
ICSE2000 Proceedings, Nov. 2000 223

Sender

Rapid Prototyping Asynchronous Processor

Puah W.B., Suparjo B.S., Wagiran R., and Sidek R.

Department of Electrical and Electronic Engineering, Faculty of Engineering, -
Universiti Putra Malaysia, 43400. UPM Serdang, Selangor.

I.-

-

Request

Data ’ Receiver,

4
Acknowledge

Abstract

An asynchronous processor has been an attractive research fields since it offers many
advantages over synchronous processor. Field-programmable gate arrays (FPGA), one of
today’s dominate media for prototyping and implementing digital circuits is used to construct
an %bit asynchronous RISC processor. The asynchronous processor employs conceptual
framework of a Sutherland micropipeline, a modular approach to design asynchronous
circuits.

1. Introduction

Almost all high performance processors today
are ba;sed on synchronous design framework. As
systems grow increasingly large and complex, the
synchronous design method faces some serious
problems like clock-skew, worst case
performance, high power dissipation and high
noise emission and electro-magnetic interference
(EMI)[1][2]. Asynchronous logic, which works
without global clock, can offer an alternative
design platform to overcome these problems.

Many academic research groups have been
established to exploit the benefits of the
asynchronous circuits by designing asynchronous
processor? The most successful projects are
Amulet and TITAC processors [3][4]. These
processors are developed using full custom design,
which need a lot of time and effort.

With the rapid development of Field
Programmable Gate Array (FPGA) technology,
designing asynchronous circuits like processor on
FPGA become possible. The %bit asynchronous
processor is developed using mixed Very High
Speed Hardware Description Language (VHDL)
and schematic editor in Altera Maxplus-I1 software
environment. The processor employs two-phase
transition signaling which functions within the
Micropipeline methodology. Because all of the
current FPGA technology is basically based on
synchronous framework, designing asynchronous
circuits are rather difficult than synchronous
counterparts since the design methodology is
different. Designer must ensure that the
synthesized circuits work within asynchronous
methodologies environment and avoid hazards
occur in the resulting circuits.

.

2. Micropipelines

All asynchronous design methodologies
are based on the delay model. They are
bounded-delay, micropipelines, delay-
insensitive, quasi-delay insensitive and speed-
independent methodologies [2].

Ivan Sutherland has introduced a novel
design framework to design asynchronous
(self-timed) circuit called Micropipelines in
his Turing Award lecture [5] . Micropipelines
are an event-driven elastic pipeline, which
employ a two-phask handshaking protocol
with bundled data for sending data between
processing units as illustrated in Figure 2.1.

Figure 2.1 : Two-phase bundled data protocol

In this handshaking protocol, rising and
falling transitions are trigger events for
request and acknowledge wires. This may
offer speed potential over conventional
clocking scheme and saves the time and
energy costs compared to return to zero
signaling.

When the data become valid on a bus, the
sender will issue a Request event to inform
the receiver about the availability of the data.

0-7803-6430-9/00/$10.00 02000 IEEE

224 ICSE2000 Proceedings, Nov. 2000

The receiver accepts the data and causes a
transition on Acknowledge wire, completing the
data transfer. The sender is then free to remove the
current data value and set up for next data
transmission. For correct operation, the data value
must arrive at the receiver before the Request
event and data must be held stable until the
Acknowledge event is received (bundling
constraint).

To ease the design of control circuits for
transition signaling in a modular approach, a set of
event logic modules has been proposed as shown
in Figure 2.2 [5] . Note that, an arbiter module is
excluded since it is not reliable to be implemented
in current FPGA technology [6]. --

(a) X O R (b) MULLER C

=E)-
(c) SELECT (d) TOGGLE

A -4 SELECT I TOGGLE
blank . dot .

V V

(e) C A L L

D2

-

Figure 2.2: FPGA Event Logic Modules

These modules are described below:
a) XOR circuit:

The XOR circuit act as an OR function for
events.

The MULLER C-element performs AND
function for events. When both inputs of a
MULLER C-element are in the same
logical state, the input’s state is copied
into its output. When both inputs are
different, it retained its previous state and
hold its’ output unchanged.

The TOGGLE circuit steers an incoming
events to its outputs alternately starting
with the dot output.

b) Muller C-element:

-

c) TOGGLE circuit:

d) SELECT module:
The SELECT module steers events to
one of two outputs (true or false)
based on an input Boolean value.

The CALL module act as a procedure
call where it remember which client,
RI or R2, called the procedure, R,
and after the procedure is done, D,
returns a matching done event on D1
or D2.

e) CALL module:

Micropipelines offer the opportunity to
construct complex control circuits and
systems by the hierarchical composition of
simple modules. The two-phase signalling
protocol allows modules of widely differing
performance to be easily integrated into a
complete, correctly functioning system. The
data-driven execution rates of individual
asynchronous modules allow the benefits of
average performance of the systems.

3. Processor organization and design

The developed %bit (Reduce Instruction
Set Computer) RISC asynchronous processor
is based on Harvard architecture with three
stages pipeline: fetch, decode and execution
unit. Harvard memory architecture (separate
instruction and data memory) allows greater
parallelism for instruction execution [7]. Data
passing through each of the units of the
processor are based on bundle data approach.
The request and acknowledge signals are
generated by request and acknowledge
controller in each processor unit. Figure 3.1
shows the processor organization.

The main function of the fetch unit is to
generate sequential instruction address. It
consists of program counter (PC), incrementer
(INC) circuit and First In First Out (FIFO)
buffer, which are shown in Figure 3.2. After
reset signal is asserted, the program counter
starts to fetch the first instruction from the
instruction memory and pass to the
incrementer where the next instruction
address is generated (PC+l). The FIFO buffer
is used to prevent deadlock [SI. The
multiplexer control whether branch, jump or
incremented value will be the next instruction
address. Event registers are served as a
pipeline latch to decode unit.

ICSE2000 Proceedings, Nov. 2000 225

INSTRUCTION MEMORY

PROCESSOR CORE

FETCH DECODE -b EXECU
4 - 4-

- I

immediate format instruction. The decode
unit is shown in Figure 3.3.

i t r Figure 3.3: Decode Unit
1 T I

DATA MEMORY c
Figure 3.1 : 8-bit FPGA asynchronous processor

organization

To instr Mem From instr Mem Output

Figure 3.2 : Fetch Unit

In decode unit, the instruction is decode
accordingly to the instruction format. They are
register, immediate and jump format. The
operation code (Opcode) of the instruction will be
hrther decoded in the controller to generate the
control signal to the operands. The FIFO serves as
the decoupling buffers before the control signals
are passed to the execution unit. The 8 8-bit
register files have two read ports and one write
port. The Extender unit is only accessible by the

The branch unit, which is shows in
Figure 3.4, is responsible to generate the
branch address'to the fetch unit. This unit
prevents the next instruction to stall due to the
branches, . hence eliminate pipeline
suspensions and avoid performance
degradation.

Figure 3.4 : Branch Unit

Major data processing of the processor is
done at execution unit. Figure 3.5 shows the
execution unit. The 8-bit ALU support
arithmetic logic (ADD,SUB), logical
(AND,OR,XOR), shift (SLL,SRL) and set
operation (SLT). The ALU output can act as
the address to the data memory or pass back
to the register files. Only load (LB) and store
(Se) instruction can access the data memory.

Currently, the processor supports 24
instructions, which include register,
immediate, load-store, branch and jump
operation but does not handle interrupt
operation.

226 ICSE2000 Proceedings, Nov. 2000 - - -------,
-- .

'I
To Data Xfem

I

From Dam Mcm Olnmt

Figure 3.5 : Execute Unit

4. Design Flow

The development of the asynchronous
processor generally follows top-down design
approach. Each of the processor units is divided
into smaller modules to ease the design. After each
module has been checked and simulated correctly,
they are connected as a structural VHDL to form
bigger design units. This process is repeated until
the whole processor is developed. Figure 4.1
shows the design flow of the asynchronous

A behavioural model of the processor was first
developed- This model cannot be synthesized into
circuits by applying current FPGA technology but
is very useful to check the functionality of the
circuit and detect any error in the early design
stage. By applying input test vectors (testbench),
the functionality of the processor is checked
through the waveform viewer.

The behavioural model is then refined to the
gate-level VHDL model. This model is used as a
input to the Maxplus-I1 software environment.
Note that the datapath units like adder,
multiplexer, decoder, register and arithmetic logic
unit (ALU) are still using the same behavioral
VHDL since the synthesize VHDL subset is
supported by the software. The instruction and
data memory are implemented using Altera
Library of Parameterized Modules (LPM)
function, which uses parameters to achieve
scalability, adaptability, and efficient silicon
implementation.

- processor.

I

_ . _ _ .

PUREVHDLSIMLLAlQR

Figure 4.1 : FPGA asynchronous processor
design flow

The critical path of the datapath units is
determined by using Timing Analyzer. This is
importance to ensure the bundle data
methodology is satisfied within the design
environment. The delay elements are
implemented using a series of inverter and
LCELL buffer. ALU, instruction and data
memory are implemented in Embedded Array
Block (EAB) to reduce and optimize the
delay time, hence boost up the performance of
the processor.

The synthesized structural model of
asynchronous processor are then simulated
and tested by applying test vectors to the
waveform editor before being program into
the FPGA chip (FLEX IOK) using SRAM
object nelist through device programmer.

5. Result and Discussion

The design of asynchronous circuits is in
general more complex and difficult than
synchronous. Asynchronous circuits need to
avoid hazards and metastability, which will
cause the circuit malfunction. Remove
hazards from an FPGA architecture can be
done by careful design. Adding delay element
to the circuits can achieve hazard-free
implementation. However, this may not be

ICSE2000 Proceedings, Nov. 2000 227

true for other asynchronous circuits. The designer
may need to manipulate the circuits' specification
to avoid hazard.

In addition, placement and routing by the
technology mapping will affect the delay of the
modules. Designer needs careful routing and
placement of the modules to ensure that the delay
elements are within the bundled data design
methodology.

Figure 5.1 shows the simulation environment
'and the waveform of the TOGGLE element.

The lack of arbitration mechanisms support for
current FPGA architecture causes the arbiter
element cannot reliably be implemented in a
purely digital circuit. An arbiter element is useful
to perform interrupt function since it can resolve
the metastability and race condition efficiently.

0 0"s
U

Name -Value _. m 0"s 4(30 Ons Er:

w- ,st 1 3 . a "

i d - i n 1 0
-&dol 0
-ii) blank 0 I

Figure 5.1 : Maxplus-I1 VHDL Simulation
environment and Waveform Viewer.

6. Conclusion

The design and implementation of
asynchronous processor has shown that the
programmable logic device can be used to
construct relatively complex and powerful
asynchronous circuits. This processor is not

intended to be a fully custom designed
processor such as the AMULET and TITAC
processor, but rather to investigate the
possibility to integrate with current FPGA
technology.

References

Berkel K.V., Nonvick S.M., Josephs
M.B., "Scanning the Technology",
Proceedings of the IEEE, Special Issue :
Asynchronous Circuits and
Systems,pp.223-233,February 1999.

Hauck S., " Asynchronous Design
Methodologies : An Overview",
Proceedings of the IEEE, 83(1):69-
93,January 1995.

Furber S.B., Day P., Garside J.D., Paver
N.C., Woods J.V., "Amulet1 : A
Micropipelined ARM", Proceedings of
IEEE Computer Conference, San
Francisco, USA, March, 1994.-

Nanya T. et al., " TITAC : Design of a
Quasi-Delay-Insensitive
Microprocessor", IEEE Design and Test
of Computers, 1994,pp.50-53

Sutherland I.E., "Micropipelines",
Communicatin of the ACM, 32(6):720-
738. June 1989.

Hauck S., Borriello G., Bums S., and
Ebeling C., " An FPGA For
Implementing Asynchronous Circuits",
IEEE Design and Test of Computers,
1 1 (3):60-69,1994

Henessey J.L., Patterson D.A., "

Computer Architecture: A Quantitative
Approach", Morgan Kaufman
Publishers, Palo Alto, CA, 1990.

Paver N.C., "The design and
implementation of an asynchronous
microprocessor", Ph.D. Thesis,
Department of Computer Science,
University of Manchester, England,
1994.

