
� �� BASIC ASYNCHRONOUS CIRCUIT DESIGN

� ���� Introduction

As mentioned in Chapter �XXXXXXXX� the basic sequential circuit model of CY�C��� is that of asynchronous
machine� In order to be able to design reliable circuits with CY�C��� one has then to understand the asynchronous
circuit theory and the methodology of designing asynchronous state machines� In the �rst part of this chapter we will
brie�y review the asynchronous circuits and machines from the point of view of using them for the ����based design�

Since the CY�C��� chip has additionally some peculiarities of its own� like the signal di	erentiation� we will enhance
the basic theory from the �rst part of this report� to include all those properties particular to CY�C���� This will be
done in the second part of this chapter�

In asynchronous circuits� the input signals xi directly a	ect the internal state of the circuit� and cause the change of
internal state� The new state stabilizes after time � from the moment of the input change
 A�t��  � ��A�t� X�t�
The numerical value of � results from the natural delays that exist in the logic elements of the circuit� as well as in
the connections�

Since as told� the internal states can be both stable and nonstable� we will distinguish and de�ne the respective
concepts


The stable internal states A�t � �  � A�t are those that are held continuously when the state of inputs does not
change� The nonstable states A�t � �  �� A�t are those which occur in the moment of the change of input signal�s�

The entire theory of asynchronous circuits operation presented below is based on the following conditions� These
conditions must be satis�ed in order to be able to assume the proper behavior of an asynchronous circuit


�� � only one input can change its state at each moment of time�

�� � the next change of inputs can occur not before them � � required for the stabilization of the internal state of
the circuit�

A standard realization of an asynchronous state machine� useful for the explanation of the phenomena occuring
in such machines� is in the form of the combinational circuit with feedback loops �Figure ��a� Another model uses
static �ip��ops �Figure ��b� Realization of CY�C��� is another model� a more complex one� of the asynchronous
state machine� We will discuss all those model� since all of them have applications to design asynchronous PLDs�
either with the existing devices such as ���� ��� and ���� or new asynchronous devices that we are going to propose
to Cypress this summer�

� ���� Creation of �ow tables�

The �ow�table of an asynchronous state machine can be drawn from the natural language description or from the
timing diagram of the circuit�s behavior� Usually� a separate state of the machine �the so�called complete state  is
subordinated to each combination of the input and output signals� The states� for which the input signals are identical�
but the next �internal states di	er� must be distinguished when the initial �ow table is created� This will be explained
in the example�

Example �

The Voltage Controlling Circuit will be used to explain several design phases in this and few following examples�
The circuit is to control two pass transistor switches� y� and y�� that control in turn the voltage level on the capacitor
�Figure ���

The voltage level is signalized with two sensors x� and x�� The cycle of work of the switches is determined as follows


�� �� Voltage level below x� �x� � x� � � � none of the switches is ON�

�� �� Voltage level between x� and x� �x� � �� x� � �� The switch is ON� which has not been ON recently� as a
single switch being ON�



�� �� Voltage level above x� �x� � x� � � � both switches are ON�

As one can see from the above description� there exist four di	erent combinations of the input and output signals�
The number of the complete states� however� will be greater� since when both switches are ON or both are OFF� the
circuit has to remember which one of the switches has been ON recently�

The following complete states can be distinguished


�� �� none of the switches is ON� y� was on recently�

�� �� none of the switches is ON� y� was on recently�

�� �� switch y� is ON�

�� �� switch y� is ON�

�� �� both switches are ON� y� has not been ON recently�

�� �� both switches are ON� y� has not worked recently�

Figure �� presents the cycle of switches� work and the timing diagram of the machine� This diagram enumerates
also the complete states of the machine� Let us point out the di	erence between the states ��� and the states ���
which both correspond to the same combinations of input and output signals� Although they both have the same
input�output combinations� their dynamic behaviors are di	erent� For instance� with the state of inputs x� � �� x�
� �� the machine transits from state � to state �� and with the same inputs it transits from state � to state �� Let us
observe� however� that states � and � are di	erent� since they have di	erent outputs�

After speci�cation of the number of complete states one draws the so�called initial �ow table which speci�es for
each complete state in moment t� the next state in moment t � � � Practically� at �rst one writes the stable states
into the cells corresponding to the input signals respective to this state �Figure ��a� �Stable states are denoted with
circles in the �gures and they will be surrounded with parantheses in the text� Next� using the non�stable states�
one marks the transitions among the stable states� For instance� if by x� � x� � � the machine was in state �� �the
switch y� has worked recently� then after occurrence of signal x� � � the machine will transit to state �� �switch y�
works� During the transition time � � i�e� after changing of the state of inputs and before the change of the state of
the feedback signals� the machine is in a nonstable state �� This non�stable state is then written in the �ow table at
the intersection of the row in which stands state �� and the column corresponding to the actual state of inputs ���� in
which the stable state �� stands �Figure ��b� All possible transitions among the states shall be written to the �ow
table� and the dashes shall �ll up all the remaining cells of the table �particularly� the dashes can be directly written
into column �� of Figure ��a because such combination of input signals can never occur�

When the behavior of the machine is speci�ed by a timing diagram� the creation of the �ow table from it is even
simpler�

Example �

The Generator Gating Circuit will be designed� The design task is to create the circuit for gating the generator g
�Figure ��a� which operator as follows


a When signal b � �� the output signal y � ��

b When signal b � � occurs on the input� the pulses of the generator occur on the output y� These pulses must be
full and not shortened� Their shape should not be a	ected by the moment of arising or disappearing of signal b�

c The generator�s frequency is much greater than the frequency of the gating signal
 fg � fb�

Solution�

According to the above problem speci�cation� four cases can be distinguished �Figure ��b�

�� Signal b � � occurs in the interrupt between the generator pulses�

�� Signal b � � occurs during the pulse� In such case� one more pulse should be created on the output�

�� Signal b � � disappears in the interrupt between the pulses�



�� Signal b � � disappears during the pulse� however� the full pulse should occur on the output�

The complete states of the circuit� created according to this speci�cation� correspond in the timing diagram to the
time intervals in which the input signals do not change� These states are enumerated arbitrarily� but a new number
is assigned to each di	erent combination of input and output signals�

The complete states �i�e� the states corresponding to the same combination of inputs and outputs� which transit
under the same input signals to di	erent next states� must be distinguished� Next� the table from Figure ��c is
created� analogously as before�

c initial �ow table

The output signals which correspond to the corresponding complete states are written at rightmost column of the
table� It should be kept in mind that the timing diagram may include not all the possible transitions among the
states enumerated in it� Therefore� after writing into the table all the transitions that result from the timing diagram�
one cannot automatically put dashes into the remaining cells of the table� and treat such transitions as impossible to
occur� Instead� one must consider whether these transitions are essentially impossible with respect to the assumptions
and speci�cations of the problem� For instance� in our example there is no transition in the timing diagram from state
� under input ��� Such transition is impossible from the problem�s assumptions� because it would correspond to the
occurrence of two pulses b with an interrupt shorter than pulse g� and it was assumed that fg �� fb� The reader is
asked to use the same method to analyze also the remaining transitions� which are not shown in the timing diagram�

Example �

Design of a �D type �ip��op� Circuit� Design an asynchronous circuit� which input�output behavior will be the
same as of the synchronized� D type �ip��op� The circuit has the �c clock input� and the �D signal input�� The
timing diagram of this circuits is shown in Figure ��a� After enumeration of states� the �ow table �Figure ��b is
created� Dashes are put into the cells of the table� corresponding to transitions that would result from simultaneous
changes of two inputs �this is done to satisfy one of the basic assumptions of asynchronous circuts� The remaining
not �lled cells �the transitions not speci�ed in the timing diagram shall be now analyzed� The easy way to perform
such analysis consists in drawing of the additional segments of the timing diagram� which would illustrate the not
previously considered situations�

This additional diagram is shown in Figure ��c� The arrows point to the transitions� From state �� under signal
cD � �� the machine must transit to state �� because short pulses D �not containing back edge of signal c should be
ignored� Figure ��d presents the complete initial �ow�table�

� ���� Minimization of �ow�tables�

The �ow tables� created as in the previous section� should be next minimized� State Minimization of asynchronous
machines is simplier than the minimization of synchronous machines� because the initial �ow tables of asynchronous
machines have the following special properties


�� � the initial �ow�tables are of Moore machines�

�� � in each state row of a table there exists a single stable state cell�

�� � a non�stable state can stand only in the column in which stands the same state number but stable �it can then
occur only in a single column of an initial �ow table�

The concept of the pseudoequivalent states is introduced for minimization of the asynchronous machines� The
psuedoequivalent states are the compatible states� which have stable states in the same column� i�e�

Ai � p � Aj � ��Ai � i Aj �� Xk����Ai � Xk � Ai � �� � ��Aj � Xk � Aj � � ��

where Ai � i �

Ak � �� Xk � � ��Ai � Xk  � n � ��Aj � Xk  �lambda�Ai � n � lambda�Aj � ��



The state minimization process which uses the concept of pseudoequivalent states� should consider as well the
concept of conditional pseudoequivalency�

Determining the conditionally pseudoequivalent states can be executed� as for the synchronous machines� by using
the triangle table� However� it is often not necessary� because the number of pseudoequivalent states is usually small�

For example� let us consider the table from Figure ��a� The pseudoequivalent states are searched among the states
that have stable states in the same column�

States � and � are not pseudoequivalent� because they have inconsistent output signals� States ��� are pseudoequiv�
alent under the condition of pseudoequivalence of states � and �� State �� is not pseudoequivalent with states � and
�� because of inconsistent outputs� States � and � are pseudoequivalent under conditions ��� and ���� States ��� are
pseudoequivalent� All conditions are then ful�lled and the set �� �� �� �� ��� of pseudoequivalent states is obtained�
The compatible states of each group of this set are next joined together �Figure ��b�

After joining the pseudoequivalent states� the conditional compatibility cannot exist in the table of an asynchronous
machine� Two states are then considered as compatible� if their respective successor states are equal� or at least one
of the successors is not speci�ed� A merger graph is useful by searching for the maximal groups of compatible states�
In this graph� the continuous lines join the states which are compatible and have consistent outputs� The interrupted
line is used to link two compatible states with inconsistent outputs� By joining the states having consistent outputs
�continuous lines� one obtains the Moore machine� By joining the states with inconsistent output signals �interrupted
lines� the Mealy machine is created� Figure ��c presents the merger graph of the machine considered�

The maximal set of compatible states for Moore machine is


�� � f��� � ��� � ��� � ��� � � � ��g

The maximal set of compatible states for Mealy machine is


�� � f����� � ��� � ��� � ��� � ����g

Let us observe� that in the case of an asynchronous machine the closure condition is satis�ed for each set of groups
of compatible states� In other words� there is no conditional compatibility for asynchronous machines� Therefore� by
searching for the minimal set of compatible states� only the covering condition must be considered� Let us notice� that
the group f���g and the state � from one of the groups f���g� and f���g� can be deleted from the set ��� The group
f���g and the state � from the groups f ���g or f����g can be deleted from the set ��� In such a way� the following
minimal sets of compatible states are obtained
 f ��� � ��� � � � � � ��� or ��� � ��� � � � � � �� for a Moore machine�
and the sets ����� � ��� � � � �� or ����� � ���� � � � � are obtained for a Mealy machine� Of course� these sets can be
also obtained directly from the merger graph�

Any of these sets is selected in order to create the minimal �ow table� The minimal table is created identically as for
the synchronous machines� by joining the states from each group of the above set to a single state� In each column of
the table� all compatible next internal states are merged together� Stable and nonstable states can be merged� After
merging rows� there can be more than one stable state in one row� Figure ��d presents the minimized �ow table of
the Moore machine for the example considered� Figure ��e presents the respective minimized �ow table of the Mealy
machine� In the Moore machine the output signal corresponds to each internal state� creating of the output table is
then straightforward from the �ow table�

Creating of the output table for the Mealy machine is more complicated� because the output signals depend also on
the states of inputs� The table is created according to the following algorithm


Algorithm ������

�� One creates outputs for the cells that correspond to stable states from the initial table� And so� in Figure ��e
the stable state �� in column �� corresponds to the stable state �� from the non�minimal table �Figure ��b to
which output �� corresponds� One writes this output value to the respective cell of the output table� Therefore�
the cell on the intersection of row � and column �� obtains value �� �Figure ��f� Analogously� state � in column
�� of the minimal table of Figure �refFig� �����f corresponds to state �� of the non�minimal table� so that the
respective output �� is written to the output table� Dashes are written into the cells of the output table which
correspond to the dashes of the initial �ow�table �Figure ��f�

�� Output signals corresponding to the non�stable states are speci�ed as follows




�a � if in the row with the considered non�stable state� at least one stable state has the same output as the
stable state to which the machine transits� one writes this output to the respective cell of the �ow�table�
For instance� let us specify the output signal corresponding to state � in row � of the table from Figure ��e�
State ��� to which the machine transits� has the output ��� In row � there exists three stable states� one
of them �in column �� has also output ��� Output �� should be then subordinated to state ��

�b � if all stable states in a row have di	erent values of the outputs than the �nal state� then a nonspeci�ed
output will be subordinated to a non�stable state� As an example� let us specify the output for state � in
row � �Figure ��e� The �nal state �� has output ��� the stable states in row � have output ��� i�e�� we will
subordinate output �� to state �� because in the �rst bit the outputs are di	erent� and they are identical in
the second bit� We will subordinate both nonspeci�ed outputs for state � in row �� because state �� has
output ��� and state �� has output ���

The resultant Mealy machine�s output table is shown in Figure ��g�

The algorithm given in step � ensures obtaining of a proper output table� but not necessarily the minimum one� It
results from the fact� that by specifying outputs of nonstable states� only those stable states in row may be considered�
from which there is essentially a transition through the nonstable state� for which the outputs are speci�ed� For
instance� by specifying the output of state � in row �� one can take into account in column �� only stable state ��
�corresponding to state �� of the non�minimized table� It is not necessary to consider the state �� in column ��
�corresponding to state �� of the non�minimized table� because there is no transition from this state� through the
considered by us unstable state � �see again the non�minimized table�

The above procedure can produce more don�t cares in the output table which is advantageous� because having more
don�t cares permits to better minimize the output functions� It is� however� more time consuming� Application of the
non�minimized table is required at this step� which is inconvenient because of the need to reenumerate the states�

The complete sequence of steps to minimize a �ow table of an asynchronous machine is given in the following
algorithm�

Algorithm ������

�� Find the groups of pseudoequivalent states and join them�

�� Draw the merger graph and �nd the minimal sets of compatible states for Moore and Mealy machines� Remember
that the conditional compatibility does not exist here�

�� Create the minimal �ow table and the output table of the Moore machine and the �ow table of the Mealy
machine� Keep in mind that a stable state in the initial table remains also stable in the minimal table�

�� Create the output table of the Mealy machine using Algorithm ������

�� The better of the two machines is selected by inspection�

Example �

Wewill minimize the �ow table of the Voltage ControllingMachine from �� �the initial table is repeated in Figure ��a


captionFig� ������ Minimization of the voltage controlling machine� a� the initial �ow�table	 b� the merger graph	
c� the table of the minimal Mealy machine	 d� the step in creating the output table	 e� the complete output table�

�� Search for pseudoequivalent states� These can be the states � and � if the states f���g and f���g are pseu�
doequivalent under the same condition� However� the states f���g have inconsistent outputs and hence are not
pseudoequivalent� States f���g and f���g are then not pseudoequivalent� Hence� the states f���g and f���g are
not pseudoequivalent as well� Therefore� there are no pseudoequivalent states in the table�

�� The merger graph is presented in Figure ��b� In our case this graph is not indispensable� because it can be seen
directly from the table that only states f���g and f ��� g can be joined to obtain a Mealy machine� The initial
table is also the minimal table of a Moore machine�

�� The table of the minimal Mealy machine is presented in Figure ��c �the parentheses include enumeration of the
states from the initial table�



�� Figure ��d presents the �rst stage of creating the output table of the machine � writing down the outputs which
corresponds to the stable states� And so� to state �� in column �� corresponds to state �� in the initial table�
then the respective output in Figure ��d is ��� State �� in column �� is the state �� from the initial table�
then output �� corresponds to it in Figure ��d� After speci�cation of outputs which correspond to the stable
states the outputs for the non�stable states should be speci�ed �Figure ��e� State � stands in the �rst row� in
which the stable states have outputs �� and �� �Figure ��d� State �� to which the machine transits has output
��� State �� from column �� has identical output Y� with state ��� and state �� from column �� has identical
output Y� with state ��� Therefore� one subordinates to the non�stable state � the same output as the state
� has� i�e�� ��� Following the Algorithm ������ the table from Figure ��e is �nally created� The process of the
table minimization is terminated�

Example �

The �ow table of the circuit from Example �� will be minimized� Figure ��a repeats the �ow table� As it can
be observed� there are no pseudoequivalent states� The compatibility graph is presented in Figure ��b� The
minimal machine is then the four�state Moore machine from Figure ��c�
captionFig� ������ Minimization of the �ow table of the D type �ip��op� a� the initial �ow table	 b� the
compatibility graph	 c� the minimal table�
Figure ��a presents the minimal �ow table of the Moore machine for gating the generator �Example ���
Figure �refFig� �����b�c presents the �ow�tables and the output table of the respective minimal Mealy machine�
Checking of these solutions is left to the reader as an exercise�
captionFig� ����
� Minimal table for the generator gating machine� a� the �ow table of the Moore machine	 b�
the �ow table of the Mealy machine	 c� the output table of the Mealy machine�

� ���� Assignment of �ow tables� Races�

The state assignment process of an asynchronous machine consists� as in the synchronous circuits� in subordi�
nation of sequences of values of memory elements Q�� Q�� ����� Qk to the internal states of the machine� The
memory elements can be realized as �ip��ops or feedback loops of combinational gates� Therefore� for encoding
the table with K rows �internal states one assumes at least k signals where


�n � � � K � �k

Machine of K internal states must have then at least k memory elements�
The assignment of asynchronous machines is a very important process� Because of the so called races	 a wrong
assignment can produce a circuit� which would not work correctly�
������ The races�
The phenomenon of races can occur in an asynchronous machine� because of not equal delays in the feedback
loops� We will explain the essence of this phenomenon on the example�
Figure ��a presents the block diagram of an asynchronous machine with two feedback loops� Let us assume that
this machine� which realizes the �ow table of Figure ��b� was encoded according to Figure ��c� For clarity it is
assumed that all delays from the combinational unit � have been collected in the feedback loops so that there
are not any delays inside the logic network �Figure ��a�
captionFig� ��
��� The phenomena of races� a� the model of an asynchronous machine with two feedback loops	
b� the �ow�table of this machine	 c� the encoded �ow�table	 d� the timing diagram	 which assumes �� � �� �no
races�	 e� the timing diagram	 which assumes ��  �� �critical races��
Let us assume� that the machine is in the stable state ��� i�e�
 X � �� Q� � �� Q� � �� Let in some moment t�
the input signal changes its state from � to �� According to the �ow table� the machine should then transit to
the state � �encoded as ��� i�e�� both feedback signals should change from � to �� If delays �� and �� are equal�
then the machine operates correctly� In time t� simultaneously Q� and Q� change to state zero� Such case is in
real life not possible � one of the delays would always be greater� Let us assume now� that �� � ��� In such a
case there will exist some time interval in which Q� will bf already change its value to � and Q� will bf yet not
change the value� On the input of circuit � �Figure ��e� there will arise a combination of x � �� Q� � �� Q� �
� in moment t�� According to the �ow table� the circuit � will create the output signals q� � �� q� � �� which
will make the change of the signal Q� to � impossible� The value Q� � �� Q� � � will be then stabilized� i�e� the
machine will transit to state �� rather than to state ��� If one assumes �� � �� then� analyzing the table in an
analogous way� one can see that the machine will transit to state �� �the values Q� � �� Q� � � will stabilize�
The phenomenon described here is called the critical hazard�



Let us assume that the circuit is in state �� �encoded as ��� with x � �� and the change of x to � occurs� The
machine should transit to state �� of code ��� Not depending on which of the signals Q� or Q� will �rst change
its value to � the circuit will attain the state �� Let for instance �� � ��� i�e� at �rst it will be Q� � �� The
circuit will transit to state � �code ��� from which under x � � it should also transit to �� �the circuit � still
generates signals q� � �� q� � �� If �� � �� then the situation is similar and the transition �� � � � �� will
occur� The above phenomenon is called the noncritical race�
A race can occur in the circuit only if some transition in the table requires change of at least two feedback
signals� If the column to which the machine transits includes two or more stable states� then the critical race
becomes possible� i�e�� the race which can lead to the improper stable state� If there is only one stable state in
such a column then only the noncritical race is possible in it�
It results from the above that the su�cient condition for avoiding the race is such an assignment of the machine
only one feedback signal is changed in each transition among stable states� However� it should be stressed that
this is not the necessary condition to avoid critical races�
Considering now a machine with the �ow table of Figure ��a� it can be easily noticed that a danger of critical
races exist in columns X�� X�� X�� It can be checked that the encoding of the machine that would satisfy the
su�cient condition of avoiding critical races is not possible� It is� however� possible to remove races from this
table by introducing the so called cyclical transitions �Figure ���
captionFig� ��
��� Elimination of races� a�	 c� the �ow tables with races	 b� the �ow table with race removed by
introducing the cyclic transitions	 e�	 f�	 g� the simpli�ed �ow�graphs	 d� the table in which the race was removed
by adding a new state�
Let us try to encode the states as in the table from Figure ��a� The danger of races exists now in column
X� by transition �� � � � �� and in column X� by transition �� � � � ��� because codes of states �
and � di	er in two positions� The transition �� � � � ��� i�e� �� � ��� can be practically executed in two
ways
 ��� � �� � ������ � � � ��� which gives a bad �nal state �the critical race� or the transition
��� � �� � �� � ��� �which is� �� � �� �� �� � that gives the proper �nal state� Both transitions are
marked with arrows in the table from Figure ��a� The introduction of the cyclical transition consists in forcing
of this �proper� transition by writing state � in row �� column X� �Figure ��b� This concludes how the critical
race has been removed from this column� Analogously� the race from column X� can be deleted by introducing
the cyclical transition ��� �� �� �� by writing state � in row � of this column�
Let us encode now the same machine according to Figure ��c� The danger of race exists now in column X�

by transition �� � � � ��and�� � � � ��� because codes of states ��� and ��� di	er in two positions�
Transition �� � � � ��� i�e�� �� � �� can be now executed in two ways �� � � � ������ � �� � ����
or �� � � � � � ��� Both ways lead to the wrong �nal state� This is an example of the critical race which
cannot be removed by introducing the cyclical transitions� This race can be eliminated by adding a new state�
The transition ��� �� �� �� is introduced instead of ��� �� ��� and the transition ��� �� �� ��
instead of �� � � � ��� This way� one obtains the table from Figure ��d� This table can be now encoded
according to the su�cient condition for a race�free table� Introduction of additional states causes often the
necessity to increase the number of feedbacks� which usually increases the circuit�s complexity� The additional
states for avoiding races should be then introduced only in cases of extreme necessity�
By removing races� the attention must be also paid to the columns in which exist the noncritical races� It is
possible that there exist in such columns some transitions through cells� which are unspeci�ed in the states�
through which the machine may transit during the race� These cells should be� therefore� completed �speci�ed�
In this example� the column X� of the table from Figure ��a� has such property� In state � of this column there
is a dash� and if the machine transits from state �� to state �� then one of the possible transitions will lead
through state �� Because a nonspeci�ed transition exist in this state then� in some particular case it may happen
that the further creation of the realization logic will specify involuntarily this state as a stable state ��� which
would lead to a wrong transition� This transition should be then completed by writing the nonstable state �
into the cell on the intersection of row � and column X� �Figure ��b� A similar situation exists in row � of the
table from Figure ��c�
������ The State Assignment�
It is required that the code taken for the assignment of an asynchronous machine removes the critical races� This
is achieved by applying the su�cient condition for races elemination� by which the machine is encoded in such
a way that only one memory element changes its state by each transition�
The simplest assignment method that applies this condition is themethod of hypercubes� The simpli�ed transition
graph of the machine should be transformed to the form in which the nodes of the graph become the vertices�
and the arrows become the edges of the k�dimensional hypercube �k is the number of memory elements� If the



adjacent codes of Gray code are now subordinated to the adjacent vertices of the hypercube� then the su�cient
condition for eliminating races is satis�ed�
Let us now consider the machine from Figure ��a� �There may be some confusion because of three unstable
states� For instance in row �� We can� however� assume that there exist some additional columns including only
transient� unstable states� and that for simpli�cation those columns have not been drawn in the table� The
simpli�ed transition graph is shown in Figure ��b� Three signals are necessary for the assignment of the table
� in this case the hypercube is a standard three�dimensional cube� Transition graph in the form of the cube is
shown in Figure ��c� and the encoded transition table of this machine is presented in Figure ��d�
captionFig� ��
��� State�assignment using the method of hypercubes� a� the �ow table	 b� the simpli�ed state�
graph	 c� the simpli�ed state�graph	 presented in the form of a hypercube	 d� the encoded �ow�table�
For most transition graphs it is impossible to present them in the form where all arrows are aligned with the
edges of the hypercube� Some arrows being the diagonals of the hypercube can also occur� and in such case it is
impossible to encode the machine in such a way that only a single feedback signal changes for each transition�
In these cases� all the transitions to which correspond arrows being the diagonals of the hypercube should be
inspected one by one� If a transition occurs only in a column which can include a noncritical race� then this
transition can remain unmodi�ed� If a critical race is possible in the column� this race can be removed by
introducing a cyclical transition� If� in turn� the introduction of a cyclical transition were not possible � a new
state would be added to the graph� Figure ��e presents the simpli�ed transition graph of the machine from
Figure ��a� The hypercube reduces here to the square� The diagonal transitions are �� �� �� �� and �� ��
It results from the considerations of the previous section that the cyclical transitions can be introduced for
transitions � � � and �� �� and that transition � � � does not cause a critical race� The transition graph of
this machine after introducing of the cyclical transitions is shown in Figure ��f�

Example �

The machine from Figure ��a will be assigned�
captionFig� ��
�
� Example of state�assignment with hypercubes� a� the �ow�table	 b�	 c�	 d� the placement of
the transition graph in the hypercube	 e� the �ow�table with races removed	 f� the encoded transition table�
The machine has � states so that at least � memory elements are required� The transition graph is drawn as a
hypercube � one of the possibilities is presented in Figure ��b� The transitions on diagonals of the hypercube
occur
 � � �� � � � � � � �� and � � �� While � � �� and � � � can produce only noncritical races� the
transitions �� � and �� � can result in critical races�
The race in transition � � � can be eliminated �assuming this form of the graph only by increasing the
hypercube�s dimension� The cyclical transition cannot be introduced� while in column X� of the �ow table the
nonstable state � occurs only in row �� The new state cannot be also added without increasing the hypercube�s
dimension� while all the nodes of the hypercube adjacent to node � are already occupied� The transition graph
is� therefore� drawn in a slightly di	erent form �Figure ��c� Now the transitions on the diagonals are
 � � ��
� � �� � � �� and � � � �the last one does not cause a critical race� The races on transitions � � � and
� � � can be easily eliminated by introducing additional states �in both cases it is impossible to introduce
the cyclical transitions� The race on transition � � � is more di�cult to delete� It can be eliminated by
introducing an additional state and a cyclical transition� The transition �� � � � � � � � �� is obtained�
The transition graph after elimination of races is shown in Figure ��d� the �ow�table without critical races is
shown in Figure ��e� Figure ��f presents the encoded �ow�table of this machine�
The assignment method presented above not always leads to minimal solutions� This is because the principle
of changes of single signals Qi in transitions assumed in this method is not a necessary condition to eliminate
critical races� This method does not also yield circuits of minimal complexity�
Better assignment results can be obtained by applying partitions of the set of internal states of the machine�
The partition�based method speci�ed below takes into account both
 the races and the circuit�s complexity� It
makes use of the partition theory ��� as well as the new concepts of internal and output partitions�
The method makes use of Theorem ����
Theorem ����
If for each Xi � X and each pair of states Ar� Aj � A such that

��Ar � Xi � ��Aj � Xi � Aj

the codes of states Ar andAj have a commonpart which do not stand in code of anyAp such that ��A
p � Xi � An �� Aj

then the state assignment does not cause the critical races�
Proof�



By change of state of the machine from Ar to Aj the feedback signals Qj corresponding to the common part
of the code do not change the state� The undesired change of state from Ar because of not equal delays in the
remaining feedback signals would be critical if there were a path from state Ak to the nonstable state An �� Aj �
However� according to the assumption of the theorem� no state Ak has the common part of code with Ar and
Aj � which excludes the critical race�
It results from the above theorem that a proper encoding can be obtained by selecting the partitions in such a
way that a partition always exists in which pairs of states � Ar � Aj and �An � Ap belong to di	erent blocks�
The expressions of the type �Ar � Aj � �An� Ap � which order placing the two di	erent pairs of states in the di	erent
blocks of a partition will be called the elementary conditions�

Example �

In the table from Figure ��a �the generator gating circuit of Example �� there is


���� X� � �� ���� X� � ��

and

���� X� � ��

Then the codes of states � and � must have the common part� not occurring in the code of state �� The partition
�� � f ��� �� ��g is thus found�
Next
 ���� X� � �� ���� X� � �� ���� X� � �� determine the partition �� � f ��� �� ��g� The �ow�table
encoded with respect to these partitions is presented in Figure ��b� It can be easily checked that this table is
free from all critical races� Several useful de�nitions will be now introduced�
The �nal family TF is the set of proper partitions TF � f��� ��� ���� �kg� which ful�lls the conditions


�� �� � �� � ��� � �k � ���

�a �� Assignment according to partitions from TF does not cause critical races�

captionFig� ��
��� The State Assignment of the Generator Gating Machine�
The optimal �nal family TFopt is such a �nal family� that the assignment according to its partitions gives


�� the simplest expressions for transition function of the machine

Qi � �i�Q�� Q�� ���� Qk� x�� x�� xn � i � �������� k�

�� the simplest expressions for the output function

yj � �j�Q�� Q�� ���� Qk� x�� x�� xn � i � �������� m�

Determination of Optimal Final Family from di	erent �nal families is similar to the case of synchronous machines�
Attention will be now devoted to the generation of �nal families�
We will introduce �rst an additional partition that can be found from the �ow�table�
The internal partition 	�Xi is the partition� the blocks Bj of which include only such states Ar that transit
into a single state Aj under input state Xi


Bj � fAr j ��Ar� Xi � Ajg�

For instance� for the table from Figure ��a the following internal partitions exist

	�X� � f ����� 	�X� � 	�X� � 	�X� � ���� ��� 	�X� � ���� ��g�
The assignment with respect to the internal partitions leads to the simpli�cation of the transition functions of
the machine �this takes also place in the case of synchronous machines�
Theorem ����
If each of the arbitrary two blocks of every internal partition 	�Xi is included in two di	erent blocks of some
proper partition from set T with k elements then the set T is the �nal family TF and can be selected for the
state assignment�
For instance� for the machine from Figure ��a the partitions �� � 	�X� � f ���� �� and �� � 	�X� � f ���� ��g
are selected�
The state assignment with respect to these partitions is identical to one found in Example ��� Let us notice
that Theorem ��� determines stronger condition than those from Theorem ���� Let us illustrate this fact on an
example�

Example �



The following partitions exist for the machine from Table in Figure ��a

	�X� � f ����� ��g� 	�X� � f ���� ���g � ��� 	�X� � f ���� ���g � ���
captionFig� ��
��� Flow table and transition table for the machine to Example ����
When the partitions �� and �� are considered for state assignment then the condition of Theorem ��� would not
be satis�ed� These partitions do not satisfy the separation of the blocks of partition 	�X�� Let us however notice
that the satisfaction of this condition is not necessary to avoid critical races� According to Theorem ���� the
pairs Ar� Aj and An� Ap must be separated� which means that ��Ar � Xi � Aj and ��Ap� Xi � An �� Aj �
Because ���� X� � � and ���� X� � �� the pair of states ��� � cannot be separated from the state �� The condition
of separation of blocks ���� � �� can be then split into two conditions of separation
 ��� � ��� and ��� � ��� These
conditions are ful�lled by partitions ��� and ��� These two partitions are then selected for assignment and the
assigned table is shown in Figure ��b�
The reduced family TR is the family of proper partitions �i which ful�ll the conditions


�� there exist only one partition �i such that �i � 	�Xj�

�� �i is the sum of two or more internal partition�

For instance� the internal partition 	�X� � f ��� ���� ��g speci�es to TR the partition � � f ���� ���g� since
� ge 	�X�� The partitions pi�X� � f��� ���� ���g and 	�X� � f ���� ��� ��� ��g determine to TR the partition �
� f ����� ���g � 	�X� � 	�X��
The partitions from TR not always satisfy the separation of all blocks of internal partitions� The pairs of blocks
shall be then written out after the creation of TR which have to be separated by some additional partitions� the
so�called auxiliary conditions� For the above examples� these will be the pairs �� � �� in the �rst case� and �� � ����
�� � bar��� �� � �� in the second case� The pairs consisting of single states �here �� � �� and �� � �� are such pairs can
be omitted by the determination of the auxiliary conditions�
The next partitions for assignment can be determined from the additional conditions so that the �nal family TF
is found�
It can happen that more than one �nal family can be created from the TR and the auxiliary conditions� Then the
optimal family TFopt shall be selected among all the TF families� using methods analogical to those of Chapter
��
It can also happen that no TF family can be created from the auxiliary conditions� If possible� the auxiliary
conditions of blocks separation shall be split in such a case into the elementary conditions �as done in Example ���
If this is not possible� the cyclical transition shall be introduced� If this is still impossible� then it is necessary
to increase the number of memory elements by introducing an additional partition� It cannot be determined
a priori which of the methods will lead to better solutions� Plenty of examples can be shown which show the
advantages of cyclical transitions� there are also examples for which the introduction of additional partition give
better results� In the worst case the user has to introduce several cyclical transitions and several additional
partitions�

Example 	

For the table from Figure �� one obtains the following partitions

	�X�� � f ��� ���� �� � f ���� ���g � ��� 	�X�� � f ��� ���� ��g � f ���� ���g � ��� 	�X�� � f ���� ��� ��g � f
���� ���g � ��� 	�X�� � f ��� ����g�
The family of partitions TR � f ��� ��g and the auxiliary condition ���� � �� is created�
captionFig� ��
��� Flow table to Example ����
This condition cannot be satis�ed by the partitions from TR� It is then split into elementary conditions� State �
is stable in column X�� so that the elementary conditions ��� � �� and ��� � �� exist� These conditions are ful�lled
by �� and �� so that these partitions create the �nal family TF � f��� ��g�
Because it is the only �nal family obtained from the TR set and the auxiliary conditions� then this is the TFopt
family as well� Then TFopt � f��� ��g�

Example �


For the table from Figure ��a the following partitions are obtained
 	�X�� � f ���� ����g � ��� 	�X�� � f
��� ���� ���g� 	�X�� � f ����� ���g � ��� 	�X�� � f ���� ���� ��g�
Then� 	�X�� � 	�X�� � f ����� ���g�
Therefore� the family TR� being as well the TFopt family� is the family f ��� ��� ��g� The encoded �ow table is
presented in Figure ��b�
captionFig� ��
��� The Flow Table and the Assigned Table to Example �����
In the columns of this table in which the noncritical races can occur� some transitions exist that show the states



to which the machine can transit during the race� For instance� if the machine is in the state � ���� and state
X � �� occurs on input� then the machine should transit to state �� ����� Two memory signals Q� and Q�

are changed in such transition� If Q� changes as the �rst then the machine will at �rst transit to state ���� If
there were an unspeci�ed transition �a dash in the state �� for input state ��� then the further behavior of the
machine would not be known� Therefore� to induce the transition to the proper state one has to specify this cell
of the table� by writing state ��� in it�
Also� in row ��� of this column� the state ��� should be written in order to make the machine�s behavior safe from
the nonspeci�ed result of a race that might occur in case of a quicker change of signal Q�� After the assignment
of the table� it must be always veri�ed whether two or more feedback signals change in some transition� If yes�
then one has to consider all the possible paths resulting from any race that may be produced by this change�
If there exists an unspeci�ed cell in such a path� then this cell should be speci�ed by writing to it the state� to
which the machine should transit�

Example ��

Example �� Let us consider now the machine from Figure ��a	 assigned previously using the hypercubes method�
The following internal partitions are found from it�
	�X� � f ���� ���� �� ��g	 	�X� � f ����� ���� ��g	 	�X� � f ����� ���� ��g�
The TR family cannot be determined from these internal partitions	 because there exist no single proper partition
greater than any of the internal partitions	 and 	�X� � 	�X� � 	�X� � 	�X� � 	�X� � 	�X� � ��
In such a case one looks for partitions among the proper partitions which are greater than the internal partitions�
For 	�X� the following partitions exist�
f ������ ���g � ��	 f ����� ����g � ��	 f ������ ���g � ��	 f ����� ����g � ��	 f ���� �����g � ���
For 	�X��
f ������ ���g � ��	 f ����� ����g � ��	
For 	�X��
f ������ ���g � ��� f ����� ����g � �	�
It results from the obtained Partition Pairs �Figure ��� that there is no possibility of simplifying function �i�
We will check then the possibility of simplifying function ��
f ����� ���� g � f ����� ���� g � f ���� ��� ��� ��� g� The states � and � and � and � must be then separated� This
can be done using both �� and �	�
captionFig������� Partition Pairs of the machine from Fig� ������
The output partitions� 	y� � f ����� ����g	 	y� � f ���� ���� ���g�
We have 	y� � �� and 	y� � ��� Then TF� � TFopt � f��� ��� ��g�
The encoded transition table is presented in Figure ��� The same machine was previously encoded in Example ���
Cyclical transitions have been introduced there in order to avoid the critical races� Now	 the table without cyclic
transitions has been assigned	 which simpli�es the realization of the circuit�
We must remember	 that the introduction of cyclic transitions usually increases the circuit�s complexity�
captionFigure ������� The Encoded Transition Table of the machine from Fig� �����a�
captionFigure ������� The State Assignment for the Voltage Controlling Machine�
We will encode the Voltage Controlling Machine �Example ���� The minimal �ow table is repeated in Figure ���
	��� � 	��� � f ���� ���g � ��	 	��� � f ���� ���g � ��	 TR � f��� ��g� TFopt � TR�
The encoded table is presented in Figure ��b� Figure �� presents the encoded table of the D �ip��op �Example ��	
Figure ��c�� Checking of this solution is left to the reader�
captionFig� ������� The Encoded Table of the D �ip��op�

Example ��

For the table from Figure ��a one gets the partitions�
	�X� � f ����� ��g	 	�X� � f ����� ��g	 	�X� � f ���� ���g � ���
We have TR � f��g and additional conditions bar�� � ��	 ��� � �� �from partition pi�X��	 ��� � ��	 ��� � �� �from
partition pi�X���
captionFig� ������� The Encoded Table from Fig� �����a�
None of these conditions is ful�lled by partition ��� It is also not possible to �t any proper partition ful�lling all
remaining conditions� Therefore	 two solutions exist�
� introducing cyclic transitions	
� taking more memory elements than their minimal number�
The table of this machine with the cyclical transitions introduced in columns X� and X� is shown in Figure ��b�
The assignment of this table is left to our reader�



Leaving back the assumption of the minimal number of memory elements one can encode the table according to
the internal partitions� Figure �� presents the �ow table encoded in such a way�
It can be easily checked that the circuit realized according to the table of Figure �� is simpler� Therefore	 in this
case such assignment gives better results� However	 in the general case one cannot decide which of the encoding
methods gives better results	 therefore both methods must be applied and their results compared to obtain the
optimal results�
It should be also mentioned that although the assignment method based on partitions gives usually good results
this does not happen always� An example of a machine which cannot be optimally encoded with use of this method
is that of Figure ��a� This machine can be easily assigned with the method of hypercubes	 while application of
the partitions method will lead to the introduction of cyclical transitions and additional partitions� The reader is
asked to verify these statements�

� ���� The Realization of the Flow�Tables�

As it was mentioned at the beginning of this chapter	 the asynchronous static machine can be realized in two
variants� as the combinational network with feedbacks or as a circuit with static �ip��ops� The circuits designed
with the �rst method are usually less complex and will be considered at �rst�
From the encoded �ow table one creates the excitation table	 which describes the functions qi � f � Q�� ���� Qk� x�� ���� xn
�see Figure ��a�� In the case of the circuit with feedbacks the table is created by replacing the numbers of the
states with respective codes�
The excitation tables and the output tables �see Section ���� describe the combinational circuit	 usually a multi�
output one� This circuit can be realized with use of the method from chapter ��	 or any synthesis method based on
factorization or two�level logic minimization� One has to remember	 however	 that an active element must stand
inside each feedback loop �this condition is automatically ful�lled in the case of design with NORs or NANDS��
In asynchronous circuits the phenomenon of hazard is particularly dangerous �see Section ��� � not yet done��
This is caused by the fact that each improper signal on the output can be stabilized by the feedback�

Example ��

Let us consider the realization of the machine from Figure ��a� The excitation table of this machine is presented
in Figure ��b� The minimal NAND network will be obtained realizing the SOP�
q � Q�a � ab� y � q�
In such realization of function q there exists hazard of type HS� �which means� Hazard	 Static	 in true minterms�
in the transition marked by an arrow in Figure ��b�
captionFig� ������ Hazard in an Asynchronous Circuit�
The e�ect of this hazard will be the creation of a zero on the output of gate 
 �Figure ���� This zero is given to
the input of gate � �feedback� and can cause � on the output of this gate� This would mean not transmitting the
change of signal a through this gate� In turn	 this would cause supporting the zero on the circuit�s output	 i�e�	
transition of the machine to an improper state�
Let us observe that designing with ��� gives here very good new oportunities� We will also observe that methodol�
ogy � gives sometimes better results	 especially for small asynchronous machines	 such as one from our example�
The graph of the machine from Figure ��a is shown in Figure ��d� Its corresponding AONG requires four cells
�Figure ��e�� Let us 	 however	 observe that when one calculates the excitation function on T type �ip��ops
�Figure ��f� from the excitation table of Figure ��b	 the excitation function is simple and hazard�free� It could
be reaized as in the left part of Figure ��g	 but because of ��� technology constraints is transformed to the form
of the right part of Figure ��g� The solution requires then two	 not four cells�
captionFig� ������ Realization of the Generator Gating Circuit
 a� b as a Mealy machine� c� d� e as a Moore
machine�
The question marks are written in Figure ��c above those arrows that denote changes which	 as a result of
hazard	 can not be achieved� In order to eliminate the hazard	 the implicants should be always added to the
minimal realization of the asynchronous circuit �see Section ����� The hazard�free function q in the considered
example is as follows� q � Q�a � ab � Qb�

Example ��

We will realize now the Generator Gating Circuit� Figure ��a presents the excitation function and the output
function for the Mealy machine� After elimination of the hazard there is� q � Qg � �gb � Qb	 y � Qg
The corresponding circuit with NANDs is presented in Figure ��b� Figure ��c�e presents the realization of the
excitation function of this machine realized as a Moore machine� The SOPs of q� and q� functions are hazard�



free� Let us observe that it was especially resigned from the minimal SOP because the above functions are more
convenient for factorization� As we see in this case the Mealy realization is slightly less expensive�

Example ��

The Generator Gating example on ���� The T type �ip��op excitation function for the machine from Figure ��a	b
is shown in Figure ��g� As shown in Figure ��h	 it requires two cells and one AND�type Mealy output�
Another option to realize this circuit with ��� is to use a Moore machine� The T type �ip��op excitation functions
calculated from transition functions from Figure ��d	e	 are shown in Figure ��i	j� The output function	 found
from Figure ��c	 is y � Q�� One needs then four cells to realize the Moore machine	 versus two cells required to
realize the Mealy machine	 which is also faster�

Example ��

We realize the Voltage Controlling Circuit� The excitation functions of this circuit are presented in Figure ��a�c�
These functions are minimized as follows�
q� � Q� �x� � Q� x� � Q�

�Q� � �Q� x� �x�	 q� � Q� �x� � Q� x� � Q� Q� � Q� x� �x�	 y� � x� � Q� x� �x�	
y� � x� � �Q� x� �x��
By realization of excitation functions q� and q� the hazard was eliminated� The elimination of hazard in the
output functions is not necessary	 while the output signals are given �through power ampli�ers� to the motors of
high �according to the speed of logic element operation� inertia� Groups Q� x� �x� and �Q� x� �x� are common for
the excitation and output functions�
The expressions for excitation functions can be further factorized� q� � Q� � �x� � x� � �Q� � �Q� x� �x�	
q� � Q� � �x� � x� � Q� � Q� x� �x��
captionFig� ������ The excitation functions and output functions for the Voltage Controlling Machine�
To these expressions corresponds the circuit with NAND gates from Figure ��a� This circuit can be further
simpli�ed by replacing �Q� with a bunch of wires coming to the gate realizing q� �Figure ��b	c��
captionFig� ������ The schematics for the Voltage Controlling Machine�
In the case when the asynchronous static circuit is realized with static rs �ip��ops �latches�	 the excitations of
these latches are calculated with use of the excitation array of Figure ���
captionFig� ������ Array of static rs �ip��ops�
This array is identi�ed as the array for synchronous RS �ip��op� The �ow�table shows what signals must be
given to inputs r and s to obtain the expected change of its state�
After encoding and thickening the changing values of Q the �ow table speci�es the required changes of the �ip��op
states� From this table one calculates the excitation functions of these �ip��ops	 as follows�

�a� � function s has ones for bold ones	 and zeros for zeros of Qt
� �

�b� � function r has ones for bold zeros ones	 and zeros for ones of Qt
� �

captionFig� ������ Diagram of the Generator Getting Machine with rs �ip��ops�
The method of �nding the excitation function maps is similar as for the synchronous circuits� Finding the
realization of the static circuit with �ip��op is usually less laborious than the synthesis of the circuit with feedbacks�
The circuit obtained is however usually not minimal �Figure ��b��

Example ��

Realization with ���� From Figure ��b	c one obtains the T type excitation functions from Figure ��a	b� They
are realized as shown in Figure ��� One can observe the usage of CDEC�cells� The Mealy outputs are realized by
delaying outputs by one clock pulse using D type �ip��op realized from T type �ip��op� For instance	 implicant
Q� x� being the input to the D �ip��op is realized as follows�
T � �D Q � �Q D �
T � �Q� x� Q � �Q �Q� x� Q� This is realized with START extension and Mealy outputs	 as shown in Figure ���
Similarly the realization of the second output is realized �see Figure ��� The CDEC�cells have been used again�

Example �	

The diagram of D �ip��op �encoded �ow�table of Figure ��a� is presented in Figure ��� Checking of this solution
is left to the reader�
caaptionFig� ������ a The diagram of the type D �ip��op� b�c The excitation functions of T type �ip��ops� d
The realization of logic with CY�C��� device�



� ��	� Asynchronous dynamical machines�

The ST cell of the CY�C��� producing short pulses	 can be used to simplify the realization of asynchronous
machines� We will call such machines � the dynamical machines	 to distinguish it from the previously described
static �level mode� machines� We can call them also the pulse machines�
captionFig� ������ The creation of the dynamical �ow table of the Generator Gating Circuit
 a the static table�
b the dynamic table� c minimization� d the assignment�
It is convenient to use a dynamic �ow table while describing the dynamic machine� It speci�es for each internal
state and for each change of input states Xt�� � Xt the next internal state� A�t � �  � ��A�t� X�t � � 
 X�t��
Let us draw the dynamic �ow table for the Generator Gating Machine	 which corresponds to the static table of
Figure ��a � this table is repeated in Figure ��a� By creating the dynamic �ow table one must remember that
only one input signal can change at any moment in an asynchronous machine� Therefore	 for instance	 there is
a transition from state ��� to state ��� with the inputs changing from �� to ��	 and from state ��� to state ���
with the inputs changing from �� to ��� However	 during the changes of the input states from �� to �� and from
�� to ��	 the circuit remains in state � �Figure ��b��
The dynamic �ow table is similar to the �ow table of a synchronous machine and is minimized in a similar way�
As we see	 the states � and � in the Table from Figure ��b are compatible and can be joined	 which leads to the
table of Figure ��c� After the state assignment	 this table takes the form presented in Figure ��d�
Figure ��a presents the operation of the di�erentiating element� It is very close to START�
d��g� � START�g�	 d��g� � START��g��
The dynamic circuit can be realized using many methods but we will use here a combination of ST	 TO and TE
cells of CY�C���� For these elements we shall �nd the excitation function T� of T type �ip��op �Figure ��b��
These excitation function is as follows�
T� � b d��g � Q d�g	
The realization using START cells operating as di�erentiating elements is shown in Figure ��c�
captionFig� ������ The Generator Gating Circuit
 a Explanation of the concept of di	erentiating element� b
the dynamic excitation table� c the realization using START cells and a TOGGLE cell�

� ��
� Hazards and Hazard Free Logic Synthesis�

This section will be added�

� ���� Literature to chapter ��

General problems of asynchronous automation� ��	 �	 ��
Creating of initial �ow tables� ��	 �	 �	 ���
Minimization� ��	 �	 �	 �	 �	 ���
State assignment� ��	 �	 �	 �	 �	 �	 �	 ���
Elementary machines� ����
Description of machines and automata� ����
Transition from timing diagram to �ow table� ����
Di�erent types of asynchronous circuits� ����
Counters� ����
Minimization of number of columns in �ow table� ����
Hazards and races� ��	 �	 �	 �	 �	 �	 �	 �	 ���
Sources of good design problems� ��	 �	 ���

� ���� Review Questions�

������ What is asynchronous state machine�

�� What are the conditions of proper behavior of asynchronous machine�

�� What are the stable and unstable states�


� What are the pseudoequivalent states�

�� Describe the process of state minimization of asynchronous state machines�

�� Describe creating of the output table of the minimal Mealy machine�


