformations, together with a simple
example, is depicted in Figure 3. Here, the initial model requires two actions2 a andb
to proceed in parallel but only once, i.e. fora (or b) to occur again it must wait for the
completion ofb (a). Thecircuit semanticsof the model, used in subsequent refinement, also
assumes that actionsa andb are started by the designed control circuit. The latter means that
these actions can be refined into the so-calledactivehandshakes [1]. In such a handshake
the first transition (e.g., a rising edge) is produced on an outputrequestsignal, and it is
acknowledged by the environment of the circuit with a transition on theacknowledgement
wire.

The two transformations shown in part (a) are aimed at a Petri net description which is
amenable to subsequent circuit implementation, which can be done by using either of the
two approaches shown in part (b) of the same figure.

Transformation (1.1) is applied to a Transition System3 which does not satisfy asemi-
elementaritycondition, defined later in this section. The latter is a necessary and sufficient
condition for applying further transformation (1.2). To satisfy that condition we insert at
stage (1.1) additional events into the model, and those auxiliary events can be regarded as
dummy(sometimes also called “silent”[17]) actions. The correctness of this transformation
will be taken in the sense of itsobservational equivalence(also known asweak bisim-
ilarity ) [17] between the original and resultant Transition Systems, which is sufficiently
powerful for the purposes of asynchronous design. It is also formally defined below. In our
example, an auxiliary eventd allows to satisfy the semi-elementarity conditions. The new
Transition System is observationally equivalent to the original one with respect to the set
of events{a, b}.

Transformation (1.2) is based on the notion of regions in a Transition System, which are
sets of states corresponding to places in the synthesised 1-safe Petri net (see Figure 3.(a)). If
the Transition System satisfies the condition of semi-elementarity, the net synthesised from
it generates the reachability graph which is isomorphic to the Transition System. Thus, due
to the property of transformation (1.1), the Petri net should be observationally equivalent to
the original description. Note that the event labels of transitions in the original Transition
System are used as the (unique) labels of the net’s events. The 1-safe net model shown in
Figure 3.(a) is observationally equivalent to the original description.
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Figure 3. Outline of model transformations

Transformation (2.1) is basically an action refinement. It is however different from (1.1)
since it involves associating an original event name with a set of events. Furthermore,
it is performed at the Petri net level. In order to cast it into the notion of observational
equivalence, we need to establish a mapping between the set of refined actions and the
original actions. For every original action such a mapping should select acritical event
from the refined set while other events must be regarded as silent actions. The idea of such
refinements for labelled Petri nets has been defined in [35, 34]. The refinement can be done
in two ways leading further to circuit implementations (2.2) and (2.3). Note that for the
example shown in Figure 3 those implementations produce the same result, which is of
course not true in general; an alternative (2.3) implementation is shown in Figure 4.
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The (2.2) label is assigned to a two-phase circuit implementation, where the circuit is
obtained by direct, syntax-based, conversion of Petri net fragments into corresponding
macromodules in the style of [31] or [23]. The class of 1-safesimple[19] Petri nets is suf-
ficient to perform such conversion [23]. The net, called a two-phase STG in Figure 3.(b),
is obtained from the original net in the (2.1) transformation stage by means of: (i) expand-
ing abstract events into pairs of handshake signals (handshake expansion) in a two-phase
protocol (also known as a Non-Return-to-Zero, NRZ, protocol4) [31], and (ii) for resolv-
ing conflicts withoutput signal non-persistency, by insertingsemaphore actionswhich
are implemented with arbitration elements [9]. In our example, the circuit semantics of
eventsa andb in the original model is such that they correspond to twoactivehandshakes.
Therefore, they are refined into two pairs of signal transitions(ar∼, ak∼) (respectively,
(br∼, bk∼)), standing for a request to execute actiona (b) and an acknowledgement of its
completion. The fact that the request part is leading in those handshakes (since they are
both active) is reflected in the relative position of tokens – beforear∼ andbr∼.

The (2.3) stage is concerned with synthesis of a logic gate implementation, which is called
a four-phase implementation because it is synthesised from an STG in which signals are
refined according to afour-phase protocol(also known as a Return-to-Zero, RZ, protocol5).
Similar to (2.2), the (2.3) implementation also requires from the (2.1) refinement that abstract
events are expanded into handshakes and explicit arbitration actions [9] are inserted. Unlike
(2.2), the actual derivation of logic is however performed by means of logic synthesis from
the STG, where one can (or rather must, due to complexity reasons) use automatic tools
like SIS orpetrify [29, 8], which access the logic minimisation package Espresso [3]. In
our example, we refined both handshakes into an STG for its four-phase logic synthesis in
the way that is not much different from the two-phase signalling. This is to benefit from
the existence of the auxiliary eventd, which can itself be interpreted as an extra state signal
(not a handshake pair) and refined into a pair of transitionsd+ andd−. The latter are
used to help solving theComplete State Codingproblem, which is a necessary condition
for obtaining logic equations for the output signals. Alternatively, refining onlya andb
handshakes, we could completely rely on the synthesis tool (in this case, onpetrify), which
could solve both the state coding and logic synthesis issues. This is illustrated in Figure 4,
where three additional state signals (csc0, csc1 andcsc2) have been added for Complete
State Coding.

On the whole, the stages (1.2) and (2.3) are those which are supported by the existing
tools. Stage (2.2) seems to be easy to automate either, however, there are still no good
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tools for compilation of control circuits from Petri nets (perhaps, the reason for that is
exactly that this task is not seen today as theoretically challenging!) The stages (1.1) and
(2.1) are fairly hard to automate. Like any other refinement tasks, either in hardware or
software design, they are subject to intuition of the designer, and require use of verification
tools – e.g., to check behavioural equivalence (bisimilarity), deadlock freedom, safety and
consistency. One can however apply some correctness-preserving Petri net refinements
based on correspondence between structural and behavioural properties of nets [19].

In the following subsections we shall define our formal objects, Transition Systems and
Petri nets, shall more formally address the two major notions of behavioural equivalence
that will be used in our transformations. One is bisimulation of Transition Systems – it un-
derlies the (1.1) and (2.1) transformations. The other is the isomorphism-based relationship
between semi-elementary Transition Systems and 1-safe Petri nets, which supports stage
(1.2).

3.2. Transition Systems and their behavioural equivalence

Transition systems. A transition system(TS) is a quadrupleTS = (S,E, T, sin), where
S is a non-empty set of states,E is a set (alphabet) of events,T ⊆ S × E × S is the
transition relation, andsin is the initial state.

A TS is represented by a directed graph in which every arc connecting a pair of states is
labelled with a name of an event. Such a labelled arc is calledtransition. One state is marked
as the initial state. We assume that anyTS satisfies the followingbasic conditions[21, 4, 5]:

A1. For every(s, e, s′) ∈ T, s 6= s′, i.e., no transition may begin and end in the same state.

A2. For everye ∈ E there ares, s′ such that(s, e, s′) ∈ T , i.e. every event must have
some occurrence.

A3. For everys ∈ S − {sin} there are(si, ei, si+1) ∈ T , for i = 0, 1, . . . , n, such that
s0 = sin andsn+1 = s, i.e. every state is reachable from the initial state.

Two TS’s TS = (S1, E1, T1, sin1) andTS = (S2, E2, T2, sin2) areisomorphiciff there
exist a pair(hS , hE) of total bijective mappings:hS : S1 → S2, hE : E1 → E2 such that
(s, e, s′) ∈ T1 ⇐⇒ (hS(s), hE(e), hS(s′)) ∈ T2.

We will say thats′ is reachablefrom s by a (possibly empty) sequenceσ ∈ E∗ of events
ei, i = 0, 1, . . . , n if there is a (possibly empty) sequence of transitions(si, ei, si+1) ∈
T, s0 = s andsn+1 = s′. This is denoted bys

σ−→ s′. The sequenceσ is then called
feasiblein states. A special case of such a sequence is afeasible eventin states, i.e.
s

e−→ s′ iff (s, e, s′) ∈ T .
Theprojectionof a sequence of eventsσ ∈ E∗ feasible ins ∈ S on an event alphabet

E′ is an event sequenceσ′ ∈ (E ∩ E′)∗ obtained fromσ by deleting all symbols which
are not inE′. LetE′ be an alphabet ofobservableevents. We then say that a sequence of
eventsσ′ is observably feasiblein s ∈ S iff σ′ is the projection of a sequenceσ ∈ E∗ on

E′ andσ is feasible ins. This is denoted bys
σ̂′−→ s′. Again, a special case iss

ê−→ s′,
which means that there exists a sequence of eventsσ ∈ E∗ feasible ins and exactly one of
these events is labeled withe.
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Behavioural equivalence. Consider twoTS’s TS1 = (S1, E1, T1, sin1) andTS2 =
(S2, E2, T2, sin2). A weak bisimulationwith respect to an event alphabetE is a binary
relation≈E⊆ S1 × S2 such that(s1, s2) ∈≈E implies, for alle ∈ E, that:

• (i) s1
ê−→ s′1 implies that there exists2, s

′
2 ∈ S2, such thats2

ê−→ s′2 and(s′1, s
′
2) ∈≈E ,

and

• (ii) s2
ê−→ s′2 implies that there exists1, s

′
1 ∈ S1, such thats1

ê−→ s′1 and(s′1, s
′
2) ∈≈E .

The aboveTS’s TS1 andTS2 are calledobservationally equivalent(or weakly bisimilar)
with respect to their initial states and an event alphabetE iff there is a weak bisimulation
≈E and(sin1, sin2) ∈≈E .

This definition of bisimulation is quite similar to the original one from [17], and will be
identical to it if we consider setsE1\E andE2\E to consist of a single event, calledsilent
action. Such a restriction would be quite appropriate for justification of transformation (1.1).
However, for the (2.1) transformation, the above definition is slightly more convenient.

A simple example of aTS transformation which preserves observational equivalence with
respect to the original set of actions{a, b} is shown in Figure 3.(a). The initial states of the
TS’s are both labelled withs1.

3.3. Labelled Petri Nets and their behavioural equivalence

Labelled Petri nets. The target of specification synthesis at stages (1.1) and (1.2) is a
labelled Petri net. We assume that the reader is familiar with the basic terminology of Petri
nets [19]. Thus we give here only a brief outline of the most relevant issues.

A Petri net (PN) is quadrupleN = (P,E, F,m0), whereP is a finite set ofplaces,
E is finite set oftransitions(or events),F ⊆ (P × T ) ∪ (T × P ) is aflow relation, and
m0 : P → {0, 1, . . .} is theinitial marking. A PN is usually represented as a directed graph
consisting of two types of vertices, circles for places and bars (or boxes) for transitions, and
arcs, leading from circles to bars and from bars to circles, to show the flow relation6. The
initial marking is usually depicted in the graph by means of tokens (black dots) put into
places according to their number prescribed by functionm0.

An event isenabledin a markingm if all its input places are marked underm. An enabled
event may fire, producing a new marking (this marking is said to bedirectly reachablefrom
the previous one) with one less token in each input place and one more token in each output
place of the transition. The set of all markingsreachable(ordinary transitive closure of
the direct reachability) from the initial one is called the net’s Reachability Set. The graph
whose vertices are the net’s markings and arcs correspond to the direct reachability relation
is called the Reachability Graph (RG) of the net. TheRG of aPNN = (P,E, F,m0) is a
TS RG(N) = (SN , E, TN ,m0), in which the set of statesSN is formed by all markings
reachable fromm0, the set of events coincides with the set of events ofN , the set of
transitionsTN is formed by the transitions between markings(m, e,m′) whenevere can
fire underm ∈ SN , and the initial state is identified with the initial marking.

A labelledPN is a PN in which every evente ∈ E is labelled with a symbol, called
label, from a given alphabetA, thus giving rise to alabelling functionλ : E → A. Hence
a labelledPN is a tripletLN = (N,A, λ). In the case ofunique labelling, i.e., if λ is
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bijective, each event in the net can be uniquely identified by its label. In such a case we
can use the label as the event’s name. In this paper, we shall be mostly working with
the uniquely labelled events (with the exception of perhaps dummies unless we need to
distinguish them). In addition to theTS RG(N), the reachability graph of the underlying
PN N , a labelledPN LN produces anotherTS RG(LN) = (SN , A, TN ,m0), which is
graphically the sameTS asRG(N) but its transitions are labelled with names from alphabet
A. We shall call such a reachability graph the labelled reachability graph of a labelledPN
LN . It is obvious that ifλ is a total unique labelling, thenRG(N) andRG(LN) are
isomorphic to each other.

A PN is called1-safeif no more than one token can appear in a place. APN is calledpure
if no pair of a place and transition are connected by mutually opposite arcs (bi-directional
arcs are often used to represent suchself-loopsin PNs). APN is called(strongly) livewith
respect to an evente if from any reachable markingm1 it is possible to reach a markingm2

under whiche is enabled. APN is calledlive if it is live with respect to all events. APN
is calledpersistentwith respect to an evente if for any reachable markingm1 under which
this event is enabled we cannot reach another markingm2 by firing another evente′ ande is
not enabled underm2. A PN is calledpersistentif it is persistent with respect to all events.
The property of 1-safeness is crucial forTS toPN andPN to two-phase circuit conversions.
The property of liveness is not particularly critical for conversions but it helps to keep track
of the effectiveness of all events and signals in the circuit, i.e., that they are not redundant in
the modelled operational modes. Finally, persistency, especially persistency with respect
to events modelling output signals of the circuit, is important because non-persistent events
must be implemented by special arbitration elements (which contain analogue devices) to
avoid hazards.

A special case of a labelled Petri net is aSignal Transition Graph(STG). An STG is a
triplet G = (N,Y, λ), whereN = (P,E, F,m0) is aPN, Y is a nonempty set of binary
signals, andλ : E → Y × {+,−,∼}, wherey+(y−) stands for the rising (respectively,
falling) edge of signaly (e.g., in the four-phase signalling), whiley∼means either rising or
falling edge ofy (e.g., in the two-phase signalling). In other words,y∼means a transition
of signaly regardless of the current state. Thus anSTG is aPN whose events are labelled
with the names of binary signal transitions.

Two PNsN1 andN2 are calledobservationally equivalentwith respect to a set of events
E iff their RGsRG(N1) andRG(N2) are observationally equivalent with respect toE and
their initial markings. Similarly, twoSTGsG1 andG2 areobservationally equivalentif
their labelledRGsRG(G1) andRG(G2) are observationally equivalent with respect to a
signal setY and their initial markings.

For example, let us refer back to stage (2.1) in Figure 3. Consider first the two-phase
refinement. Actionsa andb have been refined into two pairs of handshake signal transitions
(ar∼, ak∼) (respectively,(br∼, bk∼)). Now, if we semantically identifyar∼with a and
br∼ with b, regarding all other events as auxiliary ones (dummies), we can easily detect
that the refined STG is observationally equivalent to itsPN origin, and hence equivalent
to the originalTS. The legitimacy of that semantic identification is however determined
by our characterisation of the criticality of transitionsar∼ andbr∼ in representing their
high-level counterpartsa andb. The decision about such characterisation is obviously made
by the designer, who refines the model, and thus cannot be completely formalised.
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Similarly, we can approach the question of correctness of the four-phase refinement, where
we should make appropriate semantic identification between four-phase signal transitions
and the original abstract events. Thus, if we identifyar+ with a, br+ with b andd+ with
d, we can easily observe that the refined STG is equivalent to the original model.

In carrying out transformations for the CFPP model at thePN and STG levels, we
shall be relying on the behavioural equivalences defined in this section. Wherever it is
non-trivial we shall be adding some comments on our refinements justifying them from
both the designer’s (semantic identification of events at different levels of abstraction) and
formal (explaining why a particularPN structural transformation satisfies observational
equivalence) viewpoints.

3.4. From Transition Systems to Petri Nets

The basic intuitive idea behind the construction of a Petri net whose behaviour is equivalent7

to the originalTS is a correspondence between subsets of states, calledregions, and places
in the synthesised net. This allows a 1-1 correspondence between states of a region and
markings of the Petri net in which the place corresponding to the region has a token.

More specifically, a region is a subset of states with whichall transitions labelled with
the same evente have exactly the same “entry/exit” relationship. Namely, we say that a
subset of statesr is enteredby evente if for every transition labelled withe the source state
does not belong tor while the destination state is inr. Similarly, r is exitedby e if for
everye-labelled transition the source state is inR while the destination is outsider. In the
remaining cases,e is said to benon-crossing, eitherinternalor external, event for a region.
Thus, to become a region, a subsetr must satisfy exactly one of the three cases for every
evente: (i) r is entered bye, (ii) r is exited bye, and (iii) r is not crossed bye.

A regionr is apre-region(post-region, co-region) of an evente if r is exited by (entered
by, internal for)e.

Figure 5 illustrates a pair of regions,r1 = {E,R} andr2 = {I, F, C}, in theTS of the
CFPP stage control. Note thatr1 is a pre-region for eventAI and a post-region forPI
whereasr2 is a pre-region forPI, post-region forAI and a co-region forG. Both regions
are not crossed byAR andPR. Finally,G is an external event forr1 and internal forr2.

It is known from [21] that in order to generate an elementary net whose reachability graph
is isomorphic to a givenTS, theTS must beelementary. Elementary nets are effectively
a subclass of 1-safe Petri nets8. The ”gap” between 1-safe nets and elementary nets is
filled by non-purenets, which allow a self-loop relation between places and transitions.
Such nets and theirTS’s, calledsemi-elementary, have been studied in [25]. In this design
exercise, we need to be able to deal with non-pure nets.

Thesemi-elementarity conditions, additional to the above three basicTS conditions, are
as follows:

A4. State separation property, which requires that for any two different states there must
exist a region which contains one of the states and does not include the other.

A5. Forward closure property, which requires that, for every states and every evente, if
the sets of pre-regions and co-regions ofe are included in the set of regions such that
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each of them containss, thene must be enabled ins (i.e., there must be a transition
from s labelled withe).

Following [25], for any semi-elementaryTS TS there exists a 1-safePN N such that:
(1) each event inN is uniquelylabelled with an event ofTS; (2) theRG(N) is isomorphic
to TS.

The basic procedure to produce aPN from a semi-elementaryTS is as follows:

1. For each evente an event labelled withe is built in thePN;

2. For each regionr a place namedr is generated;

3. Placer contains a token in the initial marking iff the corresponding regionr contains
the initial state of theTS;

4. The flow relation is built according to the relationship between pre-/co-regions and
events, and between events and post-/co-regions.

A PN synthesised by this procedure is called asaturatednet, since all regions are mapped
into the corresponding places. A saturated net may have a lot of redundancy, i.e. some
of its places may be removed without disturbing the isomorphism of reachability graphs.
As shown in [2], it is sufficient to consider only regions which are not sub-regions of
other regions (such regions are calledminimal). The net constructed from all minimal
regions is called aminimal saturatednet. Even the latter can be redundant to produce the
Reachability Graph isomorphic to theTS. The method described in [4] and implemented
in thepetrify tool performs additional optimisation and produces an irredundant net with
minimal regions (the idea is somewhat similar to an irredundant cover of prime implicants
in logic minimisation [3]). The semi-elementarity condition may sometimes require to
use non-minimal regions as co-regions. Since enumeration of non-minimal regions is
computationally hard,petrify applies some heuristics to optimise its search for co-region
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Figure 6. Petri net refinements preserving observational equivalence

candidates. Furthermore, note thatpetrify uses a slightly modified version of the semi-
elementarity condition, called “Excitation Closure”, based on excitation regions [4], which
simplifies its checking in a symbolic state representation framework.

A set of states is ageneralised excitation regionfor evente, denoted byGER(e), if it is
a maximal set of states such that in every element of this set evente is enabled. Excitation
Closure requires that for every evente the intersection of pre-regions and co-regions ofe is
equal toGER(e).

In ourTS of Figure 5, the semi-elementarity property does not hold for several events. For
example,GER(PI) = {I, C} but the only pre-region ofPI is regionr2 = {I, F, C, };
GER(G) = {F} but the set of pre-regions ofG is empty. ThisTS is therefore not
semi-elementary.

3.5. Summary of Petri net refinements relevant for CFPP design

Before we proceed with applying actual model transformations on the CFPP specification,
let us consider some refinements that can be applied at thePN (or STG) levels, which
preserve behavioural correctness of the original model in terms of observational equivalence.
Refer to Figures 6,7 and 8. When talking about signal transition refinements, we will only
consider the case of a two-phase signalling protocol for brevity.

Firstly, let us consider refinements which are insensitive to the semantics of the trans-
formation. These refinements, shown in 6, can be applied to a 1-safe Petri net and are
effectively structural transformations of the net which do not change its behavioural prop-
erties, such as safeness and liveness. They preserve observational equivalence with respect
to the set of original event names. We omit here any formal proofs of this fact as the reader
can easily find such justifications in the existing literature onPNs (e.g., see [19]). Note
that the insertion of an auxiliary actiond1 between a pair of original actionsa andb shown
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in Figure 6(c) can sometimes be done without splitting placep beweena andb. This can
be important when we need to preserve the fact that some condition associated with such
placep must remaintrue between the firings ofa andb.

Secondly, two major types of refinements with “semantic flavour” (they are driven by
the process of circuit design) are handshake refinements and semaphore (or mutual ex-
clusion) action insertion. The two main handshake refinements are shown in Figure 7.
These are a ”passive” and ”active” handshakes [1]. An abstract actiona on a port with
a request-acknowledgement handshake(ar, ak) is typically refined with two eventsar∼
andak ∼. For a passive (active) handshake the requestar ∼ is an input (output) event,
and the acknowledgementak∼ is an output (input) event. We assume that whenever the
environment (circuit) is willing to execute actiona on a passive (active) handshake the
circuit (environment) must be ready. This is reflected in the synchronisations shown in the
figure. Note that, if we semantically identify the critical eventak∼ with original actiona
(indeed, the acknowledgementak∼ actually determines that actiona has been completed),
then it should be clear that for a 1-safe Petri net, the net obtained after such refinements is
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observationally equivalent due to the rules of thePN transformations shown in Figure 6.
The role of dummy eventsd1 in Figure 7 is auxiliary; from the semantic point of view,
they “close” the handshakes through the environment of the circuit, thereby preserving the
model’s liveness. Such a “condensed” model of the environment can be especially helpful
when we need to connect two circuits together at the level of their Petri net models; here
one party must be made active while the other is passive. A relevant example can be found
further in Section 5.

An example of mutual exclusion action insertion is shown in Figure 8. This refinement,
with a strong semantic motivation of circuit design, allows for the use of a particular type
of arbiter, the so-called RGD arbiter (with request-grant-done interface) [31] with a single
“Done” signal (it is sometimes called Sequencer) [30]. Again, this refinement is well backed
up by thePN transformations of Figure 6, and preserves observational equivalence with
respect to actionsa andb (and, of course, the rest of the surrounding net’s actions).

We could present similar semantical refinements for the four-phase signalling convention
but we leave them out to avoid over-complication. Thus, at this point we are well-equipped
with formal techniques for model transformation and we can proceed with our design.

4. Synthesis of a Petri net model for CFPP stage control

Our first step is to revisit the originalTS model of the CFPP stage control and transform
it to such aTS that would generate aPN using the above technique. As has been pointed
out earlier, when discussing Figure 5, the originalTS is not semi-elementary. The main
obstacle in satisfying the semi-elementarity (Excitation Closure) condition comes with the
eventG, for which we do not have appropriate pre-regions and post-regions. We need to
insert auxiliary (dummy) events into the originalTS in such a way that the resultingTS is
semi-elementary and bisilimar to the originalTS. This would correspond to stage (1.1) in
our classification of Section 3.1.

Intuitively, and this is one of the heuristics of the dummy insertion method, we need
to establish proper “diamond” structures in theTS, reflecting the potential concurrency
between pairs(AI,AR) and(PI, PR). Our approach, eventually leading us to a circuit
solution similar to the one found by C. Molnar [30], uses the idea of separating the two
state-transition diamonds, one for the pair of events(AI,AR) and the other for the pair
(PI, PR). Complete separation of these diamonds could be performed by unfolding the
TS into two similar sub-graphs, as shown in Figure 9.

The newTS contains three dummy events, labelledi, r andc, and three transitions with
split labelling ofG. Splitting the labels into severaldifferent instances of asemantically
unique event name, does not violate observational equivalence, and can always be applied
in its labelledPN version. ThisTS satisfies the requirements of the Excitation Closure and
can give us an appropriatePN.

It is however possible to make a more “economical” separation of the diamonds, with only
one dummy event and eventG left unsplit. This solution is shown in Figure 10, b, where
statesI andR are shared between the diamonds and the only dummy event is labelled with
d. This dummy plays the same role for the(PI, PR) diamond asG for the(AI,AR).

The TS is not elementary in its basic form [21] (without use of co-regions) but it is a
semi-elementary one since it satisfies the Excitation Closure condition for pre-regions and
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co-regions. We can therefore proceed to stage (1.2) in our transformation process. For
this we apply the procedure from Section 3.4. This procedure produces the net shown
in Figure 10 (c). The regions giving rise to the places of this net are as follows:r1 =
{E, I, E′}, r2 = {E,R,E′}, r3 = {R,F,C}, r4 = {I, F, C}, r5 = {E, I, C}, r6 =
{E,R,C} and r7 = {I, E′, F}. Note that(r1, r3), (r2, r4) and (r6, r7) are pairs of
complementary regions (places) (for any such pair, theTS is always either in the first or
second region). The reader may check the pre-regions, pre-regions and co-regions for all
events by tracing them back from the net’s arcs. Due to the presence of co-regions to events,
and hence self-loop arcs, the resulting net is non-pure.
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The reader may also wish to construct the reachability graph for this net and verify its
isomorphic conformance to theTS in Figure 10 (b). The latter is in its turn observationally
equivalent to the original specification. This equivalence also guarantees the correctness of
a construction of the entire control of the CFPP out of thePN models. For example, the
parallel composition of two one stage models, shown in Figure 11, produces exactly the
same behaviour as the composition at theTS level we had earlier in Figure 2. Note that
unlike theTS composition, which suffered from state explosion, the size of the aggregate
PN grows only linearly. It is important to note that the semantic identification of actions
PI(i+ 1) = AI(i) andAR(i+ 1) = PR(i) of neighbouring stages plays a crucial role in
our subsequent refinement of these actions at the handshake signal level.

We shall now use this net model to produce a circuit implementation.

5. Circuit implementation for CFPP stage control: a two-phase solution

In this section we concentrate on the realisation of stages (2.1) and (2.2) of our transformation
strategy (Section 3.1), which will lead us to a two-phase circuit implementation of a CFPP
stage.

1. Our first step is the handshake refinement of actionsAI, PI, AR andPR, on which
neighbouring stages of the CFPP synchronise (see Figure 11). Using the refinements
shown in Figure 7 we transform the model of Figure 10(c) into the PN shown in
Figure 12. Note that due to the direction of the flow of data path (instructions and results),
theAI andAR actions are refined as passive handshakes, whereasPI andPR as active
ones. With this choice we assume that it is always the environment who produces the
first event on the instruction (AI) and result (AR) interfaces. A dual assignment of the
passive and active roles would also be possible (but it seems less intuitive sematically).
The crucial point here is that the (linking) handshake pairs (PI,AI) and (PR,AR) of
the adjacent stages must be those of mutually complementary handshake types.

When applying handshake refinement, we make an important designer’s decision that
the new (acknowledging) eventsAIk∼,PIk∼,ARk∼ andPRk∼ stand semantically
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for their respective abstract prototypesAI,PI,ARandPR. Indeed, from the semantics
of the original model, e.g., action ”Accept Instruction” is effectively accomplished when
theAIk ∼ is generated. Since the handshake forAI is initiated by the environment
(request to propagate the instruction is designated by eventAIr∼), the input condition
r6 of eventAI is inherited byAIk∼. Similar reasoning is applied to the refinement
of AR. For the active handshake ofPI (action ”Pass Instruction”), the request (event
PIr∼) is initiated by this stage, therefore this event is inserted in the wayd1 is added
in Figure 6(c). ActionPR is also refined as an active handshake. The use of eventsd1,
d2, d3 andd4 is purely auxiliary, they help to preserve liveness of the net model; from
the semantic point of view, they ”close” the handshakes through the environment.

Note that we would like to preserve the complementarity of pairs of places(r2, r4) and
(r1, r3) because these places will be used further as indicators of the conditions that
the instruction pipe is full (r4 is marked) or empty (r2 is marked) and that the result
pipe is full (r3 is marked) or empty (r1 is marked). We would like these conditions
to be toggled by eventsAIk∼, PIk∼, ARk∼ andPRk∼, likewise in the original
net, where they are toggled byAI, PI, AR andPR. Thus, for the above-mentioned
identification of event names, the net of Figure 12 is equivalent to that of Figure 10(b).

2. Our second step is the introduction of new events to resolve conflicts (non-persistency)
between pairs of events (AIk∼, PRk∼) and (PIk∼, ARk∼) with respect to shared
placesr6 andr5. The need and a basic technique for such transformation at thePN
level has been justified in [9]. Intuitively, it should be clear that if two events associated
with output signals of the synthesised circuit are in behavioural conflict in the net model
(there exists a marking under which both events are enabled but the firing of each of
these events can disable the other event), we cannot build a hazard-free circuit out of
purely logic based modules. In such cases, we must use special circuit elements called
arbiters [9]. Such arbiters exist in both two-phase (RGD-arbiter with two ‘Done”
signals [31, 34] or one “Done” signal [30]) and four-phase (Mutex element[9]) design
technologies. The type of the arbiter to be used in the implementation dictates the
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action refinement. For this example, we are going to use an RGD-arbiter single “Done”
signal, hence our refinement of the net in Figure 12 will proceed in accordance with the
technique of Figure 8. The result of this refinement is shown in Figure 13.

In this refinement, when inserting request and grant events in front ofAIk∼, PIk∼,
ARk∼ andPRk∼, we applied the technique of Figure 6(c) to preserve the comple-
mentarity of pairs(r2, r4) and(r1, r3).

Additionally, in this net we have also used some of thePN refinements of Figure 6 in
order to help ourselves in subsequent conversion of the net to a two-phase circuit (note
for example the fragment of Figure 13 labelled “dual-rail selector”):

• (i) we added eventE∼ by means of splitting placer7 according to Figure 6(b);

• (ii) we applied Figure 6(d) to obtain a single output place for mutually exclusive
eventsG∼ andd∼, and thus obtained an eventD∼;

• (iii) eventD∼ was then trivially forked into two separate “Done” events,D(1)∼
for placep6 (also labelled as the mutexme1 condition) andD(2)∼ for placep5
(also labelled asme2), in accordance with Figure 8.

The resulting net in Figure 13 bears much structural resemblance with the organisation
of control based on stage control circuits and inter-stage “cops”, proposed in [30]. This
is reflected in the dotted boxes.
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3. We can now apply a direct transformation technique (similar to the one used in [34],
which essentially adopted Patil’s approach [23]) to obtain a two-phase circuit imple-
mentation:

• the mutex signal transitions are implemented by two RGD-arbiters with single
“Done” [30] (sometimes called Sequencers [24]);

• eventsRI(1) ∼, RI(2) ∼, RR(1) ∼ andRR(2) ∼ can be implemented by C-
elements;

• the “OR-joining” placer7 can be implemented by XOR;

• transitionE ∼ produces an event-based signal to activate selection betweenG∼
andd∼ whereas itsD∼ counterpart is a simple fork after an XOR standing for a
place which is input-incident toD∼;

• G∼ andd∼ require a special circuit component, which is effectively a dual-rail
Selector, with one event-based inputE ∼, two event-based outputs forG∼ and
d∼, and two level-based signalsf andt, forming the boolean condition (dual-rail
encoded) for this selector. The last two signals are logically built of the outputs
from the RGD-arbiters. They have the meaning of marked placesr3 (the results
part is filled with an item) andr2 (the instruction part is empty);

• finally, dummy eventsd1, d2, d3 andd4, which were introduced to “close” all
four handshakes through the environment, are mapped into inverters (since the
arcs outgoing from those events carry tokens). These inverters again are purely
auxiliary – they model the environment as it is seen with respect to those four
handshakes.

The analysis of this net shows that the trickiest part of the circuit is the interface
between the handshake signals of both pipes and the dual-rail selector. It can in fact be
refined in a most straightforward way. Indeed, at the time when the signal associated
with transitionE is produced, the marking of placesr1, r2, r3 andr4 would either be
r1 = r2 = 0, r3 = r4 = 1 or r1 = r2 = 1, r3 = r4 = 0. The former corresponds to
the case of generating the “Garner” control signal, while the latter is the case of a “skip”
signal. The skipping means that either instruction or result is passing through the stage
without interaction with its counterpart. To implement these conditions in logic we can
use for example two XOR’s (one with inverted output) to produce level-based signals
f and t, used to control the Selector. Each such XOR would stand for the boolean
condition “the instruction (result) part is empty (filled with an item)”.

The main circuit diagram is shown in Figure 14 while the internal structure of Selector
is in Figure 15. Here,L is a Transparent Latch, whose generic logic equation is:
Q = DC + (D + C)Q.

In this simple implementation, which is not purely speed-independent, we must guar-
antee, to avoid glitches in the Selector, that the delay with which signalE is applied
to the Selector’s inputx is large enough compared to that of the XORs forming the
dual-rail inputsf andt.
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Figure 15.Circuit implementation for dual-rail Selector

This circuit, at such a modular level, looks very much like the one described in [30],
except that the latter does not show the Full-Empty detector of the Stage Automaton while
we “hide” the fact the “Done” signal (inputd) to each RGD-arbiter is in fact formed
by joining two “Done’s” of the two adjacent stages (as shown by dotted C-elements and
extra connections in Figure 14). The justification of these C-elements is provided by the
transformation shown in Figure 16, which merges the mutex places of two adjacent stages.
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In order to perform this transformation we should synchronise two neighbouring stages in
the same way as we did in Figure 11. That is, thanks to the semantics of our design we can
make pairs of events (PIk∼ /2,AIk∼ /1) and (PRk∼ /1, ARk∼ /2) identical. Here,
the ”/2” and ”/1” subscripts are used for the ”lower” and ”upper” stages, respectively. We
also identify the corresponding events of the two arbiters. Finally, the subsequent syntactic
PN transformation is formally justified by the technique of merging two conflict places into
one place shown in Figure 6(e).

At the intuitive level, the last transformation is also understandable since it should be
sufficient to have only one arbitration unit (“cop”) between two neighbouring stages. The
events of this single arbiter are labelled with the subscripts 21, to designate that this arbiter
is between stages 2 and 1. It should be clear now that the above-mentioned C-elements
are obtained as the result of conversion of the new eventsD(21)∼, which synchronise the
”Done” events of the neighbouring stages.

We have thus derived a two-phase circuit which correctly implements the original speci-
fication. Indeed, if we now identify the transitions on signal wiresAIk, PIk, ARk, PRk
andG with names of actionsAI, PI,AR, PR andG, then the behaviour of the obtained
control circuit will be observationally equivalent to theTS shown in Figure 1(b).

In the next section we present a circuit solution obtained from thePN model in Figure 10
(c) using the four-phase signalling protocol.

6. Four-phase Implementation

In order to obtain a circuit by means of logic synthesis from its behavioural specification, we
need to refine ourPN specification in Figure 10(c) into anSTG with four-phase signalling
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Figure 17.Four-phase refinement with ”compressed” handshakes

for the main four instruction and result pipe handshakes:AI, PI,AR andPR, as well as
for the garner and skip control signals:G andd. TheSTG with such refinements is shown
in Figure 17. For brevity, we have compressed each handshake pair into one signal, as
shown in the right half of the figure. Here, the transitions of each signal model a pair of
adjacent transitions of the associated handshake signals. This reduction is possible since,
when we implement a handshake pairar andak, only one of these two signals is an output
(ar for active handshake,ak for passive handshake), whose function is to be synthesised.
The other signal, which is produced by the environment, can simply be seen as either a
delayed version (ak, for active handshake) or inverted version (ar, for passive handshake)
of the output.

This refinement is obtained by applying formalPN transformations from Figure 6. Its
behavioural correctness can be traced by means of checking the observational equivalence
of thisSTG and the originalPN. The semantic identification can be done in the following
way: AI+→ AI, PI+→ PI,AR+→ AR, PR+→ PR,G+→ G andd+→ d.

Note that for easier checking we have preserved the names of places in thisSTG. In this
net we have not yet inserted events for a mutual exclusion element to protect those settings
and resettings. A more completeSTG, in which request and grant signals for afour-phase
mutex element with enablehave been inserted, is shown in Figure 18. The description and
a possible implementation of the mutex element is shown separately in Figure 19.

We have synthesised logic for theSTG model in Figure 18 usingpetrify:

AI = PI

PI = GI1 ∗GI2 + PI ∗ (GI2 +GI1) = C(GI1, GI2)
AR = PR

PR = GR1 ∗GR2 + PR ∗ (GR1 +GR2) = C(GR2, GR1)
G = PR ∗GI1 +GI1 ∗GR2 + PI ∗GR2
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d = PI ∗GR1 + PR ∗GI2 +GI2 ∗GR1
RI1 = AI

RI2 = PI

RR1 = PR
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RR2 = AR

GI1 = RI1 ∗ GR1 ∗ en+GI1 ∗ (en+RI1)
GI2 = RI2 ∗ GR2 ∗ en+GI2 ∗ (en+RI2)
GR1 = RR1 ∗ GI1 ∗ en+GI1 ∗ (en+RI1)
GI1 = RI1 ∗ GI1 ∗ en+GI1 ∗ (en+RI1)
en = G ∗ d

The equations for the grant outputs of the mutex elementsGI1, GI2, GR1 andGR2
correspond to the implementation shown in Figure 19, thoughpetrify supplies them with
a warning that these signals are not output-persistent. Due to the latter fact, we must use a
special (analogue) CMOS transistor interconnection to resolve metastability.

The above equations effectively describe a CFPP stage as an “autonomous” circuit, which
realises its handshakes forAI, PI,AR andPR in their compressed form. That is, depend-
ing on whether a particular handshake is active (PI andPR) or passive (AI andAR) the
corresponding logic is either for the request (PIr andPRr) or acknowledgement (AIk and
ARk) signal. Furthermore, we should bear in mind that, if we insert this implementation
into the overall CFPP structure as an intermediate cell, we should merge corresponding
pairs (PI(i + 1) = AI(i)) and (PR(i) = AR(i + 1)) of adjacent stages. Note that the
numbering goes from the top stage down to the bottom, i.e. its ascending order coincides
with the result pipe. Such a merge can be done at the logic equations level:

PI(i+ 1) = GI(i+ 1) ∗GI(i) ∗ PI(i) + PI(i+ 1) ∗ (GI(i+ 1) +GI(i) + PI(i))

= C(GI(i+ 1), GI(i), P I(i))

PR(i) = GR(i) ∗GR(i+ 1) ∗ PR(i+ 1) + PR(i) ∗ (GR(i) +GR(i+ 1) + PR(i+ 1))

= C(GR(i), GR(i+ 1), PR(i+ 1))

These are three input C-elements but we can notice that they have some redundancy (result
of the merge) – inputGI(i) in PI(i + 1)(= AI(i)) and inputGR(i+ 1) in PR(i)(=
AR(i + 1)). Indeed, for example, the value ofGI(i) always changes before we have a
corresponding transition onPI(i), which must be awaited by the C-element forPI(i+1)(=
AI(i)) anyway. It is therefore possible to use:

PI(i+ 1) = C(GI(i+ 1), P I(i))
PR(i) = C(GR(i), PR(i+ 1))

The remaining functions (with corresponding subscripts), applicable for the circuit shown
in Figure 20, can be written down easily from the above equations. This figure exemplifies
a CFPP control circuit consisting of two stages. The Enable (en) signals for the mutex
elements for adjacent stages can be built using C-elements. The justification for this is
similar to the one we had for the two-phase implementation in Figure 16. In spite of the
intuitive simplicity of this idea, its version for the four-phase case would be too cumbersome
to show.
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Figure 20.Four-phase circuit for a CFPP with two stages

We now conclude with a simple comparison of the two-phase and four-phase circuits. To
make such a comparison let us use a similar interconnection of two stages in a two-phase
implementation, shown in Figure 21. In both these circuits let us also show the place in
which we are going to insert the hypothetical data path, i.e. latches for instructions and
results. According to the semantics of our behavioural specification, such a place can be
where we generate a request to pass the instruction (result) to the next stage. This is the
outputs of the C-elements producing such requests. Thus, if we break the output wire of
each such C-element, the latch can be inserted into this break, where the first end of the
wire can be connected to a latch load (request) signal and the other end to the completion
(acknowledgement) signal. If the latch does not produce a completion signal, we can
insert an appropriate “scaling delay” element into that wire, which should be of sufficient
value to emulate the delay of the latch. Let us assume for simplicity that for a four-phase
implementation we can use a classical D-latch with a four-phase control signal. For a two-
phase circuit, we may resort to event-based latches. Examples of such latches can be found
in [31, 10, 11].

In both circuits we can identifycritical cycles, i.e., cycles with the longest cumulative
delay. Critical cycles can be found in an unfolded event graph (based on a Petri net
unfolding [27]), in which signal transitions are annotated with delays of corresponding
gates, macromodules or interconnections. To avoid dealing with processes with alternatives
and arbitration, we shall only consider the performance for the case of propagating one type
of data (say, instructions). This “restriction” should not affect the result of comparison since
both circuits have a symmetric structure (between instruction and result pipes). They both
produce the same functionality (synchronisation between the counterflow pipes) and their
speed is determined by the propagation delays in the pipes. Let us assume for simplicity
that the same types of elements in different stages have exactly the same delay. The critical
cycle has to be found between a given pair of adjacent stages. Two candidates to be a critical
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cycle are shown with dotted and dashed lines in each of Figures 20 and 21. Which of those
two is critical depends on the actual delay values. The cycle shown with a dashed line is
dominated by the data path latch delays and arbiter delays (this cycle passes through two
such latches and two arbiters), while the one with a dotted line goes predominantly through
control logic (arbiter and pipe synchronisations elements).

Let us for example compare the cumulative delays of the “dashed” cycles.
The cycle in the two-phase circuit has the following cumulative delay:

T2ph = 2tDL2 + tHS + 2tRGD + 2tC ,

whereTDL2 is the delay of a two-phase data-latch,tHS is the delay of a request-acknowledge
“round-trip” between two stages,tRGD is the delay of an RGD arbiter when issuing a grant
without waiting (recall that we have assumed that instructions flow without “interference”
from results), andtC is the delay of a C-element. One of the known speed-independent
implementations of an RGD arbiter [9] (too pessimistic though!) has the following delay:

tRGD = 2tL + tXOR + tME ,

where tL is the delay of a standard (transparent) D-latch (described by equationQ =
DC + (D + C)Q, whereD is data input andC is control input),tXOR is the delay of
an XOR gate, andtME is the delay of a standard two-way mutex element built on an SR
flip-flop (e.g., two cross-coupled NANDs) and a transistor-based metastability detector [9].
Note, however, that the implementation of an RGD arbiter with a single “Done” signal
includes an additional delay of logic to synchronise the outgoing “Grants” with the “Done”,
e.g., in the most optimistic case, at least the delay of a C-element. Then, since we have no
arbitration condition, the delay of a mutex is effectively equal to that of a latch. Similarly,
we can puttC = tL. Thus,

T2ph = 2tDL2 + tHS + 10tL + 2tXOR.
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The corresponding cycle in the four-phase circuit has the following cumulative delay:

T4ph = 2(2tDL4 + tHS + tMEE + 2tC),

wheretDL4 is the delay of a four-phase data-latch,tHS is again the delay of the total
handshake wire delay between stages,tMEE is the delay of a mutex element with enable
input, andtC is the delay of a C-element. Note however that, due to the use of four-
phase signalling, we have to pass along this cycle twice, to make our comparison with the
two-phase design fair. Hence the factor of 2 in the above expression.

Let us compare these delays. Not being too pessimistic about the four-phase case, we can
assume that the delay of a two-phase data-latch is twice that of a four-phase one. Since the
standard mutex element is built out of slightly simpler gates, we can (very pessimistically)
assume thattMEE = 1.5tME . Now, assuming alsotC = tL, we have

T4ph = 2tDL2 + 2tHS + 7tL

.
We should therefore tradeoff the terms of the following difference:

T2ph − T4ph = 3tL + 2tXOR − tHS ,

which will in most cases be in favour of the four-phase design. A similar sort of conclusion
can be drawn if we examine the other two candidates for critical cycles (shown with dotted
lines). Indeed, without simplifying the implementation of components in the two-phase
circuit the latter will be slower and occupy more area than the four-phase one. This is no
surprise since it is the result of compilation of the specification into a net of macromodules,
whereas the four-phase logic is the product of logic synthesis with minimisation. In the
two-phase solution, one can of course implement an RGD arbiter with one “Done” by
using special techniques at the transistor level (e.g., a Propeller Arbiter by C. Molnar)
or by sacrificing some of its speed-independence (there are less conservative designs of
Sequencers [24]).

Finally, as a soothing remark to the two-phase circuit, we should mention that the above
four-phase circuit has the so-called non-dense pipeline structure. This means that every two
consecutive data items, either in the instruction or results pipe, must be separated by at least
one “bubble” (no data). It is thus impossible to store two instructions in the two adjacent
stages, since we need at least one stage to carry out the resetting phase of the four-phase
protocol. This should not however be regarded as a shortcoming of the four-phase method –
e.g., one can add extra control logic (state signals) and implement the resetting phase within
the same stage (the reader interested in control of dense pipelines is referred to [32, 11]).

7. Discussion and conclusions

We have formally derived circuits for CFPP stage control from the initial state-based spec-
ification presented in [30]. This required us to follow: (1) transformations at the Transition
System level and synthesis of a Petri net from a semi-elementaryTS; (2) refinements at the
Petri net level and synthesis of circuits from Petri nets and Signal Transition Graphs.
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The transformations at stages (1) and (2) are backed up by the notion of observational
equivalence, which guarantees behavioural correctness of the design process. At the same
time, some semantic and even heuristic issues are involved in this process at various stages.
Namely, at stage (1), we may need to insert auxiliary (dummy) events to make the original
state graph a semi-elementaryTS. At stage (2), doing our handshake signal refinement of
the original actions we may “shuffle” the relative order of the resetting phases of signal [34].
Those different orderings may affect the Complete State Coding (CSC) property, and thus
require an extra state signal insertion. These issues are closely related with the aspects
of performance and area. For example, our four-phase signal refinement has been chosen
rather simple in order to avoid solving the CSC problem – we simply “interleave” the
resetting phase of theAI handshake in any (i-th) stage with the setting phase ofAI in the
next (i− 1-th) stage (similar for the results pipe). This can be observed from the ordering
GI1+→ PI+→ AI − . . . in theSTG of Figure 18, bearing in mind that handshakePI
in the given stage is semantically identical to handshakeAI of the next stage. The other
part of this interleaving isGI1− → PI− → AI + . . ., which allows the current stage
to latch the new instruction only if the latch in the next stage has been reset to 0 (i.e., the
previous instruction has been moved at least one stage after the next one). The cost of such
a simple option has been that our pipeline is non-dense.

Due to the size constraints imposed by the logic synthesis tools (e.g.,petrify currently
needs about 24 hrs to find an implementation, in complex gates, for anSTG of up to 25
signals), the designer may need to split the specification into parts and synthesise logic for
them separately. Then, the final “glueing” is done at the logic implementation level. For
example, in our four-phase design, we implemented logic for an “autonomous” stage (15
signals), and had to modify the equations when putting the stage as an intermediate one
in the overall CFPP structure. In this case, it was a fairly trivial transformation. Often,
however, this is not so obvious, and the designer may need to verify the composed circuit
against the compositeSTG specification.

Note that verification may also be needed at an earlier phase, to verify the observational
equivalence betweenTSs or betweenPNs if the transformations applied are not those which
are correct by construction (Figure 6). The results of refining net models with abstract
transitions into those with four-phase handshake and mutex may also need checking for
signal transition consistency, behavioural equivalence and deadlock-freedom, especially if
the structure of conflicts between net transitions involves several mutually shared places.

To summarise, we can state that both synthesis and verification steps are closely linked
in this design process as some transformations are hardly mechanisable. Our asynchronous
design tools should therefore provide an efficient interface between these steps, to allow
the designer to interfere into this process at various stages.

In this paper, we have only briefly addressed performance analysis issues. Similarly,
analysis of timing constraints for their hazard-free implementation (e.g., in simple logical
gates) should not be missed out. Some recently proposed methods to solve these problems
can be found for instance in [13, 26, 20, 28].
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Notes

1. As was noted in [30], in practice this state might be divided further to allow the result to advance while the
instruction is being executed. We, however, abstract away from such distinctions in this paper.

2. Unless specified otherwise, terms “action” and “event” are considered equivalent in this text.

3. The term “Transition System” is used as a synonym to “State Graph”. Only if it may cause confusion, we will
be applying the latter term in a more specific sense than the former. Namely, a State Graph is a Transition
System which has binary encoding. This follows the terminological tradition established in the asynchronous
design community.

4. In such a protocol, both the rising and the falling edges of a signal have equal significance from the semantical
point of view.

5. Here, the process control semantics of the rising and falling edges of a signal is different. E.g., only the rising
edge can be significant, say, to stand for the fact that data in the data path is valid, while the other edge carries
out only a “resetting” function.

6. We shall sometimes abuse this standard notation by allowing two transitions to be connected by an arc directly –
this arc would stand for a place with exactly one input and one output arcs in a standard form. The “overloaded”
arc thus becomes a carrier of tokens.

7. We even use a strong notion of equivalence, isomorphism, between the given transition system and the transition
system which is obtained from the reachability graph of the Petri net.

8. We say ”effectively” because formally elementary nets are defined in a slightly different way (see, e.g.,
[21]), but any elementary net can be converted into a behaviourally equivalent 1-safe net, by possibly adding
complementary places [4].
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