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Abstract - Methods are presented for synthesizing delay-insensitive circuits whose 
behavior is specified by Petri net models of macromodular control elements. These 
control elements implement six natural functions used in asynchronous system 
design. Particular attention is paid to modules requiring mutual exclusion where 
metastability must be carefully controlled. 
 
Index Terms – arbitration, asynchronous systems, circuit synthesis, combinational 
hazards, macromodular control elements, metastability, mutual exclusion, Petri 
nets, reachability graphs. 
 
1.0 Introduction 
 
The use of Petri net models of asynchronous systems is well known [1], [2], [3], [4]. 
However, application to a substantial system design encounters a state-space explosion 
that renders synthesis through Petri net reachabililty graphs problematic. The approach 
considered here creates delay-insensitive (DI) modules that can be composed to produce 
endlessly scalable systems. These modules include the macromodular control elements 
developed by Clark and Molnar [5], [6], [7]. They form a natural set whose functionality 
is easily understood and sufficiently complete when coupled with DI processors to have 
been the basis for a wide variety of substantial systems [8]. Since the development of 
macromodules more than 30 years ago, integrated circuit technology has shrunk the size 
required to fabricate such modules by 4 or 5 orders of magnitude and increased their 
speed  1 or 2 orders of magnitude. Perhaps the time has come to reexamine the role that 
this modular approach might play in system-on-chip (SoC) designs that are fabricated on 
multi billion transistor integrated circuits. 
 
This paper demonstrates how a designer can proceed from a Petri net model of a control 
element to the layout of an integrated circuit. Of particular interest is the synthesis of 
those parts of the control elements that require mutual exclusion, a phenomena that 
manifests itself in a Petri net model as conflict [1]. Special care is also required in all 
asynchronous circuits to prevent transient errors in combinational circuit outputs due to 
unanticipated component delays. These transient errors are known as hazards and 
techniques to produce hazard-free implementations of these control elements are 
explored. 
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2.0 Macromodular Control Elements 
 
Figure 1 is adapted from [6] and sketches a portion of a macromodular system including 
processing elements (rectangles), data paths between them (heavy lines) and sequencing 
paths (light lines) between control elements (circles). The original macromodular systems 
operated asynchronously and their elements and interconnecting pathways observed DI 
design rules externally. However internally, correct behavior of these elements was 
dependent upon proper arrangement of their component delays.  
 
The data paths in the original systems were multi conductor cables that included control 
signals that accompanied the data paths to insure their correct receipt at the destination. 
These escort signals allowed the source to remove the data only after it had been safely 
received at the destination. 
 

 
Figure 1. Processing and sequencing networks (adapted from [6]) 

 
In SoC applications these cables would likely be replaced by DI FIFOs to improve 
performance over long chip distances and to maintain DI behavior. Escort signals can 
manage the DI characteristics and acknowledgments by using control elements embedded 
in the data paths. 
 
The macromodular control elements discussed here include the Branch, Rendezvous, 
Decision, Merge, Call and Interlock. These control elements utilize transition signaling, 
with each logic level transition, whether up or down, representing a control signaling 
event.   
 
The precise definition of the behavior of these elements is most easily specified by Petri 
net models. There are, however, slight differences in some of the definitions presented 
below from the original ones in [6], [7]. The I element described below has only a single 
completion line from each half of the called processor whereas the original elements 
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featured dual completion lines. This simplification does not decrease the expressive 
power of the set, as will be discussed below. In addition, the D element below serves a 
more theoretical purpose as a modeling tool rather than as a physical device. It selects 
one of two outputs randomly whereas the decision element in [7] was actually built and 
selects one of two outputs depending on an input level.  
 
3.0 Petri Net Models 
 
Models of the control elements must also include a model of the environment in which 
they function. This is necessary since certain disallowed sequences of input events could 
lead to unwanted behaviors. These environmental models must provide exactly the 
allowed input sequences, no more and no less. 
 
3.1 Branch and Rendezvous Elements 

 
Figure 2. Petri net models of two simple control elements and their environments 

 
Within the dashed circles of Figure 2 are shown the Petri net models of the Branch and 
Rendezvous control elements. The Petri net models of their environments are as simple as 
possible and are shown outside the dashed circles. The transitions at the input (output) of 
the elements receive (generate) signaling events from (for) the environment. The 
reachability analysis [1] of these nets can be obtained from the initial marking M0 and the 
production rules in Pr.1. Note that the Petri net transitions1 are identified with capital 
letters and the Petri net places with lower case letters. The reachability graphs for the B 
and R elements show that the two nets are live and safe, but they will not be displayed 
here. In the next section an example reachability graph will be shown for the R element. 
                                                 
1 Context will usually distinguish Petri net transitions from logic level transitions, but occasionally full 
names will be used to assist the reader. 
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The output maps, needed for synthesis, can be calculated directly and automatically from 
the basic Petri net descriptions given by their initial markings and production rules. The 
vertex and edge sets that underlie the reachability graphs are calculated along the way to 
producing these output maps. Petri net properties such as liveness and safety are also 
determined as a byproduct of the output map calculations. The B and R elements are 
complementary. They often appear together, for example in the parallel processing of two 
sequences of jobs in processors P1 and P2, as shown in Fig. 3. 

 
Figure 3. Example of the use of the B and R elements in parallel processing 

 
The lines connecting the elements represent wires which are modeled by individual 
places connected to the input and output transitions of the control element models of Fig. 
2. Tree connections of B and R elements allow the formations of branch and multiple 
input rendezvous elements with an arbitrary number of outputs and inputs, respectively.  
 
3.2 Decision and Merge Elements 

Figure 4. Petri net models of two simple control elements, D and M. 
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The reachability analysis of the D and M elements in their environments (Fig. 4) also 
shows liveness and safety, which can be determined from the initial markings and 
production rules given in Pr. 2. 
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The D and M elements form a similar complementary pair although the D element is 
more of a theoretical construct than a physical circuit. It can be used in Petri net models 
of a system to replace a Processing element that, depending on the outcome of a 
computation, yields two or more outputs as in Fig. 5. 

 
Figure 5. Replacement of a P element by a D element for high-level behavior analysis. 

 
Here, for the purpose of high-level behavioral analysis, the details of the computation 
performed by P element can be suppressed by virtue of the fact that the D element 
randomly chooses one or the other output. Conflict exists in the Petri net model of the D 
element (Fig. 4) at transitions B and C and suggests the possibility of metastability if a 
physical device were to be built. As with the B and R elements, inputs and outputs can be 
expanded to an arbitrary number by constructing a tree of D and M elements.  
 
3.3 Call Element 
 
The Petri net model for the Call element, shown in the upper part of Fig. 6, has 4 inputs 
and 5 outputs and is substantially more complex than the previous four elements. The 
production rules for the C element2 follow in Pr. 3. The purpose of the C element is to 
provide access for two or more processors to a shared processor and, upon completion of 
use of that shared resource, return control to the calling processor. 
 
The initial marking M0 and the left-hand set of production rules for the C element and its 
environment, shown in Pr. 3, can demonstrate that the Petri net is both live and safe. 
These rules can be simplified somewhat by eliminating place s and transition E (in red) 
while connecting the outputs of transitions A and F directly to place r instead of s. These 
changes are shown in the right-hand set of productions rules in Pr. 3 and in the lower part 
of Fig. 6. These changes leave the behavior of the model unchanged except for the 
absence of the firing of output transition E during the execution of the Petri net.  

                                                 
2 Our C element should not be confused with the Muller C-element which corresponds to our R element. 

D R M     P 
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Figure 6. Petri net model of the Call element. 

 
Elimination of E makes the arrangement of transitions symmetric about the horizontal 
centerline of the Petri net. The firings of E can be subsequently inferred by connecting an 
M element’s inputs to transitions A and F. The elimination of this one transition leaves 
eight transitions in the Petri net and reduces the number of possible distinguishable 
input/output states from 512 to 256, a valuable simplification.  
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The typical use of the C element3 is shown in Fig. 7 and allows processors P1 and P2 to 
share processor P3. P1 and P2 must not request P3 at the same time since C can handle 
only one request at a time. P3 will produce an output on either one of the two completion 
lines, but not both. The C element will transmit these alternative completion signals to the 
calling processor. Coordination between P1 and P2 will determine which processor 
requests P3 next. 

 
Figure 7. Processors P1 and P2 share the use of processor P3 through a C element. 

 
The original set of macromodular control elements included two kinds of call elements, 
one with a single completion line and one with two as defined here. Obviously, the dual-
completion C element can play the role of a single-completion element by tying off one 
input and ignoring one of the outputs connected to each calling element. 
 
3.4 Interlock Element 
 
The Petri net model of the Interlock I in Fig. 8 is also substantially more complex than 
the models of the first four control elements. It has 4 inputs and 4 outputs and involves 
conflict in the firing of transitions F and G. M0 and the productions rules shown in Pr. 4 
can be used to show that the I element and its environment are both live and safe. 
Furthermore, in contrast to the C, the I element provides arbitration of concurrent 
requests for the use of a shared resource as shown in Fig. 9.  This introduces mutual 
exclusion and the possibility of metastability, a topic to be discussed in Section 4.3. 

 
Figure 8.  Petri net model of the Interlock element and its environment. 

                                                 
3 Note that the C element is distinguished from the C transition by the former being in boldface. 
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Figure 9. Interlock element arbitrating concurrent requests from P1 and P2 for use of P3. 
 
The I element in Fig. 9, in contrast to the original macromodular Interlock element, 
receives only a single completion line from each half of P3. That is, the original Interlock 
receives dual-completion lines from both the upper and lower halves of P3. In addition, 
the upper half of the original Interlock outputs dual-completion lines to P1 and the lower 
half outputs dual completion lines to P2. Therefore, in the original Interlock one of two 
completion signals will always be returned to the calling processors. The I element 
defined in Pr. 4 cannot, by itself, provide this functionality. 
 
However, by combining an I with two C elements we get, as shown in the dashed box of 
Fig. 10, the same functionality as the original Interlock element. 

 
Fig. 10. Creation of a dual-completion Interlock element from an I and two C elements. 
 
Both the C and I elements can be composed to form versions with an arbitrary number of 
inputs or outputs, just as was the case for the B, R, D and M elements. A Call element 
with greater than two inputs can be formed from a tree of two-input C elements. In a 
fairly obvious manner two-input I and C elements can be connected in tandem to produce 
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an arbitrating call element. Such an element is a building block that can be used in a tree 
structure to produce an arbitrating call with any number of inputs. 
 
Thus, the six control elements B, R, D, M, C and I have the same functionality and same 
expressive power as provided by the original macromodule control elements [6], [7]. In 
the next section we will describe a methodology for synthesizing four of these, the B, R, 
M and C elements. The method for synthesizing the D and I elements will be deferred 
until the following section where conflict in the Petri net model is examined; this 
complication leads to a requirement for providing a mutual exclusion element in the 
circuit. 
 
4.0 Synthesis Techniques 
 
Although the B, R, and M control elements are quite simple and can be synthesized from 
Petri net models by a number of techniques [9], [10], [3], [4], we propose to use a highly 
automated method in order to manage the complexity of the C element. The first step for 
any of these elements stems from the fact that a signaling event modeled by the firing of 
a Petri net transition can be either a rising logic level or a falling logic level. The Petri net 
production rules for these six elements must be augmented to distinguish rising from 
falling logic level transitions. After that step we will present an example synthesis of the 
R element. That example should make clear the how the output table results are obtained 
for the remaining five elements. 
 
4.1 Logic Level Encoding  
 
Each of the Petri net transitions that represent input or output events can be expanded to 
encode the direction of the logic level transition. This step requires the expansion from 
one to two transitions and the addition of two places. For example, in Fig. 11 a Petri net 
transition A is expanded to include a down transition to zero A0 and an up transition to 
one A1. New places a0 and a1 are added to encode the resulting state of the logic variable. 
The places b and c are in the original Petri net and remain unchanged. In some cases there 
may be more than one place input to or output from the expanded transition, but in either 
case these places remain unchanged. 

 
Figure 11.  Expansion of a Petri net transition to encode the logic level state. 

 
To see how this works we apply this expansion to the A, B and C transitions in the 
production rules for the R element and show the results in Pr. 5. 
 

                              A1 
 
b                      a0               a1                      c 
 
                     
                              A0 
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With a careful choice of labels for Petri net transitions and places the expansion is 
straight forward. Algorithms to obtain the reachability set and the edge set for the 
reachability graph are also straight forward. Any one of several available programs can 
produce the desired results, but we chose to construct a Mathematica program in order to 
be able to extend its functionality to the calculation of tables for each of the control 
element’s new outputs, given the present state of all of its inputs and outputs. 
 
4.2 Reachability Graphs and Output Tables 
 
The reachability set for R given by the output of our Mathematica program is 
 

{{0,{a0,b0,c0,d,e}},{1,{a0,b0,c1,f,g}},  
 {2,{a0,b1,c0,d,g}},{3,{a0,b1,c1,e,f}},  
 {4,{a1,b0,c0,e,f}},{5,{a1,b0,c1,d,g}},  
 {6,{a1,b1,c0,f,g}},{7,{a1,b1,c1,d,e}}} 

 
where the octal coding of the binary logic levels abc8 uniquely identifies each of the 
reachable markings. Using these identifiers the edges of the reachability graph become 
 

{{0,4},{0,2},{1,0},{2,6},{3,1},  
 {4,6},{5,1},{6,7},{7,3},{7,5}} 

 
in which each edge is directed from the first to the second member of the tuple 
identifying the edge. From this Mathematica result the reachability graph can be drawn as 
shown in Fig. 12. 
 
The output c of the R element is the least significant digit of the binary coded marking 
and changes whenever transition C fires. The red edges between markings 6 and 7 and 
between markings 1 and 0 represent the firing of transition C and, thus an output logic 
level change in c. Thus, markings 6 and 1 represent unstable states of the logic circuit to 
be synthesized. All the remaining markings represent stable states of the circuit. 
 
Another Mathematica program has been written to list the new circuit state for each of its 
8 present states. It uses only the set of reachable markings and the set of edges connecting 
them. The truth table results are shown in Table 1. 
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Figure 12. Reachability graph for the R element. 

 
Rendezvous Output c’ 

abc8 = abc2  
0 = 000 0 
1 = 001 0 
2 = 010 0 
3 = 011 1 
4 = 100 0 
5 = 101 1 
6 = 110 1 
7 = 111 1 

 
Table 1. Output of the Rendezvous element. 

 
The new value c’ of output c that follows each unstable state is shown in red in Table 1.  
The equation for the output variable c’ can be synthesized from Table 1 by use of a 
Karnagh map or a synthesis program such as Espresso [11].  In the case of the R element, 
the equation for the output variable c’ is given in Eq. 1. 
 
                                                           bcacabc ++='                                                  Eq. 1 
 
The above procedure can be repeated for each of the other remaining three control 
elements that are conflict free. The computed results are summarized Eq. 2 through Eq. 4 
below. 
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Branch Output b’ c’ 

abc8 = abc2   
0 = 000 0 0 
1 = 001 0 0 
2 = 010 0 0 
3 = 011 0 0 
4 =100 1 1 
5 = 101 1 1 
6 = 110 1 1 
7 = 111 1 1 

 
Table 2. Outputs of the Branch element. 
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Merge Output  c’ 
abc8 = abc2  

0 = 000 0 
1 = 001 0 
2 = 010 1 
3 = 011 1 
4 = 100 1 
5 = 101 1 
6 = 110 0 
7 = 111 0 

 
Table. 3. Output of the Merge element. 

 
                                                     bac ⊕='                                                       Eq. 3 
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Call (C) 
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In Table 4 the hex coding of the present state can be read from the left hand column for 
abcd and the top row for fghj. For example, the initial mark state M0 is located in the 
upper left corner at 0016 and produces output b’ = 0. The output b’ = 1 (in red) at 2616 = 
0010 01102 results from a current state in which b = 0. The new output b’ = 1 ultimately 
leads to the stable state 6616 = 0110 01102. 
 
Note that in Table 4 the hex digits a, b, c, d, e, f are never in italics, but the output 
variables a, b, d, e, f, g, h, j are always in italics. Also note that there are many don’t care 
cells in Table 4 and as a result many coverings are possible leading to different minterm 
forms and logic equations other than the one for b’ shown in Eq. 4. No don’t care cells 
occur in the B, R, D and M elements so there is only one minterm form for their output 
variables. There are several ways to simplify the C element minterm forms and we have 
chosen those that include several XOR functions because of their apparent simplicity. 
 

Call Output b’    fghj16 => 0 1 2 3 4 5 6 7 8 9 a b c d e f 
abcd16 = abcd2                 

0 = 0000 0  0  0 0   0 0    0  0 
1 = 0001   0 0  0  0 0  0    0 0 
2 = 0010 0 0     1      1 0 0   
3 = 0011  1     0 0   0 0 1    
4 = 0100 0      1 1   1 1  0   
5 = 0101 1 1      0   0  1 1   
6 = 0110   1 1 1  1   1  1   1 1 
7 = 0111  1  1 1 1   1 1   1  1  
8 = 1000 0 0       1   1  0 0   
9 = 1001 1      0 0   0 0  1   
a = 1010  0  0 0 0   0 0   0  0  
b = 1011   0 0 0  0   0  0   0 0 
c = 1100   1 1  1  1 1  1    1 1 
d = 1101 1  1  1 1   1 1    1  1 
e = 1110  0     1 1   1 1 0    
f = 1111 1 1     0     0 1 1   

 
Table 4. Output b’ of the Call element and its covering. 
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                         Eq. 4 

 
The output equations synthesized by Espresso have six terms each. Using XOR gates, the 
Espresso result can be reduced to 3 terms as shown in Eq. 4. The result for b’ is shown 
by the colored outlines in Table 4. The four column pairs and the two row pairs with 
colored outlines correspond to the six terms in the Espresso results. The yellow, green 
and blue rectangles correspond to the first, second and third terms, respectively, in the 
expression for b’ shown in Eq. 4. 
 
The logic equations for c’, g’ and h’ can be obtained in a similar fashion from Espresso 
results. Alternatively, by using the symmetry properties of the Petri net for the C element, 
these other results can be obtained from b’. For example, c’ can be obtained from b’ by 
swapping the input variables: b  c, g  h and d  j. The logic equation for e’ in Eq. 4 
is just the same as that for the M in Eq. 3, but with the substitutions: f =>b and e’ => c’. 
The bottom two equations can be obtained from the top two by swapping: a  f, b  g, 
c  h and d  j. 
 
4.3 Conflict Management 
  
The remaining two of the set of macromodular control elements are the D and the I. Both 
Petri net models contain conflict, in which two transitions may be simultaneously enabled 
resulting in a mutually exclusive firing of one of the two. If these two transitions are live, 
execution of the Petri net will lead to an unpredictable sequence of firings.  
 
4.3.1 Decision Element 
 
We examine the D element first since it is simpler and can set the pattern for the more 
complicated I element. The logic equation for the D will be determined by the same 
procedure as was used in the previous section and is presented below in Eq. 5. 
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Decision Output b’ c’ 
abc8 = abc2   

0 = 000 0 0 
1 = 001 1 0 
2 = 010 0 1 
3 = 011 1 1 
4 = 100 1 1 
5 = 101 0 1 
6 = 110 1 0 
7 = 111 0 0 

 
                             Table  5. Output of a Decision element 
 

Examination of the reachability graph for the D element shows two edges directed away 
from each of the unstable states (1, 2, 4, 7): one causing b’ to be different than b and the 
other causing c’ to be different from c. The mutual exclusivity of changes in b’ and c’ 
expressed in the reachability graph must be realized in the circuit to be synthesized. We 
proceed by developing the logic equations for b’ and c’ independently of each other.  
                                               

                                                    
bac
cab

⊕=
⊕=

'
'                                                    Eq. 5 

 
                  

Map for b’c’ bc = 00 bc = 01 bc = 11 bc = 10 
a = 0 00 10 11 01 
a = 1 11 01 00 10 

 
 
Table 6. Karnaugh map for outputs b’c’ of D element          Figure 13. D element circuit. 

 
There is cross coupling between outputs b’ and c’ as can be seen in Eq. 5, the Karnaugh 
map (Table 6) and the synthesized circuit (Fig. 13). This cross coupling provides the 
mutual exclusivity required by the Petri net, but the subsequent transient behavior of the 
circuit must be examined carefully. 
 
Unstable states are shown in bold red in Table 6. Instead of always settling to a stable 
state, as was the case for all the previous control elements, the D element appears to 
oscillate between two pairs of states abc =100  111 and abc = 010  001. The 
Karnaugh map does not tell the whole story, however, since it does not reflect the analog 
nature of the two cross-coupled XOR gates. 
 
In Fig. 14 two realizations of the D element are shown. Figure 14(a) feeds back the 
outputs of the NAND gates directly to the inputs while Fig. 14(b) buffers the output of 
the NAND gates before feeding them back to the inputs4. The red dots indicate that the 

                                                 
4 For brevity and because the loop has been closed the primes denoting the open loop values have been 
suppressed in Fig. 14 and thereafter. 

 b’                c’ 
 
   
       c       b 
       
          a 
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output of each pair of NAND gates is joined in a wired OR gate. Both of these 
realizations lend themselves easily to CMOS circuits. In the realizations in [12] the 
delays through the input inverters are, in the non-inverted inputs, offset by CMOS 
transmission gate pairs that are always turned on, but provide equivalent delay. 

 
(a)                                                       (b) 

Figure 14. Two realizations of the D element using inverters and NAND gates. 
 
In all of the states shown in Table 6 either NAND gate 1 or 2 of Fig. 14 (a) is enabled by 
the input and never both: gate 1 for a = 1 and gate 2 for a = 0. A similar mutual exclusion 
exists for NAND gates 3 and 4. The situation is similar, but reversed, in Fig. 14 (b). 
Figure 15 shows three abstractions that cover all the stable states. 
 
The cross-tied inverters of Fig. 15 produce a bistable circuit. As input a toggles between 
0 and 1, the circuit of Fig. 14(a) toggles between the abstractions in Fig. 15(a) and Fig. 
15(b) while Fig. 14(b) toggles between the abstractions in Fig. 15(b) and Fig. 15(c). This 
alternation of abstractions occurs because the switching between NAND gates 2 and 1, 
switches an input inverter in and out of the feedback path.  
   

 
Figure 15. Abstraction of stable states of the circuits of Fig. 14. 

 
Figure 15 shows the abstraction for the four stable states and for the two circuits of Fig. 
14. We can reason about the transition from one stable state to another by looking at just 
one side of the abstractions in Fig. 15. For example, examine the left-hand inverters in 

              ∈abc  {101, 110}            ∈abc  {000, 011}           ∈abc  {101,110} 
                           (a)                                    (b)                                   (c)

                                            

       cb  
 
                 cb  
 
    1         2                    3         4  

babaacac
              
 
 
                      a  

      cb  
 
 
 
 

    1         2                    3         4 
babaacac

       
 
 

                      a



 17 

Fig. 15(a) and Fig. 15(b). Start with the state a = 0 and cb = 00. Then make a = 1. The 
enabled NAND gate moves from 2 to 1 in Fig. 14(a) and the inverter is no longer in the 
c  feedback path. 

 
Figure 16. Progression from one stable state to another: abc = 011 => 101 or 110. 

 
Figure 16(a) corresponds to the left-hand inverter pair of Fig. 15(b), but Fig. 16(b) 
through Fig. 16(d) corresponds to the single left-hand inverter in Fig. 15(a). In Fig. 16(b) 
the circuit capacitances briefly maintain the feedback voltages b  and c  unchanged. 
However, in Fig. 16(c) these voltages decay to intermediate values in the metastable 
region. Eventually, in Fig. 16(d) the circuit stabilizes in one of the two available stable 
states. 
 
For a = 1, the inverter shown in Fig 16(b) through Fig. 16(d) is part of the two inverter 
loop shown in Fig. 15(a). This is the familiar bistable circuit or flipflop whose output 
waveforms proceed exponentially from the metastable state to a stable state and are 
comparable to those first observed in [13] for the flipflop. Swamy [12] shows waveforms 
exhibiting this behavior that were the result of a SPICE simulation of a CMOS circuit. 
The Appendix develops a simplified linear analysis of the inverter rings shown in Fig. 14 
yielding results for the general case and verifying the reasoning presented in Fig. 16.  
 
Figure 16 starts from abc = 011 and shows the progression to the two possible stable 
states abc = 101 or abc = 110. There is also a similar sequence starting from abc = 000 
and terminating in the same two stable states. It can be inferred from Fig. 16 by 
complimenting the values of a, b and c in Fig. 16. 
 
Starting from the stable state abc = 101 we see a different behavior in Fig. 17. When the 
enabled NAND gate moves from gate 1 to 2, the number of inverters in the loop grows 
from two as in Fig. 15(a), to four as in Fig. 15(b). 
  
 
 
 
 

           a       0          a       1          a       1           a       1 
 
           b      0          b      0           b      m          b      0/1 
 
 
 
                   1                                                  
 
 
           c      0           c      0           c      m           c     1/0 
              (a)                 (b)                (c)                   (d) 
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Figure 17. Progression from one stable state to another: abc = 101 => 000 or 011. 
 
In this case an oscillation appears between Fig. 17(b) and Fig. 17(c). Neither of these 
states is stable as seen by the red entries in Table 6. The duration of oscillation will 
depend upon circuit parameters. In Fig. 17(d) the difference between outputs b and c  
will grow from a trivial amount present in the previous two oscillatory states to an 
appreciable amount. However, this difference is still in the metastable region. Finally in 
Fig. 17(e) the outputs leave the metastable region and settle into one of the two allowed 
stable states. This interpretation of the sequence of events is supported by a SPICE 
simulation [12] and the development in the Appendix. Starting from abc = 110 produces 
a sequence complementary to Fig. 17. 
 
In the Appendix we show that the difference between the output logic voltage levels b 
and c is an exponentially growing function of time with a time constant proportional to 

ts gC  where Cs is the stray capacitance at the output of each inverter and gt is the 
magnitude of the transconductance of each inverter in the middle of its switching region. 
Furthermore, the behavior of the circuit in Fig. 14(b) can be analyzed in a similar fashion 
with the inverter ring with Fig. 15(c) taking the place of that of Fig. 15(a). In contrast to 
the analysis of the circuit in Fig 14(a), oscillation as shown in Fig 17 takes place for all 
four unstable states. 
 
The construction of a D element has been proposed [14] for the purpose of generating 
random binary digits. Chaney has dubbed this device the Perhapsatron. However, it 
appears quite difficult to prove lack of bias for the stream of digits generated by a real 
device of this sort. Even with the addition of substantial circuitry beyond the cross-
coupled XORs the Perhapsatron is likely to still have some opportunity for bias. It is 
probably best to view the D element as a theoretical device useful in modeling and as a 
stepping stone to the I element. 
 
4.3.2 Interlock Element 
 
Like the D element, the Petri net model of the I element (Fig. 8) displays conflict. For the 
I element it is between the firing of transitions D and H which share inputs from place t. 
 

                a       1           a       0           a     0            a     0           a        0 
 
                b       1          b       1           b     0           b     m          b      0/1 
 
 
                                               1                   0                   m                   1/0 
                                                             
 
 
                c       0          c       0            c     1           c      m          c      0/1 
                   (a)                 (b)                 (c)                 (d)                  (e)
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There are four input logic levels (b, c, f, g) and four output logic levels (a, d, e, h). The 
output level d’can be determined from the output map in Table 7 or calculated directly 
from the set of vertices and edges of the reachability graph. Then by using Espresso the 
logic equation for d’in Eq. 6 can be determined. The output level h’can be determined in 
a similar fashion. 
 
There is symmetry between the outputs maps for d’and h’: one is the transpose of the 
other. This occurs because the logic variables are arranged so that the first four (abcd) 
pertain to the upper Interlock channel and the second four (efgh) pertain to the lower 
channel. In fact, one output can be obtained from the other by the following variable 
swaps: a  e, b  f, c  g, d  h.   
 

Call Output d’    efgh16 => 0 1 2 3 4 5 6 7 8 9 a b c d e f 
abcd16 = abcd2                 

0 = 0000 0    0 0  0 0  0 0    0 
1 = 0001                 
2 = 0010                 
3 = 0011                 
4 = 0100 1    1 0  1 1  0 1    1 
5 = 0101 1    1    1 1    1    1 
6 = 0110                 
7 = 0111 1    1 1  1 1  1 1    1 
8 = 1000 0    0 0  0 0  0 0    0 
9 = 1001                 
a = 1010 0    0    0 0    0    0 
b = 1011 0    0 1  0 0  1 0    0 
c = 1100                 
d = 1101                 
e = 1110                 
f = 1111 1    1 1  1 1  1 1    1 

  
Table 7. Output d’ of Interlock element and its covering. 
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The logic levels a’ and e’ are obvious from an examination of Fig. 8, the Petri net of the 
I element. The logic level d’ can be understood from a realization that if g and h are at  
the same logic level, there must not be a token in place s of the Petri net. Thus, d’can 
follow b and the request of the upper channel can be granted. However, if g and h are 
different logic levels, c and d must be the same, preventing place n from being marked 
and deferring the grant until logic levels g and h are the same. Similar reasoning can be 
applied to logic level h’. 
 
The covering for d’shown in color in Table 7 corresponds to the first (blue) and the 
second (green) terms in Eq. 6. Remember that the covering for h’is the transpose of that 
for d’. 
 
Conflict can occur only when the shared resource is free and places n and s are empty, a 
circumstance that happens when logic levels c = d and g = h. In addition, requests must 
be pending in both the upper and lower channels requiring that places j and p be free of a 
token and thus, ba ≠ and fe ≠ . Finally, it must be true that the places k and q be free of 
a token so that a = c and f = h. These three conditions must hold when there is conflict 
and are true only at the four states that are marked in Table 7 with a bold red digit, they 
are states 44, 4b, b4 and bb. At each one of the four states the circuit defined by Eq. 6 
must resolve the conflict. So we are interested the states immediately following 44, 4b, 
b4 and bb. The only logic variables that can change following these states are d and h. 
According to the reachability graph, the changes in d or h must be mutually exclusive just 
as was the case between b and c for the D element. Table 8 lists the possible next states 
determined by the covering of Eq. 6. 
 

Conflict at dh = 00 dh = 01 dh = 11 dh = 10 
44 11 01 00 10 
4b 00 10 11 01 
b4 00 10 11 01 
bb 11 01 00 10 

 
Table 8. Next states for the I element following the four conflict states. 

 
As can be seen from Table 8 the next states following 44 and bb are identical to those for 
the D element shown in Table 6 for a = 1. Similarly, the next states following 4b and b4 
are identical to those for the D element for a = 0. Thus, we can expect the same kind of 
behavior following a conflict state as described for the D element in Section 4.3.1. Since 
the I element can be realized in a sum of products form, it can be constructed in an 
analogous fashion to either Fig. 14(a) or 14(b). In this case, the d’ and h’ outputs will 
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each be composed of four, three-term products. When taken together under conflict 
conditions these two logic arrays become inverter rings with n = 2, 4 or 6 as shown in 
Fig. 15. The behavior of these rings will be as predicted in the equations given in the 
Appendix. 
 
4.4 Hazards-Free Control Elements 
 
Transient errors can occur in the outputs of a combinational circuit due to unintended 
component delays. These errors are called combinational hazards and must not occur in 
the control elements since they can produce spurious transitions in element outputs. The 
complexity of the C and I elements rule out manual methods of analysis and argue for a 
systematic approach. A ternary logic test is described by Unger [15] that can be 
automated based on the results of the reachability graphs obtained from the control 
element Petri nets.  
 
Unger postulates a third logic value midway between the traditional binary logic values 
of 0 and 1. The added value is chosen to be ½ and is inserted in the sequence of input 
logic values between 0 and 1 for a positive going change and between 1 and 0 for a 
negative going change. Ternary truth tables for each of the basic logic functions (AND, 
OR, XOR) can be established as shown in Fig. 18. 
 

        
Figure 18. Ternary truth tables for three basic logic functions 

 
The NOT function swaps 1  0 and leaves the ½ unchanged as can be seen for the 
special case NOT(a) = XOR(a, 1). The XNOR is just the XOR with the swap: 1  0. 
 
The logic level ½ should not be viewed as a precise value, but rather as an indicator that 
the logic level is between 0 and 1 and its exact value is uncertain. It could equally well be 
represented as a “?” except that such a symbol is less convenient for automation. 
 
No matter the configuration of the gates in a combinational circuit the presence or 
absence of a hazard is conserved so long as the resulting map covering remains 
unchanged. A hazard may or may not result in transient errors in a physical circuit 
depending on the values of its inherent, unintended circuit delays. A hazard, the potential 
for a transient error, exists depending only on the nature of the circuit’s map covering. In 
different physical circuit realizations different arrangements of inherent delays may be 
required for a hazard to be become a transient error. For example, a three-input AND and 
a cascade of two, two-input ANDs having the same truth table may be quite different in 
the values of delay through the various paths in the circuit. If a hazard exists in a circuit 

a b  0 ½ 1   
0    0 ½ 1   
½    ½ ½ 1  
1    1 1 1 

a b  0 ½ 1   
0    0 0 0   
½    0 ½ ½ 
1    0 ½ 1

a b  0 ½ 1   
0    0 ½ 1   
½    ½ ½ ½ 
1    1 ½ 0

OR AND XOR
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containing the three-input AND, it also exists in the circuit containing the equivalent two-
input ANDs, but the delay values that would cause a transient error may differ 
substantially. 
 
The reachability graph of the Petri net of a control element displays all the allowed 
sequences of states for the combinational circuit that implements that control element. In 
fact, we only need to examine the paths between stable states since no hazard can occur 
while the circuit is in a stable state. In many cases a single edge in the reachability graph 
carries the circuit from one stable state to the next. For unstable states it is necessary to 
examine a path that consists of, at most, two edges. This path starts with a stable state, 
passes through an unstable state and terminates at a second stable state. We approach the 
application of this method in two steps: first analyze the control elements without conflict 
and then those with conflict. 
 
4.4.1 Hazard Test for Conflict-Free Control Elements 
 
The B, M, and C elements can have only a single input change at a time.  The B element 
is trivial since it consists of merely two buffers between its single input and its two 
outputs. So long as the input transitions are properly spaced, no hazard can exist. The M 
element has no feedback path and since only one input can change at a time, it is easy to 
see no hazard can exist for this element, too. 
 
The R element can have concurrent transitions on its two inputs, but it is much simpler 
than the C element and so we apply the ternary hazard test to the R as an example of the 
method. The method also applies to the B and M elements, but the results are 
unsurprising and are not discussed here. The D and I elements are discussed in the next 
section on conflict. 
 
Examining the reachability graph of the R element shown in Fig.12, we see that states 0, 
2, 3, 4, 5, and 7 are stable and only states 1 and 6 are unstable. However, since concurrent 
input transitions can occur, it is possible to pass directly from state 0 to 6 and then to 7. 
Similarly, it is possible to pass form state 7 to1 and then to 0. 
 

Path M0(abc) M1i(abc) M1f(abc) M2i(abc) M2f(abc)
{0,4} 000 ½00 ½00 100 100 
{0,2} 000 0½0 0½0 010 010 
{1,0} 001 001 000 000 000 
{2,6,7} 010 ½10 ½1½ 11½ 111 
{3,1,0} 011 0½1 0½½ 00½ 000  
{4,6,7} 100 1½0 1½½ 11½ 111 
{5,1,0} 101 1½1 1½½ 00½ 000 
{6,7} 110 110 111 111 111 
{7,3} 111 ½11 ½11 011 011 
{7,5} 111 1½1 1½1 101 101 
{0,6,7} 000 ½½0 ½½½ 11½ 111 
{7,1,0} 111 ½½1  ½½½   00½ 000  

 
Table 9. Ternary test for hazards for the R element. 



 23 

 
Table 9 shows the sequence of states that occur for each of the possible paths in the 
reachability graph between two stable states. The red states (1, 6) are unstable and the 
paths that begin there are shown for completeness since they appear in the set of 
reachability graph edges. However, they also appear in the four paths that begin at 2, 3, 4 
and 5 where the behavior of the circuit can be examined more comprehensively. 
Likewise, they appear in the last two paths that describe concurrent inputs. Henceforth, 
we ignore the two rows that originate in unstable (red) states. 
 
In column M0 we see the binary marking corresponding to the initial state of the logic 
levels a, b and c. In column M1i the inputs a and b have initiated their change from the 
standard values and one or the other takes on the value ½ to signify this event. In the last 
two rows these inputs both change to ½. Note that the output c in column M1i is given by 
Eq. 1 with inputs from the M0 column. In column M1f the output c is either unchanged 
or the logic value ½ has propagated to the output. Column M1f is the final value reached 
by the output that was initiated in column M1i. This final value is computed in the 
ternary test by a fixed-point function. 
 
In column M2i the next change is initiated by setting the input logic levels to their final 
values. The output logic level is the same as that achieved in column M1f. Finally, the 
fixed-point process is repeated one more time in M2f and the final stable state is reached 
for those cases with their path through an unstable state. 
 
For comparison with [15], identify column M1i with Step 1 in Procedure 4.3A and M1f 
with Steps 2, 3, and 4. Column M2i should be identified with Step 1 in Procedure 4.3B 
and M2f with Steps 2 and 3. 
 
Are there any hazards represented in Table 9? The answer is no, if the progression of the 
output logic level is monotonically increasing or decreasing to 1 or 0, respectively, 
producing a final and stable state. There must not be a turning point nor an unanticipated 
final state. The existence of a turning point can be detected by computing the slope of c 
from M0 through M2f. There is no change in c between M0 and M1i nor is there a 
change in c between M1f and M2i. The remaining differences are reported in Table 10. 
  

Path M1i(c)-M1f(c) M2i(c)-M2f(c) 
{0,4} 0 0  
{0,2} 0 0  
{2,6,7} ½  ½ 
{3,1,0} -½ -½ 
{4,6,7} ½  ½ 
{5,1,0} -½ -½ 
{7,3} 0  0 
{7,5} 0  0 
{0,6,7} ½  ½ 
{7,1,0} -½ -½ 

 
Table 10. Slope of logic level output c of the R element. 
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It can be seen by inspection that the slope of c is flat, upward or downward with no 
instance of a turning point. Thus, the R element is hazard-free.  
 
The process outlined in Tables 9 and 10 has been automated with a Mathematica program 
and applied to the other conflict-free elements. Note that the product of the two columns 
of Table 10 will always be non-negative for hazard-free control elements. Results show 
that in addition to the R, the B and M elements are also hazard-free. 
 
However, computer analysis of the C element does exhibit hazards. Since the reachability 
graph has 160 edges, it cannot be handled with certainty by manual methods. The two 
counter-examples shown in Table 11 are sufficient to demonstrate that hazards exist. 
 

Path M0(a..j) M1i(a..j) M1f(a..j) M2i(a..j) M2f(a..j) 
{5,4,0}16 00000101 0000010½ 00½00½0½ 00½00½00 00000000 
{5,15,17}16  00000101 000½0101 0½½½0½½1 0½½10½½1 0½½10½½1  

 
Table 11. Ternary test counter-examples showing hazards in two C element paths. 

 
In the path {5,4,0} output logic level c has the pattern 00½½0 showing a reversal in 
slope indicating a hazard. In path {5,15,17} each of the output logic levels b, c and h 
have the pattern 00½½½ indicating the possibility of metastability. The output logic level 
g has a similar pattern that starts from 1 instead of 0. In each case the inherent delays 
must have specific values for these hazards to appear.  
 
A different covering of the “don’t cares” in Table 4 that leads to a different truth table 
might remove the hazards, but finding that covering is a daunting task. A more tractable 
approach is to insert delays in the feedback paths as suggested by Molnar [10] and 
sketched in Fig. 19. 

 
Figure 19. Delays for hazard elimination in the C element. 
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Let dc be the maximum possible delay in the propagation of any change through the 
combinational circuit and df be the minimum possible delay inserted in the feedback path. 
Then, the inequality dcdf > ensures that no output change can arrive at the input before 
the outputs are stable. Subsequently, when any changed output has been passed through 
the delay df to the input, the circuit will lock into the next stable state. This behavior is 
demonstrated in Table 12 where the two counter examples of Table 11 are repeated with 
the delay df inserted in the circuit as shown in Fig. 19. 
 

Path M0(a..j) M1(a..j) M2(a..j) M3(a..j) M4(a..j) 
{5,4,0}16     :I 00000101 0000010½ 00000100 00000½00 00000000 
{5,4,0}16     :O 00__10 00__10  00__½0 00__00 00__00 
{5,15,17}16  :I  00000101 000½0101 00010101 000101½1 00010111  
{5,15,17}16  :O   00__10 00__10 00__1½ 00__11 00__11 

 
Table 12. Ternary test examples for C element with delays. 

 
Because the input logic levels are different from the output levels as a result of the 
insertion of the delays, two rows (labeled I and O) are included for each path.  In the M0 
column the fed back inputs are the same as the outputs so the circuit is stable. In column 
M1 the input change begins and appears in the output in column M2 along with the 
completion of the input change. There is no need for the M1f column in this case because 
there is no feedback as yet. In column M3 the feedback of the output change begins and 
is completed in column M4. Again there is no need for the M2f column because of the 
absence of immediate feedback. Column M4 shows that the fed back inputs are the same 
as the outputs so the circuit is again stable, but now in the new state. 
 
As can be seen by inspection of the output values, all the output slopes are zero or 
monotonic. Thus, no hazards exist in these two cases. Computer analysis of all 160 cases 
verifies that the C element circuit, with delays inserted as in Fig. 19, is hazard-free. 
 
4.4.2 Hazard Test for Control Elements with Conflict 
 
Because of the circuit behavior discussed in Section 4.3, we anticipate hazards in the 
control elements whose Petri nets contain conflict. Our approach is to identify the 
reachability graph paths that demonstrate conflict and test for hazards in the remaining 
paths between stable states. If none exist, attention can be focused on the conflict states.   
 
We first examine the D element because of its simplicity and use what we learn there for 
our study of the I element. The stable states of the D element are 0, 3, 5 and 6 as can be  
 

Path M0(abc) M1i(abc) M1m(abc) M1m’(abc) M2m(abc) M2m’(abc) 

{0,4} 000 ½00 ½½½ ½½½ 1½½  1½½  
{3,7} 011 ½11 ½½½ ½½½ 1½½ 1½½ 
{5,1} 101 ½01 ½½½ ½½½ 0½½ 0½½  
{6,2} 110 ½10 ½½½ ½½½ 0½½  0½½  

 
Table 13. Ternary test for hazards in the D element. 
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seen from Table 5 and shown in the Path column of Table 13. The remaining four states 
(1, 2, 4, 7) are unstable. 
  
Table 13 for the D element differs markedly from Table 9 for the R element because 
columns M1m and M1m’ show a persistent metastable state. Even when input logic level 
a completes the transition to a standard level in column M2m, the metastable condition of 
the outputs persists. Only the paths originating in stable states are reported in Table 13. 
Those starting in unstable states oscillate as described in Section 4.3.1 and then, because 
of the physics of the circuit, settle into one of the four stable states. This final phase of the 
circuit’s behavior cannot be predicted by the ternary analysis. 
 
As suggested in columns M1m’ and M2m’, repeatedly applying the logic function for 
the D element given in Eq. 5 to the entries in column M1m and M2m leaves the result 
unchanged with both output logic levels at ½. This violates the requirement for 
termination of the ternary test in an expected stable state. Thus, the circuit for the D 
element contains a metastability hazard. 
 
Each one of the four unstable states is a result of conflict in the Petri net model of the D 
element and all the paths between stable states pass through one of these four states. The 
ternary analysis predicts these hazards, but we already knew there was trouble in these 
unstable states. 
 
There are 112 edges in the reachabilty graph for the I element. Of these the ternary test 
warns of metastability hazard in 32 cases and a combinational hazard in 8 cases. The 
remaining 72 edges prove to be hazard-free.  
 
For both the D and I elements, elimination of the metastability hazards associated with 
conflict is necessary. The mutual exclusion circuit originated by Seitz [9], later modified 
for CMOS implementation [4], [16], provides just the right detector for metastability. 
When the output of the metastability detector is deasserted, the outputs of the D or I 
circuits can be clocked into output flip-flops thereby hiding the hazards associated with 
conflict and its resultant possibility of metastability. This solution to the problem of 
metastability hazards has been described in detail and successfully simulated for the I 
element [12]. 
 
The combinational hazards that appear in the 8 cases can be removed by augmenting the 
logic equations as follows:  
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The added terms have been determined through manual trial and error and unfortunately 
have not, at this time, had the benefit of algorithmic calculation. The ternary test of these 
equations is, of course, automated, but the added terms have been chosen by hand. 
 
4.4.3 Elimination of System Hazards 
 
Combinational and metastability hazards internal to the control element are not our only 
concern. A system of control elements can contain feedback loops causing a change in an 
input before the effects of the previous input change have settled to their final value. The 
output delay do shown in Fig. 19 can be used to prevent this hazard. 
 
Consider a control element with a self-loop, a direct connection from the output of a 
control module to its input. A self-loop is unlikely to be used in practice, but it is the 
worst case for this kind of system hazard. Then the condition [10] for hazard-free 
composition of a system of control elements is: 
 

                                                             dfdcdo +≥                                                 Eq. 8 
 
where do is the minimum value for the output delay and dc and df are the maximum 
values of the circuit and feedback delays, respectively. Note that control elements like the 
R , B, M, D and I, that are hazard-free without a feedback delay, allow do to satisfy the 
inequality in Eq. 8 with df = 0. However, the C element expressed by the logic of Eq. 4 
will presently require a non-zero value of df. Perhaps a future augmentation of the logic 
of Eq. 4 will remove this constraint. 
 
5.0 Conclusions 
 
The design of a set of delay-insensitive control elements has been presented. This design 
proceeds from the Petri net model of the element’s desired behavior. Automation of the 
process is used to manage the complexity, both of the logic equations that define the 
circuit realization and of the ternary test for hazards. A method for the management of 
hazards in the more complex C element is described. Control elements whose Petri net 
models contain conflict are shown to have the potential for metastability hazards. This 
particular problem must be managed with a metastability detector circuit since the 
duration of metastability is unknown and unbounded. 
 
The use of these delay-insensitive control elements in association with a restartable 
crystal clock [17] can produce blended systems of clocked processor cores coupled by a 
set of standard clockless elements. These systems can be composed to produce endlessly 
scalable systems that are free of all hazards including synchronizer failures. These results 
suggest it is time to reexamine the role that this modular approach might play in system-
on-chip (SoC) designs fabricated on multi billion transistor integrated circuits. 
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6.0 Future Work 
 
A test system composed of two restartable clocks, two processing elements, two I 
elements and two connecting delay-insensitive FIFOs has been planned and will be 
fabricated soon. This system will use both R and M elements in the construction of the DI 
FIFOs. It should demonstrate the effectiveness of the blended clocked and clockless 
methodology. Later systems must be developed to test, in practice, the unlimited 
scalability of this approach. 
 
Presently the C element requires feedback delays to be hazard-free. There are a number 
of algorithms for the synthesis of hazard-free circuits [4] that can be applied to the output 
map for the C element to eliminate the need for these delays and increase the C element’s 
speed of operation. 
 
The output delays shown in Fig. 19 are required to forestall the creation of hazards 
through the interconnection of control elements within a system. These delays are sized 
for the worst case of a self-loop connection. However, it would be possible to develop a 
CAD tool that would minimize these delays based on the worst-case delays through 
elements and the particular interconnection of elements in the system’s design. This 
approach would optimize the performance of the sequencing network and might be useful 
where very high speed is required. 
 
The composition of control elements in the sequencing network of a large system could 
be, in principle, analyzed by examining the reachability graph of the entire system 
modeled as a Petri net. However, the resulting state-space explosion makes this approach 
computationally infeasible. It is conjectured that an arbitrarily large system composed of 
control elements, processing elements and FIFOs can be decomposed recursively into 
components capable of a Petri net reachability analysis without excessive computational 
complexity. Proof of this conjecture must await future work. A positive result would 
establish a theoretical basis for the unlimited scalability of the blended approach that 
combines clocked and clockless components. 
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Appendix 
 
Figure 15 of Section 4.3.1 shows three abstractions of two D element circuits depicted in 
Fig. 14. Even these simplified abstractions are difficult to analyze in their non-linear 
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region except by simulation. However, considerable insight can be gained by a linear 
analysis. Even though this analysis applies only in the vicinity of the metastable point, it 
describes well the behavior as seen in several SPICE simulations of the complete circuit. 
 
We change voltage variables to have their origins at the metastable point, halfway 
between the high and the low logic levels. Call these time-varying voltage levels 

)(tvi where i runs from 0 to n -1 and n is the total number of inverter stages. Thus, vi = 0 
for all i at the metastable point, vi = 2

1  is the high logic level, vi = 2
1−  is the low logic 

level and <iv  2
1 defines the metastable region. 

 
An approximation to the circuit dynamics can be made by including stray capacitance Cs 
in the equivalent circuit as shown in Fig. 20. 
 

  
Figure 20. Inverter rings used in calculation of the D element transient response. 

 
We assume that each inverter behaves as a linear transconductances –gs so that at each 

stage we have the differential equation 
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=

=
1

1

n

i

s
ijj

ieAv τ where the si are the n solutions of the 

equation 1)( =n
is . Given the initial value vi(0) of all the vi, the constants Aij can be 

determined  and the voltage waveforms can be obtained. Of particular interest are the 
sum and difference of the voltages at the outputs b and c. These voltages can be 
calculated for n = 2, as in Fig. 20 (a), and are 
 

                                                                 
τ

τ

δ evv

evv

=−

−=+ −

01

01                                                Eq. 9 

 
where the initial values of the voltages are )}(1,)½{(1},{ 10 δδ −+−=vv . Here δ is a 
constant that represents the small, but non-zero, difference between the initial values of 
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the two output voltages. If it were exactly zero, the time to resolve to a standard logic 
level would be unbounded, but the probability of this occurring in a real  
circuit is zero. 
 
These calculations can be repeated for n = 4, as in Fig. 20 (b), and the results for small 
δ are 

                                                   
ττ

δ τ

cossin02

2
1

02

+=−

=+

vv
evv

                                            Eq. 10 

 
where }1,1),(1,)(1{},,,{ 2

1
3210 −−−+= δδvvvv . 

 
Similarly for n = 6, as in Fig. 20(c), the results for smallδ are 
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where }1,1,1),(1 ,)(1,1{},,,,,{ 2

1
543210 −−−−+−= δδvvvvvv and 2

3=β . 
 
For n = 2 or 6 the difference voltage grows exponentially from a small value δ  until the 
standard output voltage levels are reached. A similar behavior occurs for the sum voltage 
in the case n = 4. Reaching standard voltage levels causes the linear model to fail and the 
oscillations observed for n = 4 or 6 will be damped out. These results have been observed 
in a complete SPICE simulation of the I module [12]. Also note that there is a fixed 
relationship between the period of the oscillations and the time constant of the 
exponential growth of the difference voltage for n = 2 or 6 and the sum voltage for n = 4. 
The oscillation period cannot be changed without changing the time constant. 
 
References 
 

[1] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981. 
[2] T. Murata, “Petri nets: Properties, analysis, applications,” Proc. IEEE, 77(4), pp. 541-

580, 1989. 
[3] T. H. Ming, Synchronization Design for Digital Systems, Kluwer Academic 

Publishers, 1991. 
[4] C. J. Myers, Asynchronous Circuit Design, Wiley, 2001. 
[5] W. A. Clark “Macromodular Computer Systems,” Spring Joint Computer Conf., 

AFIPS Proceedings, 30, Thompson Books, Washington D.C., pp. 335-336, 1967. 
[6] S. M. Ornstein, M. J. Stucki, W. A. Clark, “A Functional Description of  

Macromodules,” Spring Joint Computer  Conf., AFIPS Proceedings, 30, Thompson 
Books, Washington D.C., pp. 337-355, 1967.   

[7] M. J. Stucki, S. M. Ornstein, W. A. Clark, “Logical Design of Macromodules,” 
Spring Joint Computer Conf., AFIPS Proceedings, 30, Thompson Books, Washington 
D.C., pp 357-364, 1967. 



 31 

[8] W. A. Clark, C. E. Molnar, “Macromodular Computer Systems,” Computers in 
Biomedical Research, 4, R. Stacy and B. Waxman, Eds. Academic Press, New York, 
pp 45-85, 1974. 

[9] C. L. Seitz, “System timing,” In: C. A. Mead, L. A. Conway, Eds, Introduction to 
VLSI Systems, Chapter 7,. Addison-Wesley, 1980. 

[10] C. E. Molnar, T. P. Fang, F. U. Rosenberger, “Synthesis of  delay-insensitive  
modules,” In: H. Fuchs, ed. Proc. 1985 Chapel Hill Conference on Very Large Scale 
Integration, Computer Science Press, pp 67-86, 1985. 

[11] R. Rudell, A. S. Vincentelli, “Multiple valued minimization for PLA optimization,” 
IEEE Trans. on CAD, CAD, 6(5), pp. 727-750, 1987. 

[12] U. G. Swamy, J. R. Cox, G. L. Engel, D. M. Zar, “Design of an interlock module for 
use in a globally asynchronous, locally synchronous design methodology,” 
Washington University Tech Report WUCSE-2005-52, 2005. 

[13] T. J. Chaney, C. E. Molnar, “Anomalous behavior of synchronizer and arbiter 
circuits,” IEEE Trans. on Computers, C-22, pp.421-422, 1973. 

[14] T. J. Chaney, Personal communication, 2004. 
[15] Stephen Unger, Asynchronous Sequential Switching Circuits, Wiley-Interscience, pp. 

177-183, 1969. 
[16] N. Weste, D. Harris, CMOS VLSI Design: A Circuit and Systems Persepctive, 

Pearson Education, Inc., pp. 453-463, 2004. 
[17] J. R. Cox, “Can a crystal clock be started and stopped?” Appl. Math. Letters, 1(1), pp. 

37-40, 1988. 
 
 
 
 


	DepartmentName: School of Engineering & Applied Science
	ReportNumber: WUSEAS-2005-43
	Date: September 16, 2005
	Email: 
	Notes: 
	Footer1: School of Engineering & Applied Science - Washington University in St. Louis
	Footer2: Campus Box 1163 - St. Louis, MO - 63130 - ph: (314) 935-6166
	Abstract: Abstract: Methods are presented for synthesizing delay-insensitive circuits whose behavior is specified by Petri net models of macromodular control elements. These control elements implement five natural functions used in asynchronous system design. Particular attention is paid to modules requiring mutual exclusion where metastability must be carefully controlled.
	Title: Synthesis of Control Elements from Petri Net Models
	Author: Authors: Cox, J. R.; Zar, D. M. 


