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1 INTRODUCTION.

Little has been published on self-synchronized
circuits, a design style that is very useful in prac-
tical controller design; for instance in interfaces
and controls of self-timed realizations. There are
few researches on VLSI realization of low power
(pass transistor-based) and other asynchronous
self-synchronized sequential circuits [16, 10, 11, 1,
2]. The goal is to achieve fast circuits, with low
power consumption, for deep sub-micron technolo-
gies.

The U.C. Berkeley project [1] proposes synchro-
nization and communication between a number of
processors that operate at varying clock rates and
voltage levels. They propose the use of a “data-
driven asynchronous approach at the protocol level”.
This i1s combined with an "locally synchronous is-
land” approach at the circuit level that allows for
the reconfigurable interconnect network to operate
in a self-timed mode at low voltage swing. “Proces-
sor modules can be operating in either synchronous
or self-timed mode at arbitrary voltage levels. The
combination of a data-driven communication pro-
tocol and the locally synchronous islands eliminates
the occurrence of synchronization failures” [1].

However, no specialized set of EDA tools or PLDs
are now available that can be used for fast pro-
totyping of such systems and FPGA components
in them. This paper proposes a new design style
for self-synchronized state machines, demonstrates
their usefulness by speed analysis, compares vari-
ants using a simple example, and proposes new
types of EPLD/FPGA chips to aid in the board-
level design of self-synchronized circuits.

2 BASIC DEFINITIONS

Single input change (SIC) mode: a ma-

chine can have many inputs but only one input
is allowed to change level to cause the machine
to enter the next state. Multiple input change
(MIC) mode: more than one input level is allowed
to change and all changes within some small inter-
val are accepted as if they were simultaneous. A
machine operates in Unrestricted input change
(UIC) mode if there are no constraints in the pos-
sible input sequences. UIC mode can produce races
between input variables. There are three types of
races: [1] between two state variables, [2] between
two input variables, [3] between state and input
variables. (A general approach commmon to all
these cases should be developed, since until now
they are discussed separately in the literature.)

A machine operates in Single output change
(SOC) mode if any input sequence causes only
one state transition. All synchronous circuits op-
erate in SOC mode. We will consider mostly the
SOC mode in this paper. A machine operates in
Multiple output change (MOC) mode if any
input sequence causes the machine to perambulate
through states before reaching the stable state (see
[11] for details on MOC case).

The ultimate goal of the presented work is
to propose a new self-synchronized/mixed
EPLD /FPGA device that will be better than
the existing programmable devices adapted
for realization of asynchronous machines.
The priorities should be: [1] faster, [2] allowing
larger machines of more flexible structures, includ-
ing controllers and data-flow sequential circuits. [3]
not too expensive in the sense of the area. In this
order of importance, with the highest priority to
speed.



3 SELF-SYNCHRONIZED
CIRCUIT STRUCTURE

Fig. 1 is a diagram by Rey and Vaucher [13] that
shows how the self-synchronized machine operates.
From the flow-chart, the operation can be summa-
rized in the following steps: [1)] Detect the input
change (a Change Detector). [2)] Let the inputs
stablize by continuing to sample the input changes
within a window with respect to the last input
change. [3)] Trigger the state machine by creat-
ing a clock pulse. [4)] If the state variables are
stable, go back to 1 (this is for the SOC case).
With respect to the hardware, a self-synchronized
machine can be represented by the block diagram
shown in Fig. 2. The MOC case machine can
be represented by the block diagram from Fig. 3.
Notice that the MORE signal has been added
to tell the Clock Generator that more transitions
are needed. The Clock Generator uses the state of
MORE each time to generate an additional clock
pulse. The signal MORE is produced by a com-
binational circuit that compares the overall state
of the machine before the clock with the predeter-
mined final overall state. If these states are not
equal, MORE will be high. MORE 1s fed directly
into a T flip-flop in the Clock Generator. There-
fore, when the clock pulse occurs, the output of the
T flip-flop changes. This change will be captured
in the Change Detector to generate another clock
pulse. If MORE is low at the clock pulse, the se-
quence ends. Let us observe that for the machine
from Fig. 2 the combinational logic is the same as
for the synchronous machine. For the MOC case
the combinational logic includes, additionally, the
MORE output function. The Clock Generator is
added in both cases.

4 CLOCK GENERATOR

The Clock Generator scheme presented here is
detailed by Kirkpatrick [10, 11]. The Clock Gen-
erator consists of two blocks: the Change Detector
and the delay element as shown in Fig. 4. The out-
put of the Change Detector block is the signal DIF-
FER. The outputs of the delay element block are
the signals CHANGE and CLOCK. The circuits be-
havior can be expressed by the following steps (see
also Figures 11-13, they will be analyzed in detail
in section 6).

[1)] DIFFER, CHANGE, and MORE are low. The
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Figure 1: Diagram of operation of self-synchronized

machine, for MOC model [13].

Change Detector and the machine are ready to ac-
cept input changes.

[2)] If there is an input change, DIFFER will go
high to indicate that a change in inputs has been
detected.

[3)] After a later time that is predictable by the de-
lay, CHANGE emerges which is fed back to shut off
the Change Detector. During this time, DIFFER is
high and CHANGE is low and more input changes
are allowed.

[4)] Eventually, DIFFER will go low but CHANGE
will still be high. At this time, changes combined
with the present state propagate through the com-
binational logic and setup the flip-flops as the next
state of the machine. MORE is also updated,
Fig. 3.

[5)] Finally, again through the delay, CHANGE
goes low (DIFFER = CHANGE = low) and
CLOCK goes high to trigger the machine and en-
able the machine again (SOC case). Note that in
the MOC case, the signal MORE will cause more
clock pulses so that the machine can perambulate
through states until it finds a stable state. The
Change Detector is kept off during the time of per-
ambulation.

[6)] With DIFFER = CHANGE = MORE = low,
the machine is now ready for another input excita-
tion.

5 CHANGE DETECTOR

The Change Detector can be realized as shown in
Fig. 5. In the beginning, the inputs I;, i € {1..n}
and the output of the latch are the same. Hence,
the signal DIFFER is inactive (low). As soon as
one or more of the inputs I;; i € {l..n} changes
levels, the corresponding EXOR gate will detect
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Figure 2: Block diagram of self-synchronized ma-
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Figure 3: Block diagram of MOC case.
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Figure 4: Change Detector and delay element of the
Clock Generator.

the change and will go high. DIFFER will follow
them. Later, CHANGE is generated to open up the
latch. Then, the change from the input propagates
through the latch to the EXOR gates. Eventually,
DIFFER goes low and CHANGE goes low again
to shut off the latch. This completes a sequence
of input detection. As an example, an eight in-
put Change Detector can be built using only two
commercially available parts: one 7T4F373 eight-bit
latch and one 7T4F521 eight-bit equality comparator
as shown in Fig. 6.

A Symmetrical delay is a pure delay line which
transforms (shifts) the input signal in time by the
amount of time 1. This delay can easily be realized
using gates in series or using commercially available
digital delay lines as shown in Fig. 7.

An Asymmetrical delay is a delay in which the
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Figure 5: Realization of Change Detector.
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Figure 6: 74F373 eight-bit latch and 74F521 eight-

bit equality comparator.
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Figure 10: Diagram using symmetrical delays.

leading edge of the input change is delayed by the
amount D. The trailing edge, however, i1s propa-
gated without delay as shown in Fig. 8. The asym-
metrical delay can be realized as shown in Fig. 9.
Thus, the trailing edge speed is limited only by the
technology. Different circuit implementations have

been discussed [10, 11].

6 FUNCTIONAL OPERATION

The operation of the self-synchronized circuits
can easily be understood by studying the timing
diagram shown in Fig. 10. Notation: [A] means
that the machine is ready to accept input changes.
[B] means that the inputs have to remain stable
for the proper operation. [k1] is the time interval
for which several input signals may change. [k2] is
the time interval for which input signals may not
change while the machine perambulates from one
state to the goal state. If the input signals change
during this interval, unpredictable behavior will oc-
cur. Hence, the machine may malfunction accord-
ingly.

Case 1: Fig. 10 shows the diagram using symmet-
rical delays. The problem with symmetrical delays
is that they operate correctly when we have the
control of the inputs. Otherwise, the machine may
malfunction if the change of an input occurs during
state B. If an input change occurs during state B,
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Figure 11: Diagram using asymmetrical delays.
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Figure 12: Diagram of the MOC case.

the inputs may change to a new state before the
clock 1s generated to clock the flip-flop. Thus, the
machine may enter a different state than it should
enter. In addition, the speed of the machine is also
slower due to this type of delay.

Case 2: Using asymmetrical delays the diagram
is shown 1n Fig. 11. We can, therefore, minimize
the problem mentioned above by using the asym-
metrical delay elements. The speed of the circuit is
now limited only by the chosen technology. For the
MOC case the diagram is shown in Fig. 12. The
signal MORE is high when the machine has not
entered the final stable state.

7 TIMING ANALYSIS

The following notation will be used in this paper
to evaluate the speed of the machine: [D] the de-
lay through the delay elements, [d] the stray delays
through the combinational logic, [s] the set-up time
for the register elements (flip-flops), [f] the prop-
agation delays through register elements, [k1] the
time interval for which several input signals may
change, [k2] the time interval for which input sig-
nals must remain stable.

ASYNCHRONOUS HUFFMAN MOORE
MACHINE.



A MIC Huffman-Moore machine having a proper
critical race-free assignment will, in general, still
require delay elements for proper operation. The
earliest that an input change can reach output
logic is k1 + dmaz (notation: min = minimum,
mar = maximum, Dm = Delay element). Thus,
the minimum valued for the delay element must
be Dmin > kl + dmax — dmin, or to be safe,
Dmin > k1 + dmaz. Hence, k2 is bound by
Dmin + dmin and Dmaz + dmaz.

For the SOC case: k2 4+ dmin > dmazx +
(Dmaz + dmaz), hence k2> Dmaxz + 2dmax —
dmin (eql). This is the period that inputs have to
remain stable after the change.

In the case of MOC, we have another restric-
tion. The time that each state changes is bound
by Dmin 4+ dmin and Dmaz + dmax. If n is the
longest sequence of state transition in the machine
to produce the output then k2 + dmin > dmazx +
n(Dmaz+dmaz) or k2 > nDmaz+ (n+1)dmaz —
dmin and the time between states: k1 4+ k2 > kl
+ n (Dmaz + dmaz) + (dmaxz — dmin).
Special case for Huffman-Moore machine:

If the machine is in SOC mode and has
no essential hazard, then D = 0. Thus
k2 > 2dmaxr — dmin (eq2).

SELF-SYNCHRONIZED MACHINES.
For the machine built using this structure, the clock
edge to the register elements (flip-flop2) must not
arrive before the input changes have gone through
the combinational logic, reached the state-variable
flip-flops, and met the set-up time requirements.
Thus, Dmin > k1 4 dmax + s and similarly,
k2 + Dmin > Dmaz + fmaz + dmaz +s (eq3)
from which we obtain
k2 > fmax + dmax + s + (Dmax — Dmin) (eq4)
Thus the input changes are separated by the time
interval:

k1 + k2 >
k1 + (fmaz + dmax + s) + (Dmaxz — Dmin) (eqb)
For MOC case:
k1 + k2 >
k1 4+ n(fmaz + dmaz + s) + (Dmaxz — Dmin)
By comparison between equations (eq2) and (eg5),
the Huffman-Moore machine will always be faster
if the machine operates in SOC and has no essen-
tial hazards. Otherwise, the combination circuit
will dictate the speed of the circuit in the Huffman-
Moore machines. The more complex the machine,
the bigger the combination circuit due to the com-

plicated state assignment to avoid races and haz-
ards. This leads to larger k1. On the other hand,
the state assignment in self-synchronized circuits
can be arbitrary. Thus the combinational logic can
be made much simpler. Consequently, the speed
of the self-synchronized machine can be faster than
that of the asynchronous Huffman-Moore machine,
and this trade-off should be analyzed by CAD tools.

Self synchronized circuits extended to Unre-
stricted Input Change (UIC) case.

Almost all asynchronous designs assume that the
machine will operate in the fundamental mode -
once the input-state change is perceived by the ma-
chine, the machine will reach a final stable state be-
fore another input-state change is allowed. When
the machine operates in UIC mode, the fundamen-
tal mode assumption is violated. Since the tim-
ing relationships between the inputs are not con-
strained, ambiguous input-state states will result.
This may cause the machine to malfunction. As de-
scribed in Kirkpatrick [11], the extension of the self-
synchronized machines to the UIC case is straight-
forward. All we have to do is to add a transparent
latch, such as 7T4F373, to the input signals. While
the machine is in a stable state, the latch is en-
abled. Thus, the machine is ready to accept input
changes. Once the machine detects new inputs via
DIFFER going high, this input latch is disabled
and is freezing the input state in the latch. Next,
this input-state is processed and once the machine
returns to the stable state, the input latch is again
enabled to accept new input changes.

It should be noted that this UIC input latch will
exhibit the metastable behavior due to the input
changes not meeting the set-up and hold-time re-
quirements for the latch. To compensate for this,
an additional delay has to be added to k1 (normally
four times the propagation delay of the latch). The
general structure of the UIC self-synchronized ma-
chine would look, therefore, like in Fig. 13. The
UIC_LE signal stands for UIC Latch Enable.

Thus, the speed of the circuit is:

For SOC:

k1 + k2 >

k1 + (bfmazx + dmaz + s) + (Dmax — Dmin)
For MOC:

k1 + k2 >

k1 + n(bfmazx + dmax + s) + (Dmaxz — Dmin)
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Figure 13: UIC self-synchronized machine.
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Figure 14: Flow matriz by Unger.

8 COMPARISON BETWEEN CIR-
CUITS.

In this section we will compare synchronous,
asynchronous and self-synchronized circuits. To
make the analysis using real data for one technol-
ogy, in the following example we will assume most
pessimistically the 74FXX technology, and also as-
sume that each FXX gate delay 1s 3ns, and 10ns for
a minimum and a maximum, respectively (dmin =
3, dmaz = 10). For the PAL 16L8B and 16R4B,
the set-up time is 15ns, the clock to output time is
12ns, and the propagation delay time is 15ns.
Example: The Crumb Road Problem. The
problem is the design of a sequential machine to
control the traffic at the intersection of Crumb
Road and Route 1. (For a complete description of
the problem, see Unger, 1969). Unger derived the
following flow matrix (Fig. 14). The corresponding
circuit is:

Z =1y + 111 Y2

Yi = 2122019 + 21 Y2 + Ty

Yo =Zrxs + y1y2 + Ti Y2 + 122 P2
Asynchronous machine. The speed (total prop-
agation time) of the asynchronous machine assum-
ing PAL16L8B is 15ns, which corresponds to 66.6

Mhz.

Synchronous machine. Using PAL 16R4B, the
synchronous machine version of this example has
the maximum clock rate = T'setup + Tclock —to—
output is equal to 15ns + 12ns = 27ns. The maxi-
mum speed is, therefore, 27ns or 37 Mhz.
Self-synchronized machine. The circuit real-
ization for the above problem is shown in Fig. 15.
First, let us understand the operation of the circuit.
Assume on power on, everything is stable (we in-
tentionally ignore the additional circuitry to bring
the circuit to a known state upon power-up or reset
condition). In this state, DIFFER, CHANGE are
low and CLOCK is high, the latch U1 is disabled.
The circuit is ready to accept any input changes. If
any or both inputs z1 and z2 change, the changes
will go to the PAL 16R4B and also will go through
U2 to cause DIFFER to go to high. After the de-
lay, CHANGE will go high to enable the latch U1.
CLOCK then goes low. Next, the input will go
through U1, U2 to turn off DIFFER, then through
the delay to turn off CHANGE. Finally, the latch
U1 is shut off and CLOCK goes high to clock the
PAL 16R4B. Now, the state machine is ready for
another input change.

Next we have to determine what is the delay in

the delay line of the circuit, before we can calculate
the circuit’s speed. The worst case timing analy-
sis 1s as follows. There are two paths in this cir-
cuit. Path 1, P1, is from the inputs to the PAL
16R4B (Fig. 15). The other path, P2, is from the
inputs through the clock generator. The only con-
straint is that the input change has to arrive at
the PAL16R4B at least within the minimum set-up
time, 12ns, before the CLOCK 1is generated, go-
ing from low to high. Hence, the minimum delay
through the clock generator block must be equal
or greater than the set-up time requirement of the
PAL. We have, therefore, the following inequality:
tU2min 4+ tDmin 4+ tUlmin + tU2min +
tDmin4tU3min > tsetup
3+tDmin +34+3+tDmin+3 > 15
tDmin > 1.5 ns.
(We can use a non-inverting buffer as the delay in
this case). Suppose, we use the FO8 AND-gate as
the delay in this example, then t Dmin = 3ns. Then
the speed of the circuit is:

Speed = 2tDmin + 2tU2min + tUlmin +
tU3min = 2x3+2%x3+34+3

Speed = 18 ns or 55.5 Mhz

We can see, therefore, that the self-synchronized
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circuit in this implementation is faster than the syn-
chronous circuit by about 33%.

e Asynchronous Huffman-Moore machine : = 66.6
Mhz,

e Self-Synchronized machine : = 55.5 Mhz.

e Synchronous machine : = 37.0 Mhz.

For the UIC case: The UIC latch is added to

the self-synchronized circuit and the synchronizer
has to be added to the synchronous machine. The
speed difference will be less apparent because the
self-synchronized circuit will be slower by the extra
UIC latch plus the compensation for metastability.
On the other hand, the synchronous machine has
to wait for an extra clock or two to synchronize the
inputs. With the above example, the realization for
the UIC case is as in Fig. 16.

As mentioned above, the UIC latch may exhibit the
metastable condition. We allow 4 T'pd to allow the
latch to recover. Thus the speed is

Speed = 2t Dman+2tU 2man+tU lmin+tU 3min+

TUIClatch = 23+ 2343+ 3+ 40.

Speed = H8 ns or 17.24 Mhz.

For the synchronous machine, the metastable prob-
lem also has to be taken into account. Hence,

Speed = 27T+ 40 = 67 ns or 14.9 Mhz.

9 SELF-SYNCHRONIZED CPLDS
AND FPGAS.

It is an interesting issue whether the asyn-
chronous designs, when mature, will become only
a domain of VLSI processor design market, or
they will affect also FPGA and EPLD markets.
Above-introduced Clock Generator circuit can be
used with EPLD devices for direct implementation
of high-level specification of self-synchronized cir-
cuits. It was shown above by us and tested ex-
perimentally that the self-synchronized circuits can
be designed using commercially available PALs or
EPLDs and TTL parts. We demonstrated also that
the self-synchronized circuits are faster than the
synchronous circuits when implemented with PALs.

Finally, although we do not elaborate on it be-
cause of the lack of space, it should be obvious
from the example, that it is relatively easy to con-
vert standard synchronous optimization tools for
self-synchronized circuits. The biggest advantage
here is that one will be able to use standard meth-
ods of state assignments and logic reduction of syn-
chronous machines. Thus traditional methods
with minimum modification are preserved
while the speed can be improved. Thus, any
PAL/PLD/FPGA standard popular development
system can be used by the designer, and the design
slightly modified, or the tool can be easily modified
by its developers. Although asynchronous circuit is
still faster, only time-critical sub-machines could be
realized as asynchronous if other are too difficult or
do not lead to improvements. The other machines
can be self-synchronized, as presented, and still lead
to total power reduction and speed improvements
of entire systems.

When using standard PALs or EPLDs, there are
still a lot of extra components, 5 extra chips, besides
the PAL needed to implement a self-synchronized
circuit. Therefore we propose to design a front-
end VLSI chip, called the CLOCK GENERA-
TOR, so that one can build the self-synchronized
circuits with only three components: Clock Gener-
ator, PALs (EPLDs, FPGAs), and a resistor with
a capacitor. No PLD device is, to our knowl-
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Figure 17: Self-synchronized state machine with
proposed chip and PAL.

edge, currently produced by companies that would
help to decrease the chip count when implementing
self-timed or self-synchronized circuits, so our idea
should become of interest to the EPLD/FPGA in-
dustry. The pair of resistor and capacitor will set
the time delay. The asymmetrical delay element
and the UIC mode, if selected, will be taken by the
clock generator chip. This chip is fairly small and
simple to design. The complete schematic of the
self-synchronized state machine with the proposed
chip and PAL is shown in Fig. 17.

Even higher integration can be achieved when
several complete self-synchronized machines are
put into a single VLSI chip. Thus CPLD and
FPGA chips can also be fabricated that will in-
clude the proposed CLOCK generator, a (parti-
tioned) PAL or distributed CLBs, together with
programmable delays, in a single enclosure. More
research is needed to define the best structures for
such self-synchronized arrays. Perhaps they should
be product-oriented rather than general purpose.
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