On the Existence of Hazard-Free Multi-Level Logic

Steven M. Nowick Charles W. O’'Donnell

Department of Computer Science
Columbia University, New York, NY, USA
e-mail: nowick@cs.columbia.edu, cwo4@columbia.edu

Abstract can both increase and decrease hazard behavior over simpler
two-level logic.

This paper introduces a new method which, given an arbi- An initial solution to the multi-level hazard—free existence
trary Boolean function and specified set of (function hazard-Problem was proposed by Bredeson [2], using a recursive
fre€) input transitions, determines if any hazard-free multi-algorithm. However, a highly-restrictive problem formula-
level logic implementation exists. The algorithm is based orfion was used: the algorithm does not consider or introduce
iterative decomposition, using disjunction and inversion. ~ don’t-cares, and there are also apparent bugs and missing

Earlier approaches by Nowick/Dill [7] and theorems. The approach only considers a specialized case:

Theobald/Nowick [8] have been proposed to determinddentifying the set ofall function-hazard-free input transi-
if a hazard-free two-level logic implementation exists. 1ons of a Boolean function (to be discussed below), and at-
However, it is well-known that the effects of multi-levelt€mpting to make them all free of logic hazards. Thus, the
transformations are quite complex: since they can bottstarting point of this method is the set of all prime impli-
decrease and increase logic hazards in a given circuit. Inc@nts. For almost all asynchronous applications, this is a
this paper, a method is proposed to solve the hazard-fre uite unrealistic formulation, which has limited usefulness.
multi-level existence problem. The method is proven to b& addition, no completeness proof was provided to justify
both sound and complete for a large class of multi-levelthat the algorithm always finds a solution if one exists.
implementations. A novel contribution is to show that, if any [N this paper, a new method is introduced which, given an
hazard-free multi-level solution exists, then a hazard-freearbitrary Boolean function and a user-specified set of (func-
solution always exists using only 3 logic levels, in a 3-leveltion hazard-free) input transitions, determines if a hazard-
NAND or OR-AND-OR structure. Moreover, in this case, it free multi-level logic implementation exists. The approach
is shown there always exists a unigeanonicahazard-free IS targeted to a large class of multi-level circuits which are
3-level implementation. implemented using simple gates (AND, OR, INVERTER,;
or equivalently, NAND or NOR) The paper significantly ex-

. tends the recursive approach by Bredeson, subsuming it, and

1 Introduction also proves that the new method is both sound and complete.

A key challenge in designing asynchronous circuits is toIt also includes the first proposed formulation of necessary

Ay ; : ; d sufficient conditions for hazard-free decomposition of
eliminate hazards, that is, the potential for glitches [9]. Ford") by .)
combinational circuits, not only is hazard elimination diffi- incompletely-specified functions, under these two decompo

e At ; ; : itions.
cult; it is well-known that it is sometimes impossible [7]. ' _—
i) F _ A key contribution of this paper is to show that, if a given
As in the synchronous world, two-level logic is often bet- n +ign hasanyhazard-free multi-level solution, thenat-

ter understood than multi-level logic. Given a Boolean func- aysmust havasomehazard-free implementation using only

tion, and a specified set of input transitions to be made", 7 Sl
; ; ; ogic levels, i.e. in 3-level NAND or OR-AND-OR form.
hazard-free, general algorithms to check for existence of ﬁhugs, in spite of the seemingly wider expressive range of

E%ﬁéggrr eﬁotvc\’g;:]%\fg{esggfngnht%\'fh g%ggis%cr)]%gsggot[)férﬁ’]’the larger class of multi-level implementations, these two 3-
for multi-level hazard-free logic has been previously pro-/€vel circuit structures are sufficient to synthesize all of the
9 P Y P'0"same hazard-free implementable behaviors. A simple itera-

posed. : o P ; ; _
The impact of multi-level circuit transformations on haz—r%“(/e multi-level decomposition algorithm is proposed, to de

- L2 : ect if such a hazard-free solution exists, and if so, to con-
ards is complex, and has been studied in several previous p ; ; : ; ; ontribt-
vers [4, 9, 5, 2, 1]. A number of transformations have bee ructively generate an implementation. As a final contribu

I 12 . ATS . ion, it is shown is that, whenever some hazard-free solution
identified which arenazard-preservingi.e. do not modify gyisis ‘there is also a uniquanonicalhazard-free 3-level
hazard behavior, such as associative law [9]. Other transffnplementation which can also be generated by an algo-
formations ardazard-non-increasing.e. which may either rithm '

preserve oreducehazards, such as a “collapse” of several i

- : ; ; The structure of the paper is as follows. Section 2 gives
gates into a single atomic gate, as well as factoring out o - b . ;
common products (i.e. via the ist distributive law) [4]. In- Background on combinational hazards and hazard-free logic,

terestingly, these latter transformations — in reverse — be@S Well as on an existence check, for two-level implementa-

K P : ~“tions. Section 3 gives the formal problem statement to be
g?&eg%ﬁrda'sng{ﬁﬁﬁ;ggiﬁg t(?lft’}’/ m%dgtr%jgltt:i(jg\/%vlv |23izc solved, and an intuitive overview of the new method. Sec-

tion 4 presents formal rules for hazard-free decomposition

: under both disjunction and inversion, proves their soundness

*This work was supported by NSF ITR Award No. NSF-CCR-0086036, : : PN - !

NSF Award No. CCR-9988241, and a grant from New York State's Nys-and introduces the notion of dominance. Section 5 presents
TAR Microelectronics Design Center. two algorithms: an initial recursive multi-level hazard-free

(©2003 EEE. Published in the Proceedings of the IEEE Computer Society International Symposium on Asgastircuits and Systems (“Async2003”), May 12—-16, 2003, Vancouver, Canada. Personal use of this material is permitted. However,
?erm\ssion to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale atreditisiervers or lists, or to reuse any copyrighted component of this work in other works, must be obtained
rom the IEEE. Contact: ManageroPyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331/ Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966. IEEE

decomposition algorithm, which also indicates if a solution ab ab

exists; and then a final simpler iterative algorithm which is 0 o1 |11 10 0 o1] 11 10
restricted to only 3 levels. In addition, a canonical 3-level 1)1 |1 N |1
implementation is proposed, with its own corresponding de- 00

composition algorithm. Section 6 illustrates the method on 0 N N o o ~ o
two examples. Section 7 briefly shows how implementations 01 N 01 B Y
produced by the algorithm can be transformed to more com- cd

mon 3-level NAND or OR-AND-OR structures, and Sec- 1l Ny /° ul® Nelt /o
tion 8 presents a proof of the completeness of the approach.

Finally, Section 9 gives some initial experimental results A\ T of* PN |°
with a prototype CAD program, and Section 10 presents con-

clusions and future work.
2 Background
The potential for a glitch in a combinational circuit is called

a hazard[9]. Hazards fall into two classedunction haz- ﬂ oy R
ardsandlogic hazards This section focuses on the problem oot Q L > 00@ \ 1 >
of combinational hazards, and then outlines a method for N
hazard-free two-level logic minimization. Finally, the issue 0 T a\z 0 0 N 0
of the existence of a hazard-free two-level implementationis , w
addressed. 0 1 1 0 0 1 1 0
o 11 © 11 N

2.1 Combinational Hazards —

)) . . 1 1 0 0 1 N 0
Since we are concerned with the dynamic behavior of a 10 N 10/\
combinational circuit, we need to formalize the notion of a I \
“multiple-input change” (MIC) or “input transition”. Aran- © @
sition cube[1, 7] is a cube withstart pointA, end point3,
and which contains all minterms (i.e., input combinations) Figure 1. Combinational Hazard Example
that can be reached during a transition frdnto B. Inputs B _) _ o)
are assumed to change monotonicailly.(at most once) in Intuitively, a function hazard is a glitch that is inherent in
any order and at any time. the function itself. Assuming gates and wires may have arbi-

Several assumptions are made on the circuit and envirary finite delays, there is no guaranteed method to synthe-
ronmental models. First, annbounded wire delay model Size a circuit which is glitch-free for a transition with a func-
is assumed: gates and wires may have arbitrary finite ddion hazard [9]. Luckily, most sequential synthesis methods,
lays (there are no isochronic fork assumptions). Under thiguch as burst-mode, only see transitions which are function-
model, a combinational circuit is called hazard-free if it will hazard-free [6], since they naturally deal with monotonic be-
never glitch (for a given input transition) regardless of thehavior. Hereafteonly function-hazard-free input transitions
delays on the gates and wires. Secogeheralized funda- are considered. o))
mental modds assumed, where an input transition (with Even if an input transition is function-hazard-free, a cir-
multiple-input changes) must be fully processed and th&uit implementation magtill glitch due to delays in the ac-
circuit implementation stabilized, before the environmenttual gates and wires. In this case, the circuit is said to have a
applies a new input transition. That is, once a specifiedogic hazardfor the given input transition. Given a Boolean
multiple-input change is complete, no further inputs mayfunction and set of function-hazard-free input transitions, the
change until the circuit has stabilized. key synthesis goal is to find a circuit implementation — ei-

There are a number of practical advantages in using thEher two-level or multi-level — which is free of logic haz-
unbounded delay model to synthesize combinational logi@rds.

— even when combined with fundamental mode environ 5 conditions for a Hazard-Free Transition

mental assumptions. Highly robust combinational cwcuns.l_ . : . .
can be synthesized, without concern for local “isochronic! NiS subsection now illustrates the complete set of condi-
fork” assumptions (equal delays on wire fanouts) or switch-Ions to avoid logic hazards in a two-level sum-of-products
ing thresholds; in addition, a large range of powerful hazardimplementation (see [1, 7, 6] for details).
non-increasing circuit transforms have been identified undey Example 1. Again, consider the example in Figure 1(a).
this delay model. Once the combinational circuits are syn h€ sum-of-products implementation, shown by the given
thesized, they do not need to be used in an unknown deOVver, has atatic logic hazardor input transitiont1 from

lay environment: rough timing bounds can be extracted, an@bcd = 0100 to abed = 1101. Initially, two products are
they can then be placed in a fundamental mode (i.e. timed)igh: ¢d andad. During the transition¢d andad go low
environment. andbd goes high. As a resulgd andad may go lowbe-

A functionf which does not change monotonically during fore bd goes high, and the OR gate output may glitch. The
an input transition is said to havefanction hazard [1, 9]. cover in Figure 1(b) solves the problem: in this example,
In Figure 1(a), the given functiofihas astatic function haz- a fourth cube (i.e., product term [3§ is added, whictre-
ard in the input transition from minterml10 to 1011, since mains at lthroughout the entire input transition. Therefore,
f has the same valu@)(at the start and end points, but an the transition is logic-hazard-free. Note that the statie 1
Intermediate minterm may be reached with a different valuelogic hazard is avoided by ensuring that the transition cube
f(1111) = 1. Likewise, f has adynamic function hazard [0100, 1101] is completely containeith some product of the
in the input transition from 010 to 0111, sincef is 0 atthe cover. Such a static transition cube is calledguired cube
start point and 1 at the end point, and there is a path fronfi7, 6]; it must be contained in some product of the cover.
the start point to end point, passing throwghi0 and0011, Example 2. Next, consider th&ynamic transitior2 in
wheref changes more than once. Figure 1(a) fromabed = 0111 to abed = 1110. A neces-

sary condition to ensure th&? is hazard-free is to ensure prime implicants; (ii) construct a dhf-prime implicant table;
that eachl — 1 static sub-transitiorof ¢2 is also hazard- and (iii) find a minimum-cost cover. (For a complete step-
free. For example, ibnly input d goes low int2, the cir- by-step example, including details of dhf-prime generation,
cuit is not hazard-free: the sub-transition ciybgl1,0110] see [7].) A more efficient exact algorithm using implicit data
is not contained in any product of the cover. The coverstructures has also been proposed [8]. _
of Figure 1(c) solves this problem: for each static— 1 A simple example illustrating hazard-free two-level logic
sub-transition withirt2, the corresponding transition cube is minimization is shown in Figure 2. There are 5 specified
contained in a product of the covefil11,0110] C aband input transitions, including 3 dynamic and 2 static ones, in-
[0111,1111] C bd. Transition sub-cube®111,0110] and dicated in Figure 2(a). Each transition cube is indicated by a

: - . . dotted oval in Figure 2(b). The required cubes forthe 1
t[%lnll’ 1111} are therequired cubesof this dynamic transi static transition (i.e., the entire transition cube), and for the

;) - 1 — 0and0 — 1 dynamic transitions (i.e., for each max-
frél'\eltqﬂgggn%yesgfg'ﬁsﬁ%%rggns'Eggsamgy%rae#gvlvogﬁ:zﬁ;dz_ imal static sub-transition), are indicated by shaded ovals in
ard',in Figure 1(c), produdtd is initially low; whend goes Flgure 2(b); a m|n|mu_m-cost cover of dhf-prime implicants

-1h Fg . p. . y » whena g is also shown by 3 thick unshaded oval¥he correspond-
low, ad can go high; finally, wheru goes high,ad goes jng minimum-cost gate-level implementation is illustrated in
low. As a result,ad may glitch during the transition, and Figure 2(c).
the glitch may propagate to the OR gate output. This prob- i
lem is visible in the Karnaugh map: produef intersects 2-4 EXistence of a Hazard-Free Two-Level Imple-
dynamic transitiort2 in the middle, buhotat itsstart point mentation
0111. This is called arillegal intersection [7, 6], and the In general, given an arbitrary Boolean function and specified
entire dynamic transition cube is callecpavileged cube set of (function-hazard-free) input transitions, the conditions
The cover of Figure 1(d) solves the problem. First, as beof the Hazard-Free Covering Theorem mayupsatisfiable,
fore, each statid — 1 sub-transition is hazard-free (since and thereforeno hazard-free solution may exift, 6]. As
[0111,0110] C @b, [0111,1111] C bd). Second, no prod- anexample, consider Figures 6(a) and (b), taken from [7, 6].
uct in the cover illegally intersects the privileged cube. NoteHere, there is no implicant which simultaneously (i) con-
that, to avoid the illegal intersection, produget is reduced tains required cubel BD, while at the same time (i) avoids
to abd, which isnon-prime illegal intersections with both privileged cubes. In particular,

Summary. Examples 1 and 2 illustrate the complete Setthe implicantA B D illegally intersects the bottom privileged
of conditions to avoid MIC logic hazards far — 1 and cuPe, and implican D illegally intersects the top left dy-
1 — 0 transitions. A0 — 1 transition is regarded as a N&mic transition, so the required cube cannot be covered.
L ransiion inreverse, and so smlar condiions ap, 1%, DTS, 18 00, BIOPOREH 9 Dl 1 B 1
Pe!)(guilr:eodr %:uge,&hti:%n%t:g?%et Q%ﬁt%'ggér%n:gﬁg ?%%ﬁégn? use the hazard-free minimization algorithm of Nowick and
of the cover. Foil — 0 and0 — 1 transitions, two condi- Dill [7, 6]. Once all dhf-prime implicants are generated, a
tions must hold: (i) each maximal — 1 subtransition is a dhf-prime implicant table is formed. If no two-level hazard-

required cubewhich must be contained in some implicant fe€ solution exists, there will be some required cube (e.g.,
of the cover: and (ii) the entire dynamic transition forms ain the above example{ 3.D) not coveredby any dhf-prime

i ; ; : the table.
privileged cubewhich cannot be illegally intersected by any '" . .
implicant of the cover. Finally, fob — 0 transitions, there /A more efficient existence check has also been proposed,
are no constraints: a function hazard-ffees 0 transition Which avoids the explicit generation of all dhf-prime impli-

is free of logic hazards in any sum-of-products implementaants (see [8] for details). Instead, each required cube is
examined in turn; if it has any illegal intersection, it is itera-

tion[9, 1, 7, 6]. . M) A .

) o tively expanded until it has no more illegal intersections. If
2.3 Hazard-Free Two-Level Logic Minimization any such expanded required cube hits a 0-point (OFF-set),
A hazard-free coveof a Boolean function is a cover which then no hazard-free two-level implementation exists; other-
is hazard-free for a givespecified seof input transitions: ~ wise a hazard-free solution has been constructively gener-

Hazard-Free Covering Theorem[7, 6]. Given a Boolean ated.)
functionf and a specified set of (function hazard-free) input3 Problem Statement and Overview of Ap-
transitions, a cove€ is free of logic hazards for the set of proach

transitionsif and only if: (a) eactrequired cubedf f is con- e previous section reviewed issues for two-level hazard-

tained in some implicant i€, and (b) no implicant ofC - 0 ; ; -
illegally intersectsany specified dynamic transition. Hgga{?(?_'f?'elenlég?crggﬂg'rgg::g“ons' the issue of multi-level

An implicant which has no illegal intersections with any *~; i ; :

o ! PP A iven the complex interaction of multi-level transforma-
specified dynamic transition is calledlgnamic-hazard-free - ;1o jogic hazpards, the goal of this paper is to determine
m;l'ga”te(adrhi‘;'?ﬁggg?é)_(% e[Zéx?(l,)rdA?-nI%rggfi_rlnmiljilclg?w?sts preciselywhen a hazard-free multi-level logic implementa-
ad%f-i?np licant contained in no otherdﬁf-im "ant tion exists,for a given Boolean function. As in Section 2,

1-imp : ; p ' several assumptions are made on circuit and environmental
Given the above discussion, theo-level hazard-free . /5qeis “First, aminbounded wire delay modis assumed:
logic m:cmmlzanlon pfroble.m is to find Ia np]lfmmum-(_:ostr gates and wires may have arbitrary finite delays (there are
T ol Sochronic ok assumpions). Secomsneralzed fun
! q : P mental modés assumed, where an input transition (with

is a variant of the classical two-level minimization problem, multiple-input changes) must be fully processed and the cir-
as solved by Quine-McCluskey amincovmethods, where, ¢, it implementation stabilized, before the environment ap-
using only prime implicants, each ON-set minterm must beplies anew input transition

covered [3].
_An exacthazard-free two-level logic minimization algo- iror simplicity, the example illustrates the minimization of number of
rithm has been proposed [6, 7], with 3 steps: (i) generate dhfproducts, but other cost functions can be incorporated as well [8].

AB AB
00 01 11 10 00

F. ¢P F. ¢P

00 0 0 l\ 1 00
01 1 0 /1 \1 o1 |

% i
) ' 0/ T - 11 \1}

o

ow>
L1

Figure 2. Hazard-Free Logic Minimization Example

Finally, in this paper, a limited class of multi-level circuit 4 Rules for Hazard-Free Decomposition

implementations is considered: those constructed only USrhis section formalizes the two decompositi
: h - . position operators
ing AND, OR, and INVERTER gates. This class is quité gnqn'in Figure 3: disjunction and inversion. In the next

large: circuits with NAND and NOR gates can be shown t05e cinn ' these two operators are combined in a constructive

map with identical hazard behaviors by transforming them @y orithm to determine if a hazard-free multi-level solution

AND-INV and OR-INV sequences, respectively, and henceexists

the results apply to these gates as \ell. In general, given a Boolean functidn and specified set

Problem Statement. Given a Boolean function F, and_ 7 of input transitions (hereinafter call¢d’, 7)),® a hazard-
specified set of (function-hazard-free) input transitions Tfree decomposition allocates a logic gate, and generates new
determine if there exists aulti-level combinational logic sybfunction(s) and their respective new specified sets of in-
implementation which is free of logic hazards for every ;¢ transitiong F1,T1),. .., (FN,TN). A decomposition
transition in T. is calledhazard-fredf it introduces no logic hazards at the

)) allocated gate. Effectively, the problem of finding a hazard-

Overview of Approach. Under the above assumptions, free implementation is then pushed down to the next level,
the next sections present a complete method to solve thighere each subfunctiofFi, T%) has its own (hopefully)
problem. Before proceeding to technical details, it is usefukimplified hazard requirements, which must in turn be sat-
to consider an informal overview of the proposed approachisfied. If the application of the various decomposition rules
as shown in Figure 3. Given function F and set of input tranterminates, and produces a gate-level circuit, then the final
sitions T, a gate-level implementation is derived from outputresulting multi-level circuit implementation is guaranteed
to inputs, through decomposition. As shown in Figure 3(a)/ogic-hazard-free.
initially no gates have been allocated for the implementation. The goal of this section is to define precise conditions for

If a two-level hazard-free solution exists (see Section 2.4)hazard-free decomposition using two operators: disjunction
no decomposition is required, and the algorithm terminatesand inversion.

since a solution has been found. If no two-level solutiong 1 Ryles for Disjunctive Decomposition
exists, then an OR gate is allocated, and a disjunctive func--)
tional decomposition is performed, as in Figure 3(b). The4.1.1 Overview -
procedure recurs; in this example, two of the decompose®isjunctive decomposition corresponds to the operator
subfunctions f;, f3) have two-level solutions, as shown in which transforms Figure 3(a) to Figure 3(b): an OR gate
Figure 3(c), so their recursion terminates. However, subis allocated, new subfunctions are generated, and then de-
function f, does not; in this cas¢; is inverted,in the hopes composition can recursively be applied to the subfunctions,
that f, mayhave a hazard-free solution. The process thed0 Produce a final gate-level multi-level circuit. -
recurs forf, The disjunctive decomposition rules are illustrated in Fig-
2 L) ure 4. A functionF’ with its specified sef” of input transi-

If at any point, no further decomposition is possible andtions is shown in Figure 4(a). It has 3 specified input tran-
a subfunction is inverted twice (i.e. looping behavior), thesijtions: 1 — 1, 0 — 0, and1 — 0. Each input transition
algorithm terminates and no multi-level hazard-free SO|Uti0rhas its own decomposition rule, mappmg it to one or more
exists. However, for the given example, after further iteradecomposed subfunction(s), in this caeand F2 in Fig-
tion, the algorithm terminates and a hazard-free multi-leve|yres 4(b) and (c), respectivel§@ will then be later adjusted
decomposition is obtained, as shown in Figure 3(d). This figin Figure 4(d); see below).
ure shows the constructed circuitimplementation's structure: An'intuitive overview of the rules is as follows. An initial
chains of OR gates sandwiched between inverters, where fifnction F, with setT" of input transitions, gives rise to sev-

the terminals (i.e. circuit inputs) there are AND-OR subcir-gra| required cubes. Required cubes arise from two cases:
cuits. () 1 — 1 transitions, where the entire transition cube is a
> , - _ required cube (e.gBC’ D’ in this example); and (i) — 0

An alternative formulation is to solve the multi-level hazard-free ex- gnd() — 1 transitions, where each maximial 1 subtran-

istence problem foany network of 2-input combinational gateslt can P ; /
be shown that all 2-input gates, except XORs, can be modelled using':’Itlon forms a requwed CUbe46 and AC" forthel — 0

AND/OR/INV, and that each XOR can be replaced with an equivalent
AND-OR subcircuit with no worse hazard behavior. Hence, the proposed 3In the rest of this paper, for simplicity, boft, ") and F* will be called
method can find if any hazard-free multi-level circuit exists, considering 'functions’, though the former consists of both a function and a set of spec-
arbitrary networks of 2-input gates. ified input transitions.

Figure 3. Overview of Proposed Decomposition

X o w1 X a w0 4.1.2 Basic Disjunctive Decomposition Rules
F R P =] P The following is a formal summary of the rules to ensure a
°° \ hazard-free disjunctive decomposition. Consider again the
initial decomposition of F, T"), shown in Figure 4(a), into
two subfunctions:(F'1,T1) (in Figure 4(b)) and F'2,72)
(in Figure 4(c)).
() 1 — 1 Transition. A 1 — 1 transition must be mapped
to at leastone subfunction. In any remaining subfunctions,
the transition need not appear, and its required cube can be
filled with don’t-cares. (In the above example, the— 1
transition is only mapped t6'2; it does not appear if'l and
its minterms are all set to don't-care, except those covered by
other required cubes.)
(i) 0 — 0 Transition. A 0 — 0 transition must be mapped
to every subfunction. (In the above example, the- 0
transition appears in both1 and F'2.)
@iii) 1 — 0 (0 — 1) Transition. A dynamic transition,
along with all its OFF-set minterms (i.e. 0 minterms), must
\ \ be mapped teverysubfunction. However, each required
0l o o = | o 0l o o - | v cube of the dynamic transition must be mappeatdeast
il RS S D one subfunction; in the remaining subfunctions, the required
© @ cube may be filled in with don’t-cares. (In this example, both
required cubesd B and AC’, are mapped to the same sub-
Figure 4. Disjunctive Decomposition Example function F'1, but they could also have been mapped to two
distinct subfunctions.)
Interestingly, Rule (iii) results in a new class of input tran-
sitions: dynamic transitions with don't-caregis shown in
transition in this example). Disjunctive decomposition re-F2 in Figure 4(c). Such an input transition still retains all
quires that each such required cube be mappeat teast the original OFF-set minterms (i.e., 0 points), and it still has
one subfunctionin the remaining subfunctions, the required a corresponding privileged cube which cannot be illegally
cube can be filled in with all “don’t-care” values. In fact, intersected. Howeveit, contains no required cubeésThese
different required cubes may be mapped to the same or teew input transitions define a region where the OFF-set val-
different subfunctions; any choice is permissible, as long ages must be preserved, but there are no further covering re-
each required cube is mapped to at least some subfunctiorquirements: don’t-cares may or may not be covered by prod-
. ucts, but if they are, no illegal intersection can occur. If no
In summary, eacl — 1 transition must be mapped to product intersects the transition, it iDa— 0 transition; if

is only mapped td"2, not to [1). In contrast, each — 0 ther case, the privileged cube ensures that the transition is
transition must be mapped &l subfunctions (in this exam- monotonic, and thus logic hazard-free.

ple, the0 — 0 transition is mapped to both'1 and £2).

Finally, eachl — 0 or 0 — 1 transition must be mapped . .

to all subfunctions, and it8 values must similarly be speci- 4.1.3 An Optional Expansion Step

fied in every subfunction. However, each one of its requiredrhe above disjunctive decomposition rules are complete, and
cubes must only appear in at leasbimeof the subfunctions; no further requirements are needed for correct decomposi-
in other subfunctions, the required cube may be filled in withtion. However, the rules leaumplicit some functional val-
don’t-cares (in this example, tHe— 0 transition is mapped ues.

to bothF'1 andF'2, and its OFF-set minterms appear in both As an example, consider again the Boolean function
subfunctions, but the required cubes appear onlyin (F,T) in Figure 4(a), with its two decomposed subfunc-

bt_ions, (F1,T1) in Figure 4(b) and F'2,T2) in Figure 4(c).

1 00 _ _

F,: cop

,,,,,,, - F,: cD

01

Finally, as an optional post-processing step, certain su
functions may béurther expandetb explicitly indicate how - , , e _ .
certain don't-cares will be forced to 1 values (see subsequept diTng:% g@‘:&?ﬁ},‘:}g required cueC’ D’ is a separate issue, which will
subsection). :

Note that while(F'2,T2) is a correct decomposed subfunc- Intuitively, (F;,T;) dominates(F;,T}) if the Boolean
tion, one of its apparent don’t-cared BC' D, will always function F; coversE; (the two functions agree whereveyf

be forced to a 1 value in any hazard-free implementationis 0 or 1), and if the specified input transitions 7k also
as shown in Figure 4(d). For a hazard-free two-level implecover (i.e. contain) the specified input transitiongin In
mentation, the reason is that the required cub@; D', ille- this case(F;, T;) captures all the functional and hazard re-
gally intersects privileged cubé (with start pointABC' D).~ quirements of , T;), and possibly more (i.e. fewer don’t-
Even for the case of hazard-free multi-level implementationgares, additional specified input transitions).

(which do not have notions of cube covers), the arrow of the Exa,mple As a simple example, the functiof¥, T') of

dynamic transition ABCD : 1101 — 1010) still indicates . ; ;
e ; ; frea- raFig. 4(a) dominates the decomposed subfunctiBi, 7'1)
that the transition must be function and logic hazard-free; reFig. 4(b), since: (i) every 0 (1) minterm 1 is a Corre-

quired cubeBC’ D’ produces a function hazard in the tran- sponding 0 (1) minterm of* (in fact, F has fewer don't-

sition, unless the ON-set of the function is “expanded” 10 e thary1): and (ji) every specified input transition of
cover ABC'D. This expansion is not explicitly required: 77 js'also a specified input transition of

any hazard-free implementation will accomplish it. But if it~ Tyq yseful lemmas and a corollary are immediate from
is desired to have all don't-cares explicitly assigned to theifpe apove definition. They indicate that any hazard-free im-
final values, an expansion step can be performed. plementation (either two-level, or arbitrary multi-level) of a
414 Correctness dominating function imlwaysa hazard-free implementation

a dominated function:
The above rules are now shown to be both necessary a s ey }
sufficient for a hazard-free disjunction decomposition. mma 1.1 (F;, T;) = (F;, T3), then for every hazard-free

Disjunctive Decomposition Theorem. Given func- Wo-levelimplementatiorC of (F;, T;), C'is also a hazard-
tion F and specified set of input transitionis, and free two-levelimplementation G, T}).

given any disjunctive decomposition into subfunctionsProof. Since functionF; covers functionF}, then ON-
(F1,T1),...,(FN,TN). Then the decomposition is setF;) C ON-set{;), soC is also a valid implementation
hazard-preserving if and only if the above rules are met. of functionF;. SinceT}; C T;, andC is free of logic hazards

Proof. Consider Figure 3(a) and (b). for all input transitiondl}, it is also free of logic hazards for
Rule (i). This rule precisely guarantees that at least one subg|| transitions off};.

function, and corresponding input wire into the OR gate, IScorollary 1. If (F;,T;) < (F,,T;), and if (F;,T;) has
held stable and glitch-free at 1. If the rule is met, the OR : Th I N AN

gate and hence outpitwill be stable and hazard-free at 1. nlg h;zard-free two-level implementation, then neither does
Conversely, if the OR gate holds its output at 1, then one of"® i)- . . f

the subfunctions must hold its output stable at 1, and, to d§'™00f. Immediate from contrapositive of Lemma 1.

s0, the rule must be met by the set of subfunctions. Lemma 2.If (F},T;) < (F3,T;), then foreveryhazard-free
Rule (ii). This rule precisely guarantees that all subfunctions(i.e., arbitrarymulti-leve) implementatiorC' of (F;, T;), C

and hence all input wires of the OR gate, are held stable andg also a hazard-free implementation(éf;, 7).

glitch-free at 0. If the rule is met, then no OR gate inputproof. Follows same reasoning as Lemma 1 proof.

will have a hazard, and each subfunction will be stable at 0,

hence the OR gate output will stay hazard-free at 0. Con4.1.6 Maximal Decomposition: a Special Case

versely, if the OR gate holds its output at 0, all its inputswWhile disjunctive decomposition allows any decomposition
must remain hazard-free at 0, hence the rule must be met favhich satisfies the above rules, a special case will be impor-
each subfunction. tant: “maximal (disjunctive) decomposition.”

Rule (iii). Consider without loss of generalityla— 0 tran- Definition. A maximal (disjunctive) decompositionis a
sition. This rule precisely guarantees that all subfunctionsgisjunctive decomposition where (a) each required cube is
and hence all input wires of the OR gate, make monotoni@ssigned to distinct subfunction, and (b) each subfunction
and glitch-free changes (at the correctly specified input comhas maximum permissible don’t-cares.

binations) froml to 0. If the rule is met, then since there The basic idea of maximal decomposition is that the re-
are no illegal intersections in any subfunction, and no possulting set of subfunctions are “primitive” or “atomic”, and
sibility of incorrect setting of don't cares, each OR gate in-cannot be further simplified by disjunctive decomposition:
put makes a monotonic transitioh (~ 0 or 0 — 0); and each subfunction contains exactly one distinct required cube
eachl — 1 subtransition off’ is made glitch-free, since of the original function, which cannot be further reduced.
some subfunction contains the corresponding required cub&urthermore, each subfunction includes as many don't-cares
hence the OR gate output will be hazard-free. Converselyas allowed under definition of disjunctive decomposition; i.e.
if the OR gate output is hazard-free, edch- 1 subtransi- only 0/1 minterms are set if required. As a result, maximal
tion must be hazard-free, and only monotonic OR gate inpuiecomposition is a canonical and primitive transformation.
transitions are allowed for the entite— 0 transition, which It will shown later that it is sufficient to limit the hazard-free

is equivalent to requiring that the rule be met. decomposition algorithm to only use maximal decomposi-
L) tion.

4.1.5 Dominating Functions _ The following lemma characterizes how to construct a

During decomposition, it will be useful to consider how yaximal decomposition of a functidf, 7):

some subfunctions can dominate others. Lemma: Maximal Decomposition Characterization.

Definition: Functional Dominance. Given two functions Gijyen a function(£, '), and a maximal decomposition into
(£3,T;) and (£}, T;), function (£3,T;) dominates func- ¢ nctions 5(92)... n,Tn). Each dgcom osed
. L oS (f1,T2),....(fn, Tn) p
tion (£3,T;), indicated as(Fy, T;) = (£, T;), if (i) for — qynfynction(4, T4) has the following properties: (a) it con-
each mintermvn, (Fj(m) = 0) — (Fi(m) = 0), and ainsayactly ondunique) required cube ;ﬁ‘, T%, which de-
(Fj(m) = 1) — (F;(m) = 1); and (i) each specified input fines theentire ON-set of the subfunctiogi; (b) it contains
transition of7} is also a specified input transitiondf (i.e., everyOFF-set cube off,T'), therefore OFF-sef() = OFF-

T, CTy). set(fi); (c) if the included required cube is derived from a

1 — 1 specified input transition df', then this singld — 1 Second Maximal Decomposition TheoremConsider any
input transition is also included in the new set of transi-two functions,(F,T) and (G, V), where(F,T) < (G,V),
tions, T'4;° (d) everyspecified dynamic input transition of and respective hazard-free disjunctive decompositions, call
T (1 — 0,0 — 1) isincluded inTi (hencel’i has the same them X andY, whereX is a maximal decomposition of
privileged cubes dynamic transitions and privileged cubes agF, 7") and V' is any disjunctive decomposition ¢z, V).
T); and (e)every0 — 0 specified input transition o' is et (Fi, T) be any subfunction ofF,T) resulting from
included inT'i (hencel"i has the same static-0 transitions asmaximal decompositioX . Then there exists a subfunction
T).) _ .. _ (Gj,Vj) of (G, V) resulting from decompositiol such
Proof. Immediate from the definitions of disjunctive decom- that (Fi, Ti) < (Gj, Vj).

position and maximal decomposition. ... Proof. Animmediate extension of the proof of the First Max-

Examples. An example of a maximal decomposition is ima| Decomposition Theorem

shown in Figure 6 (to be discussed in detail later); each oﬁ?z Rules for Inversion ..)

the six original required cubes is assigned to a unique dekiversion |s%he secondsd%composmon operator, as illustrated
composed subfunction, F1-F6. In contrast, the decomposin transforming subfunctior2, from Figure 3(b) to Fig-
tion in Figure 4 is not maximal: subfunction F2 contains 2ure 3(c): an INVERTER gate is allocated, a new subfunction
distinct required cubes. _ (F2) is generated, and then decomposition can recursively

The following useful theorem compares a maximal de-be applied to this subfunction, to produce a final gate-level

compositionX of a function with any other arbitrary dis- multi-level circuit.
junctive decomposition’, and indicates that each subfunc- Intuitively, inversion modifies a function in the obvious
tion of X is always dominated by at least one of the de-way: 1 and O entries are toggled, don’t cares are preserved,
composed subfunctions &f. Intuitively, this theorem indi- and specified input transitions are also preserved. More
cates that maximally decomposed subfunctions are “primisubtly, required cubes are added around former OFF-set
tive™: i.e., they are the bases on which any other decomposeginterms, and eliminated from former ON-set minterms.
subfunctions are constructed. This result will be important An example is shown in Figure 6(h) and Figure 7(a). Sub-
in Section 8 to justify why the hazard-free decompositionfunction F6 is transformed through hazard-free decomposi-
algorithm will be restricted to only using maximal decom- tion into subfunctionF'6. Note that the maximal OFF-set
Ig?rilttltli/lnéximal Decomposition Theorem. Consider any cubes ofF'6 — AB'C’, AUD" andA'B'C"D -, become re-
two hazard-free disjunctive decompositions of functionqu!red cubes of the inverted functidr6. Likewise, the re-
(F,T), call themX andY’, whereX is a maximal decompo- unE,g %‘(‘)’?gﬁggﬁg&; 6 d@%?;}?gig&%’;ﬁ?g&geg@
fsmont.h Let(£74, Tllzj be any s%gggn%_trl]on ?ﬁF’ T) r_e?ultmgb 0100 to 0001, contains only don’t-cares and 0 values in Fig-
romthe maximal decompositioli. Then there exists asub- ;.o) 'so effectively the “start point” which must be cov-
function(Gyj, Vj) of (F, T) resulting from decompositiol gred by any intersecting implicantiSBC'D = 0100. After
such that(£i, T'i) < (Gj, V j). inversion, in Figure 6(h), the new “start point” $svapped:
Proof. Consider any subfunctioff'i, T'%) resulting from the to becomeABCD = 0001, which must be covered by any
maximal decompositioX. The above Maximal Decom- intersecting implicant. In summary, even in the presence of
position Characterization lemma precisely defines the funcdon’t-cares, the “start point” (i.e., ON-set end of the arrow)
tion F'i and set of specified input transitiofs. Suppose s swapped on each inversién.

I'i,T'i) contains the original required cubé Then, from The following useful theorem indicates that dominance is
the above Disjunctive Decomposition Rules, under any arbipreserved under the inversion operator:

trary disjunctive decompositio¥i, there must be some sub- * |nversion Theorem. Let (F;,T;) and (F;,T;) be two
function (G, Vj) which also containsi (whether it was Boolean functions with specified input transitions, and let
originally in a static-1 or a dynamic input transition 6J. ~ (p 77) and(F!, T!) be the respective results of the inver-
The Disjunctive Decomposition Rules require that function®. *’* o . : .

Gj coversFi, i.e., wherever is specified at 0 (or 1) Sion step. If(F, T;) < (F;, T:) (i.e., before inversion), then

will have the same specified value. Furthermore, these ruled”;, 7;) = (F}, T}) (i.e., after inversion).
indicate thal/ j contains all the specified input transitions of Proof. Inmediate from the definitions of inversion and dom-
Ti. Therefore(Fi,Ti) < (G4, Vj). inance. Functionally, the 0 (1) minterms bf are covered
Example.As a simple example, consider the maximal de-by the 0 (1) minterms of; before inversion; since inversion
composition (F1-F6) of Figure 6, compared with the orig-preserves all don't-cares and toggles 0's and 1's, this cover-
inal function (F,T). The latter can be regarded as a triv- age is also preserved after inversion. Likewise, no specified
ial decomposition: (F,T) is decomposed into itself (i.e. iNput transitions are added or removed by inversion, hence
no decomposition). Clearly each maximally decomposedhe input transitions of; are covered b7 (i.e. after inver-
subfunction,(F1,T'1) through(F6,76), is dominated by sion).] .
(F,T). 5 A Hazard-Free Multi-Level Decomposition
The First Maximal Decomposition Theorem considered Algorithm
the restricted case of two decompositions ofshenefunc- Gjyen the above formal definitions of the two decomposition
tion, (F, T'). The following more general theorem comparesoperators — disjunction and inversion — a hazard-free multi-
decompositions of twalistinctinitial functions, (F,T) and level decomposition algorithm is now presented. The goal
(G,V), where (G, V) dominates(F,T), and shows that is to construct a hazard-free multi-level implementation, for
this dominance is preserved after maximal decompositiorn—;
(F,T), against any arbitrary disjunctive decomposition of

Interestingly, it is even possible to have privileged cubes containing
only don't cares for example, if the required cubd’ B’C’D of F6 is

(G7 V)3 mapped to a further decomposed subfunction, a privileged cube with only
don't-cares would be copied acra4$C’ would be mapped to all remaining
51f the required cube is derived only fromdynamic(l — 0,0 — 1) subfunctions. In this case, the designated “start point” (which would have

transition of7’, then nol — 1 input transition is included ifi":. had a 1 value) is still tracked and swapped on each inversion.

a given Boolean functiorF’ with specified sefl” of input function “multi-level-decomp”. In each case, the allocated
transitions. First, a generic recursive algorithm, called Al-new gates (OR,INV) can be reconstituted from the nesting
gorithm 0, is presented. Then, it is refined into the final it-of the returned subnetworks. Finally, the “N==1" test is to
erative algorithm, Algorithm 1, which uses simpler hazardcheck for termination with no solution, which occurs when
existence checks, and which will be used to generate 3-levéhere is a loop with no progress. in this case, a subfunction
implementations. (F,T) cannot be disjunctively decomposed and has no two-
. . . level solution; after inversion it still cannot be disjunctively
5.1 An Initial Recursive Algorithm decomposed and has no two-level solution.
The algorithm was informally introduced in Figure 3. Asim- The algorithm is sound: if it finds a multi-level solu-
plified pseudo-code version is given in Figure 5(a). tion, it is always hazard-free. This is immediate, since it
uses only hazard-free decomposition steps (disjunction, in-
version) which were proved sound in the previous section,
as well as safe hazard-free two-level logic minimization. In
Section 8, it will shown to be complete: it always finds a
else{((F1,71),...,(FN,TN

!) = max-decomposg, T'); multi-level hazard-free solution, if one exists.
if (N == 1) return ({“no solution});

multi-level-decomp(F, T)
if (exists-2-level-sa|F, T'))
return (2-level-min(F, T"))
)

fori=1t0 N dO{ NS 01 11 10 NS o1 11 10
if (exists-2-level-salF'i, T'1)) Foc® R V5 —
gt = 2-level-min(F4, T7); A N %
elsegi = multi-level-decomginvert(F'i, 7%)); }
return ({g1,...,9n})} or| o 1 T 1 oL fi
main-decomp(F, T") | h ll o 1
if (exists-2-level-sa|F, T)) ™
return (2-level-min(F, T)); 7 U P 10
else{((F1,T1),...,(FN,TN)) = max-decomposgF, T'); ;
for i =1to N do{ @ ®
if (exists-2-level-sa|F'i, T'i)) a8 a8
gi = 2-level-min(Fi, T); Fio 6N 0 preN2 0
elsegi = multi-level-decomginvert(F'i, T%)); } oo |f - o | | s -

return ({g1,...,gn})
(a) Algorithm O.An Initial Approach (Recursive). | A | |

multi-level-decomp(F, T') N Kx - - @? o
Sol ={};

} 10 N 10 IS
((F1,71),...,(FN,TN)) = max-decomposgF, T'); N 2R LTty

for i =1to N do{

01 0 01 0

gt = get-single-cube-sdlF'i, T); e “ e ¢
if (gi exists) Sol = SolU {gi}; FooooN 2 u v F,: OO _ 10
else{ (Fi',Ti') =invert(Fi, T'); 00 (] _ > w i g _
((Fiy,Ti), ..., (Fiy, Tiy)) =max-decomposgri’, T4'); ?
Soll :{}1 01 0 — — — 01 —
for j =1to M do{ ' /
gj = get-single-cube-sqlF'i};, T'i); ul u
if (g7 exists) Soll = SolU {gj}; ~L] ° N 0
else{ (Fi;, Ti;) = invert(Fi}, T'i});
gk = get-single-cube-sdlFi;, Ti;); v S o e e e
if (gk exists) Soll = SolU {{gk}}; - © o
elseexit ({“no solution}); }}
SOI = SOlU SOIl,}} N 00 01 11 10 C?)B 00 01 11 10
return (Sol); o oY - R Y7
00 Y K\ oo | _ _ _
(b) Algorithm 1.The Final Approach (Iterative). KJ
01 0 - N\ 1/ | 01 Lo - m _
Figure 5. Two New Algorithms for Hazard-Free — = e I
Multi-Level Decomposition. w - -] ° = N w o |
The algorithm follows the basic approach given in Fig- I . A \0’,

ure 3. The “main-decomp” driver is called on a given func-
tion F' and specified sef’ of input transitions. If a hazard-
free two-level solution exists, it is immediately returned. . . e
One of the two-level existence checks of Section 2.4 is used. Figure 6. First Example: Finding a Hazard-

If no two-level solution exists, disjunctive decomposition is Free Multi-Level Solution (- nowickdill_noso)
performed. The core of the algorithm is the for-loop, which

Is activated when disjunctive decomposition succeeds. I% . . .

this case, if a subfunction has a two-level hazard-free solu®-2 A Final Iterative Algorithm

tion, itis returned. Otherwise, an inversion is performed, fol-A final iterative algorithm, Algorithm 1, is presented in Fig-
lowed by a call on the inverted function to the core recursiveure 5(b).

© h

AB AB
—_ 00 01 11 10 —_ 00 01 11 10

v

_ S _ 00

oow O »|
oow O »|

01 1

oo ®w>» o>
oo ®w>®» o>

2

o> olw ol ol

v

ol > ol ® ol o

=D

@

AB
. CD
Fez:

00

G

Figure 9. First Example (cont.): Final
Hazard-Free Multi-Level Implementation (now-
ick_dill _noso)

01

1 |

cubes. After another maximal decomposition, each resulting
subfunction hasnly onerequired cube andnly oneOFF-
set cube. After another inversion, the same invariant holds,
but the resulting subfunctions have swapped ON-set and re-
Figure 7. First Example (cont): Finding quired cubes. At this point, no further maximal decomposi-
a Hazard-Free Multi-Level Solution (now- tion or inversion will alter these two subfunctions: they will
ick_dill_noso) simply alternate on each further inversion step. Hence, no
further recursion is required.

Note that, as in Algorithm 0, a final solution is returned
as a hierarchical set, here call8dl where deeper subcir-
cuits (from level-1 and level-2) are encapsulated with added
parentheses.

As for algorithmic complexity, it is direct to see that,
if the original function(F,T) hasm required cubes and
n maximal OFF-set cubes, then the algorithm can create
O(m-n) gates, through the iterative decomposition process,
witlh)O(m-n) existence checks performed (“get-single-cube-
sol”).

5.3 Canonicity

Algorithm 1 does not necessarily produce a canonical (i.e.
uniquely defined) decomposition, because “get-single-cube-
sol” may produce one of several possible hazard-free single-

Figure 8. First Example (cont.): Final product solutions for the leaf nodes. For example, in Fig-
Hazard-Free Multi-Level Implementation (now- ure 7(b)-(d) (to be discussed in the next section), several
ick_dill_noso) alternative single-product covers are possible for each sub-

function. However, with a minor modification, the algorithm
]) can be made canonical.

There are several changes over Algorithm 0. First, there |n [8], a simple hazard-free cover for a single required
are fewer hazard-free existence checks: only after maximauber was defined, calledupercubg, ¢(r). Given a func-
decomposition (no longer after inversion). tion, (F,T), this operator returns the singenallestimpli-

Second, as a result, a very simple hazard-free two-leve&iant which (i) contains, and (i) has no illegal intersec-
existence check, “get-single-cube-sol”, can now be used: deions (j.e., which is a dhf-implicant), if one exists. The re-

termining if asingle-cubg{i.e., single-product) hazard-free gyt of supercubg, ((r) is uniquely defined, hence canon-
solution exists. The justification is that, under maximal de- [8]. Hence, by replacing “get-single-cube-s)l(by

composition, each subfunction has only one required C“besupercubghf(r) in Algorithm 1, the algorithm now will pro-

therefore, if a hazard-free two-level solution exists, only one : : ; : ;
product will be needed to cover it. duce aunique(i.e., canonical) hazard-free implementation

Finally, the algorithm is now iterative, arahly traverses OF @ given function(F, T), if any multi-level hazard-free
three levels of searchevel-0(before inversion)ievel-1(af- ~ Sflution exists. .
ter one inversion), antével-2 (after two inversions). Thus, , !N conclusion, if a given functioF, T') hasany hazard-
at most, only two maximal disjunctive decompositions andree multi-level implementation, then it always has a unique
two inversions are performed. An informal proof that no fur- ¢@nonical 3-level implementatiorproduced by the above
ther recursion is needed is as follows: The first maximal deyariant of Algorithm 1.
composition, by definition, pulls apart the original required® xamples _ N _ o
cubes, and creates subfunctions vattly onerequired cube To illustrate the multi-level decomposition algorithm, it is
each; however, each subfunction has all the OFF-set cubes béw applied to two examples.
the original function. After inversion, the OFF-set cube and In Figure 6(a), function(F,T) has four specified input
required cubes are swapped; each inverted subfunction notransitions. The example has no two-level hazard-free so-
hasonly oneOFF-set cube, but possibly several requiredlution, and is taken from [7, 6]. There are six required

cubes, each highlighted in Figure 6(b). Following Algo- the algorithm, the resulting circuits catill always be made
rithm 1, under maximal decomposition, the initial function 3-level Due to space limitations, no complete worked-out
(F,T) is mapped to six corresponding decomposed subfungxample of this scenario is presented, but below is a sketch
tions, (F1,T1) through(F6, T6), each containing one dis- Of the transformation for this general case. Suppose the cir-
tinct required cube, as shown'in Figures 6(c)-(h). For fivecuit Figure 8 now also had an additional AND2 gate fol-
of the resulting subfunction§F'1, T'1) through(F5, T5), a lowed by inverter feeding into the leftmost OR gate, where
single-cube (i.e., single-product) hazard-free (two-level) sothis AND2 gate has the two inpuisandy. Extending the

: .) bove construction, a 3-level NAND circuit can still always
lution exists, as shown. However, for subfunct{drs, 76), a . y " -
no hazard-free two-level solution exists. As can be seen iRS produced: the new AND2+inverter are deleted, and this

; A : . ND2's inputs (¢ andy) would becomelirect inputsinto
Figure 6(h), only two implicants cover required cub& D: . ;
A%D an(dz?D. %either ig a dhf-implicantc:1 implicad BD the NAND3 of Figure 9(a) whose inputs are the 3 leftmost

: i - ; _NANDs — thus transforming it into a NAND5 gate. Simi-

legaly nlersect ne ABCO=0111 1 1010 cynanic -y o v OF ANE.OR ot ca &l awigys b 1o

0001 dynamic transition. Therefore, subfunctidrs. 76) duced: the new AND2+inverter are deleted, and this AND2'’s

) y : ' Ay, 2 inputs ¢ andy) would now becomalirect inputsinto the

is then inverted to produce a new subfuncti¢fl6,76), ~ AND3 of Figure 9(b) whose inputs are the 3 leftmost ORs —

as shown in Figure 7(a). The three former OFF-set cubegansforming it into a NAND5 gate.

are now required cubes, and the one former required cubg Completeness of the Method

is now an OFF-set cube. As shown in Figures 7(b)-(d), af-

ter disjunctive decomposition, each of the subfunctions now he multi-level decomposition algorithm of Section S has

has a single-cube hazard-free (two-level) solution. The finaP€€n shown to beound:if it produces a multi-level imple-

hazard-free multi-level solution is shown'in Figure 8, wherementation, the implementation is hazard-free. In the section,

the various decomposed subfunctions are highlighted. it is shown that the algorithm sompleteif any hazard-free
As a second example, Figure 10(a), modified from [2],mult|-level implementation exists (with the given assumed

has no two-level or multi-level solution. Due to space limi- YPeS of gates), then the algorithm will always produce a so-

tations, only part of the algorithm is illustrated. Figure 10(b)!ution. _ _

shows the result of the first disjunctive decomposition, showCompleteness Theorem. Given any function(F, T)), for

ing one of the three resulting maximal decomposed subfunchich there exists some hazard-free multi-level implemen-

tions: this subfunction has no (single-cube) hazard-free twolion C consisting of only ANDs, ORs, and INVERTERS.

level solution. Figure 10(c) shows the result of the subseJhen Algorithm 1 will always produce a hazard-free multi-

quent inversion step, followed by another maximal disjunclevel implementation fo(£, T').

tive decomposition, again illustrating only one of the result- Proof. o] i .

ing subfunctions, which also has no (single-cube) hazard- Step 1. Circuit Transformation. The first step is con-

free two-level solution. The algorithm then inverts this sub-structive: to transfornd’ into a form similar to the one pro-

function (not shown), again finds no hazard-free two-levelduced by the algorithm, shown in Figure 3(d). In this circuit,

solution, and then terminates. ignoring inverters on primary inputs, AND gates only appear

7 Three-Level Circuit Implementations atinputs, and the only possible long chain of gates Is a series

While the circuit structure of Figure 8 corresponds directIyOf%z %%ﬁgfgmgm%hﬁﬂgf E\;]veF(?Sd?(\a/elrtle;sr.e used to trans-

to the algorithm flow, it is less standard or practical than may,m ¢ into the desired canonical form. The rules are ap-
be desired for an actual circuitimplementation. In this SeCpjia in reverse topological order, from circuit output to in-
tion, a key result is presented: an implementation producefl rs “As a pre-processing step, before the main traversal,
lby Allg_orlthtmtl c?nalw_aysgel trarrs’(}‘%\lmDed méo “NSF?%S;\?S the associative laws of Figure 11(a)-(c) are used to collapse
evel circuit structures: (i) 3-leve »and (i) OR-AND- - 5 iacent AND gates (and OR gates), double inverters are re-

OR circuits. . . .
The two transformations are illustrated on the circuit ofPlaced by wires, et€.Next, if the gate output is not an OR

Figure 8. The corresponding 3-level NAND circuit is shown gag—% a"l-inﬁut OR is attached to thle prirrllary outpult._
in Figure 9(a). This transformation is performed using stan-,_Finally, the main reverse topological traversal Is per-

dard function- and hazard-preserving algebraic technique£2rmed, following the rules of the figure. DeMorgan’s laws
such as DeMorgan and other laws: the output OR of the for&r€ used to transform internal AND gates into OR gates sur-

mer circuit is converted to a NAND with inverted inputs; in "ounded by inverters. Note that Rules (e) and (f) should only
turn, double inverters are cancelled out; and a similar OF2€ applied if the corresponding AND gate is non-terminal.

transformation is performed on the leftmost OR gate. Like/ISO; note that Rule (e) may produce a new OR gate which
wise, the transformation from Figure 8 to an OR-AND-OR Must then merged with those in its immediate fanout (by
circuit, shown in Figure 9(b), is accomplished by replacingRUle(b)a{ similarly, T.J'ﬁs (e) and I(f)' prde‘#]CG nevvlllnv.ert-
the leftmost OR gate and its output inverter into an AND gatef'S_at the inputs, which may resuilt in further applications
with inverted inputs; the leftmost AND gates and their new©f Rules (a)-(c) at the input side. Finally, all inverters on

output inverters are then replaced by OR gates with inverteB"iMary inputs can be replaced by complemented literals.
inputs. It can easily be shown that the desired circuit properties

Note that, while these 3-level circuit structures allow arbi-n0ld onC'l after the above construction: ANDs can only
trary fan-in gates, the designer can always map these strugPpPear at the circuit inputs, ORs and INVERTERS alternate

tures to limited fan-in gates: by associate law, a large fan-iff} chains interally in the circuit, and all adjacent gates of

gate can be broken into a network of limited fan-in gates,the same type are eliminated or combined. At the leaves, is

with the same function and hazard properties. Thus, thesgither ﬁ” SOP (AhND'Oﬁ).C"C“.it ora sirrllgle AND gl]ate.
structures can always be mapped to larger networks of 2- Furt errr?ore,.t_ e Iresu ting cwcwﬁl, ﬁs equn?a ent be-
input gates, if desired. avior to the original circuit’: (a) it has thesame function-
The above example only illustrates part of the execution of —7 -~ . -
. Sk h : . or simplicity, only two representative matches are shown in Fig-
Algorithm 1, which in this case terminates after only one in-ye 11(a)—(b)p, bu%/obvigusly thepsame collapsing is performed for arbitragry
version step. However, if a second inversion is performed byan-in gates.

ality as C, since only Boolean equivalences were applieditherefore, at this first level, circuit'l is decomposed using
and (b) it has theame hazard behaviasC, since only haz- disjunctive decomposition. Therefore, each resulting sub-
ard behavior-preserving transformations were applied [9]function, (G1, V1) through(Gp, Vp), for the distinct sub-
Hence, the above construction take an arbitrary multi-levehetworks feeding into the OR gate must obey the disjunc-
circuit C, and deterministically maps it to an equivalent one,tive decomposition rules (Section 4.1), since these rules are
C1, which is in a canonical form. necessary and sufficient, by the Disjunctive Decomposition
Step 2. Proof of Completeness.Given thatC1 is a Theorem. At the nextlevel, assuming for now that the circuit
hazard-free multi-level implementation 6F,T'), it is now is not at a leaf node, the circuit is always decomposed us-
shown how the new algorithm is always guaranteed to proing inversion, and must likewise obey the rules of inversion
duce some hazard-free multi-level implementation. (Section 4.2), which are also necessary and sufficient. Simi-
Proof SketchThe proof strategy is to follow two distinct larly, at each further step of the reverse topological traversal,
traversals, in tandem: (a) a reverse topological traversal afn every path, the circuit undergoes alternating disjunctive
circuit C'1, from output to circuit inputs, and (b) the recur- decomposition and inversion, where each resulting subnet-
sion steps of Algorithm 1. The idea is that, at each traversalvork must have a corresponding subfunction which obeys
step, the current subnetwork of circdil has a subfunction these rules.
which dominatesa corresponding subfunction generated by Finally, consider the traversal in tandem of the modified
the algorithm, and this dominance is passed from level tqzlgorithm 1 and circuitC'1. From the above discussion,
level during the traversal. Hence each subfunction producegoth the algorithm and circuit structure follow alternating
by the algorithm should be “easier” to implement correctly disjunctive and inversion decompositions. It is now shown
than each circuit subfunction. Since the circuit traversathat, on each path through the algorithm, the resulting sub-
terminates with hazard-free leaf nodes on each path (eaghinction isalwaysdominated by a corresponding subfunc-
corresponding to a single-cube, or single-wire, implementation in the circuit. At the top-level, for each maximally de-
tion), it follows that each corresponding path through the al-composed subfunction of the algorith(#i, T), there must
single-cube solution. . - (Gk, Tk) such tha(Fi, Ti) < (Gk, Tk), by the First Max-
Detailed Proof. Before proceeding to the joint traversals jmaf Decomposition Theorem. After a subsequent inversion,
of the algorithm and circuit, first consider each of them sepyy the Inversion Theorem, this dominance relation persists:
arately. . . , . (F'i,T"i) < (G'k,T'k). Next, upon a subsequent maximal
Algorithm 1 starts with functior(£, T'). It first applies & gecomposition by the algorithm, now by the Second Maxi-
maximal disjunctive decompositiogenerating a set of sub- ma| Decomposition Theorem, for each resulting subfunction
functions(£'1, T'1), ..., (FN, TN). These subfunctions, in (g 7). there again must be some decomposed subnet-
trn, are theninverted to generate corresponding subfunc- work of C'1 with a corresponding subfunction which domi-
tions (F'1',T1'),...,(FN’,TN’) (cf. subfunctions F1- nates(F'i’,, T")
F6 in Figure 6(c)-(g)). (For now, ignore where the algo- L i) . .
rithm terminates and returns a solution.) Each subfunction, Thus, continuing this argument through the entire traver-
(Fi',T4i), in turn, then undergoes anotlraximal disjunc- sal, dominance persists:. each subfunction produced by the
tive decompositionto generate a set of corresponding sub-algorithm is dominated by a corresponding subfunction of
functions, (F'i’,, Ti,); that is, (Fit, Td), ..., (Fi), Ti),) circuit C1. Furthermore, note that every circuit path is fi-
(cf. subfunctions F'61-F'63 in Figure 7(b)-(d)). Finally, nite and hence terminates. In each case, by construction of

. ooy g (1, the terminating leaf circuit is always a single AND gate
each such subfunction('i, T'%;), is againinverted 10 " it Gegenerate, a single wire); thus, the subfunction cor-

generate corresponding subfunctioni;i;, 7;); that is, responding to each circuit leaf is a hazard-free two-level im-

(Fi1,Tiy),...,(Fin, Tin). Atthis point, Algorithm 1ter- plementation. Hence, in this traversal, on every execution

minates, since it was shown that subfunctiéhi;, 7i,) and path of the algorithm, it will eventually generate a subfunc-

(Fi,, Ti") arenon-reducibleby further maximal decompo- ton which is dominated by the subfunction of a correspond-
77 J

sition or inversion, and would simply alternate on every fur-19 leaf nodein the circuit. By Lemma 1, since the latter

. - - subfunction has a hazard-free two-level solution (in fact, a
ther level of recursion. However, for the following proof, this single-cube solution), so must the former. Hence, on each

further recursive alternatiof¥"i;, Ti;) and (F'ij, T43) will gch execution of the modified Algorithm 1, the algorithm
be allowed; it is is safe, since only hazard-free decomposimust successfully terminate, since a hazard-free single-cube
tion steps are used. This modified algorithm allows a deepesolution exists.

simulation in order to track the circuit traversal: maximal de- The only slightly subtle case is where the modified Algo-
composition will be applied (which will not further decom- ithm 1 above has been allowed to recur through many levels
pose or alter these subfunctions), alternating with inversiofynjike the actual Algorithm 1, which allows at most two in-
(which simply swaps them§. o versions). In this case, since either sofiig or F'i’; must
Next, consider circuit{/1. By construction, it has an out- pe the subfunction produced by the modified algorithm at
put OR gate. In reverse topological traversal towards the prig,a¢ jevel. When the circuit terminates at an AND-leaf, then

mary inputs, the structure Is as shown at the right of Figure 3; i i
there are no internal ANDs, only chains of inverters alternat-by the above, the subfunction produced by the algorithm

y . ;! i - - -
ing with OR’s, until the leaves (primary inputs) are reached.(F.ZJ or sz) must also.have. a smglg cube hazgrd free so
Only at the primary inputs, there are either terminal AND lution. Yet, in theactualiterative Algorithm 1, as discussed
gates (or a degenerate case, simple wires) or terminal ANDRbove, this subfunctionf{i; or F'i’) would have been pro-
OR circuits. Note that, like the algorithm, the circuit de- duced at ararlier step: at the first or second level of execu-
composition must also follow the well-defined decomposi-tion. These subfunction&i; and Fi/; are simply passed on,
tion rules. Since the circuit output is attached to an OR gateyjternating through further levels of execution in the modi-

8This deeper recursion is not used in the actual Algorithm 1, but thisfIed algorithm. Sm(_:e SUbfunC“OﬁZj or F'i; has J,USt been
proof will yield results that will then apply to the non-recursive Algorithm 1. shown to have a single-cube hazard-free solution, then the

o 00 01 11 10 F:
0 0 1 1’ 0
1 1 1 0 0

@
Figure 10. Second Example: No Hazard-Free Multi-Level Solution (bredesomosolreduy

actual Algorithm 1 must therefore have successfully termi-10 Conclusions and Future Work
nated earlier on this execution path (i.e., at first or seconchijs paper has introduced the first general method for deter-
levels of iteration). _ _ mining if an incompletely-specified Boolean function, with
In summary, in the actual Algorithm 1 execution, on eachg specified set of input transitions, has a multi-level hazard-
execution path, a subfunction will be generated which is alfree realization. As part of this work, two hazard-free de-
ways dominated by the subfunctionsdmecorresponding compositions were defined: disjunctive and inversion; and
leaf node of circuitC’1. By Lemma 1, since the latter node the first set of necessary and sufficient conditions were for-
had a single-cube hazard-free solution, so must the formefalized to characterize them. This paper is also the first
hence the actual Algorithm 1 will always successfully returnto demonstrate that, if a function has any hazard-free multi-

a solution on every execution path. level solution,then it also always has a hazard-free 3-level
circuit solution: in 3-level NAND and OR-AND-OR form.
Before After Before After A simple iterative decomposition algorithm was proposed to

find such a hazard-free implementation, if one exists. Fur-
thermore, if one does, a unique canonical 3-level hazard-free
form was identified, and an algorithm to obtain it was pre-

sented.
o 0 In the future, it would be useful to strengthen the claims
Ehe (j:}) on the classes of gates that can be considered, and to auto-
oo —

mate and apply the method to a larger set of real-world asyn-

© @ (octange chronous benchmarks. In addition, as a practical application,
(terminal = only wire inputs) . A . .

o > . " 5 oo it would be interesting to explore how AIgont_hm 1canserve
e ontywire npt as the starting point for multi-level synthesis: it can immedi-

ately provide a “seed” implementation with the fewest pos-
Figure 11. Canonical Circuit Transforms sible hazards, which can then be further manipulated using
well-known hazard-non-increasing transformations.

9 Results References
e e e e vetar Rl e T14tt) 3. Beister. A unified appraach lo combinational hazalEEE Trans-
position algorithm, Algorithm 1, t0™" actions on Computer<-23(6), 1974.

several examples. A prototype CAD tool was written in 2] : I

. : J.G. Bredeson. Synthesis of multiple input-change hazard-free com-
C++, and run on a 500MHz Pentium Il with 256MB RAM binational switching circuits without feedbackint. J. Electronics
running Redhat Linux 8.0. The input format is in a PLA- 39(6):615-624, 1975.
style format, indicating both function and input transitions.[3] . De Micheli. Synthesis and Optimization of Digital Circuits
The multi-level output is in a subset of Berkeley BLIF for- McGraw-Hill, 1994.
mat. Only small examples are considered, with 6 or fewers] p. Kung. Hazard-non-increasing gate-level optimization algorithms. In

inputs. Proc. IEEE Int. Conf. on Computer-Aided Desigfovember 1992.
Function 40f | Solution Total # Total #Func | Max #Inversions | Recursion | cPuTime | [5] B. Lin and S. Devadas. Synthesis of hazard-free multi-level logic under
Name Inputs Exists Subfunctions Inversions per Circuit Level Depth (ms) multiple-input Changes from binary decision diagl'amSP'OC. |EEE
redeson_nosol_reduk 3 No 4 3 1 2 036 Int. Conf. on Computer-Aided DesigNOVember 1994,
snple ex ‘ Yes 3 u o d o1 [6] S.M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Con-
nowick_dil_nosol | 4 ves [1 1 1 059 trollers. PhD thesis, Stanford University, March 1993. (revised tech.
u . ves 10 s s 1 228 report, Stanford Computer Systems Lab. CSL-TR-95-686, Dec. 1995).
2 4 No 1 10 4 2 12 [7] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-
= 4 ves s 2 2 1 068 free logic with multiple-input changeslEEE Trans. on Computer-
24 . . . 0 0 o1 Aided Design14(8):986—-997, August 1995.
s 4 No u 1 2 2 223 [8] M. Theobald and S.M. Nowick. Fast heuristic and exact algorithms for

Columns indicate whether a solution exists, and various e-evel hazaicefree logic minimizationEE, feans. on Computer-
characterizations of recursion depth. Recursion depths rangﬁ gn ’ - T .
from O (i.e. a 2-level solution was found) to 2. The column®! $. H- UngerAsynchronous Sequential Switching Circuitdley Inter-
“Total # of Func Inversions” indicates how many inversions ' '
were performed across the entire decomposition, while the
column “Max # Inversions per Circuit Level” indicates the
maximum number of subfunctions in any iteration which re-
quired inversion. Runtimes are indicated in milliseconds.
The results are on some fabricated examples, but do indicate
a range of parameters and characteristics for different func-
tions.

