
/f^OZ. 

Optimized 

Implementation of Speech 

Processing Algorithms 

Sara Grassi 

THESE SOUMISE A LA FACULTE DES SCIENCES 
DE L'UNIVERSITÉ DE NEUCHÂTEL POUR L'OBTENTION 

DU GRADE DE DOCTEUR ES SCIENCES 



Copyright © 1998 Sara Grassi 



IMPRIMATUR POUR LA THESE 

Optimized Implementation of Speech Processing 

Algorithms 

de Mme Sara Grassi 

UNIVERSITE DE NEUCHATEL 

FACULTÉ DES SCIENCES 

La Faculté des sciences de l'Université de 
Neuchâtel sur le rapport des membres du jury, 

MM. F. Pellandini (directeur de thèse), 
H. Hügli, M. Ansorge et M. Kunt (EPF Lausanne) 

autorise l'impression de la présente thèse. 

Neuchâtel, le 20 février 1998 

Le doyen: 

F. Stoeckli 



Abstract 

Several speech processing applications such as digital hearing 
aids and personal communications devices are characterized by 
very tight requirements in power consumption, size, and 
voltage supply. These requirements are difficult to fulfill, given 
the complexity and number of functions to be implemented, 
together with the real time requirement and large dynamic 
range of the input signals. To meet these constraints, careful 
optimization should be done at all levels, ranging from 
algorithmic level, through system and circuit architecture, to 
layout and design of the cell library. The key points of this 
optimization are among others, the choice of the algorithms, 
the modification of the algorithms to reduce computational 
complexity, the choice of a fixed-point arithmetic unit, the 
minimization of the number of bits required at every node of 
the algorithm, and a careful match between algorithms and 
architecture. 

The optimization method is explained and then applied to 
two typical speech processing applications: noise 
reduction/speech enhancement for digital hearing aids and 
spectral analysis and quantization in the CELP FS1016 speech 
coder. 



Résumé 

Les exigences relatives à la consommation d'énergie, la taille et 
l'alimentation sont très sévères pour un certain nombre 
d'applications du traitement de la parole, par exemple les aides 
auditives digitales ou les appareils de communication portables. 
Ces conditions sont difficiles à remplir, étant donné la 
complexité et le grand nombre de fonctions à implanter, 
auxquels s'ajoutent les contraintes liées au temps réel et à la 
large dynamique des signaux d'entrée. Pour satisfaire ces 
exigences, une optimisation soignée doit être menée à tous les 
niveaux, depuis l'algorithme, jusqu'au circuit et à la conception 
de la librairie de cellules, en passant par l'architecture du 
système et du circuit. Les aspects majeurs de l'optimisation 
concernent notamment le choix des algorithmes, les 
modifications nécessaires pour réduire le coût de calcul, le choix 
d'une unité arithmétique à virgule fixe, la minimisation du 
nombre de bits nécessaires pour chaque valeur dans 
l'algorithme ainsi que l'adéquation minutieuse entre 
algorithmes et architecture. 

La méthode d'optimisation est détaillée puis illustrée dans 
le cas de deux applications types du traitement de la parole : la 
réduction de bruit pour les aides auditives digitales ainsi que 
l'analyse spectrale et la quantification du codeur CELP FS1016. 

vu 



Acknowledgements 

This work was made possible by the contribution of many 
people. 

First, I would like to thank my supervisor Professor Fausto 
Pellandini for putting his trust in me, giving me the 
opportunity to work in his research group, and for supervising 
the writing of this thesis. I also would like to thank Professor 
Murat Kunt, Professor Heinz Hiigli and Mr. Michael Ansorge 
for co-examining this thesis. 

This work was partially financed by the Swiss Foundation 
for Research in Microtechnology (FSRM), under the project 
FSRM 91/07 and the Federal Commission for the 
Encouragement of Scientific Research (CERS), under the 
project CERS 2747.1. 

Mr. Michael Ansorge also participated directly in the 
research described in this report. He contributed to the 
organization of my work, bringing useful ideas and carefully 
examining and proof-reading our publications, contributing to 
their improvement with his comments and corrections. Mr. 
Alain Dufaux also worked with me during part of this research 
and we had a lot of interesting discussions. 

I am also very grateful to the following students, who did 
their undergraduate thesis or their practical semester work 
with me: Joerg Troger, Stéphane Kuenzi, Olivier Huesser, Beat 
Rupp, François Seguin and Giuseppina Biundo. I have learned 
a lot from them. 

My husband, Andreas Pauletti, was most helpful during the 
writing of this report. Besides his love, continuous moral 

IX 



Optimized Implementation of Speech Processing Algorithms 

support and encouragement, he proof-read (more than once!) 
the whole manuscript and drew several of the figures. 

Vincent Moser kindly provided the document style 
definitions from his own Ph.D. report, as well as a lot of 
typographical advice. 

Catherine Marselli did the French translation, and 
supported me endlessly before and during the writing of this 
thesis. 

My colleagues were always available and helpful during my 
time at IMT. In particular our secretary Catherine Lehnherr 
and our System Manager Heinz Burri. 

Some of my colleagues were particularly friendly and 
supportive. Among them Vincent Moser, Alexis Boegli, 
Dominique Daudet, Dequn Sun, Christian Robert and Javier 
Bracamonte. 

Finally, I would like to thank all my family and friends, 
who make my life worth living. 

x 



Table of Contents 

Chapter 1 
Introduction 1 

1.1. Motivation 1 
1.2. Scope of the Research 2 
1.3. Organization of the Report 3 
1.4. Main Contributions 4 
1.5. Publications 5 
1.6. References 5 

Chapter 2 
Digital Speech Process ing 7 

2.1. The Speech Signal 7 
2.2. Model of Speech Production 8 
2.3. Frequency-domain Analysis of the Speech Signal 10 
2.4. Linear Predictive Modeling of the Speech Signal 12 
2.5. Calculation of the LPC Coefficients 13 
2.6. Hearing and Speech Perception 14 
2.7. Speech Processing and DSP Systems 15 
2.8. Digital Speech Processing Areas and Applications 16 
2.9. Speech Coding 17 

Vector Quantization 18 
CELP coding 20 
Parametric Coders 21 

2.10. Speech Enhancement 22 
Digital Hearing Aids 22 

2.11. Speech Processing Functional Blocks 24 
Lattice FIR, IIR and GAL Predictor 24 

xi 



Optimized Implementation of Speech Processing Algorithms 

LPC Calculation 25 
LSP Representation of LPC Parameters 26 

2.12. Implementation Issues 26 
Real-time Constraints 27 
Processing Delay 27 
Programmable DSP versus Custom Hardware 27 
Programmable DSP Implementation 28 
Custom Hardware and ASIC 29 

2.13. Fixed-point versus Floating-point Arithmetic 29 
2.14. Algorithmic Optimization 30 
2.15. Summary of the Chapter 30 
2.16. References 31 

Chapter 3 
Methodology of Optimization. 33 

3.1. Methodology of Optimization 33 
3.2. Quantization Effects in Digital Signal Processing. 34 
3.3. Binary Fixed-point Representation of Numbers 36 
3.4. Rounding and Truncation 37 

Truncation 38 
Rounding 38 
Convergent Rounding 39 

3.5. Dynamic Range, Overflow and Saturation Arithmetic 39 
3.6. Fixed-point Quantization Effects 40 

Parameter Quantization 41 
Signal Quantization 41 

3.7. Round-off Noise and Limit Cycles 42 
3.8. Adaptive and Non-linear Algorithms 42 
3.9. Simulation of Quantization Effects in DSP Algorithms 43 

The Environment Used 43 
Programs to Simulate Quantization Effects 44 
The Input Signals 46 
Measures of Performance 46 

3.10. Simulation of DSP56001 Quantization Effects 47 
TheDSP56001 47 
Simulation ofDSP56001 Arithmetic 48 

3.11. Conclusions and Summary of the Chapter 51 
3.12. References 51 

XU 



Table of Contents 

Chapter 4 
Noise Reduction / Speech Enhancement for Digital 
Hearing Aids 53 

4.1. Digital Hearing Aids 53 
4.2. Noise Reduction I Speech Enhancement Algorithms 54 
4.3. High Level Simulation 58 

Testing the Algorithms and Choice of the Parameters 58 
Measure of Performance 59 

4.4. Real Time Implementation on DSP56001 60 
4.5. Simplified Division 60 
4.6. Quantization Effects 61 

Parameters of the System 61 
The Optimized System 61 
Implications for the VLSI Implementation 63 
Implications for the DSP56001 Implementation 64 

4.7. VLSI Implementation 65 
4.8. Further Work 66 

Speech Coding 66 
Frequency Shaping for Digital Hearing Aids 68 

4.9. Conclusions and Summary of the Chapter 68 
4.10. References 69 

Chapter 5 
Line Spectrum Pairs and the CELP FS1016 Speech 
Coder 73 

5.1. LPC Analysis 73 
5.2. Calculation of the LPC Coefficients 74 

Autocorrelation Method and Durbin's Recursion 75 
5.3. Bandwidth Expansion 76 
5.4. Quantization of the LPC Coefficients 77 

Objective Measure of LPC Quantization Performance 78 
Alternative Representations of LPC Coefficients 79 

5.5. Interpolation of the LPC Coefficients 81 
5.6. Line Spectrum Pairs 82 

Use of LSP Representation in Speech Coding 82 
Definition of LSP Parameters 83 

5.7. Characteristics of the LSP Parameters 86 
Frequency Domain Representation 86 
Intra- and Inter-frame Correlation 86 
Localized Spectral Sensitivity 87 

xiii 



Optimized Implementation of Speech Processing Algorithms 

Close Relationship with Formants of the Spectral Envelope 87 
5.8. Quantization of the LSP Parameters 88 

Scalar Quantization 88 
Vector Quantization 89 
Spectral Quantization in the FS1016 CELP Coder 90 

5.9. Determination of the LSP Parameters 92 
Kabul's Method 92 
Saoudi's Method 95 
Chan's Method 98 
Spectral Transform Methods 100 
Adaptive Methods 101 

5.10. LSP to LPC Transformation 101 
Direct Expansion Method 102 
LPC Analysis Filter Method 102 
Kabal's Method 103 

5.11. The CELP FS1016 Speech Coder 103 
Short-term Spectral Analysis in the CELP FS1016 Coder 105 

5.12. Summary of the Chapter 108 
5.13. References 108 

Chapter 6 
Proposed Algorithms for LSP Calculation 113 

6.1. First Proposed Method: Mixed-LSP 114 
Different Derivation of PJx) and Q1Jx) 114 
Description of the Proposed Algorithm (Mixed-LSP) 116 
Experimental Evaluation 116 

6.2. LSP Quantization in the "x-domain" versus LSP Quantization in 
the "co-domain" 117 
6.3. Second Proposed Method: Quantized-search Kabal 118 

«Single-correction» 119 
«Coupled-correction» 121 
Experimental Evaluation 123 
Quantized-search Chan 125 
Computational Complexity 125 

6.4. Program for LSP Quantization 126 
6.5. Bandwidth Expansion and Spectral Smoothing 127 
6.6. Accuracy of the Different Algorithms 127 

Spectral Distortion 129 
6.7. Reliability of the Different Algorithms 131 
6.8. LSP Interpolation in the "x-domain" versus LSP Interpolation in the 
"m-domain" 135 

xiv 



Table of Contents 

6.9. Computational Complexity 136 
DSP56001 Implementation 138 

6.10. Program Listings '. 141 
6.11. Further Work 141 
6.12. Conclusions and Summary of the Chapter 141 
6.13. References 142 

Chapter 7 
DSP56001 Implementation of the CELP FS1016 Spectral 
Analysis and Quantization. 145 

7.1. Short-term Spectral Analysis and Quantization in the CELP 
FS1016 Coder 145 
7.2. Testing the Implemented Blocks 147 
7.3. Measure of Computational Complexity 149 
7.4. Calculation of Bandwidth-expanded LPC 149 

High-pass Filter 150 
Windowing 152 
Calculation of the Autocorrelation Coefficients 152 
Levinson-Durbin Recursion 154 
Bandwidth Expansion 154 
Experimental Evaluation of the Calculation of Bandwidth 
Expanded LPC 155 

7.5. LSP Calculation and Quantization 156 
Kabal's Algorithm 157 
Experimental Evaluation of Kabal's Algorithm Implementation. 158 
Mixed-LSP 158 
Experimental Evaluation of Mixed-LSP Implementation 159 
Quantized-search Kabal 160 
Experimental Evaluation of Q.-search Kabal Implementation 162 
LSP Quantization in the "x-domain" 162 
Experimental Evaluation of LSP Quantization in the "x-domain"163 

7.6. LSP Interpolation and Conversion to LPC 163 
Experimental Evaluation of LSP Interpolation and Conversion to 
LPC 166 

7.7. Total Computational Complexity 166 
7.8. Program Listings 167 
7.9. Further Work 167 
7.10. Conclusions and Summary of the Chapter 168 
7.11. References 168 

xv 



Optimized Implementation of Speech Processing Algorithms 

Chapter 8 
Conclusions 171 

Appendix A 
Fixed-point Quantization Effects 173 

A.l. Macros and Functions to Simulate Different Types of Truncation or 
Rounding 173 
A.2. Block Diagram of the DSP56001 174 
A.3. Arithmetic Instructions of the DSP56001 175 

Appendix B 
LeRoux-Gueguen Algorithm 177 

B.l. LeRoux-Gueguen Algorithm 177 
B.2. References 178 

Appendix C 
LSP to LPC Transformation 179 

C l . Direct Expansion Method 179 
C.2. LPC Analysis Filter Method 181 
C.3. Kabal's Method 182 

Appendix D 
Mixed-LSP Method 185 

D.I. Derivation of the Polynomials P10(X) and Q'10(x) 185 
D.2. Properties of the Roots of D10(x) 190 
D.3. Direction of the Sign Changes 190 
D.4. Calculation of the Roots of D10(x) 191 

Resolution of a 4-th Order Polynomial 191 
Resolution of a 3-rd Order Polynomial 195 
Calculation of the Roots ofD10(x) 197 

D.5. Optimization of the Root Sorting 199 
D.6. Property of the Roots of D10(x) 200 
D.7. References 202 

Appendix E 
Quantized-search Kabal Method 203 

E.l. Maximum Number of Evaluations 203 
E.2. Differences with the Reference Algorithm 204 

xvi 



Chapter 1 
Introduction 

The research presented in this Ph.D. report addresses the 
optimized implementation of some functional blocks which are 
found frequently in digital speech processing applications. 

1.1. Motivat ion 

The principal means of human communication is speech. This 
fact is reflected in modern technology, as machines are used to 
transmit, store, manipulate, recognize, and create speech, as 
well as for recognizing the identity of the speaker. For these 
tasks, the speech signal is usually represented digitally. 

The development of VLSI and DSP chips has paved the way 
for the implementation of highly complex digital speech 
processing algorithms. As a result, speech processing 
technology is now being used in telecommunications and 
business, for applications like voice mail, personal 
communications systems, automated operators, information 
retrieval systems, and voice activated security. 

On the other hand, some applications of digital speech 
processing, such as personal communications systems and 
hearing aids, require the use of portable, battery operated 
devices. Their implementation is thus characterized by tight 
constraints in power consumption and size. For high volume 
applications, low cost is also a priority. 

1 



Optimized Implementation of Speech Processing Algorithms 

The choice of a fixed-point arithmetic is a key point to 
decrease cost, size and power consumption in ASIC 
implementations. Furthermore, commercial fixed-point DSP 
chips are cheaper and have a smaller power consumption than 
floating-point DSPs. Therefore, the analysis of fixed-point 
quantization effects is of great importance in carefully 
optimized implementations. 

Optimization at the algorithmic level (algorithm choice and 
simplification) is the basis for a low power implementation as it 
allows savings of orders of magnitude in power consumption. 
Another aspect is the determination of the optimum scaling and 
minimum wordlength needed at every node of the algorithm. 

In order to reduce the number of iterations in the design 
phase, it is desirable to be able to predict some aspects of the 
performance of the hardware before actually implementing it. 
In Chapter 3, a practical method for evaluating the effects 
resulting from the use of fixed-point arithmetic is presented, as 
part of a methodology aimed to optimize the implementation of 
speech processing algorithms for low power applications. 

This methodology was applied to the implementation of a 
noise reduction algorithm for digital hearing aids, and to the 
implementation of spectral analysis and quantization for 
speech coding. 

1.2. Scope of the Research 

In the research presented in this report, only digital speech 
processing algorithms were considered. In particular, the study 
was restricted to two areas of speech processing: speech 
enhancement with application to digital hearing aids, and 
speech coding with application to portable communications 
devices. Both applications are characterized by very tight 
constraints in cost, power consumption and size. 

As the choice of a fixed-point arithmetic is a key point to 
decrease cost, size and power consumption, in both 
programmable DSP and ASIC implementations, only 
fixed-point implementations were considered. This implies a 
higher development effort, as the designer has to determine the 

2 



Introduction 

dynamic range and precision needs of the algorithms before 
implementation, either analytically, or through simulation. The 
practical and simple method for evaluating fixed-point 
quantization effects on DSP algorithms, presented in 
Chapter 3, aims to help the designer in this task. The proposed 
method allows a simulation of the system in final working 
conditions and at the same time benefit of the flexibility of 
using a high level language, independently of the hardware. 

Of all the possible optimization strategies at different 
implementation levels, only optimization at the algorithmic 
level allows power consumption savings of orders of magnitude. 
Thus, in the research described in this report, the optimization 
effort is restricted to algorithmic optimization. Algorithmic 
optimization comprises the following strategies: 

(1) Choice of the algorithms. 

(2) Simplification of the algorithms in order to reduce the 
complexity and decrease the dynamic range needs. 

(3) Study of the fixed-point quantization effects, to determine 
the optimum scaling and minimum wordlength required at 
every node of the algorithm. 

(4) Simplification of the interactions among the different 
algorithms inside the whole system. 

(5) Good interrelation between the algorithms and the target 
architecture. 

These optimization strategies were used in the 
implementation of a noise reduction algorithm for digital 
hearing aids on a fixed-point commercial DSP and on a low 
power VLSI architecture, as described in Chapter 4. They were 
also used in the implementation of the spectral analysis block 
of the CELP FS1016 speech coder, as described in Chapter 7. 

1.3. Organization of the Report 

In Chapter 2, a brief introduction to the field of digital speech 
processing and its applications is given. The purpose of this 

3 



Optimized Implementation of Speech Processing Algorithms 

chapter is to give some of the basic definitions and to show the 
importance of optimization in speech applications. 

An optimization methodology, which is based on 
algorithmic optimization and the study of fixed-point 
quantization effects, is proposed in Chapter 3. This 
methodology was used in the implementation of a noise 
reduction algorithm for digital hearing aids, as explained in 
Chapter 4. 

The theoretical fundamentals for understanding the LSP 
representation of LPC coefficients, with application to speech 
coding, are given in Chapter 5. The CELP FS1016 speech coder, 
in particular its spectral analysis block, is also explained. These 
concepts are used in Chapter 6, in which two novel efficient 
algorithms for LPC to LSP conversion are presented. In 
Chapter 7, the DSP56001 optimized implementation of the 
CELP FS1016 spectral analysis block is given. 

Finally, the general conclusions are given in Chapter 8. 

1.4. Main Contributions 

The main contributions of the Ph.D. work described in this 
report are: 

(1) The optimization methodology for speech processing 
algorithms presented in Chapter 3, together with a simple 
and practical method for evaluating the behavior of digital 
signal processing algorithms in the case of 2's complement 
fixed-point implementations. 

(2) Two novel efficient algorithms for LSP calculation from 
LPC coefficients, named Mixed-LSP and "quantized-search 
Kabal", presented in Chapter 6. 

(3) The unified comparison among three existing LSP 
calculation algorithms, and the two proposed methods, 
given in Chapter 6. This comparison is done using the same 
conditions (same speech database and target speech coder). 

4 



Introduction 

1.5. Publications 

Part of the work described in this report has already been the 
subject of some publications. The paper presented at the 
Seventh European Signal Processing Conference in Scotland, in 
October 94 [Gras94], describes the methodology of optimization, 
simulation of quantization effects, and its application to a noise 
reduction/speech enhancement algorithm for digital hearing 
aids. The optimization methodology and the application to the 
noise reduction algorithm are explained with more details in 
Chapter 3 and 4 of this report. A companion paper, presented 
by A. Heubi at the same conference [Heub94], describes the low 
power architecture used for the VLSI implementation 
(see § 4.7). 

The paper presented at the IEEE International Conference 
on Acoustics, Speech, and Signal Processing in Munich, in 
April 97 [Gras97a], describes the new efficient method for LPC 
to LSP conversion, called Mixed-LSP, which is explained in 
Chapter 6. 

Two internal IMT reports, covering some parts of Chapter 3 
and 4 [Gras95], and Chapter 5, 6 and 7 [Gras97b] were also 
written. In particular, the listings for the C, Matlab, and 
DSP56000 assembly programs, used in the work described in 
this thesis are given in these two reports. 

1.6. References 

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of 
a VLSI Implementation of a Noise Reduction Algorithm for 
Digital Hearing Aids", Proc. EUSIPCO'94, Vol.3, pp. 1661-
1664,1994. 

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on 
DSP Algorithms, IMT Report No 375 PE 03/95, University of 
Neuchâtel, IMT, 1995. 

[Gras97a] S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini, 
"Efficient Algorithm to Compute LSP Parameters from 10-th 
order LPC Coefficients", Proc. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, ICASSP'97, Vol. 3, pp. 1707-
1710, 1997. 

5 



Optimized Implementation of Speech Processing Algorithms 

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral 
Analysis and Quantization for the CELP FS1016 Speech 
Coder, IMT Report No 421 PE 10/97, University of 
Neuchâtel, IMT, 1997. 

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low 
Power VLSI Architecture for Digital Signal Processing with 
an Application to Adaptive Algorithms for Digital Hearing 
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878,1994. 

6 



Chapter 2 
Digital Speech Processing 

In this chapter a brief introduction to the field of digital speech 
processing and its applications is given. The purpose is to 
mention some concepts and give some definitions that are used 
throughout this report, and to show the importance of the 
optimization of speech processing functional blocks for some 
particular applications. 

Theoretical fundamentals which are more specific to the 
work done are given at the beginning of Chapter 3 and 4, and 
in Chapter 5. 

2.1. The Speech Signal 

To communicate information to a listener a speaker produces a 
speech signal in the form of pressure waves that travel from 
the speaker's head to the listener's ears [Osha87]. These 
pressure waves are converted to an analog electrical speech 
signal through the use of transducers (e.g., microphones). This 
speech signal contains frequencies ranging from 100 Hz up to 
perhaps 8 kHz, and has amplitudes between 30 to 90 dB. 

To digitally process speech signals which are in analog 
form, they are converted into a digital form (i.e., a sequence of 
numbers). This is done in two steps. The signal is first 
periodically sampled, obtaining a discrete-time, continuous-
amplitude signal which is then quantized in amplitude. 

7 



Optimized Implementation of Speech Processing Algorithms 

The rate at which the analog signal is sampled is known as 
the sampling frequency, F8. The Nyquist theorem requires that 
F8 be greater than twice the bandwidth of the signal to avoid 
aliasing distortion. Thus the analog signal is low-pass filtered 
before sampling. As the low-pass filter is not ideal, the 
sampling frequency is chosen to be higher than twice the 
bandwidth. In telecommunication networks, the analog speech 
signal is band-limited to 300-3400 Hz and sampled at 8 kHz. 
Hereafter, the term speech coding (see § 2.9) will refer to the 
coding of this type of signal. For higher quality, speech is band-
limited to 0-7000 Hz and sampled at 16 kHz. The resulting 
signal is referred to as wideband speech. 

The sampled signal is quantized in amplitude via an 
analog-to-digital converter, which represents each real sample 
by a number selected from a finite set of L possible amplitudes 
(where B = logüL is the number of bits used to digitally code the 
values). This quantization process adds a distortion called 
quantization noise, which is inversely proportional to L. In 
practice 12 bits are needed to guarantee an SNR higher than 
35 dB over typical speech ranges [Osha87]. 

2.2. Model of Speech Production 

Speech production can be viewed as a filtering operation, in 
which a sound source excites a vocal tract filter. The source 
may be either periodic, resulting in voiced speech, or noisy and 
aperiodic, causing unvoiced speech. There are also some parts of 
speech which are neither voiced nor unvoiced but a mixture of 
the two, called the transition regions. Amplitude versus time 
plots of typical voiced and unvoiced speech are shown in 
Figure 2.1. 

In this speech production model the effects of the excitation 
source and the vocal tract are considered independently. While 
the source and tract interact acoustically, their independence 
causes only secondary effects. 

The voicing source occurs at the larynx at the base of the 
vocal tract, where the airflow from the lungs is interrupted 
periodically by the vocal folds generating periodic puffs of air. 

8 



Digital Speech Processing 

Voiced speech 

300 

50 100 150 200 250 
Time (samples, 1 sample=0.125 ms) 

Figure 2.1: Typical voiced and unvoiced speech waveforms. 

300 

The rate of this excitation is the fundamental frequency Fo, 
also known as pitch. Voiced speech has thus a spectra 
consisting of harmonics of Fo. Typical speech has an Fo of 
80-160 Hz for males. Average Fo values for males and females 
are respectively 132 Hz and 223 Hz. 

Unvoiced speech is noisy due to the random nature of the 
excitation signal generated at a narrow constriction in the vocal 
tract. 

The vocal tract is the most important component in the 
speech production process. For both, voiced and unvoiced 
excitation, the vocal tract acts as a filter, amplifying certain 
sound frequencies while attenuating others. The vocal tract can 
be modeled as an acoustic tube with resonances, called 
formants, and antiresonances (or spectral valleys). These 
formants are denoted as F¡, where Fi is the formant with the 
lowest center frequency). The formants correspond to poles of 
the vocal tract frequency response, whereas some spectral nulls 
are due to the zeros. Moving the articulations of the vocal tract 
alters the shape of the acoustic tube, changing its frequency 
response. 

9 



Optimized Implementation of Speech Processing Algorithms 

Thus, the produced speech signal is non-stationary (time-
varying) changing characteristics as the muscles of the vocal 
tract contract and relax. Whether or not the speech signal is 
voiced, its characteristics (e.g., spectral amplitudes) are often 
relatively fixed or quasi-stationary over short periods of time 
(10-30 ms), but the signal changes substantially over intervals 
greater than the duration of a given sound (typically 80 ms). 

2.3. Frequency-domain Analysis of the Speech Signal 

Most useful parameters in speech processing are found in the 
spectral domain. The speech signal is more consistently and 
easily analyzed spectrally than in the time domain and the 
common model of speech production (see § 2.2) corresponds well 
to separate spectral models for the excitation and the vocal 
tract. The hearing mechanism appears to pay much more 
attention to spectral amplitude of speech than to phase or 
timing aspects (see § 2.6). For these reasons, spectral analysis 
is used primarily to extract relevant parameters of the speech 
signal. One form of spectral analysis is the short-time Fourier 
transform, which is defined, for the signal s(n), as: 

S k(e*)= £w(k -n ) . s (n ) . e -* - ^ 

Due to the non-stationary nature of speech, the signal is 
windowed, by multiplication with w(k-n) , to isolate a quasi-
stationary portion for spectral analysis. 

The choice of duration and shape of the window w(n), as 
well as the degree of overlap between successive windows, 
reflects a compromise in time and frequency resolution. 
Tapered cosine windows such as the Hamming window are 
typically used, and the length of the window is usually 10 to 
30 ms for speech sampled at 8 kHz. 

In Equation (2.1), the variable co is the angular frequency, 
which is related to the real frequency Q (in Hz) by the equation: 

to = 2n£2/Fs (2.2) 

10 



Digital Speech Processing 

40 

m 
TJ 
<D 

TJ 
-J 

C 
o> 
2 

20 

0 

-20 

-40 

Voiced speech 

1000 2000 3000 

Unvoiced speech 

4000 

^ > f c K ^ W V ^ 
1000 2000 

Frequency (Hz) 
3000 4000 

Figure 2.2: Spectra of the voiced and unvoiced speech waveforms shown 
in Figure 2.1, and 10-th order LPC envelope. 

Another variable which is sometimes 
normalized frequency f, related to co and D. by: 

f = Q/F s , f = co/2jt 

used is the 

(2.3) 

As the spectrum of a digital signal is periodic in co, the 
useful range for the frequency, corresponding to one period of 
the spectrum is given by: 0 < co < 2n, 0 < f < 1, and 0 < Q < F8 . 
Furthermore, as the speech signal is real, the spectrum is 
symmetric and the interesting frequency range is: 0 < oo < n, 
0 < f < 0.5, and 0 < Q < F 8 /2 . 

The short-time power spectra of the voiced and unvoiced 
speech waveforms of Figure 2.1, as well as their 10-th order 
LPC envelope (see § 2.4) are shown in Figure 2.2. 

The discrete Fourier transform (DFT) is used for 
computation of Equation (2.1) so tha t the frequency variable to 
takes N discrete values (N corresponding to the window 
duration). Since the Fourier transform is invertible, no 

11 



Optimized Implementation of Speech Processing Algorithms 

information is lost in this representation. A more economical 
representation of speech parameters is achieved by the use of 
linear predictive analysis. 

2.4. Linear Predictive Modeling of the Speech Signal 

Spectral magnitude is a relevant aspect of speech which is 
widely used in speech processing. One source of spectral 
magnitude is the short-time Fourier transform. Alternatively, 
linear predictive coding (LPC) provides an accurate and 
economical representation of the envelope of the short-time 
power spectrum of speech. 

In LPC analysis, the short-term correlation between speech 
samples (formants) is modeled and removed. This technique is 
based on the model of speech production explained in 
Section 2.2. A simplified block diagram of this model is shown 
in Figure 2.3. 

In this model, the excitation signal, e(n), is either an 
impulse train (for voiced speech) or white noise (for unvoiced 
speech). The combined spectral contributions of the glottal flow, 
the vocal tract, and the radiation of the lips are represented by 
a time varying digital filter. This filter is called the 
LPC synthesis filter. Its transfer function has both poles and 
zeros, but to minimize analysis complexity, the filter is 
assumed to be all-pole, with a transfer function given by: 

P E ( Z ) l + 2 > p « - * " k A P ( Z ) (2.4) 

where {ap(l),...,ap(p)} are the LPC coefficients and p is the order 
of the filter (or LPC order). An order of 10 is typically used for 
telephone bandwidth (300-3400 Hz) speech sampled at 8 kHz. 
Using this LPC order, formant resonances and general spectral 
shape (envelope) are modeled accurately. The 10-th order LPC 
spectra for the voiced and unvoiced speech waveforms of 
Figure 2.1 (superposed to its corresponding short-time power 
spectra), is shown in Figure 2.2. 

12 



Digital Speech Processing 

LPC Coefficients 

s<n>» Output 
Speech 

Figure 2.3: Block diagram of the simplified source filter model of speech 
production. 

The LPC analysis filter is given by: 

Ap(z) = 1 + X L i V k ) - z - k (2.5) 

Transforming Equation (2.4) to the time domain results in: 

e(n) = s(n) + X L i a p ( k ) ' s ( n ~ k ) = s ( n ) ~ â ( n ) (2-6) 

It is seen that the current speech sample s(n) is predicted by a 
linear combination of p past samples, s(n). Thus the signal e(n) 
is the prediction error or residual signal. Hence, the p-th. order 
LPC analysis problem is stated as follows: given measurements 
of the signal s(n), determine the parameters {ap(l),...,ap(p)} so 
as to minimize the error signal e(n). 

2.5. Calculation of the LPC Coefficients 

Using the least-squares method, the LPC coefficients are 
determined by minimizing the mean energy of the error signal, 
given by: 

e p = £ e 2 ( n ) = ¿[s(n) + X ^ a 1 , (k) " ¿n~ « f 
(2.7) 

The summation range is limited by windowing either the 
speech or the error signal, leading to the autocorrelation or 

13 



Optimized Implementation of Speech Processing Algorithms 

covariance method, respectively. The autocorrelation method is 
computationally more efficient than the covariance method and 
the resulting synthesis filter is always stable. In the 
autocorrelation method, the LPC coefficients are calculated by 
using the efficient Levinson-Durbin recursion (see § 5.2). This 
method is very popular in speech coders such as the CELP 
FS1016 (see § 5.11). 

An alternative representation of the LPC coefficients 
(see § 5.4), which corresponds to the multipliers of a lattice 
filter realization of the LPC synthesis filter, are the Parcor 
(partial correlation) or reflection coefficients, {ki,...,kp}. The 
LPC coefficients can be transformed to reflection coefficients 
and vice versa, using the recursions given in Equations (5.18) 
and (5.19). There are some LPC calculation methods, which 
give directly the reflection coefficients, without calculating the 
LPC coefficients. Two of these methods are Burg's method 
[Kond94] and LeRoux-Gueguen method (see § B.l). 

Instantaneous (sample by sample) adaptation of the 
reflection coefficients is obtained by using a gradient least-
mean-square (LMS) adaptive algorithm [Widr85]. In this case, 
the LPC calculation algorithm is called the gradient adaptive 
lattice (GAL) predictor. This LPC calculation algorithm is used 
in the noise reduction/speech enhancement algorithm for 
digital hearing aids described in Chapter 4. 

2.6. Hearing and Speech Perception 

The speech signal entering the listener's ear is converted into a 
linguistic message [Osha87]. The ear is especially responsive to 
those frequencies in the speech signal that contain the most 
information relevant to communication (i.e., frequencies 
approximately in the 200-5600 Hz range). The listener is able 
to discriminate small differences in time and frequency found 
in speech sounds within this frequency range. 

Key perceptual aspects of a speech signal are more evident 
when represented spectrally than in the time domain. Spectral 
amplitude is much more important than phase for speech 
perception and whether a sound can be heard depends on its 
spectral amplitude. The minimum intensity at which a sound 

14 



Digital Speech Processing 

can be heard is known as the hearing threshold, which rises 
sharply with decreasing frequency below 1 kHz and with 
increasing frequency above 5 kHz. An upper limit is given by 
the intensity at which a sound causes discomfort or pain, 
known as the threshold of pain. The range between the 
thresholds of hearing and pain is known as the auditory field. 
Speech normally occupies only a portion of the auditory field. 

Formant frequencies and amplitudes (see § 2.2) play an 
important role in speech perception. Vowels are distinguished 
primarily by the location of their three formant frequencies, 
while formant transitions provide acoustic cues to the 
perception of consonants. Formant bandwidths are poorly 
discriminated and their changes appear to affect perception 
primarily through their effects on formant amplitudes. The 
valleys between formants are less perceptually important than 
formant peaks and humans have relatively poor perceptual 
resolution for spectral nulls. 

2.7. Speech Process ing and DSP Systems 

A digital signal processing (DSP) system is an electronic system 
applying mathematical operations to digitally represented 
signals such as digitized speech [Laps97]. 

DSP enjoys several advantages over analog signal 
processing. The most significant is tha t DSP systems are able 
to accomplish tasks which would be very difficult, or even 
impossible with analog electronics. Besides, DSP systems have 
other advantages over analog systems such as flexibility and 
programmability, greater precision, and insensitivity to 
component tolerances. Analog signal processing requires 
specific equipment, rewiring, and calibration for each new 
application, while digital techniques may be implemented, 
tested and easily modified on general purpose computers. 

These advantages, coupled with the rapidly increasing 
density of digital IC manufacturing processes make DSP the 
solution of choice for speech processing. 

15 



Optimized Implementation of Speech Processing Algorithms 

2.8. Digital Speech Processing Areas and Applications 

In the previous sections, some aspects of speech signals that are 
important in the communication process were described. 

Some areas of speech processing, such as speech coding, 
encryption, synthesis, recognition and enhancement, as well as 
speaker verification, utilize the properties of the speech signal 
to accomplish their goals [Rabi94], [Lim83]. In Table 2.1, 
typical system applications of these speech processing areas are 
given [Laps97]. It is seen that several of these applications are 
characterized by tight constraints in power consumption and 
size. Among them we can mention: hearing aids, digital cellular 
telephones, vocal pagers and portable multimedia terminals 
with speech i/o [Chan95]. 

Digital speech 
processing area 

Speech coding and 
decoding 

Speech encryption 
and decryption 

Speech recognition 

Speech synthesis 

Speaker verification 

Speech enhancement 
(e.g., noise reduction, 
echo cancellation, 
equalization) 

System applications 

Digital cellular telephones, digital cordless 
telephones, vocal pager, multimedia computers 
and terminals, secure communications. 

Digital cellular telephones, digital cordless 
telephones, multimedia computers and 
terminals, secure communications. 

Advanced user interfaces, multimedia computers 
and terminals, robotics, automotive, digital 
cellular telephones, digital cordless telephones. 

Multimedia computers, advanced user interfaces, 
robotics. 

Security, multimedia computers, advanced user 
interfaces. 

Hearing aids, hands-free telephone, telephone 
switches, automotive, digital cellular telephones, 
industrial applications. 

Table 2.1: Typical system applications of different speech processing 
areas. 

16 



Digital Speech Processing 

2.9. Speech Coding 

Speech coding is the process of compressing the information in 
a speech signal either for economical storage or for 
transmission over a channel whose bandwidth is significantly 
smaller than that of the uncompressed signal. 

The ideal coder has low bit rate, high perceived quality, low 
signal delay, low complexity and high robustness to 
transmission errors. In practice, a trade-off among these factors 
is done, depending on the requirements of the application. 

The term speech coding (or narrowband speech coding) 
refers to the coding of telephone bandwidth (300-3400 Hz) 
speech sampled at 8 kHz, whereas the term wideband speech 
coding refers to the coding of speech band-limited to 0-7000 Hz 
and sampled at 16 kHz. 

The speech research community has given different names 
to different qualities of speech found in a telecommunication 
network [Osha87]: 

(1) Toll quality describes speech as heard over the switched 
telephone network. The frequency range is 300-3400 Hz, 
with signal-to-noise ratio of more than 30 dB and less than 
2-3 % of harmonic distortion. 

(2) Communications quality speech is highly intelligible but 
has noticeable distortion compared with toll quality. 

(3) Synthetic quality speech is 80-90 % intelligible but has 
substantial degradation, sounding "buzzy" or "machinelike" 
and suffering from lack of speaker identifiability. 

Some nuances in this characterization are found in speech 
research, where sometimes a coder is described as having "near 
toll quality", or "good communications quality". 

The bit rate of a coder is expressed in bits per seconds (bps) 
or kilobits per second (kbps) and is given by: 

Tc (kbps) = B (No. of bits) • F8 (kHz) (2.8) 

Toll quality corresponds to (300-3400 Hz) band-limited 
speech sampled at 8 kHz and represented with 12 bits (uniform 
quantization). The bit rate is thus 96 kbps. Using ji-law or 
A-law logarithmic compression, the number of bits is reduced 

17 



Optimized Implementation of Speech Processing Algorithms 

to 8, and thus the bit rate to 64 kbps. This logarithmic coding 
was standardized as the ITU-T G.711 and is used as a reference 
for toll quality in speech coding research. 

In communications systems such as satellite 
communications, digital mobile radio, and private networks, 
the bandwidth and power available are severely restricted, 
hence reduction of the bit rate is vital. This is done at the 
expense of decreased quality and higher complexity. 

Toll quality is found in coders ranging from 64 kbps to 
10 kbps, near toll and good communications quality is found in 
the range of 10 to 2.4 kbps, and communications to synthetic 
quality below 4.0 kbps. 

Vector Quantization 

Vector quantization (VQ) is the process of quantizing a set of k 
values jointly as a single vector. If the vector elements are 
correlated, the number of bits to represent them is reduced 
with respect to scalar quantization. 

The block diagram of a simple vector quantizer is shown in 
Figure 2.4. The codebook Y contains a number L of codevectors 
y¡ of dimension N: y¡= [y¡i, y¡2, ..., y¡N]T. The subindex i is the 
address or index of the codevector y¡. Each codevector is 
uniquely represented by its index. The length of the codebook 
L, and the number of bits of the index B are related by: 
B = log2L. 

The N dimensional input vector x = [xi, X2, ..., XN]T is vector 
quantized by first finding its "closest" vector in the codebook, 
and then representing x by the index of this closest vector. The 
closest vector is the one that minimizes some distortion 
measure. Typical distortion measures are the mean squared 
error and the weighted mean squared error. The codebook 
design process is known as training or populating the codebook. 
One popular method for codebook design is the k-means 
algorithm [Kond94]. 

The number of codevectors L, should be large enough that 
for each possible input vector, substitution by its closest 
codevector does not introduce excessive error. However, L must 

18 



Digital Speech Processing 

(n) Input Vector 
Buffer 

X Vector 
Matching 

Iv 

y¡ 

Codebook 

Y 

index 

Figure 2.4: Block diagram of a simple vector quantizer. 

be limited to limit the computational complexity of the search 
and because the bit rate is proportional to B = log2L. 

The main drawback of vector quantization is its high 
computational and storage cost. Compared to scalar 
quantization, the major additional complexity of VQ lies in the 
codebook search. In a full codebook search, the input vector is 
compared with each of the L vectors of the codebook, requiring 
L computationally expensive distance calculations. 

The codebook size is also a problem for codebook training. 
As an example, if a 20-bit representation is needed, the 
codebook should contain 220 codevectors of dimension N. This 
would require a prohibitively large amount of training data, 
and the training process would need too much time. Besides, as 
the codebook is stored at both the receiver and the transmitter, 
the storage requirement would be prohibitively high. 

Practical VQ systems use suboptimal search techniques 
tha t reduce search time and sometimes codebook memory while 
sacrificing performance. Among these techniques there are 
tree-searched VQ, multistage VQ, classified VQ and split VQ 
[Gers94]. 

In CELP coders, VQ is used for quantization of the 
excitation signal, and sometimes also to model the long term 
correlation of the speech signal (pitch) by means of an adaptive 
codebook search. 

Additionally, VQ is successfully used to quantize spectral 
parameters (i.e., any representation of the LPC coefficients) as 
explained in Section 5.8. 

19 



Optimized Implementation of Speech Processing Algorithms 

CELP coding 

Most notable and most popular for speech coding is code excited 
linear prediction (CELP). These coders had a great impact in 
the field of speech coding and had found their way in several 
regional and international standards. While newer coding 
techniques have been developed, none clearly outperforms 
CELP in the range of bit rates from 4 to 16 kbps [CELP97]. The 
obtained quality ranges from toll to good communications 
quality. Furthermore, several reduced complexity methods for 
CELP were studied in speech coding research. As a result, more 
than one full-duplex CELP coder can nowadays be 
implemented on a state-of-the-art DSP processor. 

Current research goes in the direction of reducing 
complexity and enhancing performance. Another current trend 
is the use of speech classification, notably voice activity 
detection (VAD) and voice/non voice classification for bit rate 
reduction. The obtained coders are variable bit rate coders, 
with an average bit rate lower than 3 kbps and the same 
quality of fixed rate coders at 4.8 kbps. 

CELP coding refers to a family of speech coding algorithms 
which combine LPC-based analysis-by-synthesis (AbS-LPC) 
and vector quantization (VQ) [Gers94]. The general diagram of 
a CELP coder is shown in Figure 2.5. 

In AbS-LPC systems, the LPC model is used (see § 2.4), in 
which an excitation signal, e(n), is input to a synthesis filter, 
Hp(z), to yield the synthetic speech output s(n). 

There are two synthesis filters. The LPC synthesis filter 
models the short-term correlation between speech samples 
(formants) whereas the pitch synthesis filter models the long-
term correlation (pitch). 

The coefficients of the LPC synthesis filter are determined 
from a frame of the speech signal, using an open-loop technique 
such as the autocorrelation method (see § 2.5). The coefficients 
of the pitch synthesis filter are also determined by open loop 
techniques [Kond94]. 

20 



Digital Speech Processing 

m, •VO"«© 

w Stochastic 
Codebook 

Pitch Synthesis LPC Synthesis 
Filter ^-v Filter 

t» (+J • * - • 

Long 
H Term 

Predictor 

Short 
Term 

Predictor 

Original 
Speech 
Signal *• 

I Instantaneous 
^ Objective 

/~\ Error 

Minimize 
Perceptual 

Error 

Perceptual 
Weighting 

Filter 

Figure 2.5: Block diagram of a general CELP coder. 

Once the parameters of the LPC and pitch synthesis filters 
are determined, an appropriate excitation signal is found by a 
closed-loop search. The input of the synthesis filters is varied 
systematically, to find the excitation signal that produces the 
synthesized output that best matches the speech signal, from a 
perceptual point of view. 

Vector quantization (VQ) is combined with AbS-LPC in 
CELP coders [Gers94]. The optimum excitation signal is 
selected from a stochastic codebook of possible excitation 
signals (codevectors). Each codevector is passed through the 
LPC and pitch synthesis filters. The codevector which produces 
the output that best matches the speech signal is selected. 

In some CELP coders, such as the FS1016 (see § 5.11) the 
pitch synthesis filter is substituted by a search on an adaptive 
codebook, which models long term correlation. 

Parametric Coders 

Fixed rate CELP coders do not perform well with bit rates 
below 4 kbps. Using parametric coders [LOWB97], good 
communications and near toll quality is obtained at 2.4 kbps. 
These speech coders are based on algorithmic approaches such 
as sinusoidal coders, in particular sinusoidal transform coding 
(STC) and multiband excitation (MBE). Another widely used 
approach is prototype waveform interpolation (PWI), which is a 

21 



Optimized Implementation of Speech Processing Algorithms 

technique to efficiently model voiced excitation. Combining 
parametric coders with frame classification schemes, variable 
bit rate coders with average bit rate of 1.3 kbps are obtained. 
The main disadvantage of parametric coders is their high 
complexity, and lower quality when compared with CELP 
coders. 

2.10. Speech Enhancement 

Speech enhancement involves processing speech signals for 
human listening or as preparation for further processing before 
listening [Lim83]. The main objective of speech enhancement is 
to improve one or more perceptual aspects of speech, such as 
overall quality or intelligibility. 

Speech enhancement is desirable in a variety of contexts. 
For example, in environments in which interfering background 
noise (e.g., office, streets and motor vehicles) results in 
degradation of quality and intelligibility of speech. Other 
applications of speech enhancement include correcting for room 
reverberation, correcting for the distortion of speech due to 
pathological difficulties of the speaker, postfiltering to improve 
quality of speech coders, and improvement of normal 
undegraded speech for hearing impaired people. 

An example of speech enhancement is the algorithm 
described in Chapter 4, which was studied and optimized for 
implementation. In this algorithm, spectral sharpening is used 
for both noise reduction and to compensate for the loss in 
frequency selectivity encountered among hearing impaired 
people. 

Digital Hearing Aids 

Analog electroacoustic hearing aids are the primary treatment 
for most people with a moderate-to-severe sensorineural 
hearing impairment [Work91]. These conventional hearing aids 
contain the basic functions of amplification, frequency shaping, 
and limiting of the speech signal. The conventional hearing 
aids provide different amounts of amplification at different 

22 



Digital Speech Processing 

frequencies so as to fit as much of the speech signal as possible 
in the reduced auditory field (see § 2.6) of the hearing impaired 
person. 

Digital hearing aids promise many advantages over 
conventional analog hearing aids. The first advantage is the 
increased precision and programmability in the realization of 
the basic functions. The frequency response can be tailored to 
the needs of the patient and also change according to different 
acoustic situations. Another advantage is the possibility of 
adding new functions such as noise reduction, spectral 
sharpening and feedback cancellation, which are impossible or 
very difficult using analog circuits. 

Furthermore, external computers can be used to simulate 
and study new algorithms to be included in the hearing aid and 
for new and improved methods of prescriptive fitting and 
evaluation. 

On the other hand, the physical implementation of digital 
hearing aids is characterized by very tight requirements 
[Lunn91]: 

(1) Size: the small physical dimensions of analog hearing aids 
contribute to the acceptance by the user. The smallest 
devices (in-the-channel hearing aids) have just some cm3 to 
accommodate microphone, receiver, signal processing chip 
and power supply. 

(2) Power supply: for keeping a small dimension, only one 1.5 
battery cell should be used. 

(3) Power consumption: typical values of 1-2 mW, to allow a 
battery life of several weeks. 

These requirements are very difficult to fulfill given the 
complexity and number of functions to be implemented, the 
real time requirement and the large dynamic range of the input 
signals. Therefore, the physical implementation of digital 
hearing aids can only be achieved by a careful optimization that 
ranges from algorithm level, through system and circuit 
architecture to layout and design of the cell library. 

In Chapter 4, the optimization of the implementation of a 
noise reduction/speech enhancement algorithm for digital 
hearing aids is presented. 

23 



Optimized Implementation of Speech Processing Algorithms 

The sampling frequency for digital hearing aids is a 
controversial issue. In [Lunn91] an F3 of 12 kHz is used, 
whereas in several algorithms proposed in literature, an F8 of 
8 kHz is used. Higher sampling rates may be unnecessary due 
to the reduced auditory field of the hearing impaired person. 

2.11. Speech Processing Functional Blocks 

Some functional blocks which are typically used in the different 
speech processing areas, and which were optimized for 
implementation in the work described in this report, are 
explained as follows. 

Lattice FIR, HR and GAL Predictor 

Lattice filters and lattice linear predictors are used in many 
areas of digital speech processing such as coding, synthesis and 
recognition, as well as in the implementation of adaptive filters 
[Proa89], [Osha87]. The lattice structure offers significant 
advantages over the transversal filter realization. The lattice 
filter performance using finite word-length implementation is 
much superior to that exhibited by the direct implementation. 
Also, the lattice adaptive linear predictor presents faster 
convergence than the direct form when the stochastic gradient 
algorithm (LMS) is used [Honi88]. In commercial speech 
synthesis chips the lattice filter is prevalently used because of 
its guaranteed stability and suitability for fixed-point 
arithmetic [Osha87], [Wigg78], [Iked84]. Furthermore, lattice 
filter structures are particularly suitable for VLSI 
implementation due to their modular structure, local 
interconnections, and rhythmic data flow [Kail85]. 

The noise reduction/speech enhancement algorithm 
described and optimized in Chapter 4 is based on lattice filter 
structures (GAL LPC predictor, and modified FIR and HR 
lattice filters). These functional blocks find also application in 
other speech processing systems (see § 4.8). The GAL predictor 
is used in backward predictive speech coders and other systems 
where instantaneous update of spectral information is needed. 

24 



Digital Speech Processing 

The modified FIR and HR filters studied in Chapter 4 are the 
basis for the postfiltering algorithm found in several speech 
coders and vocoders to improve quality of the synthesized 
speech. These modified FIR and HR filters are also used in 
CELP coders for perceptual weighting of the error between the 
original and synthesized speech. Finally the HR lattice filter is 
ideal for the implementation of the LPC synthesis filter found 
in most speech coding and synthesis systems. 

LPC Calculation 

LPC provides an accurate and economic representation of the 
speech spectral envelope (see § 2.4). This representation is used 
in speech coding to model and remove short-term correlation of 
the input signal. The LPC coefficients are used in the synthesis 
filter found in speech synthesis systems. Due to its 
representation of perceptually important speech parameters it 
is also used in speech recognition and speaker verification 
systems. 

An interesting aspect of LPC analysis is that it is not just 
applied to speech processing, but also to a wide range of other 
fields such as control and radar [Osha87], 

Two types of LPC calculation algorithms were optimized for 
implementation in the work described in this report. One is the 
LPC calculation on a frame-by-frame basis using the 
autocorrelation method and the Levinson-Durbin recursion. 
This algorithm was optimized for implementation on a 
fixed-point commercial DSP as part of the DSP56001 
implementation of the CELP FS1016 spectral analysis and 
quantization described in Chapter 7. The second is the sample-
by-sample calculation of the reflection coefficients done with 
the GAL predictor, which was optimized for both 
implementation on a DSP56001 and on a low power VLSI 
architecture, as described in Chapter 4. 

25 



Optimized Implementation of Speech Processing Algorithms 

LSP Representation of LPC Parameters 

Line spectrum pair (LSP) parameters are a one to one 
representation of the LPC coefficients. This representation 
allows more efficient encoding (quantization) of spectral 
information, and is very popular in low bit rate coding 
(see § 5.6, 5.7 and 5.8). 

LSP parameters are not only used to encode speech spectral 
information more efficiently than using other representations, 
but also provide good performance in speech recognition 
[Pali88], and speaker recognition [Liu90]. 

On the other hand, the calculation of LSP parameters from 
LPC coefficients is a computationally intensive task, as it 
involves the resolution of polynomials by numerical root search. 

In Chapter 5, a survey of existing algorithms for LSP 
calculation is given (see § 5.9). Three algorithms which are 
found promising for efficient real time implementation are 
retained for further study and comparison. 

In Chapter 6, two new efficient algorithms for LSP 
calculation are presented, and then compared with existing 
algorithms from the point of view of accuracy, reliability and 
computational complexity. The efficient implementation of 
these algorithms on a DSP56001 is given in Chapter 7. 

Efficient implementation of LSP to LPC conversion is also 
addressed in Chapter 5, 6, and 7. 

2.12. Implementation Issues 

The goal of speech coding is reducing bit rate, without 
degrading speech quality, whereas hearing aids are aimed to 
improve speech intelligibility and perceived quality. However, 
in the implementation of these algorithms, other factors apart 
from the their functionality are of importance. Some of these 
factors are discussed as follows. 

26 



Digital Speech Processing 

Real-time Constraints 

A real-time process is a task which needs to be performed 
within a specified time limit. Most speech processing systems 
must meet rigorous speed goals, since they operate on segments 
of real-word signals in real-time. 

While some systems (like databases) are required to meet 
performance goals on average, speech processing algorithms 
must meet goals at defined instants of time. In such systems, 
failure to maintain the necessary processing rates is considered 
a serious malfunction. These systems are said to be subject to 
hard real-time constraints. 

In digital speech processing, the processing needs to be 
performed within 125 \is for sample-by-sample processes (with 
Fa = 8 kHz). The allowed time is higher for processes performed 
on a frame-by-frame basis, such as LPC calculation with 
autocorrelation method (see § 2.5), with typical block lengths of 
20-30 ms, and subframe lengths of 5-10 ms. 

Processing Delay 

In some speech processing applications, such as digital hearing 
aids and telecommunications, the total delay has to be kept 
within specified limits. The processing time usually adds to 
other components of the total delay (e.g., algorithmic delay and 
transmission delay). Thus, in some cases the processing speed 
has to be increased beyond the speed required for real-time 
operation, to keep up with the delay requirement. 

Programmable DSP versus Custom Hardware 

The designer needs to decide whether to use a programmable 
DSP chip or to build custom hardware. These two options are 
discussed next. 

27 



Optimized Implementation of Speech Processing Algorithms 

Programmable DSP Implementation 

Programmable digital signal processors (often called DSPs) are 
microprocessors that are specialized to support the repetitive, 
numerically intensive tasks found in DSP processing [Laps97]. 

Dozen of families of DSPs are available on the market 
today. The first task in selecting a DSP processor is to weight 
the relative importance of performance, cost, integration, ease 
and cost of development, and size and power consumption for 
the desired application. 

Algorithmic optimization is very important from the cost 
point of view. Any speech processing algorithm can be 
implemented using commercially available DSP processors, but 
the cost will increase rapidly with the number of DSP chips 
used. Another important consideration is the power 
consumption of the final product, especially if it is a portable, 
battery operated device. 

A key issue is the choice of a fixed-point or floating-point 
device. Floating-point DSPs are costlier and have a higher 
power consumption than fixed-point DSPs. Floating-point 
operations require more complex circuitry and larger word 
sizes (which imply wider buses and memory) increasing chip 
cost. Also, the wider off-chip buses and memories required 
increase the overall system cost and power consumption. 

On the other hand, floating-point DSPs are easier to 
program, as, usually, the programmer does not have to be 
concerned by dynamic range and precision considerations. 

Most high volume applications use fixed-point processors 
because the priority is low cost. For applications that are less 
cost sensitive, or tha t have extremely demanding dynamic 
range and precision requirements, or were ease of 
programming is important, floating-point processors are the 
choice. 

Note also tha t the implementation on a commercial 
fixed-point DSP can be seen as an intermediate step before the 
actual implementation using custom hardware (see § 4.4 
and 4.6). This implementation allows real time evaluation, 
optimization of the scheduling, and helps in the study and 
optimization of the fixed-point behavior. 

28 



Digital Speech Processing 

Custom Hardware and ASIC 

There are two important reasons why custom-developed 
hardware is sometimes a better choice than a commercial DSP 
implementation: performance and production cost. 

In virtually any application, custom hardware can be 
designed which provides a better performance than a 
programmable DSP. Furthermore, in some applications such as 
digital hearing aids, the tight constraints in size and power can 
only be met by using custom hardware. 

For high volume products, custom hardware is less 
expensive than a DSP processor. Due to its specialized nature, 
custom hardware has the potential to be more cost effective 
than commercial DSP chips. This is because a custom 
implementation places in the hardware only those functions 
needed by the application, whereas a DSP processor requires 
every application to pay for the full functionality of the 
processor, even if it uses only a small subset of its capabilities. 

Custom hardware can take many forms, such as printed 
circuit boards using off-the shelf components, but this form is 
falling out of favor as the performance of DSP processors 
increases. In case a very high performance is needed, or very 
low power and size are required, the solution is the use of 
application specific integrated circuits (ASIC). 

Designing a custom chip provides the ultimate flexibility, 
since the chip can be tailored to the needs of the application. 
On the other hand, the development cost is high, and the 
development time can be long. 

A key point for an optimized ASIC DSP implementation is 
the choice of a fixed-point arithmetic, and minimization of the 
number of bits needed for the representation of constants and 
variables (see § 3.1). 

2.13. Fixed-point versus Floating-point Arithmetic 

The choice of a fixed-point arithmetic is a key point to decrease 
cost, size, and power consumption in both programmable DSP 
and ASIC implementations. As in speech processing 
applications such as hearing aids and portable communications 

29 



Optimized Implementation of Speech Processing Algorithms 

devices, minimization of cost, size, and power consumption is 
essential, a fixed-point arithmetic is chosen. This implies a 
higher development effort. The designer has to determine the 
dynamic range and precision needs of the algorithms before 
implementation, either analytically, or through simulation. 

2.14. Algorithmic Optimization 

Algorithmic optimization is essential to obtain a low power 
ASIC implementation. This is seen in Table 2.2, where the 
expected power saving at different implementation levels is 
given [Raba97]. An explanation of all the possible optimization 
strategies listed in this table is out of the scope of this report. 

Implementation 
level 

Algorithm 
Behavioral 

Power Management 
Register Transfer 
Level 

Technology 
independent 
Technology dependent 

Layout 

Optimization 
strategy 

Algorithmic selection 

Concurrency memory 

Clock control 
Structural 
transformation 

Extraction/ 
decomposition 
Technology mapping 
Gate sizing 

Placement 

Expected saving 

Orders of magnitude 

Several times 

10-90% 
10-15% 

15% 

20% 

20% 

Table 2.2: Expected power saving by optimization carried out at 
different implementation levels. 

2.15. Summary of the Chapter 

In this chapter a brief introduction to the field of digital speech 
processing and its applications was given. 

It was shown that algorithmic optimization and the choice 
of a fixed-point arithmetic are essential in speech processing 
applications such as hearing aids or portable communications 
devices. 

30 



Digital Speech Processing 

In Chapter 3, a methodology for optimization of speech 
processing algorithms is presented. The emphasis is placed in 
algorithmic optimization and the study of fixed-point 
quantization effects. 

2.16. References 

[CELP97] ICASSP'97 session: "CELP Coding", 12 different papers, 
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, ICASSP'97, Vol.2, pp. 731-778, 1997. 

[Chan95] A. Chandrakasan and R. Brodersen, "Minimizing Power 
Consumption in Digital CMOS Circuits", Proc. of the IEEE, 
Vol. 83, No. 4, pp. 498-523,1995. 

[Gers94] A. Gersho, "Advances in Speech and Audio Compression", 
Proc. of the IEEE, Vol. 82, No. 6,1994. 

[Honi88] M. Honig and D. Messerschmitt, Adaptive Filters: 
Structures, Algorithms, and Applications, Kluwer Academic 
Publisher, Boston, USA, 1988. 

[Iked84] O. Ikeda, "Speech Synthesis LSI LC8100", Proc. of Speech 
Technology, New York, pp. 188-191,1984. 

[Kail85] T. Kailath, "Signal Processing in the VLSI Era" in VLSI and 
Modern Signal Processing, ed. by S. Kung, H. Whitehouse, 
and T. Kailath, Prentice Hall, Englewood Cliffs, NJ, 1985. 

[Kond94] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate 
Communication Systems (Chapter 3, 11), Wiley, Chichester, 
1994. 

[Laps97] P. Lapsley et al., DSP Processor Fundamentals: 
Architectures and Features, IEEE Press Series on Signal 
Processing, Piscataway, NJ, 1997. 

[Lim83] J. Lim (Editor), Speech Enhancement, Prentice-Hall Signal 
Processing Series, Englewood Cliffs, New Jersey, 1983. 

[Liu90] Chi-Shi Liu et al., "A Study of Line Spectrum Pair 
Frequencies for Speaker Recognition", Proc. IEEE Int. Conf. 
on Acoustics, Speech, and Signal Processing, ICASSP'90, 
Vol. 1, pp. 277-280,1990. 

[LOWB97] ICASSP'97 session: "Speech Coding at Low Bit Rates", 14 
different papers, Proc. IEEE Int. Conf. on Acoustics, Speech, 
and Signal Processing, ICASSP'97, Vol.2, pp. 1555-1610, 
1997. 

31 



Optimized Implementation of Speech Processing Algorithms 

[Lunn91] T. Lunner and J. Hellgren, "A Digital Filterbank Hearing 
Aid Design, Implementation and Evaluation", Proc. IEEE 
Int. Conf. on Acoustics, Speech, and Signal Processing, 
ICASSF91, Vol. 5, pp. 3661-3664,1991. 

[Neuv93] Y. Neuvo, "Digital Filter Implementation Considerations" in 
Handbook for Digital Signal Processing, ed. by S. Mitra and 
J. Kaiser, Wiley, New York, 1993. 

[Osha87] D. O'Shaughnessy, Speech Communication: Human and 
Machine (Chapter 3, 4, 5, 6 and 7), Addison-Wesley, Reading, 
1987. 

[Pali88] K. Paliwal, "A Study of Line Spectrum Frequencies for 
Speech Recognition", Proc. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, ICASSF88, Vol. 1, pp. 485-
488,1988. 

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal 
Processing, Macmillan, New York, 1989. 

[Raba97] J. Rabaey, Cad Tools for Low Power, Electronics 
Laboratories Advanced Engineering Course on: Architectural 
and Circuit Design for Portable Electronic Systems, EPFL, 
Lausanne, 1997. 

[Rabi94] L. Rabiner, "Applications of Voice Processing to 
Telecommunications", Proc. of the IEEE, Vol. 82, No. 2, pp. 
199-228, 1994. 

[Thon93] T. Thong and Y. Jenq, "Hardware and Architecture" in 
Handbook for Digital Signal Processing, ed. by S. Mitra and 
J. Kaiser, Wiley, New York, 1993. 

[Widr85] B. Widrow and S. Stearns, Adaptive Signal Processing, 
Prentice-Hall, Englewood Cliffs - N.J, 1985. 

[Wigg78] R. Wiggins and L. Brantingham, "Three Chip System 
Synthesizes Human Speech", Electronics, Vol. 51, No. 18, 
pp. 109-116,1978. 

[Work91] Working-group on Communication and Aids for the Hearing-
impaired People, "Speech-perception Aids for Hearing-
impaired People: Current Status and Needed Research", 
J. of the Acoustical Society of America, Vol. 90, No.2, pp. 637-
685,1991. 

32 



Chapter 3 
Methodology of Optimization 

In this chapter, a methodology for optimization of speech 
processing algorithms is presented. The emphasis is placed in 
algorithmic optimization (algorithm choice and simplification) 
and the study of fixed-point quantization effects. 

A practical method for evaluating the behavior of digital 
signal processing (DSP) algorithms in the case of an 
implementation using fixed-point 2's complement arithmetic is 
proposed. A theoretical study of quantization effects is out of 
the scope of this report and can be found among others in 
[Jack89] and [Vaid87]. 

3.1. Methodology of Optimization 

Some speech processing applications such as digital hearing 
aids and portable telecommunications devices, are 
characterized by very tight requirements in chip size and power 
consumption as well as the complexity and number of functions 
to be implemented. The proposed methodology of optimization 
(Figure 3.1) is aimed to efficient implementation of these 
devices. A good interrelation between algorithmic level and 
target architecture is essential in this optimization process. 

The system is simulated using a double-precision C 
program. This program is first used to evaluate the 
performance of the system and to tune its parameters and then 

33 



Optimized Implementation of Speech Processing Algorithms 

is used as reference system for further optimization and 
simplification. 

For each functional block of the system, a survey of 
different algorithmic options for its realization is done. Only 
algorithms that are promising for efficient implementation are 
chosen, taking into account computational complexity, 
influence on the performance of the whole system, and the 
suitability for a fixed-point implementation. These algorithms 
are modified to reduce computational complexity, improve 
overall performance, allow better implementation on the target 
architecture, or improve their fixed-point implementation. 

A simulation of fixed-point quantization effects is done to 
minimize the number of bits required at every node of the 
algorithm while keeping a good performance. 

Implementation on a commercial low-cost fixed-point DSP, 
such as the DSP56001 is done for real time evaluation and to 
observe which blocks are computationally more expensive. 

Custom VLSI is done using either standard cell approach 
and automatic CAD tools or the low power architecture and the 
tool for optimal scheduling of DSP algorithms proposed in 
[Heub94]. 

An example of the application of this methodology in the 
optimal implementation of a noise reduction/speech 
enhancement algorithm for digital hearing aids is given in 
Chapter 4. 

3.2. Quantization Effects in Digital Signal Processing 

Finite-precision effects are inherent of any digital realization 
whether it be hardware or software. There are two common 
forms to represent numbers in a digital computer, fixed-point 
and floating-point notation. In practice fixed-point 
implementation leads to more efficient solutions on custom 
hardware, in terms of area and power consumption. Also, most 
popular low-cost commercial DSP chips are based on fixed-point 
arithmetic. Floating-point arithmetic is briefly described in 
[Proa89] and [Vaid87]. Hereafter, only fixed-point 
representation is considered. 

34 



Methodology of Optimization 

c/5 C 

P
ow

er
, 

A
re

a.
V

L 
m

en
ta

tio
 

S -

Ug 
W 

(U 
m

pl
 

P 
F 
ni 
(U 
OC 

U
IO

 

ed
-p

 

X 
U-

C 
.O 

<n 
C 
(D 

O 
(O 

(D OL 
•Q.CO 

E 

D
S

P
 

Q 
C 
O 

I 
O 
O) 

U 
E(D 
.c .9 
C O 

.C (O 
•Ë O 

< 5 

ÎÎ 

« 

a> 

0 ) ¾ 
(Og 

1 ^ O 

< 

(U 
> Si _ l 

f. 
.y 
T 

C 
O 

(O 
O 

(U 
a. W 

35 



Optimized Implementation of Speech Processing Algorithms 

3.3. Binary Fixed-point Representation of Numbers 

A binary representation of a number is a means of writing the 
number in terms of powers of two. For example the decimal 
number 6.375 can be represented as 110.011, an abbreviation 
for: 1-22+ 1-2 1 +0-2°+0-2- 1 + 1-2"2+1-2-8 . 

A binary number comes with a "binary point". The portion 
to the left represents an integer (e.g., 110 = 6) and the portion 
to the right represents fractions less than one (e.g., 
0.011=0.375). In fixed-point notation the binary point is 
constrained to lie at a fixed position in the bit pattern, as 
shown in Figure 3.2. 

2NI-1 21 20 2-1 
1NI-I 

sign bit v 
"1 

NI bits for 
integer 

' 4 ^ -

2-NF 

-NF 
/ least significant 

NF bits for bit 
fraction 

binary point a¡-0,1 

Figure 3.2: Allocation of bits in a word for fixed-point implementation. 

The first bit to the left is called the sign bit. The precision of 
the number system is defined as the increment between two 
consecutive numbers and is determined by the value of the 
least significant bit (LSB). 

Within the subclass of fixed-point representations, there 
are three commonly used methods to represent bipolar 
numbers: sign-magnitude, one's complement, and two's 
complement representation [Vaid87]. They are all based on the 
natural binary code, but differ in the way they handle negative 
numbers. 

In the sign-magnitude representation, the term: 

NI-2 

Xak-2* 
k=-NF 

(3.1) 

always represents the magnitude and the sign is kept in the 
sign bit. 

36 



Methodology of Optimization 

In the 2's complement notation a positive number is the 
same as in sign-magnitude representation, and a negative 
number is given by: 

NI-2 

x = -aNI ,-21""1+ Ya k -2 k 

J^ (3.2) 
The negative of a number is obtained by subtracting the 

corresponding positive number from 2m. In the case of pure 
fractional arithmetic (NI=I) a negative number is obtained by 
subtracting its positive number from 2 (from there the name of 
2's complement). 

The l's complement representation is identical to sign-
magnitude and 2's complement for positive numbers. A 
negative number is formed by complementing its corresponding 
positive number representation. Note that zero is now 
represented by 00...0 or 11..1, which is an undesired 
ambiguity. 

Two's complement arithmetic is easy to implement for both 
additions and multiplications, and elegantly handles negative 
numbers. In the work described in this report, only the case of 
two's complement fixed-point arithmetic is studied. 

3.4. Rounding and Truncation 

In performing fixed-point computations such as multiplications 
it is often necessary to quantize a binary fixed-point number x, 
to another number Q[x], reducing the precision (number of 
fractional bits) from NFl to NF2 as shown in Figure 3.3. This 
can be done via truncation or rounding. 

The effect of this reduction of precision is to introduce an 
error whose power depends on the values of NFl and NF2 and 
whose statistical behavior depends on the type of truncation or 
rounding used. This error is referred to by the generic name of 
round-off error (whether rounding or truncation is actually 
employed) and is given by: 

e = Q[x]-x (3.3) 

37 



Optimized Implementation of Speech Processing Algorithms 

2NI-I 21 20 2-1 2-NF2 2-NFI 

X 13NI-I 
a 

1 
a a 
0 .. -1 

a 
-NF2 

Q xl a ' ULXJ I NI-1 
a' 

1 a' a" 
0 , , -1 

a' 
-NF2 

a 
-NF1 

Figure 3.3: Truncation or rounding of a fixed-point binary number. 

Regardless of the actual binary representation used, several 
types of rounding or truncation can be implemented, among 
them, 2's complement truncation, sign-magnitude truncation, 
rounding and convergent rounding. 

Truncation 

In truncation, the least significant bits (NF2 to NFl) are simply 
dropped, regardless of the sign and the convention to represent 
negative numbers. If x is positive then: 

-(2-^2-2-mx)<e<0 (3.4) 

If x is negative the error depends on which binary 
representation is used: 

Sign-magnitude truncation and l's complement truncation: 

0<e<{2-m2-2-mi) and |Q[x]|<|x| (3.5) 

2's complement truncation: 

_(2-NF2_2-NFi)<e<0) sad |Q[X] |> |X | ( 3 6 ) 

Rounding 

In rounding, the value Q[x] is taken to be the nearest possible 
number to x, thus the error is limited by: 

(2-NF2 _ 2"NFl) ( 2 - N F 2 - 2 _ N F 1 ) 
< e < 

2 2 
(3.7) 

Rounding is more accurate than truncation but requires more 
effort in its implementation. The quantization curve and 

38 



Methodology of Optimization 

statistical behavior of the error for rounding and truncation is 
given in Figure 3.4. 

Convergent Rounding 

The conventional rounding rounds up any value above one-half 
and rounds down any value below one-half. The question arises 
as to which way one-half should be rounded. If it is always 
rounded one way, the result will eventually be biased in one 
direction. Convergent rounding solves the problem by rounding 
down if the number is odd and rounding up if the number is 
even. 

3.5. Dynamic Range, Overflow, and Saturation 
Arithmetic 

In general, a fixed-point DSP implementation is an elaborated 
interconnection of multipliers, adders and delays in which all 
the signals involved (including inputs, outputs and internal 
signals) are represented with fixed-point arithmetic. An 
overflow occurs when the value of a signal exceeds the dynamic 
range available. The dynamic range is the range of numbers 
which can be represented within the arithmetic used. In 2's 
complement fixed-point arithmetic, this range is given by 
(MIN = ^N1"1 , MAX = 21"-1 -2"NF). 

Scaling is the process of readjusting some internal gain 
parameters to avoid overflows. In [Jack89] it is shown how 
scaling should be performed, depending on the class of inputs. 
For a fixed total number of bits there is a trade-off between 
decreasing the probability of overflows by scaling and 
increasing the round-off error. Therefore scaling is usually 
applied only to minimize the probability of overflow to a 
reasonable extent and not to preclude it entirely. 

When an overflow actually occurs the resulting distortion is 
minimized by using clipping or saturation arithmetic. The 
overflowed result is substituted by the values MIN or MAX, 
according to its sign. 

39 



Optimized Implementation of Speech Processing Algorithms 

Q[x] 

X 

Q[x] 

j 

N S K Kuh 
MNNNN 

e = = Q[x] - x j e = Q[x] - x 

J1M1W1V «J* * ' ^ f s p S]SISN " 

Rounding 

4P(e) 

1/q 

-q/2 q/2 e 

a 2 = 

E 
q2> 
= 0 

'12 

2's complement 
truncation 

AP(e) 

1/q 

-q e 

o2 = 

E 
q 2 / 1 2 

= -q/2 

A 

N S N S 

e = Q[x] - x 

sN\N "x 

Sign-magnitude and 1's 
complement truncation 

A.P(e) 

1/(2q) 

-q q e 

E 
= q 2 / 3 
= 0 

Figure 3.4: Quantization curve, error and statistical behavior of the error 
(P(e) = pdf, E = mean, a2= variance and q = 2-^2-2-^1) . 

3.6. Fixed-point Quantization Effects 

The implementation of a DSP algorithm using fixed-point 
arithmetic involves quantization of the signals and parameters 
of the system. As a result, the overall input-output behavior is 
not ideal. Quantization is the process of transforming a value 
into its closest representation in the number system by means 
of truncation or rounding, and clipping [Jack89]. 

Two basic types of quantization effects should be 
distinguished. The first is due to parameter quantization, 
where the term parameter refers to the fixed values in the 
algorithm, usually filter coefficients. The second is due to 

40 



Methodology of Optimization 

quantization of the input, output and internal signals of the 
system. ¡ 

Parameter Quantization 

The filter coefficients are only quantized once (in the design 
process) and those values remain constant in the filter 
implementation. The effect of coefficient quantization is to 
deviate the filter response from its ideal (designed) form in a 
deterministic manner. The quantized design can be checked 
and, if no longer meets the specifications, can be optimized, 
redesigned, restructured, and/or more bit could be allocated to 
satisfy the specifications. ! 

The structure of the digital filter network influences 
directly its sensitivity to coefficient quantization. 

Signal Quantization 

The effect of signal quantization is to add an error or noise 
signal e(n) to the ideal output y(n) of the digital filter. This 
noise is a composite of the errors from one or more of the 
following sources, as applicable: 

(1) The quantization error of the analog-to-digital converter at 
the filter input. 

(2) The accumulated errors resulting from rounding or 
truncation within the filter (round-off noise). 

(3) The quantization of the output y(n) to fewer bits for input 
to a digital-to-analog converter or to another digital system. 

Source (3) is sometimes overlooked, but because of the 
accumulation of the noise in (2), more bits are usually allocated 
to the internal arithmetic of the filter than are required at the 
output. Hence, the output is usually requantized to fewer bits. 
It is often reasonable for the input and output quantization to 
employ the same number of bits, in which case their power 
noise levels are the same. 

41 



Optimized Implementation of Speech Processing Algorithms 

3.7. Round-off Noise and Limit Cycles 

The internal signals in a digital filter are invariably subject to 
quantization causing errors in the computed output. Such 
quantization is a non-linear phenomenon and can be further 
subdivided into two types of effects called limit-cycles and 
round-off noise. 

Round-off noise affects the filter output in the form of a 
random disturbance, and can be analyzed by suitable noise 
modeling and by the use of linear system theory [Jack89]. 

Limit-cycle oscillations, which contribute to undesirable 
periodic components at the filter output are due to the fact that 
quantization is a non linear operation. When such non-
linearities exist in a feedback path, they can lead to oscillations 
[Jack89]. 

In the case of a zero or constant input, ideally the output of 
a stable discrete-time filter would asymptotically approach zero 
or a constant. However, with quantization, it is often found that 
relatively small limit-cycle oscillations occur. 

A different limit-cycle mode, called rolling-pin limit-cycle, 
has larger amplitude and is rarely encountered [Jack89]. This 
rolling-pin limit cycles cannot be predicted theoretically and 
their occurrence is better checked by simulation. 

Usually, limit cycles can be reduced to acceptable levels by 
giving a sufficient number of bits to the signal representation. 
Another possible type of oscillation, due to overflows, is avoided 
by using saturation arithmetic. 

3.8. Adaptive and Non-linear Algorithms 

Adaptive filters are extensively used in signal processing 
applications. The least-mean-square (LMS) algorithm is the 
most attractive adaptation scheme because of its computational 
simplicity. Adaptive algorithms are non-linear in nature, 
therefore a theoretical analysis of their finite-precision 
behavior is very difficult and can be performed only under very 
simplified conditions [Frie92], [Cara84], assuming a 
stationary input. The well-known theory of finite precision 
filters with fixed coefficients is inapplicable for adaptive filters. 

42 



Methodology of Optimization 

For instance the representation of coefficients in adaptive 
filters requires a much longer word-length than in fixed filters. 

In the case of an adaptive or non-linear algorithm with non-
stationary input such as speech, theoretical analysis becomes 
untractable. Nevertheless the practical issue of how many bits 
are required for proper functioning on a fixed-point 
implementation remains. In this case the only solution is to 
perform simulations of the quantized algorithms under final 
working conditions with the appropriate input signals. 

3.9. Simulation of Quantization Effects in DSP 
Algorithms 

In the study by simulation of finite word-length effects on a 
DSP algorithm the main goal is to determine the minimum 
number of integer and fractional bits (NI.NF) required at every 
node of the algorithm, keeping the degradation of performance 
due to quantization effects within acceptable levels. 
Additionally, this study can also include optimization and 
modification of the algorithm to simplify its implementation on 
the target architecture and to improve the use of the dynamic 
range available. 

The Environment Used 

The functional blocks of the DSP algorithm are coded in C 
language, as Matlab functions, and interfaced under Matlab 
[MATL93]. Inputs and outputs of a Matlab function are 
matrices, vectors or scalars. When coding a particular 
functional block, any value that the designer may wish to 
modify iteratively is set as input while internal variables of 
particular interest are returned together with the output 
signals of the functional block. 

Different functions were written to allow speech playback, 
to load a speech file with two different formats, and to run a 
program on a DSP56001 card from Matlab. The calling syntax 
and description of this functions is given in Table 3.1. 

43 



Optimized Implementation of Speech Processing Algorithms 

Within Matlab, the algorithms can be run with different 
input parameters and the signals involved can be analyzed, 
displayed and listened to have an immediate feed-back after 
introducing any change in the system. 

da (x, Fs) 

[x, Fs] = rd_timit ('filename') 

[x, Fs] = rd_hsw ('filename') 

[yO, yl] = run (xO,xl,'prog_name') 

Play the sound vector x on the high 
quality audio I/O card, with 
sampling frequency Fs. 

Load a speech file that is in TIMIT 
format. 

Load a speech file that is in 
Hypersignal format. 

Load and run the DSP56001 
program 'prog_name' on the 
DSP56001 card with input xO, xl 
and retrieve outputs yO, yl . 

Table 3.1: Matlab functions used in fixed-point characterization of 
digital speech processing algorithms. 

Programs to Simulate Quantization Effects 

The first step in the study of the quantization effects on a DSP 
algorithm is implementing the algorithm in C code using 
double precision floating-point arithmetic. This in order to 
determine the optimal parameters that control the behavior of 
the algorithm and to characterize the "infinite precision" 
performance of the algorithm. Later this implementation is 
used as "reference system" to evaluate the degradation in 
performance of the quantized and optimized system. 

A quantized version of the algorithm is obtained from the 
reference system by placing quantizer operators at different 
points of the system. A quantizer is an operator that transforms 
a value into its closest representation in 2's complement fixed-
point arithmetic by means of clipping and rounding or 
truncation. Each placed quantizer is described by its rounding 
type and its number of integer bits and fractional bits (NI,NF). 
The place of the quantizers as well as their rounding type is set 
at the moment of compilation, whereas the number of bits of 
each quantizer (NI.NF) is given at run time together with other 

44 



Methodology of Optimization 

parameters of the algorithms and the input signal. The value of 
an overflow counter for each quantizer is returned at the end of 
the simulation. 

An example of the C code for a quantizer with sign-
magnitude truncation is given in Figure 3.5. The general 
expression for a Matlab function and its quantized version can 
be observed in Table 3.2. The macros and functions to simulate 
different types of truncation or rounding are given in 
Appendix A. 1. 

x qnt¡ — QM 
max[i] = -2 N l i - 1 -2 - N F i 

min[i] = -2NI '"1 

con[i] = 2 N F i 

/* de f ine rounding p o l i c y , i n t h i s case i s 
t r u n c a t i o n */ 
#def ine ROUND(a) ( (a) < 0 ? c e i l ( a ) : f l oo r ( a ) ) 

double qn t ( double a, i n t i ) 
{ 

/* Cl ipp ing */ 
i f (a>max[ i ] ){a=max[ i ] ;ov[ i ]++;} 
e l s e i f ( a<min [ i ] ) {a=min [ i ] ; ov [ i ]++ ;} 
I * round * I 
e l s e a=(ROUND(con[i]*a))/con[i] ; 
r e t u r n a; 

} 

Figure 3.5: The quantizer operator. 

General Matlab function (m inputs, n outputs) 

[yl, y2, ... , yn] = function_name (xl, x2 xm) 

General quantized Matlab function (m inputs, n outputs) 

[yl, y2, ... , yn, ov] = qfunction_name (xl, x2, ... , xm, prec) 

Table 3.2: General expression for a Matlab function and its quantized 
version. 

In Table 3.2, the input precision matrix (prec) and the 
returned overflow vector (ov) are given by: 

45 



Optimized Implementation of Speech Processing Algorithms 

JNI1 NI2 ... NIk" 
p r e C [NF1 NF2 ... NFk_ 

OV = [Ov1 Ov2 ... ovk] (3.8) 

where k is the number of placed quantizers. 

The Input Signals 

The input signals used during the simulation must be 
representative of the kind of input that will be presented to the 
system in operating conditions. 

In the case of speech processing algorithms a collection of 
speech recordings of good quality, at the appropriate sampling 
rate, and from a sufficiently large number of speakers should 
be used. The precision should be greater or equal to the 
precision of the AD converter in the final implementation. 

An existing digitized speech database on CD-ROM, called 
the TIMIT database [Garo90], was used extensively in the work 
described in this report. 

Measures of Performance 

To measure the performance of a quantized (or simplified) 
system, its output is compared with the output of the reference 
system using SNR measures. In this context, the output of the 
reference system is the "non-noisy" signal and the "noise" is the 
difference between the output of the modified system and the 
output of the reference system. 

Extensive listening tests should be done to determine a 
threshold of SNR above which it can be assured that the two 
compared signals cannot be distinguished. This SNR measure 
should be used as an indicator to locate worst cases, specially 
when a big amount of different inputs is processed, but should 
not substitute completely a detailed observation of the 
interesting cases. This detailed analysis is done by displaying 
the two compared signals and their difference, and by listening 
both signals. 

46 



Methodology of Optimization 

3.10. Simulation of DSP56001 Quantization Effects 

Producing an optimal real time implementation using 
DSP56001 assembler is in most cases a time consuming task 
which is preferably done only once. Arithmetic quantization 
effects should be studied by simulation before investing much 
time in assembler coding and in speed and resources 
optimization. In particular, it should be checked that the 
dynamic range available in the different registers of the 
DSP56001 ALU can accommodate the requirements of the 
algorithm, and the optimum scaling to be applied at each node 
of the algorithm should be found. 

The DSP56001 

The DSP56001 is a 24-bit fixed-point, general purpose DSP 
fabricated by MOTOROLA [MOTO90]. The heart of the 
processor consists of three execution units operating in parallel: 
the data arithmetic logic unit (ALU), the address generation 
unit (AGU) and the program controller. A block diagram of the 
DSP56001 is given in Appendix A.2. 

The data ALU (Figure 3.6) performs all arithmetic and 
logical operations on data operands. It consists of four 24-bit 
input registers, two 48-bit accumulator registers with 8-bit 
extension registers, an accumulator/shifter, two data bus 
shifter/limiter circuits, and a parallel, single-cycle non-
pipelined multiply-accumulate unit (MAC). 

Data ALU operations use fractional two's complement 
arithmetic. Data ALU registers may be read or written, over 
the X data bus and the Y data bus, as 24- or 48-bit operands. 
The data ALU is capable of performing any of the following 
operations in a single instruction cycle: multiplication, 
multiply-accumulate with positive or negative accumulation, 
convergent rounding, multiply-accumulate with positive or 
negative accumulation and convergent rounding, addition, 
subtraction, a divide iteration, a normalization iteration, 
shifting and logical operations. 

Data ALU source operands, which may be 24, 48, or, in 
some cases, 56 bits, always originate from data ALU registers. 

47 



Optimized Implementation of Speech Processing Algorithms 

Arithmetic operations always have a 56-bit result stored in an 
accumulator. Saturation arithmetic is implemented when an 
overflow occurs. The arithmetic instructions of the DSP56001 
are given in Appendix A.3. 

Simulation ofDSP56001 Arithmetic 

As explained in Section 3.9, finite arithmetic effects are 
simulated by including quantizer operators in the high-level 
code of the algorithm. The number of integer and fractional bits 
of the DSP56001 ALU registers are given in Table 3.3. 

Name 

Word 

Long word 

Accumulator 
Rounded accumulator 

Number of 
bits <NI, NF> 

<1,23> 

<1,47> 

<9,47> 
<9,23> 

Element 

24-bit XO, Xl, YO, Yl registers 
and memory. 

Concatenated X,Y registers 
and memory. 
Accumulator A, B. 

Accumulator after rounding. 

Table 3.3: Number of integer and fractional bits, NI and NF, for the 
DSP56001 ALU registers. 

The quantization model for some of the most used 
DSP56001 operations is shown in Figure 3.7. 

48 



Methodology of Optimization 

X DATA BUS 

Y DATA BUS 

24 24 

24 24 

C MULTIPLIER ) 

56 ACCUMULATOR, 
ROUNDING, 

AND LOGIC UNIT 

SHIFTER 

56 

A(56) 

B(56) 

56 56 

SHIFTER/LIMITER 

56 

24 

24 

Figure 3.6: Data ALU of the DSP56001. 

24 

24 

49 



Optimized Implementation of Speech Processing Algorithms 

MPY 

<1,23> <1,23> 

<9,47> 

MPYR 

<1,23> <1,23> 

<9,23> 

MAC 

<1,23> <1,23> 
L_j0"_l 

<9,47> <9,47> 
1 - * © * _ I 

<9,47> 

MACR 

<1,23> <1,23> 
L-^©*—I 

<9,47> <9,47> 
L - ^ - I 

<9,23> 

RND 

<9,47> 
• 

<9,23> 
Convergent Rounding 

ADD 

<1,23> <9,47> 
L - ^ - I 

<9,47> 

ASR 

<9,47> 

^ 2 

<9,47> 
2's Complement Truncation 

ASL 

<9,47> 

© — 2 

<9,47> 
Saturation Arithmetic 

MOVE 
Aceto 
24-bit 

Register 
X, Y or 
Memory 

<9,47> 
• 

<1,23> 

2's Complement 
Truncation and 

Saturation Arithmetic 

MOVE 
Rounded 
Ace to 24-
bit Register 

X, Y or 
Memory 

<9,23> 
• 

<1,23> 

Saturation Arithmetic 

MOVE Ace to 
Concatenated 
48-bit Register 
X, Y or Memory 

<9,47> 
• 

<1,47> 
Saturation Arithmetic 

Figure 3.7: Quantization effects of DSP56001 operations. 

50 



Methodology of Optimization 

3.11. Conclusions and Summary of the Chapter 

A methodology for optimization of speech processing algorithms 
was proposed in this chapter, as well as a practical and simple 
method for evaluating fixed-point quantization effects on these 
algorithms. Although the application is restricted to digital 
speech processing algorithms, the method presented is general 
enough to be easily extended to other classes of DSP 
algorithms. 

The proposed method allows a simulation of the system in 
final working conditions and at the same time benefit of the 
flexibility of using high level language, independently of the 
hardware. In this way, different implementation possibilities 
can be easily tried out, before doing the actual implementation. 
Even if the simulation is "independent of the hardware" in the 
sense that is not running on the hardware itself, many choices 
such as placing of the quantizers and their rounding strategy 
are determined by the target architecture. 

The characterization of fixed-point arithmetic effects plays 
an essential role in the optimization of VLSI implementations 
with tight constraints in size and power consumption such as 
digital hearing aids and portable devices for 
telecommunications. In the next chapter, the proposed 
optimization methodology is used in the implementation of a 
noise reduction/speech enhancement algorithm for digital 
hearing aids on both a fixed-point commercial DSP and a low 
power VLSI architecture. 

3.12. References 

[Cara84] C. Caraiscos and B. Liu, "A Roundoff Error Analysis of the 
LMS Adaptive Algorithm", IEEE Trans, on Acoustics, Speech 
and Signal Processing, Vol. 32, No. 1, pp. 34-41, 1984. 

[Frie92] B. Friedrichs, "Analysis of Finite-precision Adaptive Filters 
Part I and II", Frequenz, Vol. 46, No. 9-10, pp. 219-223 and 
262-267, 1992. 

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic 
Continuous Speech Corpus CD-ROM", National Institute of 
Standards and Technology, NISTIR 493, Oct. 1990. 

51 



Optimized Implementation of Speech Processing Algorithms 

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of 
a VLSI Implementation of a Noise Reduction Algorithm for 
Digital Hearing Aids", Proc. EUSIPCO'94, Vol.3, pp. 1661-
1664,1994. 

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low 
Power VLSI Architecture for Digital Signal Processing with 
an Application to Adaptive Algorithms for Digital Hearing 
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878,1994. 

[Jack89] L. Jackson, Digital Filters and Signal Processing (Chapter 
11), Kluwer Academic Publishers, Boston, 1989. 

[MATL93] Matlab User's Guide, The Math Works Inc., 1993. 

[MOTO90] DSP56000/DSP56001 Digital Signal Processor User's 
Manual, DSP56000UM/AD Rev.2, Motorola Inc., 1990. 

[MOT093] A. Chrysafis and S. Lansdowne, "Fractional and Integer 
Arithmetic Using the DSP56000 Family of General-purpose 
Digital Signal Processors", APR3/D Rev. 1, Motorola Inc., 
1993. 

[Pepe87] R. Pepe and J. Rogers, "Simulation of Fixed-point Operations 
with High Level Languages", IEEE Trans, on Acoustics, 
Speech and Signal Processing, Vol. 35, No. 1, pp. 116-118, 
1987. 

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal 
Processing, Macmillan, New York, 1989. 

[Vaid87] P. Vaidyanathan, "Low-noise and Low-sensitivity Digital 
Filters" (Chapter 5), in Handbook of Digital Signal 
Processing, ed. by D. Elliott, Academic Press, San Diego, 
1987. 

52 



Chapter 4 
Noise Reduction I Speech 
Enhancement for Digital 
Hearing Aids 

In this chapter, the optimization methodology explained in 
Chapter 3 is used for meeting the tight constraints in the 
physical realization of a noise reduction/speech enhancement 
algorithm for digital hearing aids. 

4.1. Digital Hearing Aids 

Analog electroacoustic hearing aids are the primary treatment 
for most hearing impaired people. They contain the basic 
functions of amplification, frequency shaping, and limiting of 
the output signal [Work91]. Digital hearing aids promise many 
advantages over conventional analog hearing aids, among them 
the increased precision and programmability of DSP techniques 
and the possibility of adding new functions such as noise 
reduction, spectral sharpening and feedback cancellation 
[Levi87]. 

On the other hand the physical implementation of digital 
hearing aids is characterized by very tight requirements in chip 
size, voltage supply and power consumption, which are very 
difficult to fulfill given the complexity and number of functions 

53 



Optimized Implementation of Speech Processing Algorithms 

to be implemented together with the real time requirement and 
large dynamic range of the input signals. 

Several algorithms have been proposed to perform the 
functions of frequency shaping [Lunn91], feedback cancellation 
[Kate90] and noise reduction [Scha91]. However, the ultimate 
problem remains the feasibility of a physical implementation of 
these algorithms, in particular for meeting the constraints of 
chip size and power consumption. This could be achieved by a 
careful optimization that ranges from algorithm level, through 
system and circuit architecture to layout and design of the cell 
library. The key points in this optimization are among others 
the choice of a fixed-point arithmetic unit, the optimization of 
the algorithm minimizing the number of operations and the 
number of bits required at every node of the algorithm, and a 
careful match between algorithms and architecture. 

4.2. Noise Reduction I Speech Enhancement Algorithms 

In the algorithms proposed in [Scha91], spectral sharpening is 
used for both noise reduction and compensation of the reduced 
frequency selectivity encountered among many hearing 
impaired people. The spectral sharpening technique is based on 
a combination of a gradient adaptive lattice (GAL) linear 
predictor and two, HR and FIR, modified lattice filters 
(synthesis and analysis filters). These algorithms are 
particularly suitable for a fixed-point VLSI implementation. 
This is due to the good quantization properties of lattice filters, 
their modular structure, local interconnections, and rhythmic 
data flow [Kail85]. 

The block diagrams of the noise reduction and the speech 
enhancement algorithms are given in Figure 4.1 and 
Figure 4.2. The GAL predictor extracts spectral information 
from the input signal at every sampling instant. This spectral 
information is encoded in the Parcor coefficients {km) and used 
by the analysis and synthesis filters to perform a signal 
dependent (adaptive) filtering of the input. 

54 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

Q - X [ H ] 

Adaptive Linear 
Predictor 

k1,k2 k8 

High-pass 
Filter 

5Z. 
Modified 

Lattice FIR 

3k 
Modified 

Lattice HR 

y[n] y 

Figure 4.1: Spectral sharpening for noise reduction. 

O * x[n] 

High-pass 
Filter 

Adaptive Linear 
Predictor 

Loudness 
Control 

k1,k2 k8 

iE 
Modified 

Lattice FIR 

5k_ 
Modified 

Lattice HR 

V[n] 

P 
y[n] 

Figure 4.2: Spectral sharpening for speech enhancement. 

The sharpening effect applied to a synthesized vowel is 
shown in Figure 4.3. The noise reduction effect applied to a 
short phrase is shown in Figure 4.4. 

The first cell of the GAL predictor and the analysis and 
synthesis filters can be observed in Figure 4.5, Figure 4.6 and 
Figure 4.7, respectively. 

To obtain the speech enhancement system, the high pass 
filter is placed at the input of the GAL and a gain control unit 
is added at the output of the synthesis filter [Scha91]. 

Only the noise reduction algorithm was implemented and 
all the optimization effort was done in the implementation of 
the computationally expensive core of this algorithm (which 
contains the GAL predictor and the analysis and synthesis 
filters). 

55 



Optimized Implementation of Speech Processing Algorithms 

1000 2000 3000 
Frequency, Hz 

4000 

Figure 4.3: The sharpening effect applied to the synthesized english 
vowel IaJ, synthesized using the average formant frequencies 
given in [Osha87]. 

0 0.1 0.2 0.3 0.4 0.5 
time, s 

Figure 4.4: Noise reduction applied to the french phrase: "Le pot de..." 

56 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

x[n] 

•W*' 

Ak, , . 1 
1 z-

Figure 4.5: GAL predictor (first cell). 

Figure 4.6: Analysis filter. 

- < ± > 

^Wt> 
Figure 4.7: Synthesis filter. 

57 



Optimized Implementation of Speech Processing Algorithms 

4.3. High Level Simulation 

A high level simulation of the noise reduction algorithm was 
done. This simulation was first used to determine the optimal 
parameters (y, ß and t|) and then used as reference system for 
further simplification and optimization. All the functional 
blocks were coded in C language as Matlab functions. The 
listings for the C code of the GAL predictor and the analysis 
and synthesis filters are given in [Gras95]. 

A set of 15 files recorded at 8 kHz with 16 bit precision, and 
the 6300 files from the TIMIT database [Garo90] downsampled 
to 8 kHz were used as input data. These files were scaled to the 
range [-1, +1) and their precision was reduced to simulate a 12 
bit AD converter. The set of 15 files was used to define the first 
choice of the number of bits of each quantizer. This choice was 
tuned by processing some (usually 100) files chosen at random 
from the TIMIT database. Systematic testing on all the 
available files was done in some cases such as overflow search. 

Testing the Algorithms and Choice of the Parameters 

All the functional blocks of the algorithms were implemented 
and studied separately, in order to understand the influence of 
the different parameters on each block and on the overall 
system. These simulations were performed with synthetically 
produced and digitized speech files. 

In particular, the different trade-offs controlling the choice 
of the parameters were found as well as useful ranges for these 
values. Subjective and objective measures were used for testing 
the algorithms. These measures were first used to fine-tune the 
choice of the parameters obtained with theoretical analysis and 
then used to characterize the performance of the algorithms 
[Trog93]. 

In the case of the noise reduction system, the signal and 
noise contribution at the output of the system were separated 
in order to measure the SNR and segmental SNR at the output 
[Trog93]. This measure was used together with measures of 
subjectively perceived quality and observations of the time-
domain signals. It was found that there is a trade off between 

58 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

subjective quality and noise reduction. Three different sets of 
parameters, corresponding to different levels of noise reduction 
and quality, were found. The improvements in SNR measured 
using these sets of parameters were 4-5 dB, 5-7 dB, and 7-11 
dB, ordered by decreasing quality [Trog93]. 

The speech enhancement algorithm was evaluated using 
cepstrum spectral envelope extraction for observing the 
sharpening effect in dB. This was based on the assumption that 
efficient speech enhancement requires that the various 
formants are uniformly emphasized, regardless of their relative 
power level [Scha91]. Only approximately 6 dB of uniform 
speech enhancement could be obtained using data synthetically 
produced. Using real speech as input data, it was not possible 
to obtain at the same time a reasonable level of speech 
enhancement and a uniform distribution of the gain at the 
formants. This could be improved using a higher order high-
pass pre-processing filter [Trog93], [Scha91]. 

The performance of the noise reduction system was also 
evaluated using informal listening tests with non-impaired 
subjects for evaluating subjective quality. In the case of non-
impaired listeners the sharpening effect is probably perceived 
as distortion, a "price to pay" for achieving a given noise 
reduction, while for a hearing impaired individual, it is 
expected to help in improving intelligibility. Therefore, it is not 
necessary that the results obtained with normal listeners can 
be extrapolated to hearing impaired individuals. 

Measure of Performance 

The high level implementation of the algorithm using double 
precision floating-point arithmetic is used as reference system. 

To measure the performance of a modified system, its 
output is compared with the output of the reference system 
using SNR measures, as explained in Section 3.9. 

It was found that when the SNR was 15 dB or more, the 
transfer function of the analysis-synthesis filter of both systems 
did not differ significantly and their outputs could not be 
distinguished in listening tests. 

59 



Optimized Implementation of Speech Processing Algorithms 

4.4. Real Time Implementation on DSP56001 

A first implementation of the noise reduction algorithm was 
done on a DSP56001 for checking real time feasibility and 
identifying which functional blocks are more time-consuming in 
view of a possible simplification. These observations are 
summarized in Table 4.1 for a system of order 8 with a 
sampling frequency of 8 kHz and clock frequency of 20 MHz. A 
uniform precision of 24 bit was used throughout the whole 
system. The serious degradation observed in the performance 
motivated a more detailed study of the quantization effects. 

The computational load of the division was 63% of the time 
available, therefore a particular effort has to be done in the 
simplification of this operation. The listings for the assembler 
implementation and its corresponding fixed-point simulation on 
C code are given in [Gras95]. 

Function 

GAL 

Synthesis 
Analysis 

Total 

«Cycles 

682 

76 
78 

836 

% 

82 

9 
9 

100 

Remarks 

Division: 63% 

33% of time available 

Table 4.1: Computational load of the first DSP56001 implementation. 

4.5. Simplified Division 

There is no divide operation in the low power architecture 
previewed for the final implementation [Heub93]. Also, since 
the division is a less frequent operation (1 division per 12 
multiplications), it is not efficient to implement a full division 
in a special unit. 

GAL algorithms in which the division is replaced with a 
multiplication by a small constant do not yield the fast 
convergence independently of the input signal level required for 
good speech enhancement results. A reasonable compromise is 
the approximation of the divisor by a power of two. 

The measured SNR between the output of a system with 
simplified division (but otherwise no other change with respect 
to the reference system) and the reference system was more 

60 



Noise Reduction / Speech Enhancement for Digital Hearing Aids 

than 20 dB. This result shows that the simplified division is 
feasible. • „. 

4.6. Quantization Effects 

A simulation of the fixed-point quantization effects was done, 
following the methodology explained in Chapter 3, in order to 
determine the minimum word-length and the scaling required 
at every node of the algorithms [Gras94], [Gras95]. The results 
obtained in the study of the quantization effects were used for 
both an efficient real time implementation on a DSP56001 and 
an implementation on the low power architecture described in 
[Heub93]. 

Parameters of the System 

The interesting values of y and ß are in the ranges (0.90, 0.99) 
and (0.10,0.50) respectively. These parameters were quantized 
to 12 bit. The effect of this quantization is negligible and was 
included in the reference system for the remaining of the study. 
All the simulations were done using values in these ranges and 
the results obtained hold under these conditions. It was noticed 
that the system was more sensitive to modifications when 
y = 0.99. 

When n is in the range (0.98,0.985) the GAL algorithm 
performed well for all input signals. A value of 0.9805 yields to 
an efficient implementation as explained in Section 4.7. 

The Optimized System 

The target architecture for the final VLSI implementation is a 
low power architecture described in [Heub93], [Heub94]. The 
placing of the quantizers and their rounding strategy is given 
by the characteristics of the arithmetic unit of the target VLSI 
architecture. The placing of the quantizers, q¡, is shown (with 
shadowed boxes) in Figure 4.8 to Figure 4.10. The used 
rounding strategy is sign-magnitude truncation. 

61 



Optimized Implementation of Speech Processing Algorithms 

q1 z-1 T q1 

Figure 4.8: Quantizers in the analysis filter. 

z"1 q5 q5 

Figure 4.9: Quantizers in the synthesis filter. 

The number of bits of each quantizer is also influenced by 
the final target architecture: the word-length of the multiplier 
must be a multiple of four and the word-length of the 
accumulator is twice the word-length of the multiplier. 

The minimum number of bits for the quantizers is given in 
Table 4.2. Using this specification, the measured SNR between 
the output of the quantized system and the reference system 
was more than 20 dB. A system with both quantization and 
simplified division gives more than 15 dB of SNR when 
compared to the reference system. 

No. bits 

Ni 

NF 

ql 
2 
14 

q2 

2 
25 

q3 

7 
25 

q4 

1 
15 

q5 

7 
9 

Table 4.2: Number of bits for each quantizer. 

The listings for the C code of the optimized system, 
including the analysis and synthesis filters and both versions of 
the GAL predictor (with and without simplified division) are 
given in [Gras95]. 

62 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

Figure 4.10: Quantizers in the GAL predictor. 

Implications for the VLSI Implementation 

From the point of view of the word-length requirements we 
could divide the circuit into two sections. These two sections 
will be implemented using two different hardware units. 

The first section corresponds to the dashed box in the GAL 
predictor on Figure 4.10 and contains the power estimation 
recursion and the division. This section requires a higher 
dynamic range (although not necessarily a higher precision). It 
contains the two most critical operations of the system which 
are the long-word (32 bit) multiplication by r\ and the 
computationally expensive long-word division. Using a fixed 
choice of 11 = 0.9805 = 1 - 2 ^ - 2 - 8 and the simplified division 
yields to an efficient implementation on a dedicated unit that 
contains a 32-bit adder, and the logic for the approximation of 
the power estimation by a power of two. The multiply 
accumulate is substituted by two additions and two hard-wired 
shifts. 

The second section corresponds to the rest of the GAL 
algorithm together with the analysis and synthesis filters. The 

63 



Optimized Implementation of Speech Processing Algorithms 

word-length requirements of this section are met by 16 bit 
multipliers with 32 bit adder-accumulators. 

Implications for the DSP56001 Implementation 

In Table 4.2 it is observed that at some nodes of the algorithm 
the minimum word-length required exceeds the uniform 24 bit 
word-length used in the first DSP56001 implementation. Seven 
steps of normalization and denormalization were added at 
these nodes to extend the dynamic range of the temporal 
registers of the DSP56001. The computational load of the GAL 
almost doubled as seen in Table 4.3, but the real time 
constraint is still met. The analysis and synthesis blocks were 
left unchanged but a 6-bit scaling was included at the input of 
the synthesis filter to compensate the amplification introduced 
by this block. Each functional block was coded separately on 
DSP56001 assembler and simulated in C language (including 
the effects of the arithmetic used in the DSP56001). Both 
implementations gave exactly the same results allowing the 
verification of the accurateness of the simulations. The listings 
for both implementations are given in [Gras95]. 

The output of this second DSP56001 implementation is 
virtually equal to the output of the reference system, with a 
measured SNR of more than 80 dB. Systematic search on the 
TIMIT database showed no overflows. From a practical point of 
view, the DSP implementation was a good verification of the 
results obtained in the study of the quantization effects. 

Function 

Decorrelator 

Synthesis 

Analysis 
Total 

#Cycle8 

1530 
76 

78 
1684 

% 

91 
4.5 

4.5 

100 

Remarks 

Division: 31% 

67% of time available 

Table 4.3: Computational load of the second DSP56001 implementation. 

64 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

4.7. VLSI Implementation 

An implementation of the optimized system was done using the 
target low power VLSI architecture described in [Heub93]. The 
architecture takes advantage of the regularity of the algorithm 
to simplify the scheduling and the hardware implementation. 
The processor architecture and modules are organized in a way 
to limit the overall data transfer to the strict minimum, local 
data traffic being preferred versus global traffic. 

Larger memories are split into a set of smaller memories 
where a single one is activated at a time. A sequential dynamic 
memory is used for storing the Parcor coefficients, another for 
storing the state variables of the analysis and synthesis filters, 
and two remaining ones for the variables of the linear 
predictor. 

The arithmetic unit is a serial-parallel unit optimized for 
performing scalar products. The number of relevant partial 
products occurring in the multiplications is reduced at least by 
a factor of two using Booth's recoding scheme. Two arithmetic 
units of this kind are used to achieve a sufficient computational 
throughput. This for the implementation of the analysis and 
synthesis filters, and the portion of the GAL outside the dashed 
box in Figure 4.10. 

The dedicated unit for the implementation of the portion of 
the GAL inside the dashed boxed in Figure 4.10 was realized 
separately using a low power standard cell library. 

The scheduling was hierarchically organized to limit the 
processing rate of each module to the strict minimum using an 
adapted version of the "TABU search" optimization technique, 
which is particularly suitable for the scheduling of DSP 
algorithms. 
The details of this implementation are given in [Heub94]. The 
floor plan and the layout are shown in Figures 4.11 and 4.12. 
The resulting silicon area was approximately 4 mm2 using 
VLSI Technology's CMN12 1.2 urn CMOS process. The 
estimated power consumption is 0.65 mW at 2V. 

65 



Optimized Implementation of Speech Processing Algorithms 

2.0 mm 
•< • 

•V 

^^ 

kacc 

T| acc 

po
w

. e
st

. 
m

em
or

y 

O 
C 

CT 
(D 
V) 

* (O 
. O) 
' b . 
O 

E • 0) 

E 

W 
decor 

ki 

Wan + 
sy 

seq 

mult 16 

seq 

mult 16 

Figure 4.11: Floor plan for the VLSI implementation. 

4.8. Further Work 

Some possible extensions, and applications of the work 
described in this chapter are given next. 

Given that lattice filters and lattice linear predictors are 
used in many areas of speech processing such as coding, 
synthesis and recognition [Osha87], the experience obtained in 
studying and implementing the algorithms proposed in 
[Scha91] can be reused in other different applications. 

Speech Coding 

The GAL linear predictor finds application in backward 
predictive speech coders such as the 16 kbps ADPCM coder 
proposed in [Scha90]. 

66 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

Figure 4.12: Layout for the VLSI implementation. 

The high level implementation and testing of this coder was 
done within a student project [Kunz94]. As the more 
computationally expensive block of this system is the GAL 
predictor, the optimized VLSI implementation of this functional 
block can be reused in an efficient implementation of this 
speech coder with application in portable devices. 

The analysis and synthesis filters studied in this chapter 
are the basis for the postfiltering algorithm proposed in 
[Chen87]. The use of this postfiltering technique is now very 
popular in CELP coders, such as the CELP FS1016 (see § 5.11). 
These analysis and synthesis filters are also used in CELP 
coders for perceptual weighting of the error between the 
original and synthesized speech. Thus the optimization of these 
filters can be reused for efficient implementation of the CELP 
FS1016 speech coder. 

67 



Optimized Implementation of Speech Processing Algorithms 

Frequency Shaping for Digital Hearing Aids 

The conventional analog hearing aid always contains the basic 
function of frequency shaping which provides different levels of 
amplification for different frequency ranges so as to fit as much 
of the speech signal as possible between the threshold of 
audible sound and the ceiling of a too-loud sound [Work91]. A 
filterbank suitable for frequency shaping in a digital hearing 
aid is proposed in [Lunn91]. In this algorithm, interpolated 
half-band FIR filters are used to minimize the number of 
multiplications per sample. This algorithm was implemented 
and studied as part of a student work [Hues94]. This filterbank 
was used as an application example in another student work 
[Henn94] for estimating the size and power consumption in the 
case of a VLSI implementation. This work was based on the low 
power architecture described in [Heub93] and used a standard 
cells approach (low power library Csel_Lib from CSEM). The 
resulting silicon area was approximately 3 mm2 and the 
estimated power consumption was 0.3 mW at 2V (without 
sequencing unit). 

As the results obtained are promising, it would be 
interesting to apply the proposed methodology of optimization 
to the implementation of this functional block. 

4.9. Conclusions and Summary of the Chapter 

The optimization methodology explained in Chapter 3 was used 
for meeting the tight constraints in the physical realization of a 
noise reduction/speech enhancement algorithm for digital 
hearing aids. The emphasis was placed in the study of the 
quantization effects and algorithmic optimization. 

The interrelation between the target VLSI architecture and 
the algorithmic level plays an essential role in the optimization 
process. The resources available in the architecture influenced 
some choices at the algorithmic level, whereas some constraints 
and particular needs of the algorithm forced some choices in 
the VLSI implementation. 

68 



Noise Reduction I Speech Enhancement for Digital Hearing Aids 

The proposed simplification of the gradient adaptive lattice 
algorithm improves the efficiency in the implementation while 
keeping good convergence properties. 

From a practical point of view, the approach using real 
input signals is an appropriate means for the characterization 
of the systems in final operating conditions. The 
implementation on a commercial fixed-point DSP is an 
important intermediate step which allows real time evaluation 
and gives further information on the behavior of the final 
implementation. 

Given that lattice filters and lattice linear predictors are 
used in many areas of speech processing, the results obtained 
can be used in other applications where the needs of reduced 
size and power consumption plays an important role such as 
portable devices for telecommunications. 

4.10. References 

[Chen87] J. Chen and A. Gersho, "Real-time Vector APC Speech 
Coding at 4800 bps with Adaptive Postfiltering", Proc. IEEE 
Int. Conf. on Acoustics, Speech, and Signal Processing, 
ICASSP'87, Vol. 3, pp. 2185-2188,1987. 

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic 
Continuous Speech Corpus CD-ROM", National Institute of 
Standards and Technology, NISTIR 493, Oct. 1990. 

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of 
a VLSI Implementation of a Noise Reduction Algorithm for 
Digital Hearing Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1661-
1664,1994. 

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on 
DSP Algorithms, IMT Report No 375 PE 03/95, University of 
Neuchâtel, IMT, 1995. 

[Henn94] C. Henny, Unité Arithmétique Faible Consommation Dédiée 
au Calcul de Produits Scalaires, (in French), practical 
semester project, IMT Uni-NE, winter semester 1993/94, 
Neuchâtel, 1994. 

[Heub93] A. Heubi, M. Ansorge, and F. Pellandini, ("Low Power VLSI 
Architecture for Digital Signal Processing") "Architecture 
VLSI Faible Consommation pour le Traitement Numérique 
du Signal", Proc. GRETSI'93, Vol. 2, pp. 3661-3664, 1993. 

69 



Optimized Implementation of Speech Processing Algorithms 

[Heub94] A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low 
Power VLSI Architecture for Digital Signal Processing with 
an Application to Adaptive Algorithms for Digital Hearing 
Aids", Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878,1994. 

[Hues94] O. Huesser, Filtres de Compensation Spectrale pour 
Prothèses Auditives Numériques, (in French), practical 
semester project, IMT Uni-NE, winter semester 1993/94, 
Neuchâtel, 1994. 

[Kail85] T. Kailath, "Signal Processing in the VLSI Era" in VLSI and 
Modern Signal Processing, ed. by S. Kung, H. Whitehouse, 
and T. Kailath, Prentice-Hall, Englewood Cliffs, N.J., 1985. 

[Kate90] J. Kates, "Feedback Cancellation in Hearing Aids", Proc. 
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 
ICASSP'90, Vol. 2, pp. 1125-1128,1990. 

[Kunz94] S. Kunzi, Etude et Implementation d'un Codec ADPCM Basé 
sur un Prédicteur Adaptatif à Gradient, (in French), 
practical semester project, winter semester 1993/94, Ecole 
polytechnique fédérale de Lausanne, Laboratoire de 
microtechnique EPFL - UNI NE, Neuchâtel, 1994. 

[Levi87] H. Levitt, "Digital Hearing Aids: A Tutorial Review", J. of 
Rehabilitation, Research and Development, Vol. 24, No. 4, 
pp. 7-20,1987. 

[Lunn91] T. Lunner and J. Hellgren, "A Digital Filterbank Hearing 
Aid Design, Implementation and Evaluation", Proc. IEEE 
Int. Conf. on Acoustics, Speech, and Signal Processing, 
ICASSP91, Vol. 5, pp. 3661-3664,1991. 

[Osha87] D. O'Shaughnessy, Speech Communication: Human and 
Machine (Chapter 3), Addison-Wesley, Reading, 1987. 

[Rutt85] M. Rutter, "An Adaptive Lattice Filter" in VLS/ Signal 
Processing: a Bit-serial Approach, ed. by P. Denyer and D. 
Renshaw, Addison-Wesley, 1985. 

[Scha90] A. Schaub, "Backward-adaptive Predictive DPCM", ASCOM 
Technical Review, No.l, pp. 12-19,1990. 

[Scha91] A. Schaub and P. Straub, "Spectral Sharpening for Speech 
Enhancement/Noise Reduction", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'91, Vol. 2, 
pp. 993-996, 1991. 

70 



Noise Reduction / Speech Enhancement for Digital Hearing Aids 

[Trog93] J. Troger, Filtrage Adaptatif pour la Réduction du Bruit 
Appliqué au Traitement de la Parole, (in French), diploma 
work, winter semester 1992/93, Ecole polytechnique fédérale 
de Lausanne, Laboratoire de microtechnique EPFL - UNI 
NE, Neuchâtel, 1993. 

[Work91] Working-group on Communication and Aids for the Hearing-
impaired People, "Speech-perception Aids for Hearing-
impaired People: Current Status and Needed Research", J. 
of the Acoustical Society of America, Vol. 90, No.2, pp. 637-
685,1991. 

71 



Chapter 5 
Line Spectrum Pairs and the 
CELP FS1016 Speech Coder 

This chapter gives the theoretical fundamentals for 
understanding the Une spectrum pair (LSP) representation of 
linear predictive coding (LPC) coefficients with application to 
narrowband speech coding. It also explains the structure of the 
CELP FS1016 speech coder, in particular the spectral analysis 
block, in which LPC analysis with LSP representation is used. 

These concepts are used in Chapter 6, in which two novel 
efficient algorithms for LPC to LSP conversion are presented 
and in Chapter 7, in which the DSP56001 optimized 
implementation of the CELP FS1016 spectral analysis block is 
given. 

5.1. LPC Analysis 

Linear predictive coding (LPC) is widely used in different 
speech processing applications for representing the envelope of 
the short-term power spectrum of speech. 

In LPC analysis of order p, the current speech sample s(n) 
is predicted by a linear combination of p past samples, s(n) : 

s(n) = -X£ = 1 a p (k)-s(n-k) (5.1) 

73 



Optimized Implementation of Speech Processing Algorithms 

where â(n) is the predictor signal and {ap(l),...,ap(p)} are the 
LPC coefficients. The calculation of these coefficients is given in 
section 5.2. The value s(n) is subtracted from s(n), giving the 
residual signal e(n), with reduced variance: 

e(n) = s(n) - §(n) = s(n) + X L i a p ( k ) " s ( n " k ) (5-2) 

Taking the z transform of Equation (5.2) gives: 

EXz) = Ap(z)-S(z) (5.3) 

where S(z) and E(z) are the transforms of the speech signal and 
the residual signal respectively, and Ap(z) is the LPC analysis 
filter of order p: 

Ap(z) = l + X£=1ap(k)-z-k (5.4) 

This filter is used to remove the short term correlation of the 
input speech signal, giving an output E(z) with approximately 
flat spectrum. The short-term power spectral envelope of the 
speech signal can therefore be modeled by the all-pole synthesis 
filter: 

Ap(z) l + £ ^ i a p ( k ) . z - k (5.5) 

Equation (5.3) is the basis for the LPC analysis model. 
Conversely, the LPC synthesis model (see § 2.4) consists of an 
excitation source E(z), providing input to the spectral shaping 
filter Hp(z), to yield the synthesized output speech S(z): 

S(z) = Hp(z)-E(z) (5.6) 

E(z) and Hp(z) are chosen following certain constraints, so that 
S(z) is as close as possible in some sense to the original speech. 

5.2. Calculation of the LPC Coefficients 

In the classical least-squares method, the LPC coefficients are 
determined by minimizing the mean energy of the residual 
signal, given by: 

74 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

ep = ¿e 2 (n ) = £[s(n) + X£=1ap(k) • s(n- k)]' 
(5.7) 

the summation range is limited by windowing either the speech 
or the residual signal, leading to the autocorrelation or 
covariance method, respectively. The autocorrelation method is 
computationally more efficient than the covariance method and 
the resulting synthesis filter is always stable. 

Autocorrelation Method and Durbin's Recursion 

As speech is non-stationary, a frame of N samples of the speech 
signal, {SI,...,SN} is windowed using Hamming or other tapered 
cosine windows. The length of the frame is usually 20 to 30 ms 
for speech sampled at 8 kHz. Minimization of ep with respect to 
the LPC coefficients leads to the Yule-Walker equations: 

RP ap = - r p (5.8) 

where: 

R, 

i"o r i 

*0 

r2 

Tl 

1P-I r p-2 r p-3 

1 P-I 
rp-2 
rp-3 

,ap=[ap(l) - ap(p)f 

,Tp=Jr1 T2 ••• rp] 

(5.9) 

and rk is the &-th autocorrelation coefficient of the windowed 
speech signal: 

N-I 
rk = X w ( n ) ' s( n) " w ( n _ k) • s(n - k) 

n=k (5.10) 

here {w(n)} is the window function of N samples. The LPC 
coefficients are given by: 

-R; (5.11) 

The autocorrelation matrix Rp has a Toepliz structure, 
leading to the solution of Equation (5.11) through the very 

75 



Optimized Implementation of Speech Processing Algorithms 

efficient Levinson-Durbin recursion, which is described as 
follows: 

eo = ro 
for 1< m< p : 

am(0) = 1 
m-l 

- r m - Iam-lÖ)Jnh 

am(m) = km = ±= & 
em-l 

am(J) = am-l(J)+km-am-l(m-J) f o r l^j<m-l 

em = En^i(I- ^L) (5.12) 

The values {km} are known as the Parcor (partial 
correlation) or reflection coefficients. In the case of an order 
p = 10, the computational cost of the Levinson-Durbin recursion 
is 110 multiplications, 100 additions, and 10 divisions. 

An order of p = 10 is typically used for narrowband or 
telephone bandwidth (300-3400 Hz) speech sampled at 8 kHz. 
Hereafter, an order of p = 10 is assumed. 

The position of the zeros of the 10-th order LPC analysis 
filter for a 30 ms segment of the vowel /ae/ is shown in 
Figure 5.1 (on page 84). These zeros correspond to the poles of 
the LPC synthesis filter, whose power spectrum is shown in 
Figure 5.3. The formants are the resonances or sharp peaks in 
the power spectrum, and are due to poles close to the unit 
circle. The bandwidth of the formants is narrower as the poles 
are closer to the unit circle. The LPC coefficients are an 
attractive description of the spectral envelope since they 
describe the perceptually important spectral peaks more 
accurately than the spectral valleys [Kond94]. 

5.3. Bandwidth Expansion 

LPC analysis does not estimate accurately the spectral 
envelope for high pitch voiced speech due to the harmonic 
spacing, which is too large to provide adequate sampling of the 
spectral envelope [Pali95a]. Such inaccuracy occurs mainly in 

76 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

formant bandwidths, which are underestimated by a large 
amount, resulting in metallic sounding synthesized speech. 

One method to overcome this problem is bandwidth 
expansion, in which each LPC coefficient ap(k) is multiplied by 
a factor y* (y < 1), moving the poles of Hp(z) inward by a factor of 
y and expanding the bandwidths of all the poles by the same 
amount AB, given by: 

A B = - T l n ( y ) (5.13) 

where F8 is the sampling frequency. The resulting bandwidth 
expanded LPC synthesis filter is given by: 

Hp(Z): 
A P ( Z ) l + X L i [ a p ( k ) r k K k (5.14) 

As bandwidth expansion decreases spectral sensitivity 
around the spectral peaks, it is also beneficial for quantization 
of LPC coefficients (see § 5.4). 

Bandwidth expansion is commonly used in speech coders, 
with typical values of y between 0.996 and 0.988, at a sampling 
frequency of 8 kHz, corresponding to 10 to 30 Hz of expansion. 

5.4. Quantization of the LPC Coefficients 

In low-bit rate speech coding, the LPC coefficients are widely 
used to encode spectral envelope. In forward LPC-based coders, 
the LPC coefficients are calculated from the original speech 
input, quantized and transmitted frame-wise. The transmission 
of these coefficients has a major contribution to the overall bit 
rate. Thus, it is important to quantize the LPC coefficients 
using as few bits as possible without introducing excessive 
spectral distortion and with reasonable complexity. A very 
important requirement is that the all-pole synthesis filter Hp(z) 
remains stable after quantization. 

77 



Optimized Implementation of Speech Processing Algorithms 

Objective Measure of LPC Quantization Performance 

The root-mean-square spectral distortion, which is commonly 
used for evaluating the performance of LPC quantization 
[Pali95a], is defined, for a frame n, as follows: 

SDn = — - Í 10 log 
^n2-Oi)1J1L 

10 
Sn(Q) 

Sqn(Q) 
dQ (dB) 

(5.15) 

where Q is the frequency in Hz, and the frequency range is 
given by Qi and Q2. A frequency range of 125-3400 Hz is used 
in [Rama95], for speech sampled at 8 kHz, while a range of 
0-3000 Hz is used in [Pali95a] and [Atal89]. A most common 
practice is to use the full band, 0-4000 Hz. This is the frequency 
range that will be used throughout this report. 

In Equation (5.15), Sn(Q) and Sqn(Q ) are the original and 
quantized spectrum of the LPC synthesis filter, associated with 
the n-th frame of speech: 

Sn(Q) = 
.2nd 

An(z = e J F " ) 

2 ' Sqn(Q) = 
.2itfi 

A„(z = e F8 ) 
(5.16) 

here An(z) and An(z) are the original and quantized LPC 
analysis filters. The subindex n refers to the n-th. frame, and 
not to the order of the LPC filter. In practice the spectra Sn(Q) 
and Sqn(Q) are evaluated using fast Fourier transform (FFT). 
Alternatively, an efficient method for estimating the root-mean-
square spectral distortion is the cepstral measure [Gray76]. 

The spectral distortion is evaluated for all the Nf frames in 
the test data. Its average value SD represents the distortion 
associated with a particular quantizer: 

SD = 
N 

1 N f 
1 I S D n 
f n=l (5.17) 

Transparent quantization of LPC information means that 
the LPC quantization does not introduce any audible distortion 
in the coded speech. The spectral distortion measure is known 

78 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

to have a good correspondence with subjective measures and 
the following conditions are considered sufficient (but not 
necessary) to achieve transparent quantization [Pali95a]: 

• An average spectral distortion of less than about 1 dB. 

• No outlier frames with spectral distortion larger than 4 dB. 

• Less than 2% of outlier frames with spectral distortion in 
the range of 2-4 dB. 

Alternative Representations of LPC Coefficients 

The LPC coefficients are not suitable for quantization because 
of their high spectral sensitivity. Small quantization errors in 
the individual LPC coefficients produce relatively large spectral 
errors, and can also result in instability of the quantized all-
pole synthesis filter. To avoid unacceptable distortion, a large 
amount of bits (80-100 bits/frame) is needed for scalar 
quantization of the LPC coefficients. It is therefore necessary to 
transform the LPC coefficients into a set of equivalent 
parameters which have less spectral sensitivity and ensure 
stability of the all-pole filter after quantization. Suitable 
representations are the reflection coefficients (RC), the log-area 
ratio (LAR), the inverse sine (IS), and the line spectrum pairs 
(LSP). 

The reflection coefficients {km} (see § 5.2) are spectrally less 
sensitive to quantization than the LPC coefficients. They are 
bounded in magnitude by unity, and the stability of the all pole 
filter is easily ensured by keeping this bound on the quantized 
reflection coefficient. These coefficients are also very important 
in the physical realization of the all-pole synthesis filter, as 
they are the multipliers of a lattice filter realization, which is 
suitable for fixed-point implementation. The forward and 
backward transformations are given below: 

79 



Optimized Implementation of Speech Processing Algorithms 

LPC to RC transformation: 

form = p, p— 1,...,1: 

km =am(m) 
/~ a m ( j ) - k m . a m ( m - j ) 

a m - i O ) = — T g 

RC to LPC transformation: 

for m = L..., p : 

for 1 < j < m - 1 
(5.18) 

am(m) = km 

aJn(J) = aiii-iCl")+km.aI . ! (m-j ) for l < j < m - l (5.19) 

About 50 bits/frame are required for transparent 
quantization using uniform scalar quantization of the reflection 
coefficients, and 36 bits/frame using non-uniform scalar 
quantization [Pali95a]. 

Although the reflection coefficients are more suitable for 
quantization than the LPC coefficients, they have a non-flat 
spectral sensitivity, with absolute values near unity requiring 
more accuracy than values away from unity. This problem can 
be overcome expanding the regions near |km| = 1 by means of 
non-linear transformations, such as the log-area ratio (LAR) 
and the inverse sine (IS). The forward and backward 
transformations are given below: 

RC to LAR transformation: 

gr - * £ • my 

LAR to RC transformation: 

_ 106°1 - 1 
m " 10e111 + 1 

RC to IS transformation: 

sm =s in - 1 (k m ) 

IS to RC transformation: 

km =s i n ( s m ) 

for m = L..., p 

for m = L..., p 

for m - L..., p 

for m = !,...,p 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

80 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Non-uniform scalar quantization using the IS and LAR 
representation requires 34 bits/frame for transparent 
quantization [Pali95a]. The major drawback of these 
representations is that the frame to frame correlation of LPC 
parameters is not highlighted [Kond94]. 

A widely used representation of LPC coefficients is line 
spectrum pair (LSP) parameters. For scalar quantization, it 
performs only slightly better than LAR, but this representation 
has several properties which are desirable for quantization as 
will be explained in Section 5.7. Although this representation is 
also referred to as line spectrum frequencies (LSF), the term 
LSP is adopted hereafter. 

5.5. Interpolation of the LPC Coefficients 

In speech coding systems, LPC analysis is generally carried out 
on a frame-by-frame basis with a new set of parameters 
computed, quantized and transmitted at frame intervals of 20 
to 30 ms. This slow update of frames can lead to large changes 
in LPC parameters in adjacent frames, which may introduce 
undesired transients or clicks in the reconstructed signal. To 
overcome this problem, interpolation of LPC parameters is used 
at the receiver to get smooth variations in their values. 
Usually, interpolation is done linearly, at equally spaced time 
instants called sub-frames. Four sub-frames are generally used. 

The interpolation is not done directly on the LPC 
coefficients since the interpolated all-pole synthesis filter can 
become unstable [Atal89]. In fact, stability issues in the 
interpolation are very similar to those encountered in 
quantization (see § 5.4). Interpolation on the reflection 
coefficients, log area ratios, inverse sine coefficients and LSP 
parameters always produce stable filters. Thus, it is natural to 
use for interpolation the same LPC representation that was 
used for quantization. In [Pali95b] it is shown that LSP 
representation has the best interpolation performance. 

81 



Optimized Implementation of Speech Processing Algorithms 

5.6. Line Spectrum Pairs 

The LSP representation of LPC coefficients was first introduced 
by Itakura in [Itak75]. This representation is widely used in the 
domain of speech coding due to its desirable quantization 
properties, such as bounded range, intra-frame and inter-frame 
correlation, and simple check of filter stability [Kond94]. 
Additionally, LSP representation allows frame to frame 
interpolation with smooth spectral changes (see § 5.5). 

Use of LSP Representation in Speech Coding 

LSP representation of 10-th order LPC coefficients is used in 
nearly all narrowband speech coder standards, with bit rates of 
less than 16 kbps, such as: 

• The ITU-T G.729 CS-ACELP coder, at 8 kbps [Kata95]. 

• The ITU-T G.723.1, dual rate speech coder for multimedia, 
at 5.3 /6.3 kbps [ITUT96]. 

• The GSM 6.60, enhanced full rate coder, at 13 kbps 
[Järv97]. 

• The TIA IS-96, North-American standard for CDMA 
cellular telephony, variable rate QCELP [Gard93]. 

• The TIA IS-641, enhanced full rate coder for North-
American TDMA cellular telephony, at 7.4 kbps [Honk97]. 

• The Japanese half-rate personal digital cellular standard 
[Ohya94]. 

• The US DoD Federal Standard for secure telephony, 
FS1016 CELP coder at 4.8 kbps[Fede91]. 

• The new US Federal Standard for secure telephony, MELP 
coder, at 2.4 kbps [Supp97]. 

Older standard coders, such as the GSM 6.10 [ETSI92] and 
the IS-54 [Gers91], use reflection coefficients and LAR to 
quantize spectral information. These coders will be replaced by 
newer standards which use LSP representation, respectively 
the GSM 6.60 and the IS-641. In these new standards, LSP 

82 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

representation allows more efficient quantization of the 
spectral information, with less bits and better speech quality. 
The bit rate saving is Used to improve speech duality, through a 
better representation of other coder parameters and allocation 
of more bits to error protection. 

All the CELP speech coders found in recent publications 
[CELP97] use LSP representation of 10-th order LPC. The fixed 
rate coders have a bit rate ranging from 4 to 12.2 kbps and the 
variable rate coders have an average bit-rate ranging from 3 to 
7 kbps. Also, LSP representation of 10-th order LPC is used in 
some emerging very low bit rate coders, at bit rates of about 2.4 
kbps (fixed) and 1.2 kbps (variable) [LOWB97]. 

Definition of LSP Parameters 

The starting point for deriving the LSP parameters is the LPC 
analysis filter of order p, Ap(z), given in Equation (5.4). 

A symmetrical polynomial PP(z) and an antisymmetrical 
polynomial QP(z) are formed by adding and subtracting to Ap(z) 
its time reversed system function Z-<P+1'AP(Z-1). If p is even, PP(z) 
and QP(z) have a zero at z = -1 and z = +1, respectively: 

Pp(z) = Ap(z) + Z - ^ A p ( Z - 1 ) = (1+ Z^)-Pp (z) 

Qp (z) = Ap (z) - z"(p+1) Ap (z-1) = (1 - z-1) • Qp (z) (5.24) 

The polynomials P'P(z) and Q'P(
Z) are symmetrical, and have 

the following properties, which are proved in [Soon84]: 

• If the roots of Ap(z) are inside the unit circle, then the roots 
of P'P(z) and Q'p(z) lie on the unit circle and are interlaced, 
starting with a root of P'p(z). 

• Conversely, if the roots of P'P(z) and Q'P(z) lie on the unit 
circle and are interlaced starting with a root of P'P(z), the 
roots of Ap(z) are inside the unit circle. 

The first property is referred to as the analysis theorem or 
ordering property. The second property is called the synthesis 
theorem, and is used to ensure stability of the LPC synthesis 
filter Hp(z) upon quantization. 

83 



Optimized Implementation of Speech Processing Algorithms 

1 

0.5 

0 

0.5 

-1 

.•' + 

' • . + 

• ' ' + 

•. + 

+ +. 

+ +' 

-1 -0.5 0.5 1 

Figure 5.1: Position of the zeros of the 10-th order LPC analysis filter, 
Aio(z), for a 30 ms segment of the vowel /se/. 

Given that the roots of P'P(z) and Q'P(z) lie on the unit circle, 
the polynomials P'P(z) and Q'P(

Z) can be completely specified by 
the angular positions of their roots. Furthermore, since P'P(z) 
and Q'P(z) have real coefficients, their roots occur in complex 
conjugate pairs. Hence, only the angular positions of the roots 
located on the upper semicircle of the z-plane are necessary to 
completely specify P'P(z) and Q'P(z): 

The LSPs are defined as the angular positions of the 
roots of P1P(Z) and Q'P(z) located on the upper semicircle 
of the z-plane. 

Hereafter, the LSPs are denoted as {an), in the angular 
frequency domain, and their ordering property is expressed as: 

0<co1 <co2 <...<0)_ <7t (5.25) 

The odd-suffixed LSPs correspond to roots of P'P(z) while the 
even-suffixed LSPs correspond to roots of Q'P(z). Other 
notations that will be used are {ft}, in the normalized frequency 
domain, in which f¡ = COÍ/(2JI), and {x¡}, in the "x-domain", in 
which Xi = cos(o)i). 

For a segment of the vowel /ae/, the location of the zeros of 
Aio(z) is shown in Figure 5.1, and the location of the zeros of the 
polynomials P'io(z) and Q'io(z) is shown in Figure 5.2. The LPC 
power spectrum and position of the associated LSP parameters 
are shown in Figure 5.3. 

84 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

1 

0.5 

0 

-0.5 

- I r 

. . O + " 

Q 

Ot-. 
O. 

4-

é 
+ 

O 
Ot-' 

-1 -0.5 0.5 1 

Figure 5.2: Position of the zeros of P'io(z) and Q'io(z), for a 30 ms segment 
of the vowel /ae/. The zeros of P'io(z) and Q'io(z) are denoted 
by '+' and 'o', respectively. 

500 1000 1500 2000 2500 3000 3500 4000 
Frequency (Hz) 

Figure 5.3: LPC power spectrum and position of the corresponding LSP 
parameters, for a 30 ms segment of the vowel /se/. Odd-
suffixed LSPs, corresponding to zeros of P'io(z), are plotted 
with a continuous line, while even-suffixed LSPs, 
corresponding to zeros of Q'io(z), are plotted with a dashed 
line. 

85 



Optimized Implementation of Speech Processing Algorithms 

5.7. Characterist ics of the LSP Parameters 

Some good quantization properties of LSP representation such 
as bounded range and simple check of filter stability were 
already mentioned in Section 5.6. Other advantageous 
properties of LSP parameters are their intra-frame and inter-
frame correlation, their localized spectral sensitivity, their close 
relationship with the perceptually important peaks of the 
speech spectral envelope, and the fact that LSP parameters 
constitute a "frequency-domain" representation. 

Frequency Domain Representation 

LSP representation is a frequency-domain representation of the 
speech spectral envelope, as opposite to RC, LAR, and IS, which 
are temporal parameters [Kond94]. Thus, LSP-based 
quantization schemes can easily incorporate spectral features 
known to be important for human perception. An example is 
given in [Pali93], where lower frequency LSPs are quantized 
more accurately than higher frequency LSPs, as human hear 
resolve better the differences at lower frequencies. 

Intra- and Inter-frame Correlation 

A very important property of LSP parameters is their natural 
ordering, which is given in Equation (5.25) and can be observed 
in Figure 5.4. This ordering property is not only used to 
warrant stability of the LPC synthesis filter upon quantization, 
but also to speed up the calculation of LSP parameters 
(see § 5.9). The ordering property also indicates that the LSPs 
within a frame are correlated. This high correlation between 
neighboring LSPs is shown in [Kond94] and is called 
intra-frame correlation. 

Due to the slow changes in the configuration of the vocal 
tract, there exists also a strong correlation between LSPs of 
adjacent frames, which is called inter-frame correlation. 

Both intra- and inter-frame correlation can be successfully 
exploited for efficient quantization of LSP parameters. 

86 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Figure 5.4: LSP trajectories for the sentence "She had your dark suit in 
greasy wash water all year" output by a male speaker. 

Localized Spectral Sensitivity 

The spectral sensitivity of each LSP is localized [Pali93], that 
is, a perturbation in a given LSP produces a change in the LPC 
power spectrum only in the neighborhood of this LSP 
frequency. Thus, each LSP can be individually quantized 
without the leakage of quantization distortion from one spectral 
region to the other. Note that the other LPC representations 
such as RC, LAR and IS, do not have this advantage as their 
spectral sensitivities are not localized. 

Close Relationship with Formants of the Spectral Envelope 

In [Soon93], it is shown that LSP frequencies display a cluster 
pattern around the peaks of the spectral envelope. This can also 
be observed in Figure 5.3. A cluster of (2 to 3) LSPs 
characterizes a formant frequency and the bandwidth of the 
given formant depends on the closeness of these LSPs. 

As formants are very important for human ear perception, 
this property can be effectively used in LSP quantization. This 
is done through the use of an appropriate weighted LSP 
distance measure, which ensures a better quantization of the 
LSPs in the formant regions [Pali93]. This property also 

87 



Optimized Implementation of Speech Processing Algorithms 

provides a strong justification to the use of LSP differences in 
quantization schemes [Soon93]. 

5.8. Quantization of the LSP Parameters 

LSP is the most widely used representation for quantization of 
spectral information as it can be seen in [SPEC96], [SPEC95a] 
and [SPEC95b]. In this section, a brief overview of LSP-based 
spectral quantization techniques is given. The discussion is 
restricted to narrowband speech sampled at 8 kHz, 10-th order 
LPC analysis and frame length of 20-30 ms, as these are the 
conditions that characterize nearly all the systems used in 
recently proposed spectral quantization methods. The methods 
are evaluated in terms of spectral distortion measure and 
number of bits needed to achieve transparent quantization 
(see § 5.4). As the results reported in the literature do not use 
the same speech database, the meaningfulness of the 
comparison among different methods is limited. An attempt to 
compare several methods using the same database is done in 
[Pali95a]. 

Scalar Quantization 

The localized spectral sensitivity property of the LSPs makes 
them ideal for scalar quantization. Each LSP is quantized 
separately, with a different quantizer. In practice, non uniform 
bit allocation and quantizers with non-uniform quantization 
levels are used, since they result in less quantization distortion 
than uniform quantizers. In [Pali95a], the quantizers are 
designed using the Lloyd algorithm, and transparent 
quantization is achieved with 34 bits/frame, using either LSP 
or LAR representation, but LSP-based quantization has a 
smaller percentage of outlier frames. 

Quantization of the differences between adjacent LSPs 
(DLSPs) instead of the LSPs themselves, is used to exploit 
intra-frame correlation. The DLSPs also exhibit less variability 
across speakers and recording conditions [Soon93]. Using 
DLSPs, 32 bits/frame are needed for transparent quantization 

88 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

[Pali95a]. A similar result is obtained with the method 
proposed in [Soon93], in which DLSPs are quantized with an 
optimum quantizer, designed taking into account both the 
statistical distribution and the spectral sensitivity of each 
DLSP. Although DLSP-based quantization allows a saving of 
2 bits/frame, it is more sensitive to channel errors than 
LSP-based quantization. Thus, in practice, most speech coder 
systems, such as the FS1016 CELP coder [Fede91], use LSPs 
instead of DLSPs. 

Vector Quantization 

Vector quantization can effectively exploit the intra-frame 
correlation of LSP parameters resulting in smaller quantization 
distortion than scalar quantization at the same bit rate 
[Gers92]. 

In [Pali95a] an informal estimate suggests that the bound 
for t ransparent quantization is about 20 bits. In this case, 
direct full codebook search (see § 2.9) would need a codebook 
containing more than one million codevectors (220), of 
dimension of 10. This would require a prohibitively large 
amount of training data, and the training process would need 
too much time. Furthermore, the storage and computational 
requirements for vector quantization would be prohibitively 
high. The storage requirement and computational complexity of 
direct VQ can be reduced, at the cost of reduced performance, 
using various forms of suboptimal VQ, such as split vector 
quantization [Pali93] and multistage vector quantization 
[Lebl93]. The complexity of the search can be reduced even 
further by using tree-structured [Pham90] or classified VQ 
[Gers92]. 

In [Pali95a] some of these suboptimal methods are 
implemented and tested using the same speech database. 
Slightly more than 26 bits/frame are needed to achieve 
transparent quantization using multistage VQ, while 26 
bits/frame are sufficient with split VQ. If a weighted LSP 
distance measure is used instead of euclidean measure, 25 
bits/frame are needed with multistage VQ, and 24 bits/frame 
with split VQ. This weighted LSP distance measure exploits the 

89 



Optimized Implementation of Speech Processing Algorithms 

close relationship between LSPs and formants of the spectral 
envelope giving more weight to LSPs corresponding to sharp 
formants than LSPs corresponding to broad formants, and the 
lowest weight to LSPs corresponding to spectral valleys 
[Soon93]. Transparent quantization at 23 bits/frame is achieved 
using linked split VQ as proposed in [Kim96], where the 
ordering property of the LSP parameters is used to improve the 
performance of split VQ. 

As it was already mentioned, VQ schemes exploit the intra-
frame correlation of LSP parameters. To further exploit the 
inter-frame correlation, predictive VQ can be used, with either 
moving average (MA) or autoregressive (AR) predictors. In 
[Skog97], 21 bits/frame are used to achieve transparent 
quantization, using either first order AR prediction, or third 
order MA prediction. Although AR prediction performs better 
than MA, the latter is more robust to channel error conditions. 

Transparent quantization can thus be achieved with 21 to 
26 bits/frame using VQ, and with at least 32 bits using scalar 
quantization. Nevertheless scalar quantization is sometimes 
preferred because is computationally less expensive, more 
robust against variations of speakers and environments, and 
can be protected more efficiently against channel errors 
[Rama95]. 

Spectral Quantization in the FS1016 CELP Coder 

In the FS1016 CELP coder the LSP coefficients are quantized 
using 34-bit scalar quantization, according to the bit pattern 
(3,4,4,4,4,3,3,3,3,3) and using the non-uniform quantization 
levels given in Figure 5.5. This spectral quantizer was tested in 
[Lebl93] using the TIMIT speech database [Garo90]. The 
average spectral distortion was 1.48 dB, with 11.4 % of outliers 
between 2-4 dB. Although the conditions to assure transparent 
quantization are not fulfilled, the quantizer performed better in 
subjective evaluation than a 24-bit VQ quantizer with 1.17 dB 
of average spectral distortion and 2.12 % of outliers between 
2-4 dB [Lebl93]. Good communications quality is obtained using 
this quantizer in the CELP FS1016 speech coder [Fede91]. 

90 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

LSP3 LSP4 
index 

O 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

value 
0.0525 

0.0575 
0.0625 
0.0675 
0.0731 
0.0800 

0.0881 
0.0969 
0.1062 
0.1188 
0.1312 

0.1438 
0.1562 
0.1688 
0.1812 
0.1938 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

value 
0.0775 

0.0825 
0.0900 
0.0994 
0.1100 
0.1212 

0.1350 
0.1462 
0.1588 
0.1713 
0.1838 

0.1962 

0.2088 
0.2212 
0.2338 
0.2462 

LSP7 LSP8 
index 
0 

T-I 

2 
3 
4 
5 
6 
7 

value 
0.2250 
0.2350 
0.2450 

0.2625 
0.2875 
0.3100 
0.3375 
0.3625 

index 
0 
1 
2 
3 
4 
5 
6 
7 

value 
0.2781 
0.3000 
0.3156 

0.3312 
0.3500 
0.3688 
0.3938 
0.4188 

LSP9 LSPlO 
index 
0 
1 
2 
3 
4 
5 
6 
7 

value 
0.3450 
0.3600 
0.3750 

0.3875 
0.4000 
0.4138 
0.4288 
0.4438 

index 
0 
1 
2 
3 
4 
5 
6 
7 

value 
0.3988 

0.4088 
0.4188 

0.4275 
0.4362 
0.4488 
0.4638 
0.4788 

Figure 5.5: Non-uniform quantization levels of the 34-bit scalar quantizer 
used in the CELP FS1016 speech coder. 

91 

LSPJ LSP2 
index 

0 
1 
2 
3 
4 
5 
6 
7 

value 
0.0125 

0.0213 
0.0281 
0.0312 
0.0350 
0.0425 

0.0525 
0.0625 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

value 
0.0262 

0.0294 
0.0331 
0.0369 
0.0406 
0.0450 

0.0500 
0.0550 
0.0600 
0.0650 
0.0700 

0.0762 

0.0838 
0.0925 
0.1013 
0.1100 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

value 
0.1250 

0.1312 
0.1412 
0.1512 
0.1606 
0.1688 

0.1788 
0.1888 
0.1988 
0.2088 
0.2188 
0.2312 
0.2438 
0.2562 
0.2688 
0.2812 

index 
0 
1 
2 
3 
4 
5 
6 
7 

value 
0.1838 
0.1962 
0.2112 

0.2288 
0.2500 
0.2750 
0.3000 
0.3250 



Optimized Implementation of Speech Processing Algorithms 

5.9. Determinat ion of the LSP Parameters 

In order to determine the LSP parameters, the roots of P'io(z) 
and Q'io(z), given in Equation (5.24), have to be found. The 
direct solution of the equations P'io(z) = 0 and Q'io(z) = 0, using 
a numerical method such as Newton-Raphson [Sait85] is 
computationally expensive, as it involves the solution of two 
10-th order polynomials using complex arithmetic. 

The methods proposed in [Kaba86], [Saou92] and [Chan91], 
are more suitable for efficient real-time implementation and 
are explained in this section. Also, other methods which are 
based on discrete Fourier or cosine transform, as well as an 
adaptive method are briefly explained at the end of this section. 

Kabal's Method 

In Kabal's method [Kaba86], the symmetry of the polynomials 
P'io(z) and Q'io(z) is used to group their terms: 

Pi0(z) = z-5 • [(z+5 + z-5) + Pi(Z+4 + Z"4)+...+p'B] 

Qi0(z) = z-5 -[(Z+5 +z - 5 ) + q'1(z+4 +z-V.- .+q'B] ( 5 2 6 ) 

where: 

Pi = a 1 0 ( l ) + a 1 0 ( 1 0 ) - l , q i = a 1 0 ( l ) - a 1 0 ( 1 0 ) + l 

P2 =a i 0 (2 ) + a 1 0 ( 9 ) - p i , q'2 = a 1 0 (2 ) -a 1 0 (9 ) + qi 

P3=a 1 0 (3 ) + a 1 0 (8 ) -ps ! , qá = a 1 0 ( 3 ) - a 1 0 ( 8 ) + q¿ 

P4=a 1 0 (4 ) + a 1 0 ( 7 ) - p á , q^ = a 1 0 ( 4 ) - a 1 0 ( 7 ) + q^ 

P5=aio(5) + a i o ( 6 ) - P ; , q£ = a 1 0 ( 5 ) - a 1 0 ( 6 ) + q4 (5.27) 

here aio(k) are the 10-th order LPC coefficients. Polynomial 
division, which only needs additions and subtractions, was done 
on the coefficients of Pio(z) and Qio(z), to remove the trivial 
zeros at z = ±1. Evaluating P'io(z) and Q'io(z) on the unit circle, 
z = ei10, and removing the linear phase term, e -5^ and the factor 
of 2, gives: 

92 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Pío (G>) = cos(5co) + p i cos(4co)+.. .+p4 cos(co) + — 
¿A 

Qi0(to) = cos(5(a) + qi cos(4œ)+...+q4 cos(co) + -½-

The Chebyshev polynomials of first kind are given by: 

Tn(x) = cos(nco) = 2XTn-1(X) - Tn_2(x) 

T0(x) = cos(0) = l 

T1(X) = cos(œ) = x 

T2 (x) = cos(2co) = 2x2 - 1 

T3 (x) = cos(3co) = 4x3 - 3x 

T4(x) = cos(4co) = 8x4 - 8x2 + 1 

T5 (x) = cos(5a>) = 16x5 - 2Ox3 + 5x (5.29) 

applying the mapping x = cos(œ) to Equation (5.28) and using 
the Chebyshev polynomials of first kind, two polynomials of 
5-th order, P'io(x) and Q'io(x), are obtained: 

Pi0(x) = 16x5 + 8pix4 + (4p2 - 20)x3 + (2p3 - 8pi)x2 + 
+(5 -3p ' 2+ p4)x + ( P i - P 3 +0.5 p5) 

Qi0(X) = 16x5 + 8qix4 + (4q'2 - 20)x3 + (2q3 - 8qi)x2 + 

+(5 - 3q2 + q4 )x + (qi - q3 + 0.5 q5 ) (5.30) 

The roots of P'io(x) and Q'io(x) are the LSPs in the 
"x-domain", {x¡}, with x¡ = COS(OJÍ). Equation (5.25) gives: 

+ l > x x >x 2 >...>x10 > - l (5.31) 

An example of the behavior of the functions P'io(x) and 
Q'io(x) is shown in Figure 5.6. As P'io(x) and Q'io(x) are 5-th 
order polynomials, their roots cannot be calculated in a closed 
form. In the numerical solution proposed in [Kaba86], zero 
crossings are searched starting at x = +1, with decrements of 
A = 0.02. Once an interval containing a zero crossing is found, 
the position of the root is refined, first by using four successive 
bisections, and then by doing linear interpolation. Giving the 
ordering property of the roots, the search is done alternatively 
on P'io(x) and Q'io(x), starting from the position of the last root 

93 



Optimized Implementation of Speech Processing Algorithms 

0 P'10(x)andQ'10(x) Q'I0(x) 

x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 

Figure 5.6: Behavior of the functions P'io(x) and Q'io(x) (xi to xio are the 
LSPs in the "x-domain", in which x = cos(ú))). 

tha t was found. For a 10-th order LPC system, a maximum of 
150 polynomial evaluations is needed [Kaba86]. 

The grid separation of A = 0.02, and the number of 
bisections of 4, are chosen to avoid missing zero crossings in the 
search. These values are based on the minimum difference 
between roots found on 10 s of speech, sampled at 8 kHz 
[Kaba86]. 

An efficient recursive evaluation of P'io(x) and Q'io(x) for a 
given value of x, which uses the coefficients {q'i} and {p'i} 
defined in Equation (5.27), is also proposed in [Kaba86]: 

b7(x) = 0, b6(x) = 0, b5(x) = l 

b4(x) = 2x + p i 

b3(x) = 2xb4(x) - b5(x) + p'2 

b2(x) = 2 x b 3 ( x ) - b 4 ( x ) + p 3 

b1(x) = 2xb 2 (x ) -b 3 (x ) + p 4 

Pi0(x) = Xb1(X) - b 2 ( x ) + 0.5 -pa (5.32) 

The evaluation for Q'io(x) is similar, using the coefficients 
{q'i) instead of {p'i}. Then, the expansion on powers of x given in 
Equation (5.30) is not necessary. The computational cost of this 
recursive evaluation is 4 multiplications and 9 additions. 

94 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Saoudi's Method 

In Saoudi's method [Saou92], two new real functions are 
derived from the symmetrical and the antisymmetrical 
polynomials, Pio(z) and Qio(z), given in Equation (5.24). These 
functions are shown to obey a three-term recurrence relation, 
which leads to the following tridiagonal matrices: 

MK 

2 0 ^ + Ct2 

Ct2Ct3 

O 

O 

O 

C t 2 - 2 
* * * 

Ct2Ct3 Ct3 

O 

O 

O 

-2 

a 3 

1 

- C t 4 

* * 
Ct4Ct5 

O 

O 

1 O 

+ Ct4 - 2 1 

Ct4Ct5 Ct5 + Ct6 - 2 

O Ct6Ct7 Ct7 

O O 

O O 

- 2 1 O 

Ctg - C t g - 2 1 

Ct6Ct7 C t 7 - O C 8 

O Ct8Ct9 

O 

O 

1 

+ C t 8 -

OC8Ct9 

-2 
* 

Ct9 

O 

O 

O 

2 1 

Ct9 + Ct 1 0 

O 

O 

O 

1 

-ctîo-2 

- 2 

M 

(5.33) 

the values ctm* and ctm are obtained by using the antisymmetric 
split Levinson recursion, which is described as follows: 

P*(z) = 0, P1^z)=I-Z-1 , P ^ 0 

A-O = 1> " 1 O = r0 

for l < m < 1 0 : 
t 

X ( l i - r m - i ) P m , i 
i=0 
t - 1 

X (lì -rm-i)Pm,i + r tPm, t 
U=O 

X = • 

= 1 for m > 1 

for m = 2t + 1 

for m = 2t 

ct„ C = 2 - ct„ 
X m-1 ^ m - I 

P;+ 1(z) = ( I + Z - 1 ^ ( Z ) - U^z - 1 Pl 1 (Z ) 

a m
= ? l m ( 2 - d ) 

(5.34) 

95 



Optimized Implementation of Speech Processing Algorithms 

here rk is the A-th autocorrelation coefficient given in Equation 
(5.10). As the polynomials Pm*(z) are antisymmetrical, only half 
of their coefficients are calculated. For an order of 10, the 
computational cost of the antisymmetric split Levinson 
recursion is 58 multiplications, 122 additions, and 20 divisions. 
This recursion is used instead of the Levinson-Durbin recursion 
of Equation (5.12). 

The eigenvalues of Ms and Me* correspond, respectively, to 
the odd- and even-suffixed LSPs in the "x-domain", except for a 
gain factor of 2, thus, they will be denoted as {fa}, with 
Ad = 2cos(cft), and the ordering property expressed as: 

+2> A1 > A2 >...> A10 > - 2 (5.35) 

Different methods to compute the eigenvalues of the 
tridiagonal matrices are compared in [Saou92], and the 
bisection method is chosen, with a number of 8 bisections, as 
the one with minimum complexity for the application. This 
method is briefly explained in the next paragraphs. 

The eigenvalues of M6 and M5* are the roots of their 
characteristic polynomials, which are given by: 

L5(x) = |M5 - x l 5 | = 0 ( 5 3 6 ) 

L*5(X) = | M ; - X I 5 | = 0 

where I5 is the identity matrix of 5 elements. Due to the 
tridiagonal form of M5 and Me*, their characteristic polynomials 
obey the following recursions [Acto90]: 

L0(X) = I 

L1(X) = Cd(O)-X) 

L2(x) = (d(l) - X)L1(X) - e(l) • L0(x) 

L3(X) = (d(2) - X)L2(X) - e(2) • L1(X) 

L4(x) = (d(3) - X)L3(X) - e(3) • L2(x) 

L5(X) = (d(4) - X)L4(X) - e(4) • L3(x) (5.37) 

96 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

L * 0 ( x ) = l 

IZ1(X) = (el* (0)-x) 

L*2(x) = (d*(l) - x)L\(x) - e*(l) • L*0(x) 

L*3 (x) = (d* (2) - x)L*2 (x) - e* (2) • L^x) 

L*4(x) = (d*(3) - x)L*3(x) - e*(3) • L*2(x) 

L*5 (x) = (d* (4) - x)L*4 (X) - e* (4) • L*3 (x) (5.38) 

where d(k) and d*(k) are respectively the diagonal elements of 
M5 and M5*, and e(k) and e*(k) are the elements below the 
diagonal. The sequence of polynomials Ln(x) is a Sturmanian 
sequence [Acto90], thus, for a given value of x = y, the number 
of sign changes in the numerical sequence {LO(Y),...,L5(Y)} gives 
the number of roots of Ls(x) which are smaller than y. This 
property holds also for Ls*(x), and is used, together with the 
ordering property of Equation (5.35), to search each LSP 
independently. If an odd LSP is searched, the evaluation given 
in Equation (5.37) is used, while the evaluation given in 
Equation (5.38) is used for even LSPs. 

Each LSP is iteratively approximated from below. The 
approximation value is initialized at -2 , which is smaller than 
the searched LSP. The addition value is initialized at 4, and is 
halved at every step and added to the current approximation 
value to obtain the trial value. The trial value is used with 
either Equation (5.37) or (5.38). The number of sign changes in 
the obtained sequence corresponds to the number of roots 
between the trial value and -2. Thus, it is possible to know if 
the trial value is smaller than the searched LSP, in which case 
the trial value is accepted, and becomes the current 
approximation value for the next iteration. 

In order to search the 10 LSP parameters, 80 of the 
evaluations given either in Equation (5.37) or (5.38) are needed. 
The computational cost of each evaluation is 9 additions and 8 
multiplications. 

97 



Optimized Implementation of Speech Processing Algorithms 

Chan's Method 

In Chan's method [Chan91], the LSP parameters {co¡} are 
computed directly from the reflection coefficients {km}. Thus, 
there is no need to calculate the LPC coefficients. The 
advantage of using reflection coefficients is that they are 
bounded in magnitude by 1 and thus can be computed entirely 
on fixed-point arithmetic, using the LeRoux-Gueguen algorithm 
[Lero77], which is given in Appendix B. 

Chan's method is based on the use of the auxiliary function: 

m+l 

Vm(z) = z^~-A m (z) (5.39) 

evaluating this function on the unit circle, z = ei", gives: 

Vl0(eJ ra) = e 2 A10(ejto) = Re[¥lo(ejto)] + j-Im[v|/10(e
j00)] 

(5.40) 

the symmetrical and antisymmetrical polynomials, PP(z) and 
Qp(z), given in Equation (5.24) can be expressed as: 

. i l 
• i -a • ~ 1 Cl) r i 

P10 (e
JW ) = A10 (e

jra ) + e"J n <" A 1 0 (e-
J(fl ) = e 2 2 Refi)/10 ( e J0> )] 

Q10(e
jt0) = A ^ e ^ - e - ^ A ^ e - * ) = e'2^ • 2jIm[¥ 10(ejtû)] 

(5.41) 
Thus, the zero crossings of Re[\|/io(eJ°')] and Imfyioiei")] 
correspond to the odd- and even-suffixed LSPs, respectively. 

From Equation (5.19) it is seen that the polynomial Am(z) 
obeys to the following recursion: 

A1n(Z) = An^1(Z) + Ic1nZ-111A1^1(Z-1), l < m < p (5.42) 

Using Equation (5.39) and (5.42) the following recursive 
evaluation is obtained: 

98 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Y0(CO) = r I 
(V 

Ym (co) = r ( j ) . K m . Yn^1(Co) 

where Km is given in Equation (5.46) and: 

(5.43) 

Ym(co) = 
Re{\|/m(co)}" 

Im{v(/m(co)} €> 
co 

c o s i - co 
- s i n i -

sin — cos — 

. UJ UJ. 
(5.44) 

this recursion can be rearranged to decrease the computational 
complexity, obtaining the following formula: 

Y10(CO) = R10(Co)-K9 ... R4(Co)-K3 R2(CO).K1 r Q 

where: 

Rm(co) = 
cos(co) + k m - sin(co) 

sin(co) cos(co) - kE 
K. 

1 + k 
m " 

o l-K 

(5.45) 

(5.46) 

thus, 30 multiplications and 20 additions are needed per 
evaluation, as well as 10 additions per frame to prepare the 
scaling matrices Km. 

The functions Ret\|/io(eJ™)] and Imtvi/ioieO] are searched 
alternatively for zero-crossings, starting with Re[\|fio(ei")]. The 
evaluation of \|/io(co) is done using Equation (5.45). The search is 
done on the range (0,rc), using a grid of 128 points, 
corresponding to a resolution of 0.0078n. If more accuracy is 
needed, a bisection technique can be used. 

The total cost to search a set of LSPs, without using 
bisection, is 3840 multiplications and 2570 additions. This is 
computationally too expensive, and this algorithm was only 
retained for its possible advantages for a fixed-point 
implementation. Additionally, this algorithm requires the 
storage (or evaluation) of trigonometric functions. 

99 



Optimized Implementation of Speech Processing Algorithms 

Spectral Transform Methods 

There exists several methods based on spectral transforms, 
either discrete cosine transform (DCT) or discrete Fourier 
transform (DFT), or their fast versions, fast Fourier transform 
(FFT) or fast DCT. One of these methods, which is proposed by 
Kang and Fransen [Kaba86] uses the all-pass ratio filter: 

z-^^Apiz-1) 
RD(z) = 

Ap (z) (5.47) 
the phase spectrum of this filter is evaluated, and the LSPs 
correspond to the frequencies where the phase value is a 
multiple of it. 

In [Soon84], P'io(co) and Q'io(co), given in Equation (5.28) are 
evaluated on a fine grid by using DCT. Sign changes at 
adjacent grid points isolate the intervals which contain a root, 
and further bisection of these intervals approximates the root 
positions. 

In [Kond94], a DFT is done on the coefficients of P'io(z) and 
Q'io(z), given in Equation (5.24). The LSPs are the frequency 
location of the partial minima of the power spectrum. As the 
coefficients are real and symmetrical, the number of 
computation is reduced to 6 multiply-adds (MAC) per spectrum 
point. The suggested DFT size is 1024 points. Similarly, in 
[Kang87] a single complex fast Fourier transform is used to 
compute both spectrums of Pio(z) and Qio(z) at once, with a 
transform size of 512, giving a frequency resolution of 
15.625 Hz. To improve this frequency resolution, a three-point 
parabolic approximation is suggested. A zero crossing search 
using DFT with 64 to 128 points, together with linear 
interpolation is proposed in [Furu89]. 

All these proposed spectral transform methods are 
computationally too expensive, when compared to the methods 
of Kabal and Saoudi. Besides, they require calculation or 
storage of trigonometric functions. Thus, they are not further 
considered in the work described in this report. 

100 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Adaptive Methods 

All the LSP calculation methods previously described require 
calculation of the LPC coefficients, or some equivalent 
parameters such as the reflection coefficients or the values ccm* 
and OCm, given in Equation (5.34). 

A least-mean-square adaptive method to calculate the LSP 
parameters directly from the speech samples is proposed in 
[Chee87]. The initial estimation uses evenly distributed LSP 
values and a new set of LSP parameters is estimated for each 
input speech sample. 

This method is very attractive because of its low 
complexity, but as it is a "learning type" algorithm, outlier 
samples can result in adaptation errors [Kond94]. If this error 
occurs at the end of the frame, there is no time for correction, 
before the LSP set is used. Furthermore, the experience done in 
[Chee87] is limited to an order of p = 4, and uses synthetic 
speech. With an order of p = 10, and using real speech as input, 
the convergence behavior of the algorithm excludes its use on 
speech coders such as the CELP FS1016 [Fede91], therefore, 
this method is not considered hereafter. 

5.10. LSP to LPC Transformation 

The conversion of LSP parameters to LPC coefficients is less 
computationally expensive than the LPC to LSP conversion. 
The LPC analysis filter can be expressed as: 

P10Cz) + Q10 (z) 
Aw W - ¿ ( 5 4 8 ) 

where Pio(z) and Qio(z) are the symmetrical and 
antisymmetrical polynomials given in Equation (5.24). These 
polynomials are obtained from the LSP parameters {co¡} using 
the following relations: 

101 



Optimized Implementation of Speech Processing Algorithms 

P10(Z) = ( I + Z-1) n i 1 - 2 COs(U); )• z " 1 + z" 2 ] 
1=1,3,5,7,9 

Q10(Z)=(I-Z-1) nf1-2008^)2"1+2"2] 
¡=2,4,6,8,10 (5.49) 

It is important to notice that, if the LSP parameters are 
expressed in the "x-domain", where x¡ = cos(to¡), as it is done in 
Kabal's and Saoudi's methods, the LSP to LPC conversion is 
eased, avoiding the calculation or storage of trigonometric 
functions. 

Direct Expansion Method 

The polynomials Pio(z) and Qio(z) are found by multiplying the 
product terms of Equation (5.49). Then the LPC coefficients are 
calculated by means of Equation (5.48). This calculation is 
given in Appendix C l and has a computational cost of 62 
multiplications and 92 additions. 

LPC Analysis Filter Method 

Equation (5.48) shows that the LPC analysis filter is the 
parallel combination of the filters Pio(z) and Qio(z). Similarly, 
these filters are each the cascade combination of five second-
order sections and one first-order section, corresponding to the 
factors of Equation (5.49). The resulting structure is shown 
Figure 5.7 and is used to obtain the LPC coefficients, as 
explained in Appendix C.2, at the cost of 30 multiplications and 
70 additions. 

102 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

-2cos(cog) 

(+M>a(n) 

0.5 

-2cos(oo2) -2cos(coio) 

Figure 5.7: Filter used to generate the LPC coefficients, in the LPC 
analysis filter method. The ((Oil are the LSP parameters. 

Kabal's Method 

In [Kaba86], an alternative reconstruction process using 
Chebyshev series representation is formulated. This leads to an 
efficient reconstruction process which takes the symmetry of 
the polynomials into account. This procedure is given in 
Appendix C.3. The computational cost is 20 multiplications and 
59 additions. This is the least expensive of the three algorithms 
for LSP to LPC conversion described in this section. Besides, 
Kabal's algorithm is highly regular and numerically stable 
[Kaba86], which is advantageous for efficient implementation. 

5.11. The CELP FS1016 Speech Coder 

Code-excited linear predictive (CELP) (see § 2.9) speech coding 
refers to a family of speech coding algorithms which combine 
LPC-based analysis-by-synthesis (AbS-LPC) and vector 
quantization (VQ) [Gers94]. 

In AbS-LPC systems, the LPC synthesis model is used 
(see § 5.1), in which an excitation signal, e(n), is input to the 
LPC synthesis filter, Hp(z), to yield the synthetic speech output 
s(n). The coefficients of the synthesis filter are determined 
from a frame of the speech signal, using an open-loop technique 

103 



Optimized Implementation of Speech Processing Algorithms 

such as the autocorrelation method (see § 5.2). Once the 
synthesis filter is determined, an appropriate excitation signal 
is found by a closed-loop search. The input of the synthesis 
filter is varied systematically, to find the excitation signal that 
produces the synthesized output that best matches the speech 
signal, from a perceptual point of view. 

Vector quantization (VQ) is combined with AbS-LPC in 
CELP coders [Gers94]. The optimum excitation signal is 
selected from a stochastic codebook of possible excitation 
signals (codevectors). Each codevector is passed through the 
synthesis filter, and the vector which produces the output that 
best matches the speech signal is selected. 

The U.S. Federal Standard 1016, is a CELP algorithm 
operating at 4.8 kbps, intended primary for secure voice 
transmission. The block diagram of this coder is shown in 
Figure 5.8. This coder uses an 8 kHz sampling rate and a 30 ms 
frame size, with four subframes of 7.5 ms each. 

Long-term correlation of the speech signal (pitch) is 
modeled using an adaptive codebook and the excitation signal 
is formed by the addition of two scaled codevectors, one selected 
from the stochastic codebook and one selected from the 
adaptive codebook. The search for the optimum codevectors and 
gains is done for every subframe. 

The encoder generates and transmits one set of LPC 
coefficients per frame, and four sets of codebook indices and 
gains per frame (one set per subframe). 

The spectral analysis block corresponds to the shadowed 
region in Figure 5.8. This block works on frames of 30 ms, while 
the rest of the encoder, containing the dictionary searches and 
gain selection, works on a subframe of 7.5 ms. The detailed 
diagram of the spectral analysis block is given in Figure 5.10 
and is explained next. 

104 



Line Spectrum Pairs and the CELP FSlOlG Speech Coder 

Spectral Analysis Block 
Stochastic Codebook 

1S 
512 

1 
LM>n 

128 

V9vs 

S \ 

/ / 
/ / 

'a / / 

Linear 
Prediction 
Analysis 

Interpolate 
by 4 

~m 

High-pass 
Filter -Input Speech 

LSP 

V /HL / - N I S / ^ N Perceptual 
^ V - P > \ + ) r Hp(Z)-^(V)* Weighting 

l_Adapj[ve_Cqdebook^ | 

Minimize 
Perceptual 

Error 

L 
T T 
-• I 

X 

Figure 5.8: Block diagram of the CELP FS1016 speech coder. 

Short-term Spectral Analysis in the CELP FS1016 Coder 

The short-term linear prediction analysis is performed once per 
frame by open-loop, 10-th order autocorrelation analysis 
(see § 5.2) using a 30 ms Hamming window, no pre-emphasis, 
and 15 Hz bandwidth expansion, with y = 0.994 (see § 5.3). The 
Hamming window is centered at the end of the last frame, as it 
is shown in Figure 5.9. 

Besides improving speech quality, the bandwidth expansion 
is also beneficial for LSP quantization and for fast LSP 
calculation (see § 6.3). 

The bandwidth expanded LPC coefficients are converted to 
a set of LSP parameters and quantized using the 34-bit, 
independent nonuniform scalar quantization tables given in 
Figure 5.5, as specified in [Fede91]. 

Two quantized sets of LSP parameters, corresponding to 
the window positions A and B in Figure 5.9, are used for 
interpolation with the weights given in Table 5.1, obtaining 
four sets of LSP parameters, one set for each subframe. Each of 
these LSP sets is converted to LPC coefficients, and used in the 
synthesis filter for the dictionary searches and gain selection. 

105 



Optimized Implementation of Speech Processing Algorithms 

window position window position 
A B 

subframes 1 2 3 4 

previous frame 

1 2 3 4 

current frame 

1 2 3 4 

next frame 

effective duration of LPC 
parameters in A 

effective duration of LPC 
parameters in B 

Figure 5.9: Position of the LPC analysis windows for a given frame in the 
CELP FS1016 speech coder. 

Subfrante 

1 

2 

3 
4 

LSP set A 

7/8 

5/8 

3/8 
1/8 

LSP set B 

1/8 

3/8 
5/8 

7/8 

Table 5.1: Interpolation weights used to obtain four sets of LSP 
parameters from the two quantized LSP sets corresponding 
to the LPC analysis window position A and B. 

106 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

Input Speech-
High-pass 

Filter 

Hamming 
Windowing 

I 
1 High-passed, Hamming Windowed Input 

Speech Frame of 30 ms = 4 Subframes of 7.5 ms 

Autocorrelation 

T 
ion 

C Levinson-
Durbin 

( Bandwidth Ï 
I Expansion I 

LPC to LSP 
Conversion 

LSP 
Quantization 

Interpolate 
by 4 

.1111 
4 LSP Sets 

LSP to LPC 
Conversion 

To Synthesis Filter 
4 LPC Sets 

Transmission of 
-*-10 LSP Indices Receiver 

Interpolate 
by 4 

UU 
4 LSP Sets 

LSP to LPC 
Conversion 

TTTT 
To Synthesis Filter 

4 LPC Sets 

Figure 5.10: Short-term spectral analysis in the CELP FS1016 speech 
coder. 

107 



Optimized Implementation of Speech Processing Algorithms 

5.12. Summary of the Chapter 

Spectral analysis and quantization for speech coding was 
introduced in this chapter. In particular, it was shown that LSP 
is the most used representation for spectral quantization and 
interpolation. The definition, properties, and characteristics of 
LSP were discussed, as well as different methods for 
quantization of LSP parameters. 

Particular emphasis was placed on the different existing 
methods for LSP calculation, and the computational complexity 
of these methods was discussed. The methods of Kabal, Saoudi 
and Chan are promising for efficient real time implementation, 
and will be studied in the next chapter. 

Finally, it was shown how spectral analysis and 
quantization is done in the CELP FS1016 speech coder. 

These concepts will be used in Chapter 6, in which two 
novel algorithms for LSP calculation are presented, and in 
Chapter 7, where the DSP56001 optimized implementation of 
the CELP FS1016 spectral analysis block is given. 

5.13. References 

[Acto90] F. S. Acton, Numerical Methods that Work, Mathematical 
Association of America, Washington, DC, 1990. 

[Atal89] B. Atal, R. Cox, and P. Kroon, "Spectral Quantization and 
Interpolation for CELP Coders", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'89, Vol.1, 
pp. 69-72, 1989. 

[CELP97] ICASSP97 session: "CELP Coding", 12 different papers, 
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, ICASSP'97, Vol.2, pp. 731-778,1997. 

[Chan91] C. Chan and K Law, "An Algorithm for Computing the LSP 
Frequencies Directly from the Reflection Coefficients", Proc. 
European Conference on Speech Communication and 
Technology, EUROSPEECH'91, pp. 913-916,1991. 

[Chee87] B. Cheetham, "Adaptive LSP Filter", IEE Electronics Letters, 
Vol. 23, No. 2, pp. 89-90,1987. 

108 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

[ETSI92] European Telecommunication Standard Institute (ETSI), 
"Full-rate Speech Transcoding", Recommendation GSM 
06.10,1992. 

[Fede91] "Federal Standard 1016, Telecommunications: Analog to 
Digital Conversion of Radio Voice by 4,800 bnVsecond Code 
Excited Linear Prediction (CELP)", National 
Communications Systems, Office of Technology and 
Standards, Washington, DC20305-2010,1991. 

[Furu89] S. Furui, Digital Speech Processing, Synthesis, and 
Recognition (Chapter 5), Dekker, New York, 1989. 

[Gard93] W. Gardner et al., "QCELP: A Variable Bit Rate Speech 
Coder for CDMA Digital Cellular" in Speech and Audio 
Coding for Wireless and Network Applications, ed. by B. 
Atal, V. Cuperman, and A. Gersho, Kluwer Academic 
Publishers, Boston, MA, USA, 1993. 

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic 
Continuous Speech Corpus CD-ROM", National Institute of 
Standards and Technology, NISTIR 493,1990. 

[Gers91] I. Gerson and M. Jasiuk, "Vector Sum Excited Linear 
Prediction (VSELP)" in Advances in Speech Coding, ed. by B. 
Atal, V. Cuperman, and A. Gersho, Kluwer Academic 
Publishers, Boston, MA, USA, 1991. 

[Gers92] A. Gersho and R. Gray, Vector Quantization and Signal 
Compression, Kluwer Academic Publishers, Boston, 1992. 

[Gers94] A. Gersho, "Advances in Speech and Audio Compression", 
Proc. of the IEEE, Vol. 82, No. 6, 1994. 

[Gray76] A. Gray and J. Markel, "Distance Measures for Speech 
Processing", IEEE Trans, on Acoustics, Speech and Signal 
Processing, Vol. 24, No. 5, pp. 380-391,1976. 

[Honk97] T. Honkanen et al., "Enhanced Full Rate Speech Codec for 
IS-136 Digital Cellular System", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 2, 
pp. 731-734,1997. 

[Itak75] F. Itakura, "Line Spectrum Representation of Linear 
Predictive Coefficients of Speech Signals", J. of the 
Acoustical Society of America , Vol. 57, pp. S35, 1975. 

[ITUT96] International Telecommunications Union, "Dual Rate Speech 
Coder for Multimedia Communications Transmitting at 5.3 
and 6.3 kbps", Recommendation G.723.1,1996. 

109 



Optimized Implementation of Speech Processing Algorithms 

[Järv97] K. Järvinen et al., "GrSM Enhanced Full Rate Speech Codec", 
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, ICASSP'97, Vol. 2, pp. 771-774,1997. 

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line 
Spectral Frequencies Using Chebyshev Polynomials", IEEE 
Trans, on Acoustics, Speech and Signal Processing, Vol. 34, 
No. 6, pp. 1419-1426,1986. 

[Kang87] G. Kang and L. Fransen, "Experimentation with Synthesized 
Speech Generated from Line Spectrum Pairs", IEEE Trans. 
on Acoustics, Speech and Signal Processing, Vol. 35, No. 4, 
pp. 568-571,1987. 

[Kata95] A. Kataoka et al., "LSP and Gain Quantization for the 
Proposed ITU-T 8 kb/s Speech Coding Standard", IEEE 
Speech Coding Workshop, pp. 7-8,1995. 

[Kim96] M. Kim et al., "Linked Split-vector Quantizer of LPC 
Parameters", Proc. IEEE Int. Conf. on Acoustics, Speech, and 
Signal Processing, ICASSP'96, Vol.1, pp. 741-744,1996. 

[Kond94] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate 
Communication Systems (Chapters 3, 4), Wiley, Chichester, 
1994. 

[Lebl93] W. LeBlanc et al., "Efficient Search and Design Procedures 
for Robust Multi-stage VQ of LPC Parameters for 4 kbps 
Speech Coding", IEEE Trans, on Speech and Audio 
Processing, Vol. 1, No. 4, pp. 373-385, 1993. 

[Lero77] J. LeRoux and C. Gueguen, "A Fixed Point Computation of 
Partial Correlation Coefficients", IEEE Trans, on Acoustics, 
Speech and Signal Processing, Vol. 25, No. 3, pp. 257-259, 
1977. 

[LOWB97] ICASSP97 session: "Speech Coding at Low Bit Rates", 14 
different papers, Proc. IEEE Int. Conf. on Acoustics, Speech, 
and Signal Processing, ICASSP'97, Vol.2, pp. 1555-1610, 
1997. 

T. Ohya et al., "5.6 kbits/s PSI-CELP of the Half Rate PDC 
Speech Coding Standard", Proc. IEEE Vehicular Technology 
Conference, Vol. 1, pp. 1680-1684, 1994. 

K Paliwal and B. Atal, "Efficient Vector Quantization of 
LPC Parameters at 24 bits/frame", IEEE Trans, on Speech 
and Audio Processing, Vol. 1, No. 1, pp. 3-14,1993. 

[Ohya94] 

[Pali93] 

110 



Line Spectrum Pairs and the CELP FS1016 Speech Coder 

[Pali95a] K. Paliwal and W. Kleijn, "Quantization of LPC Parameters" 
(Chapter 12) in Speech Coding and Synthesis, ed. by W. 
Kleijn and K. Paliwal, Elsevier, Amsterdam, 1995. 

[Pali95b] K Paliwáí, "Interpolation Properties of Linear Prediction 
Parametric Representations", Proc. European Conference on 
Speech Communication and Technology, EUROSPEECH'95, 
Vol. 2, pp. 1029-1032,1995. 

[Pham90] N. Phamdo and N. Farvardin, "Coding of Speech LSP 
Parameters Using TSVQ with Interblock Noiseless Coding", 
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, ICASSP'90 , Vol. 1, pp. 193-196,1990. 

[Rama95] R. P. Ramachandran et al., "A Two Codebook Format for 
Robust Quantization of Line Spectral Frequencies", IEEE 
Trans, on Speech and Audio Processing, Vol. 3, No. 3, pp. 
157-168,1995. 

[Sait85] S. Saito and K Nakata, Fundamentals of Speech Signal 
Processing (Chapter 9), Academic Press, New York, 1985. 

[Saou92] S. Saoudi and J. Boucher, "A New Efficient Algorithm to 
Compute the LSP Parameters for Speech Coding", Signal 
Processing, Elsevier, Vol. 28, No. 2 , pp. 201-212, 1992. 

[Skog97] J. Skoglund and J. Linden, "Predictive VQ for Noisy Channel 
Spectrum Coding: AR or MA", Proc. IEEE Int. Conf on 
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 3, 
pp. 1351-1354, 1997. 

[Soon84] F. Soong and B. Juang, "Line Spectrum Pair (LSP) and 
Speech Data Compression", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'84, 
pp. 1.10.1-1.10.4,1984. 

[Soon93] F. Soong and B. Juang, "Optimal Quantization of LSP 
Parameters", IEEE Trans, on Speech and Audio Processing, 
Vol. 1, No. 1, pp. 15-24,1993. 

[SPEC95a] ICASSP95 session: "Spectral Quantization", 10 different 
papers, Proc. IEEE Int. Conf. on Acoustics, Speech, and 
Signal Processing, ICASSP'95, USA, Vol.1, pp. 716-755, 
1995. 

[SPEC95b] EUROSPEECH95 session: "Quantization of Spectral 
Parameters", 9 different papers, Proc. European Conference 
on Speech Communication and Technology, 
EUROSPEECH '95, Vol.2, pp. 1029-1064,1995. 

I l l 



Optimized Implementation of Speech Processing Algorithms 

[SPEC96] ICASSP96 session: "Spectral Quantization", 10 different 
papers, Proc. IEEE Int. Conf. on Acoustics, Speech, and 
Signal Processing, ICASSF96, Vol.1, pp. 737-776,1996. 

[Supp97] L. Supplee et al., "MELP: The New Federal Standard at 2400 
bps", Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing, ICASSP'97, Vol.2, pp. 1591-1594,1997. 

112 



Chapter 6 
Proposed Algorithms for LSP 
Calculation 

In this chapter two novel efficient algorithms for calculation of 
LSP parameters from LPC coefficients are presented. These 
algorithms are referred to as "Mixed LSP" and "quantized-
search Kabal". In the previous chapter, it was found that 
Kabal's, Saoudi's and Chan's algorithms are the most promising 
for efficient real time implementation among the existing LSP 
calculation algorithms. 

The proposed LSP calculation algorithms are first 
explained and then compared with the algorithms of Kabal, 
Chan and Saoudi from the point of view of accuracy, reliability 
and computational complexity. 

Kabal's algorithm is found to be the most efficient and 
accurate of the existing methods. This algorithm, as well as 
"Mixed LSP" and "quantized-search Kabal", were implemented 
on a DSP56001 and their computational complexity in MIPS 
was compared. 

The reader is reminded that, unless stated otherwise, an 
LPC order of p = 10 is assumed through this chapter. 

113 



Optimized Implementation of Speech Processing Algorithms 

6.1. First Proposed Method: Mixed-LSP 

In order to derive the LSP parameters, the roots of P'io(z) and 
Q'io(z), given in Equation (5.24), have to be found. In Kabal's 
method (see § 5.9), the 5-th order polynomials, P'io(x) and 
Q'io(x), are obtained by evaluating P'io(z) and Q'io(z) on the unit 
circle, and applying the mapping x = cos(co) together with 
Chebyshev polynomials of first kind. The LSPs are the roots of 
P'io(x) and Q'io(x), and are found by a zero-crossing search on a 
grid of A = 0.02, followed by four successive bisections and a 
final linear interpolation. The precision of the obtained LSPs is 
higher than required by speech coding applications, but the 
number of bisections cannot be decreased, or the size of the grid 
increased, without compromising the zero-crossing search. In 
this section, it is shown that five intervals, containing each only 
one zero-crossing of P'io(x) and one zero-crossing of Q'io(x), can 
be calculated, avoiding the zero-crossing search. This fact 
allows a trade-off between LSP precision and computational 
complexity [Gras97a]. 

Different Derivation of P1IoCx) and Q'io(x) 

A different derivation of the polynomials P'io(x) and Q'io(x) is 
given in Appendix D.I. This derivation uses the auxiliary 
function ^m(Z), given in Equation (5.39), and the mapping 
x = cos(co) together with Chebyshev polynomials of first and 
second kind. Using this derivation the polynomials P'io(x) and 
Q'io(x) are expressed as: 

Pio(x) = C10(x) -D1 0(X) 

Qi0(x) = C10(x) + D10(x) (6.1) 

where Cio(x) is a 5-th order polynomial, and Dio(x) is a 4-th 
order polynomial, whose roots can be calculated in a closed 
form. The behavior of the functions P'io(x), Q'io(x), and Dio(x) is 
shown in Figure 6.1, where xi to xio are the LSPs in the 
"x-domain", in which x¡ - cos(ofc), and ri to r4 are the roots of 
Dio(x). 

114 



Proposed Algorithms for LSP Calculation 

P'10(x)andQ'10(x; 

x10 x9 x8 x7 x6 x5 x4 

D10(x) 

x3 x2 x1 

-3 
r4 -0.5 r3 r2 0.5 r1 1 

Figure 6.1: Behavior of the functions P'io(x), Q'io(x), and Dio(x) (xi to xio 
are the LSPs in the "x-domain", in which x = cos(co), and ri to 
T4 are roots of Dio(x)). 

In Appendix D.6, it is proved that the roots of Dio(x) are 
real, different, and inside the interval (-1,+1). Furthermore, in 
Equation (6.1) it is seen that these roots correspond to the 
intersections of P'io(x) with Q'io(x). 

Due to the ordering property of the LSP parameters 
(see § 5.6 and Equation (5.31)), when going from x = +1 to 
x = - 1 , P'io(x) is crossing the x-axis first at xi, then Q'io(x) has 
its first zero-crossing at X2. As the next LSP is X3, P'io(x) and 
Q'io(x) intersect each other before crossing the x-axis at X3 and 
X4, respectively, then they intersect again before xs, Xe, before 
X7, X8 and before X9, xio. Thus the roots of Dio(x) divide the 
interval (-L + 1) into five sections, each section containing only 
one zero-crossing ofP'ioCx) and one zero-crossing of Q'io(x). 

115 



Optimized Implementation of Speech Processing Algorithms 

Description of the Proposed Algorithm (Mixed-LSP) 

The roots of Dio(x) are calculated and ordered, to obtain the five 
intervals containing each only one zero-crossing of P'io(x) and 
one zero-crossing of Q'io(x). The position of these zero-crossings 
is refined by five successive bisections, and a final linear 
interpolation, similarly to Kabal's method. A total of 60 
polynomial evaluations is needed. Using the efficient recursive 
evaluation proposed by Kabal, and given in Equation (5.32), the 
computational cost of a polynomial evaluation is 4 
multiplications and 9 additions. 

In Appendices D.4 and D.5, particular attention is paid to 
the optimization of the calculation and ordering of the roots of 
Dio(x), which finally needs the following operations: 20 
multiplications, 34 add/sub, 2 divisions and 5 square roots, for 
root calculation, as well as 3 comparison/swapping operations 
for root ordering. The C program for the root calculation and 
ordering is given in [Gras97b]. 

In Appendix D.3, it is shown that: 

D10(X = +l)>0, Pi0(X = +l)>0, Q'10(x = +l)>0 (6.2) 

Therefore the direction of the sign changes at every zero-
crossing is known. This property is used for improving 
efficiency and reliability of the algorithm. In particular, this 
property plays an essential role in the algorithm denoted as 
"quantized-search Kabal" (see § 6.3). 

Experimental Evaluation 

The Mixed-LSP algorithm was tested using the whole TIMIT 
database (6300 speech files) [Garo90]. For this experience, as 
well as for the rest of the experiments reported in this chapter, 
the speech files were downsampled to 8 kHz and the LPC 
vectors were calculated as in the CELP FS1016 (see § 5.11), 
using high-pass filtering of the speech input, 30 ms Hamming 
windowing, autocorrelation method, and 15 Hz bandwidth 
expansion (y - 0.994). For every speech file, two sets of LSP 
vectors were calculated, one using the Mixed-LSP algorithm, 
and the other with a high accuracy method (e < 10-16). 

116 



Proposed Algorithms for LSP Calculation 

10 

co 
U 
U 
C 
t 1 0 4 

8 
O 

•Q 2 
Z 10 

10* 
10 10"" 10" 

Absolute difference between LSP sets 
10" 

Figure 6.2: Histogram of the absolute difference between LSP sets 
calculated with Mixed-LSP on one side, and high accuracy on 
the other side. 

The histogram of the absolute differences found on the 
whole TIMIT database is given in Figure 6.2. The maximum 
absolute difference found is 0.0092. 

6.2. LSP Quantization in the "x-domain" versus LSP 
Quantization in the "co-domain" 

In the CELP FS1016, the LSP coefficients are quantized using 
the quantization tables given in Figure 5.5. 

As the LSPs obtained with the methods of Kabal, Saoudi 
and Mixed-LSP are in the "x-domain", it is desirable to perform 
the quantization in this domain. This is done by applying the 
mapping î = cos(2ìt fi) to the values fi of the quantization 
tables. 

Both quantization in the angular frequency ("co-domain") 
and in the "x-domain" were evaluated using spectral distortion 
measure (see § 5.4) on the whole TIMIT database. The LSPs 
were first calculated with high accuracy and then quantized. 
The resulting average spectral distortion and percentage of 
outliers is given in Table 6.1. It is observed that the 

117 



Optimized Implementation of Speech Processing Algorithms 

performance of both quantization in the "co-domain" and in the 
"x-domain" are equivalent. Hereafter, the quantization will be 
done in the "x-domain" for LSPs calculated with the methods of 
Kabal, Saoudi and Mixed-LSP and in the "co-domain" for Chan's 
Method. 

Type of quantization 

Quantization in "co-domain" 

Quantization in "x-domain" 

Average SD 
(dB) 

1.5326 

1.5329 

% 2-4 dB 
outliers 

12.3024 

12.3450 

%>4dB 
outliers 

0.1881 

0.1888 

Table 6.1: Comparison between quantization performed in the 
"x-domain" and quantization performed in the "co-domain". 

6.3. Second Proposed Method: Quantized-search Kabal 

As mentioned in the previous section, the LSP parameters can 
be first calculated, using a method such as Kabal's method, and 
then quantized with the 34-bit non-uniform scalar quantizer of 
Figure 5.5. To speed up the calculation and quantization 
processes, a quantized-search technique is used, obtaining the 
algorithm referred to as "quantized-search Kabal". 

The quantized LSPs in the "x-domain" are denoted as {qx¡), 
and the ordering property, which is a necessary condition for 
stability of the quantized LPC synthesis filter (see § 5.6) is 
given by: 

+1> qx1 > qx2 >...>qx10 > -1 (6.3) 

To locate the quantized value, qx¡, of the ¿-th LSP, x¡, the 
search for the corresponding zero-crossing is done on either 
P'io(x) (odd-suffixed LSPs) or Q'io(x) (even-suffixed LSPs). This 
search uses the values of the i-th quantization table, converted 
to the "x-domain" and Kabal's recursive polynomial evaluation 
given in Equation (5.32). Once the interval containing the zero-
crossing, ((Jk-I1CJk), is found, first the quantized LSP is selected 
as cjk, and then its position is corrected using either the "single-
correction" or the "coupled-correction" criterion, which are 
explained in the next subsections. 

Once a quantized LSP, qx¡, is determined, the search for the 
next quantized LSP, qxi+i, is done using the values of the i+2-th 

118 



Proposed Algorithms for LSP Calculation 

quantization table, starting from the first "allowed" value 
which would ensure the ordering property of Equation (6.3). As 
the direction of the sign change at every zero-crossing is known 
(see § D.3), it is possible to detect if the zero-crossing has 
already occurred at the first "allowed" value, improving 
efficiency and reliability of the algorithm. 

If the zero-crossing has already occurred at the first 
"allowed" value, the "coupled-correction" criterion is used to 
correct the position of the quantized LSP. Otherwise, the 
"single-correction" criterion is used. 

«Single-correction» 

The criterion of "single-correction" is explained with the help of 
Figure 6.3. If an interval (!̂ k-i,£k) contains the i-th zero-crossing, 
then qxi = ^ is selected. If k̂ is not the first "allowed" value of 
the quantization table, qx¡ can be "single-corrected", choosing 
^k-i if it is closer to x¡. 

The situation is illustrated in Figure 6.3 for the particular 
case of a zero-crossing of the polynomial P'io(x) from positive to 
negative (as it is the case for the LSPs xi, xs and xg), but the 
discussion that follows is general to all possible cases. 

When the LSPs are first calculated and then quantized, x¡ is 
known, and the "horizontal single-correction" (H-SC) criterion 
is used [CELP3.2a]: 

i f H k ^ H k - i =>qxi=£k- i 
else => qx¡ = Çk (6.4) 

where Hk-i and Hk are the horizontal distances from î k-i and k̂ 
to the actual LSP value x¡, as shown in Figure 6.3. 

In the case of a quantized domain search, only the values of 
P'io(^k-i) and P'io(^k) are known, but not x¡. In the direct 
conversion from predictor coefficients to quantized LSPs 
proposed by Wolovitz [Camp89], [CELP3.2a], qx¡ is selected 
using a "vertical single-correction" (V-SC) criterion: 

if Vk > Vk_! => qXi = ^k_! 
else => qx¡ = ¡;k (6.5) 

119 



Optimized Implementation of Speech Processing Algorithms 

/P' ioßk-D 

/P ' lOßm) 
actual LSP, xi 

(unknown) 

Hk-1 
•Nome- p10(^k) 

Decreasing Value of x 

Figure 6.3: Illustration of a zero-crossing of the polynomial P'io(x) from 
positive to negative, used to explain "single-correction" 
criterion. 

where Vk-i and Vk are the vertical distances from P'io(Çk-i) and 
P'io(Çk) to the x-axis, as shown in Figure 6.3. 

This "vertical single-correction" criterion does not necessary 
choose the closest value to the actual LSP, depending on the 
concavity of the polynomial P'io(x) or Q'io(x) at the zero-
crossing. We propose the following criterion that can be used in 
a quantized domain search, at the cost of 10 extra polynomial 
evaluations, and is equivalent to the "horizontal single-
correction" criterion. The polynomial P'io(x) is evaluated at the 
center of the interval containing the zero-crossing: 

e _ ^k-I + ^k 
Sm g 

If the zero-crossing is from positive to negative, qx¡ is: 

IfPi0(C1n)SO ^ q X 1 = S n 

else => qx¡ - Çk 

Else, if the zero-crossing is from negative to positive qx¡ is: 

if Pi0(Sm)* 0 ^ q X i = E n 

else => qxj = ^k 

(6.6) 

(6.7) 

(6.8) 

120 



Proposed Algorithms for LSP Calculation 

Previous search: 

/'-7-th LSP onP'lO(x) 

,/P'lOfën-1) 

Present search: 
MhLSP on Q'10(x) 

QlOßk-1) 

Hn-1 "Hn1PlO(Cn) 
Q 10(Ck) 

Decreasing Value of x 
• 

Figure 6.4: Illustration of two successive zero-crossings, from positive to 
negative, of the polynomials P'io(x) and Q'io(x), used to 
explain "coupled-correction" criterion. 

«Coupled-correction» 

The criterion of "coupled-correction" considers the interaction 
between two consecutive LSPs, and is better explained with the 
help of Figure 6.4. Here, the interval (¡;n-i,Cn) contains the ¿-2-th 
LSP, Xi-i, and the interval (̂ k-i,̂ k) contains the i-th LSP, x¡. In 
the previous search, as ^n is closer to x¡_i than Cn-I, qx¡_i = ^n was 
selected (i.e. qx¡-i was not "single-corrected"). 

If the zero-crossing corresponding to x¡ has already occurred 
at the first "allowed" value of the i-th quantization table, the 
intervals (Çn-i^n) and (^k-i,^) overlap, with ^_i > ^n , and the 
choice of qxi-i = ^n would force the choice qx¡ = ̂ k, to preserve 
the ordering property. In this case, the "coupled-correction" 
criterion is used to decide which choice, (qxi_i,qxi)=(^n,^k) or 
(qxi-i,qxi)=(^n-i,^k-i), is better. 

When the LSPs are first calculated and then quantized, x, 
and Xi-i are known, and the "horizontal coupled-correction" 
criterion is used [CELP3.2a]: 

121 



Optimized Implementation of Speech Processing Algorithms 

if H n +Hk>H n - 1 + Hk - 1 ^(qx^.qxi)= (Cn-11Ck-O 
else => ^x 1 - 1 , qXj ) = (Cn, Çk ) (6.9) 

where Hn_i and Hn are the horizontal distances from £n-i and ^n 

to Xi-i, and Hk-i and Hk are the horizontal distances from ^k-i 
and k̂ to Xi, as shown in Figure 6.4. 

In the case of a quantized domain search, the values of Xi 
and Xi-i are not known, thus the criterion of Equation (6.9) 
cannot be used. The direct conversion from predictor 
coefficients to quantized LSPs proposed by Wolovitz [Camp89], 
[CELP3.2a], does not use "coupled-correction". A "vertical 
coupled-correction" criterion analogous to the "vertical single-
correction" criterion, could be used: 

if V n + V k ^ V n - 1 + Vk-1 ^ (qXi^qxO= (C n - ^k - 1 ) 

else =*(qXi-i,qxi)=(Çn,Çk) (6-10) 

where Vn-I and Vn are the vertical distances from P'io(^n-i) and 
P'io(Çn) to the x-axis, and Vk-i and Vk are the vertical distances 
from Q'io(^k-i) and Q'io(Çk) to the x-axis, as shown in Figure 6.4. 

By simulation, it was found that this criterion differs 
significantly from the "horizontal coupled-correction" criterion. 
Thus, the following "enhanced vertical coupled-correction" 
(EV-CC) criterion, whose performance is very similar to the 
"horizontal coupled-correction" criterion, is proposed: 

If the zero-crossing is from positive to negative: 

if Qi0(Cm2) * 0 and Vm2 > Vml => (qxi.i.qxj)= (Jjn-i.Çn) 
e l s e =>(qxi-i.qxi) = fën.Çk) 

(6.11) 

Else, if the zero-crossing is from negative to positive: 

if Qi0(Sm2) ^ 0 and Vm2 > Vml => (qxn.qxi) = (Cn-1,Çk-i) 

eise =>(q*i-i.qxi) = (£n»Sk) 
(6.12) 

where Çmi and Cm2 are the center of the intervals (̂ n-I1Cn) and 
(^k-i,̂ k), respectively, and Vmi and Vm2 are the vertical distances 
from P'io(^mi) and Q'io(̂ m2) to the x-axis, as shown in Figure 6.4. 

122 



Proposed Algorithms for LSP Calculation 

In the search for the 6-th quantized LSP, qx6, if the 
previous quantized LSP, qxs, takes one of the three values 
marked in boldface in the 5-th quantization table of Figure 5.5, 
a "coupled-correction" would not preserve the ordering 
property. Thus in these three particular cases, which 
correspond to qxs = ^n = 0.2563, qxs = ^n = 0.0392, and 
qxs= Cn = -0.1175, the "coupled-correction" is skipped. 

In summary, "coupled-correction" for the ¿-th LSP, using 
either of the proposed criteria, is considered only if the 
following conditions are met: 

• The zero-crossing corresponding to x¡ has already occurred 
at the first "allowed" value of the ¿-th quantization table. 

• The position of the previous quantized LSP, qx¡-i, was not 
corrected (either with single- or coupled-correction), and 
qxi-i was not the first "allowed" value of its quantization 
table (or the first value of its quantization table). 

• If, in the search for the 6-th quantized LSP, the previous 
quantized LSP did not take one of these three particular 
values: qx5 = 0.2563, qxs = 0.0392, or qx5 = -0.1175. 

Experimental Evaluation 

Several versions of the "quantized-search Kabal" algorithm, 
with different correction criteria, were evaluated using spectral 
distortion on the whole TIMIT database. Kabal's method 
followed by quantization was also evaluated for comparison. 

The resulting average spectral distortion and percentage of 
outliers is given in Table 6.2. It is observed that among the 
"quantized-search Kabal" algorithms, the algorithm using both 
"horizontal single-correction" (H-SC) and "enhanced vertical 
coupled-correction" (EV-CC) criteria has the best performance. 
Furthermore, the performance of this algorithm is very close to 
the performance of Kabal's algorithm followed by quantization 
in the "x-domain". 

The different versions of the "quantized-search Kabal" 
algorithm were also compared with the high accuracy method 
followed by quantization (reference algorithm). The differences 
between the LSP indices calculated with the algorithm under 

123 



Optimized Implementation of Speech Processing Algorithms 

evaluation and the reference algorithm were counted, and the 
results are given in Table 6.3. The number of frames containing 
one, two, three, four and more than four differences of one on 
the LSP indices are denoted as nl , n2, n3, n4 and n5 
respectively. The number of frames containing at least a 
difference bigger than one on the LSP indices is denoted as nn. 

"Quantized-search Kabal" 
correction criteria 

V-SC 

V-SC + V-CC 

H-SC 

H-SC + V-CC 

H-SC + EV-CC 

Kabal + quant, in the "x-domain" 

Ave. SD 
(dB) 

1.55552 

1.55218 

1.53495 

1.53368 

1.53295 

1.53288 

% 2-4 dB 
outliers 

13.88856 

13.78761 

12.43227 

12.36321 

12.35014 

12.34532 

% >4 dB 
outliers 

0.22244 

0.19226 

0.19335 

0.19008 

0.18946 

0.18884 

Table 6.2: Comparison among "quantized-search Kabal" algorithms with 
different correction criteria, and Rabat's algorithm + 
quantization, in terms of spectral distortion (V-SC = "vertical 
single-correction", H-SC = "horizontal single-correction", 
V-CC = "vertical coupled-correction", EV-CC = "enhanced 
vertical coupled-correction"). 

"Quantized-search 
Kabal" 

correction criteria 

V-SC 
V-SC + V-CC 

H-SC 
H-SC + V-CC 

H-SC + EV-CC 

ni 

158620 
159262 

0 

0 

0 

ns 

27920 
26059 
3301 

2336 

706 

ns 

3376 
2688 

15 

10 

3 

H4 

287 
185 
7 

2 

0 

ns 

26 
11 

0 
0 

0 

nn 

10 
2 
4 

1 

2 

Table 6.3: Comparison among "quantized-search Kabal" algorithm with 
different correction criteria, and high accuracy method + 
quantization in the "x-domain", in terms of differences in the 
obtained indices (Differences of one: n l = frames with one 
difference, n2 = frames with two differences, n3 = frames 
with three differences, n4 = frames with four differences, 
n5 = frames with more than four differences. Differences 
bigger than one: nn = frames with at least one difference). 

124 



Proposed Algorithms for LSP Calculation 

Hereafter, the name "quantized-search KabaP refers to the 
version which uses both "horizontal single-correction" and 
"enhanced vertical coupled-correction" criteria. The differences 
between LSP indices calculated with this algorithm and the 
reference algorithm are analyzed in Appendix E.2. 

Quantized-search Chan 

The LSPs in the "co-domain" can be first calculated from the 
reflection coefficients using Chan's method (see § 5.9) and then 
quantized using the 34-bit quantization tables of Figure 5.5. 
Similarly to "quantized-search Kabal" algorithm, the LSP 
calculation and quantization processes are embedded, obtaining 
the algorithm referred to as "quantized-search Chan". 

The quantized LSPs in the "co-domain" are denoted as {qcoi}, 
and the ordering property is given by: 

0<qco! <qco2 <...<qco10 < Ji (6.13) 

To locate the i-th quantized LSP, qco¡, the search for the 
corresponding zero-crossing of Re[\|iio(eJ°)] or Im[\|/io(eO] is done 
using the recursive evaluation for \|/io(ei") given in Equation 
(5.45) and the values of the i-th quantization table. 

Once the interval containing the zero-crossing is found, the 
quantized LSP is selected using either the "single-correction" or 
the "coupled-correction" criterion, explained previously. The 
best performance among different versions of the "quantized-
search Chan" algorithm, is obtained using both "horizontal 
single-correction" (H-SC) and "enhanced vertical coupled-
correction" (EV-CC) criteria. Hereafter, this version will be 
denoted as "quantized-search Chan". 

Computational Complexity 

In "quantized-search Kabal" algorithm, polynomial evaluation 
is done using the efficient Kabal's recursion of Equation (5.32), 
at the cost of 4 multiplications and 9 additions per evaluation, 
whereas in "quantized-search Chan" algorithm the evaluation 
of xi/ioieJ") is done with the recursion of Equation (5.45), at the 

125 



Optimized Implementation of Speech Processing Algorithms 

cost of 30 multiplications and 20 additions per evaluation. In 
appendix E. 1 it is shown that the maximum possible number of 
polynomial evaluations in both "quantized-search Kabal" and 
"quantized-search Chan" is 71. In practice, the maximum 
number of evaluations found by simulation on the whole TIMIT 
database was 68. 

The flow control of these algorithms is greatly simplified by 
using flags to store the conditions tested in the correction 
criteria. To avoid expensive comparisons, the quantization 
tables of Figure 5.5 are modified to include, with each 
quantization level, an index (or offset) to the first "allowed" 
value of the next quantization table. Also, some flags indicating 
conditions such as "first element of the table", "last element of 
the table" and "particular case of qxs" are stored in the 
quantization table, to simplify the control flow of the algorithm. 
More details are given in Chapter 7. 

6.4. Program for LSP Quantization 

In the CELP FS1016, the LSPs can be first obtained with the 
methods of Kabal, Saoudi, Chan or Mixed-LSP and then 
quantized (see § 6.2). In the quantization program distributed 
with [CELP3.2a] the LSPs are first quantized independently 
using the equivalent to the "horizontal single-correction" of 
Equation (6.4), and then the ordering property is checked by 
expensive comparisons, using the equivalent of the "horizontal 
coupled-correction" of Equation (6.9) to correct the position if 
the ordering property was not respected. 

We have elaborated a quantization program more suitable 
for efficient real-time implementation. This program produces 
the same results as the program distributed with [CELP3.2a] 
and is very similar to the "quantized-search Kabal" algorithm, 
except that, as the LSPs are known, the single- and coupled-
correction criteria of Equations (6.4), and (6.9) are used. 

Efficient real-time implementation is obtained with the use 
of flags and offsets, similarly to the implementation of 
"quantized-search Kabal" explained in the previous subsection. 

126 



Proposed Algorithms for LSP Calculation 

6.5. Bandwidth Expansion and Spectral Smoothing 

A drawback in the utilization of the algorithms of Saoudi and 
Chan in the CELP FS1016 (see § 5.11) is that the 15 Hz 
bandwidth expansion (see § 5.3) cannot be easily applied, as the 
LPC coefficients are not calculated in the LeRoux-Gueguen and 
in the antisymmetric split-Levinson recursions. 

An effect similar to bandwidth expansion can be obtained 
with the spectral smoothing technique described in [Tohk78], in 
which the autocorrelation coefficients of Equation (5.10) are 
multiplied by a Gaussian window. This is equivalent to 
convoluting the LPC power spectrum with the Fourier 
transform of a Gaussian window, which is itself a Gaussian 
window. After such a convolution, sharp spectral peaks are 
smoothed out, and the LPC poles are moved inward the unit 
circle. Nevertheless, some effort would be necessary to adapt 
this technique to the CELP FS1016 speech coder. 

On the other hand the spectral smoothing technique would 
not give numerically the same results than the bandwidth 
expansion. Thus, in order to make meaningful comparisons 
among the different algorithms (see § 6.6 and § 6.7) the 
reflection coefficients needed in Chan's method and the 
autocorrelation coefficients needed in Saoudi's method are 
obtained by transformation from the bandwidth expanded LPC 
coefficients. 

6.6. Accuracy of the Different Algorithms 

The accuracy of Kabal's, Saoudi's, Chan's and the proposed 
Mixed-LSP algorithms was evaluated, by comparison with the 
high accuracy method, using the whole TIMIT database. For 
every speech file, two sets of LSP vectors were compared, one 
set calculated with the algorithm under evaluation, and the 
other set with high accuracy. The histograms of the absolute 
differences found for every algorithm under test are given in 
Figure 6.5 and Figure 6.6. The maximum absolute difference 
found for every algorithm is given in Table 6.4. 

127 



Optimized Implementation of Speech Processing Algorithms 

106 

U) 
(U 
O 
C 
(U 4 

8 
O 

"5 
-Q 2 
Z 10 

i n 0 

Í 

J r 
...rJ / 

. C . n. I , . w1 

kabal mixed • •• 

/1. 
/ 

i 

, 1A 
saoudi 

-

-

10" 10"'" 10"* 
Absolute difference between LSP sets 

10" 

Figure 6.5: Histogram of the absolute difference between LSP sets 
calculated with high accuracy on one side, and Kabal's, 
Saoudi's and Mixed-LSP on the other side. 

10 

106 

U) 
(U 
O 
C 
(U 4 

fc10 3 000 JO
 

-° -„2 
z 10 

-m° 

-

J 
i: 

._i 

^ 

n. I 

ka ?al mixed <$£ 

rJ JT Ĵ rJ I -H-1 

f rJ ^ 

J ' J^ 
fy r 

r 
, . I . . . 

^ \ 
J 

i 

. . ) 

in 

10"'" 10"" 
Absolute difference between LSP sets 

10" 

Figure 6.6: Histogram of the absolute difference between LSP sets 
calculated with high accuracy on one side, and Kabal's, 
Chan's and Mixed-LSP on the other side. 

128 



Proposed Algorithms for LSP Calculation 

Note that the LSPs calculated with Chan's algorithm were 
converted from the "co-domain" to the "x-domain" in order to 
make a meaningful comparison. 

It is observed that Kabal's is the most accurate among the 
algorithms under evaluation, followed by Mixed-LSP and then 
Saoudi's and Chan's. Saoudi's algorithm is slightly more 
accurate than Chan's algorithm. 

LSP calculation method 

Kabal 
Mixed-LSP 
Saoudi 
Chan 

Maximum absolute difference 

0.0000137 

0.0091698 

0.0078124 

0.0294831 

Table 6.4: Maximum absolute difference between LSP sets calculated 
with high accuracy on one side, and Kabal's, Saoudi's and 
Mixed-LSP methods on the other side. 

Spectral Distortion 

Kabal's, Saoudi's, Chan's and Mixed-LSP algorithms, as well as 
the high accuracy method were used to calculate the LSPs, 
which were then quantized with the 34-bit scalar quantizer. 
Spectral distortion was measured in all cases, and the results 
are given in Table 6.5, together with the spectral distortion 
measured for the "quantized-search Kabal" algorithm. 

Algorithms to obtain the 
quantized LSPs 

High accuracy + quant, in x 

Kabal + quant, in x 
Mixed-LSP + quant, in x 

Q.-search Kabal (H-SC + EV-CC) 

Saoudi + quant, in x 
Chan + quant, in co 

Ave. SD 
(dB) 

1.53287 

1.53288 
1.53308 

1.53295 

1.65362 
1.72734 

% 2-4 dB 
outliers 

12.34501 

12.34532 
12.36305 
12.35014 

19.11655 
24.46555 

% >4 dB 
outliers 
0.18884 

0.18884 
0.18853 

0.18946 

0.20253 
0.22648 

Table 6.5: Comparison among different methods to calculate quantized 
LSPs, in terms of spectral distortion. 

129 



Optimized Implementation of Speech Processing Algorithms 

The results obtained using Kabal's, Mixed-LSP and 
"quantized-search Kabal" algorithms are very close to those 
obtained with the high accuracy method. Furthermore, the 
histograms of spectral distortion of these four algorithms 
superpose. Thus, although the Mixed-LSP method is less 
accurate than Kabal's method, it is sufficient for speech coding 
applications using the 34-bit scalar quantizer of the CELP 
FS1016. It is also observed that the "quantized-search Kabal" 
algorithm can be used to speed up the calculation and 
quantization processes, without degradation of the quantization 
performance. 

On the other hand, the quantization performance is 
degraded when the algorithms of Saoudi and Chan are used for 
LSP calculation. This is due to the inaccuracy of these 
algorithms, observed in Figure 6.5 and Figure 6.6. 

The accuracy of Chan's and Saoudi's algorithms could be 
increased by adding bisections and/or linear interpolation, at 
the cost of increased computational complexity. 

The most cost effective way of improving the accuracy of 
Chan's algorithm is through the use of linear interpolation, at 
the added cost of 20 multiplications, 20 additions, and 10 
divisions. The resulting algorithm was used to calculate the 
LSPs, which were then quantized. Spectral distortion was 
measured using the TIMIT database, and the results are 
reported in Table 6.6. It is observed that the performance using 
Chan's method with linear interpolation is very close to the 
performance of the high accuracy method. 

Algorithms to obtain the quantized 
LSPs 

Chan with linear interp. + quant, in co 

High accuracy + quant, in x 

Ave. SD 
(dB) 

1.53341 

1.53287 

% 2-4 dB 
outliers 

12.37892 

12.34501 

%>4dB 
outliers 

0.18853 

0.18884 

Table 6.6: Evaluation of Chan's method with linear interpolation used to 
calculate quantized LSPs, in terms of spectral distortion. 

In Saoudi's method, it is more cost effective to improve the 
accuracy by adding extra bisections, at the cost of 10 additions 
and 8 multiplications per bisection. Four versions of Saoudi's 
algorithm, differing in the number of bisections, were used to 
calculate the LSPs before quantization. Spectral distortion was 

130 



Proposed Algorithms for LSP Calculation 

measured in all cases, and is given in Table 6.7. It is observed 
that a performance close to the performance using the high 
accuracy method is obtained with Saoudi's method using 11 
bisections. A value of 10 bisections could also be acceptable. 

Algorithms to obtain the 
quantized LSPs 

Saoudi, nbis. = 8, + quant, in x 

Saoudi, nbis. = 9, + quant, in x 
Saoudi, nbis. = 10, + quant, in x 

Saoudi, nbis. = 11, + quant, in x 

High accuracy + quant, in x 

Ave. SD 
(dB) 

1.65362 

1.55839 
1.54039 

1.53535 

1.53287 

% 2-4 dB 
outliers 

19.11655 

13.62490 
12.76484 

12.51223 

12.34501 

%>4dB 
outliers 

0.20253 

0.19133 
0.18961 
0.18884 

0.18884 

Table 6.7: Evaluation, in terms of spectral distortion, of Saoudi's 
method with different number of bisections, used to calculate 
quantized LSPs. 

6.7. Reliability of the Different Algorithms 

An important aspect of an LSP calculation algorithm is its 
reliability, which is the ability to find the true LSP parameters, 
without missing any zero-crossing. An additional requirement 
is that the obtained LSP comply with the ordering property of 
Equations (5.25) and (5.31), for stability of the corresponding 
LPC synthesis filter. 

The minimum difference between adjacent LSPs, as well as 
the minimum difference between LSPs with the same suffix 
type (either odd- or even-suffixed) plays an important role in 
the reliability of LSP calculation algorithms. These differences 
were measured on the TIMIT database. The LSPs were 
calculated in both the "x-domain" and the "co-domain" with high 
accuracy, from LPC vectors obtained as in the CELP FS1016, 
with and without the 15 Hz bandwidth expansion. The 
minimum differences found are given in Table 6.8 for LSPs in 
the "x-domain" and in Table 6.9 for LSPs in the "co-domain". 

The minimum LSP differences reported in [Kaba86] are 
also given in Table 6.8. These LSP differences were measured 
on 10 s of speech sampled at 8 kHz, using a 20 ms Hamming 
window and 10-th order LPC autocorrelation method [Kaba86]. 

131 



Optimized Implementation of Speech Processing Algorithms 

Type ofLSP 
(in the "x-domain") 

Odd-suffixed LSPs 

Even-suffixed LSPs 
Adjacent LSPs 

Minimum differences 
on TIMIT 
with BW 

expansion 

0.0265 

0.0389 
0.0026 

on TIMIT 
without BW 
expansion 

0.0167 

0.0319 
0.0006 

as reported 
in ¡Kaba86] 

0.0232 

0.0564 
0.0015 

Table 6.8: Minimum differences between LSPs in the "x-domain", as 
reported in [Kaba86] and as measured on the TIMIT 
database, with and without bandwidth expansion. 

A search grid of A = 0.02 was chosen in [Kaba86]. This grid 
value was chosen smaller than the minimum distance between 
LSPs of the same type (0.0232) found in [Kaba86], to avoid 
missing zero-crossings. In Table 6.8 it is observed that this 
choice of A is also valid for the TIMIT database, but only when 
the 15 Hz bandwidth expansion is used. In case that the 
separation between LSPs of the same type is smaller than the 
grid size, Kabal's algorithm will fail to locate the right LSPs. 
Nevertheless, we decided not to add any additional 
(computational expensive) checking to avoid this unlikely 
condition. 

As bandwidth expansion smoothes out spectral peaks 
(see § 5.3 and § 6.5), it increases the distance between LSPs 
(see § 5.7), improving the reliability of LSP calculation 
algorithms based on zero-crossing search, such as Kabal's and 
Chan's algorithm. Note that bandwidth expansion is commonly 
used in speech coders. 

In Kabal's algorithm, the number of bisections is specified 
by the acceptable uncertainty in an root position, e. This value 
must be small enough so that, in switching the search from the 
polynomial P'io(x) to Q'io(x) and vice versa, a root is not missed 
or roots are not interchanged in order. Thus e must be smaller 
than the minimum difference between adjacent LSPs: 

)nbis 
< D U n ( X j - X j + 1 ) 

(6.14) 

A number of 4 bisections is selected in [Kaba86], giving an 
uncertainty of e = 0.00125 in the root position. This uncertainty 

132 



Proposed Algorithms for LSP Calculation 

is smaller than the minimum difference between adjacent roots 
found in [Kaba86] (0.0015). This choice of number of bisections 
is also valid for the TIMIT database, but only if the 15 Hz 
bandwidth expansion is used. Note also that the uncertainty in 
the root position is significantly decreased by the linear 
interpolation, which have thus a beneficial effect on reliability. 
Furthermore, knowledge of the direction of sign changes 
(see § D.3) was included in Kabal's algorithm as a cost-effective 
way of improving reliability in the case where the value of e is 
bigger than the difference between two adjacent LSPs. 

It was found by simulation on the whole TIMIT database, 
using bandwidth expanded LPC, that the LSPs calculated with 
Kabal's algorithm always produce an ordered set. 

In Chan's algorithm [Chan91], the search is done in the 
"œ-domain" with a grid of A = 0 .0078 A. In Table 6.9 it is seen 
that this grid is largely smaller than the minimum separation 
between LSPs of the same type, whether bandwidth expansion 
is used or not. 

Type ofLSP 
(in the "(»domain") 

Odd-suffixed LSPs 

Even-suffixed LSPs 

Adjacent LSPs 

Minimum differences 
on TIMIT with 

BWexp. 

0.02071Tt 

0.027087C 

0.0043071 

on TIMIT without 
BWexp. 

0.01338TC 

0.01911TC 

0.00069TC 

Table 6.9: Minimum differences between LSPs in the "co-domain", 
measured on the TIMIT database, with and without 
bandwidth expansion. 

As Chan's algorithm does not use bisections or 
interpolation, the uncertainty in the LSP determination has the 
same value as the grid size, e = 0.0078 n. In Table 6.9, it is 
observed that this value could become bigger than the 
minimum separation of adjacent LSPs. Knowledge of the 
direction of sign changes (see § D.3) was included in Chan's 
algorithm to improve reliability under this condition. The LSPs 
calculated with Chan's algorithm, on the whole TIMIT database 
and using bandwidth expanded LPC, were always ordered. 

Saoudi's algorithm is intrinsically reliable [Saou95]. Each 
LSP is calculated independently starting from the interval 

133 



Optimized Implementation of Speech Processing Algorithms 

(-2,+2) and using 8 successive bisections: the value of the 
bisection point is used to evaluate the recursion of Equation 
(5.37) or (5.38), and the number of sign changes incurred in this 
evaluation is used to know with exactitude in which of the two 
bisected interval the LSP is located. Thus zero-crossings cannot 
be missed, and this independently of the speech database 
[Saou95]. 

On the other hand, as each LSP is searched independently, 
and with a coarse precision of 2"7 = 0.0078, it is possible that 
two contiguous LSP take the same value (i.e. the ordering 
property is not respected) if their separation is smaller than the 
precision. In Table 6.8 it is observed that this condition can 
occur, even using bandwidth expansion, and in fact it was 
found by simulation (using bandwidth expanded LPC) that this 
condition occurs in a large amount of speech files of the TIMIT 
database. Additionally, it was found that at least 10 bisections 
would be required to avoid this condition on the TIMIT 
database. As this problem is corrected by the quantization 
program (see § 6.4), it is not important in the case of 
application in the CELP FS1016. Nevertheless, care must be 
taken when using Saoudi's algorithm in other applications. 

In the proposed Mixed-LSP algorithm (see § 6.1) five 
intervals, containing each only one zero-crossing of P'io(x) and 
one zero-crossing of Q'io(x), are calculated. Thus, zero-crossings 
cannot be missed. 

Inside each interval, the positions of the root of P'io(x) and 
Q'io(x) are refined, independently of each other, using five 
bisections. Thus there is the possibility that two roots take the 
same value, or are interchanged in order. In practice, it was 
found by simulation (using bandwidth expanded LPC) that this 
condition never occurs on the TIMIT database. Furthermore, a 
slight interchange in order would be corrected by the 
quantization program. This condition could also be avoided 
with certitude by calculating first the root of P'io(x), and then 
using this value to limit the calculation interval of the root of 
Q'io(x). 

The "quantized-search Kabal" algorithm always produces 
an ordered set of LSPs. Simulations on the TIMIT database 
showed that in four cases the zero-crossing were missed, due to 
the coarse search grid. In one case a zero-crossing was detected 

134 



Proposed Algorithms for LSP Calculation 

twice. More information on these conditions is given in 
Appendix E.2. In listening tests using the CELP FS1016 speech 
coder, these exceptions did not introduce additional audible 
distortion (see § E.2). Thus, to keep the low complexity of 
"quantized-search Kabal" we decided not to add any checking, 
or to interpolate the grid values as proposed in [Chan95], to 
avoid these unlikely conditions. 

6.8. LSP Interpolation in the "x-domain" versus LSP 
Interpolation in the "co-domain" 

In both the receiver and the transmitter of the CELP FS1016 
(see § 5.11), two adjacent sets of quantized LSP parameters are 
interpolated obtaining four sets of LSP parameters, which are 
then converted to LPC coefficients and used in the synthesis 
filter. The interpolation is usually done using LSPs expressed 
in the "co-domain" [Fede91], [CELP3.2a]. 

As the LSPs obtained with the methods of Kabal, Saoudi, 
Mixed-LSP and "quantized-search Kabal" are in the 
"x-domain", it is desirable to perform the interpolation in this 
domain. This avoids the computationally expensive conversion 
from the "x-domain" to the "co-domain" for interpolation, and 
then from the "co-domain" to "x-domain" for LSP to LPC 
transformation (see § 5.10). 

Both interpolation in the "co-domain" and in the "x-domain" 
were evaluated as it is proposed in [Pali95b] using spectral 
distortion on the TIMIT database. This is explained next. 

The LPC used for interpolation were calculated, for each 
frame of 30 ms, as in the CELP FS1016, using high-pass 
filtering of the speech input, non-overlapping 30 ms Hamming 
windowing, autocorrelation method, and 15 Hz bandwidth 
expansion. The Hamming window is centered at the end of 
every frame, as indicated in Figure 5.9. For every frame, the 
LSPs were calculated with high accuracy, in both the 
"x-domain" and the "co-domain". 

The interpolation process is explained as follows. For each 
frame, two sets of LSP parameters, corresponding to the 
window positions A and B in Figure 5.9, are used for 
interpolation with the weights given in Table 5.1, obtaining 

135 



Optimized Implementation of Speech Processing Algorithms 

four sets of LSP parameters. Each of these LSP sets is 
converted to LPC coefficients, obtaining four sets of 
interpolated LPC coefficients, one set per subframe. 

The interpolation process was repeated twice, in one case 
the LSPs were interpolated in the "x-domain" and in the other 
case they were interpolated in the "co-domain". In both cases, 
the obtained interpolated LPC synthesis filters were compared 
with respect to the "true" LPC synthesis filters, using spectral 
distortion measure (see § 5.4). 

The "true" LPC coefficients were calculated, for each 
subframe of 7.5 ms, using high-pass filtering of the speech 
input, an overlapping 30 ms Hamming window centered at the 
subframe, autocorrelation method and 15 Hz bandwidth 
expansion. 

The resulting average spectral distortion and percentage of 
outliers is given in Table 6.10. It is observed that the measures 
for both interpolation in the "co-domain" and in the "x-domain" 
are very similar. Hereafter, the interpolation will be done in 
the "x-domain" for LSPs calculated with the methods of Kabal, 
Saoudi, Mixed-LSP and "quantized-search Kabal". 

The reader is reminded that the measures reported in 
Table 6.10 do not represent audible distortion introduced by the 
interpolation processes, but a "distance measure" to a 
(somehow arbitrarily chosen) reference LPC, used to compare 
two different types of interpolation. 

Type of interpolation 

Interpolation in "co-domain" 
Interpolation in "x-domain" 

Average SD 
(dB) 

1.5568 
1.5656 

% 2-4 dB 
outliers 

21.8325 
21.9702 

% >4 dB 
outliers 

4.2183 
4.3733 

Table 6.10: Comparison between interpolation performed in the 
"x-domain" and interpolation performed in the "co-domain". 

6.9. Computational Complexity 

The proposed Mixed-LSP, "quantized-search Kabal" and 
"quantized-search Chan" algorithms are compared in 
complexity with the algorithms of Kabal, Saoudi, and Chan 

136 



Proposed Algorithms for LSP Calculation 

(see § 5.9). The number of operations required by each 
algorithm is shown in Figure 6.7. 

The total number of operations per frame needed to obtain 
the LSPs with the different algorithms is given in Table 6.11. 
Here the algorithms of Chan and Saoudi are considered as they 
are proposed originally in [Chan91] and [Saou92]. A similar 
information is given in Table 6.12, but with the algorithms of 
Chan and Saoudi modified to obtain a quantization 
performance equivalent to the performance obtained with the 
algorithms of Kabal's, Mixed-LSP and "quantized-search 
Kabal" (see § 6.6). 

Methods to obtain the LSPs 

Chan 

"quantized-search Chan" 

Kabal 
Saoudi, nbis. = 8 

Mixed-LSP 

"quantized-search Kabal" 

Mult 

3930 
2220 

730 
706 

390 

394 

Add 

2660 
1520 

1530 
941 
764 

769 

Div 

20 

20 

20 
20 
22 

10 

Sqrt 

5 

Table 6.11: Total number of operations per frame needed to obtain the 
LSPs, using different algorithms. (The algorithms of Chan's 
and Saoudi's are as proposed in [Chan91] and [Saou92]). 

Methods to obtain the LSPs 
Chan with linear interpolation 

Saoudi, nbis. = 11 
Saoudi, nbis. = 10 

Mult 

3950 
946 

866 

Add 

2680 
1241 
1141 

Div 

30 
20 
20 

Sqrt 

Table 6.12: Total number of operations per frame needed to obtain the 
LSPs, using the algorithms of Chan and Saoudi, modified to 
have a quantization performance equivalent to the other 
algorithms, for application in the CELP FS1016. 

Based on Table 6.11 we would conclude that Saoudi's 
algorithm is more efficient than Kabal's. But, as Saoudi's 
algorithm does not have the accuracy required by the 
application (see § 6.6), the comparison is not valid. Saoudi's 
algorithm with 11 bisections and Kabal's algorithm have a 
similar quantization performance. In this case, it is observed in 

137 



Optimized Implementation of Speech Processing Algorithms 

Table 6.11 and Table 6.12 that Kabal's algorithm is less 
computationally expensive. 

Saoudi's algorithm could be used with 10 bisections, with a 
small degradation in the quantization performance, and a 
computational complexity no much higher than in Kabal's 
algorithm. Nevertheless, the use of Kabal's algorithm in the 
CELP FS1016 was preferred, due to the possibility to apply 
directly the bandwidth expansion (see § 6.5). 

Both versions of Chan's algorithm, with and without linear 
interpolation, are computationally too expensive. Originally 
this algorithm was retained for its possible benefits in a 
fixed-point implementation and because the LSPs are obtained 
in the "co-domain", which is the domain in which the 
quantization and interpolation is done in the original CELP 
FS1016 implementation [CELP3.2a]. As it is shown in sections 
6.2 and 6.8, the quantization can be done in the "x-domain" 
with basically no degradation in the performance. On the other 
hand, given the enormous amount of computation required by 
Chan's algorithm, it was preferred to chose Kabal's algorithm 
and do the necessary effort to adapt the algorithm to a 
fixed-point implementation (see Chapter 7). Furthermore, 
direct application of bandwidth expansion is not possible in 
Chan's algorithm. 

The proposed "Mixed-LSP" and "quantized-search Kabal" 
are computationally more efficient than Kabal's algorithm, and 
have a similar quantization performance, but "Mixed-LSP" 
algorithm is specific for an LPC order of 10, while "quantized-
search Kabal" is tied to the utilization of the 34-bit scalar 
quantizer of the CELP FS1016. These three algorithms were 
retained for fixed-point optimization and implementation on a 
DSP56001 processor, as explained next. 

DSP56001 Implementation 

The algorithms of Kabal, Mixed-LSP and "quantized-search 
Kabal", as well as the quantization in the "x-domain" were 
implemented on a DSP56001 with a clock frequency of 20 MHz. 

A simulation of the fixed-point quantization effects was 
done, following the methodology explained in [Gras94] and 

138 



Proposed Algorithms for LSP Calculation 

g (N O 
II. il H 

139 



Optimized Implementation of Speech Processing Algorithms 

[Gras95], in order to determine the minimum word-length and 
the scaling required at every node of the algorithms. The 
results obtained in the study of the quantization effects were 
used for efficient implementation on a DSP56001 processor. 
More details on the implementation and testing are given in 
Chapter 7. 

The computational complexity in MIPS and the maximum 
number of clock cycles needed for processing one frame of 
30 ms are given in Table 6.13 and Table 6.14. The MIPS are 
calculated assuming an "average instruction" of 2 cycles (thus, 
the computational power of a DSP56001 at 20 MHz is 10 
MIPS). 

It is observed that the Mixed-LSP algorithm needs 33 % 
less cycles than Kabal's algorithm, while "quantized-search 
Kabal" algorithm needs 66% less cycles than Kabal's algorithm 
+ quantization. 

Algorithm 

Kabal 
Mixed-LSP 

"Q.-search Kabal" 
Quantization (Q34) 

Number of 

cycles 

10540 
6986 

4262 

2168 

Execution 
time (fjs) 

527.0 
349.3 

213.1 
108.4 

MIPS 

0.1757 
0.1164 

0.0710 
0.0361 

Table 6.13: Computational complexity of the DSP56001 implementation 
of Kabal's, Mixed-LSP and "quantized-search Kabal" 
algorithms, and quantization in the "x-domain" using the 34-
bit scalar quantizer of the CELP FS1016. 

Algorithm 

Kabal + Q34 

Mixed-LSP + Q34 
"Q.-search Kabal" 

Number of 
cycles 

12708 

9154 

4262 

Execution 
time [/M] 

635.4 

457.7 

213.1 

MIPS 

0.2118 

0.1526 

0.0710 

Table 6.14: Total computational complexity on a DSP56001 
implementation, to obtain quantized LSPs, using either the 
methods of Kabal's, Mixed-LSP or "quantized-search Kabal". 

140 



Proposed Algorithms for LSP Calculation 

6.10. Program Listings 

The listings for the C, Matlab, and DSP56001 assembly 
programs, used for the simulation and evaluation of the 
different LSP calculation methods, are given in [Gras97b]. 

6.11. Further Work 

In the case of LPC of order p = 8, using Kabal's method 
(see § 5.9) the LSPs can be calculated as the roots of two 
fourth-order polynomials, P's(x) and Q's(x). As the LSPs are 
real, different, and inside the interval (-L+1), the optimized 
calculation and ordering of the roots of Dio(x), given in 
Appendices D.4 and D.5 (see § 6.1), can be used for efficient 
LSP calculation from 8-th order LPC coefficients. 

For higher order LPC systems, this efficient calculation of 
LSP from 8-th order LPC can be combined with the mixed 
LSP/Parcor representation proposed in [Chan94], for obtaining 
both, better quantization performance and computational 
efficiency. 

Although "quantized-search Kabal" algorithm is more 
efficient than Mixed-LSP and Kabal's, its utilization is tied to 
the 34-bits scalar quantizer of the CELP FS1016. Nevertheless, 
this algorithm could find application in spectral quantization 
systems in which this 34-bit scalar quantizer is used as 
preprocessing, before further scalar quantization [Sade95a] or 
vector quantization [Sade95b]. 

6.12. Conclusions and Summary of the Chapter 

In this chapter two novel efficient algorithms for LSP 
calculation from LPC coefficients, named Mixed-LSP and 
"quantized-search Kabal", were presented. These algorithms 
were compared with the algorithms of Kabal, Chan and Saoudi 
from the point of view of accuracy, reliability and 
computational complexity. 

141 



Optimized Implementation of Speech Processing Algorithms 

It was found that Kabal's algorithm is more accurate and 
computationally efficient than Saoudi's and Chan's algorithms. 

The proposed Mixed-LSP algorithm is computationally less 
expensive but also less accurate than Kabal's method. On the 
other hand, the accuracy of the Mixed-LSP algorithm is 
sufficient for speech coding applications using the 34-bit 
quantizer of the CELP FS1016. 

The accuracy of the Mixed-LSP algorithm can be improved 
using more bisections, at the cost of 10*(4Mult+10Add) 
operations per bisection, and can also be decreased, trading 
precision against computational complexity. In Kabal's method, 
the accuracy can be increased at the cost of more bisections, but 
it cannot be decreased, reducing complexity, without affecting 
the zero-crossing search. 

The Mixed-LSP algorithm can be used not only with scalar 
quantization but also with vector quantization or predictive 
quantization. Its utilization is limited to an LPC order of 10. 
Nevertheless, an LPC order of 10 is used in nearly all the 
standard and emerging low bit rate narrowband speech coders. 
In the case of a higher order LPC, Kabal's algorithm should be 
used, or, alternatively, a mixed LSP/Parcor representation 
combined with Mixed-LSP algorithm. 

"Quantized-search Kabal" algorithm is more efficient than 
Mixed-LSP and Kabal's, but is tied to the utilization of the 
34-bits non-uniform scalar quantizer of the CELP FS1016. 

The results obtained in these chapter are used in the 
DSP56001 implementation of the CELP FS1016 spectral 
analysis block explained the next chapter. 

6.13. References 

[Camp89] J. Campbell et al., "The New 4800 bps Voice Coding 
Standard", Proc. of Military and Government Speech 
Technology, pp. 64-70,1989. 

[CELP3.2a] The US FS1016 based 4800 bps CELP voice coder, Fortran 
and C simulation source codes, version 3.2a (CELP 3.2a). 
Available by ftp from ftp.super.org and other sites. 

142 

ftp://ftp.super.org


Proposed Algorithms for LSP Calculation 

[Chan91] C. Chan and K Law , "An Algorithm for Computing the LSP 
Frequencies Directly from the Reflection Coefficients", Proc. 
European Conference on Speech Communication and 
Technology, EUROSPEECH'91, pp. 913-916,1991. 

[Chan94] C. Chan, "Efficient Quantization of LPC Parameters Using a 
Mixed LSP/Parcor Representation", Proc. EUSIPCO'94, 
Vol. 1, pp. 939-942,1994. 

[Chan95] C. Chan, "An Extremely Low Complexity CELP Speech 
Coder for Digital Telephone Answering Device Applications", 
Proc. Int. Conf. on Signal Processing Applications and 
Technology, ICSPAT95, Vol. 2, pp. 1892-1896,1995. 

[Fede91] "Federal Standard 1016, Telecommunications: Analog to 
Digital Conversion of Radio Voice by 4,800 bit/second Code 
Excited Linear Prediction (CELP)", National 
Communications Systems, Office of Technology and 
Standards, Washington, DC20305-2010,1991. 

[Garo90] J. Garofolo et al., "Darpa TIMIT, Acoustic-phonetic 
Continuous Speech Corpus CD-ROM", National Institute of 
Standards and Technology, NISTIR 493, Oct. 1990. 

[Gras94] S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of 
a VLSI Implementation of a Noise Reduction Algorithm for 
Digital Hearing Aids", Proc. EUSIPCO'94, Vol.3, pp. 1661-
1664,1994. 

[Gras95] S. Grassi, Simulation of Fixed-point Quantization Effects on 
DSP Algorithms, IMT Report No 375 PE 03/95, University of 
Neuchâtel, IMT, 1995. 

[Gras97a] S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini, 
"Efficient Algorithm to Compute LSP Parameters from 10-th 
order LPC Coefficients", Proc. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, ICASSP'97, Vol. 3, pp. 1707-
1710,1997. 

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral 
Analysis and Quantization for the CELP FS1016 Speech 
Coder, IMT Report No 421 PE 10/97, University of 
Neuchâtel, IMT, Oct. 1997. 

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line 
Spectral Frequencies Using Chebyshev Polynomials", IEEE 
Trans, on Acoustics, Speech and Signal Processing, Vol. 34, 
No. 6, pp. 1419-1426, 1986. 

143 



Optimized Implementation of Speech Processing Algorithms 

[Pali95b] K. Paliwal, "Interpolation Properties of Linear Prediction 
Parametric Representations", Proc. European Conference on 
Speech Communication and Technology, EUROSPEECH'95, 
Vol. 2, pp. 1029-1032,1995. 

[Sade95a] H. Sadegh Mohammadi and W. Holmes, "Predictive Delta 
Adaptive Scalar Quantization: an Efficient Method for 
Coding the Short-term Speech Spectrum", Proc. European 
Conference on Speech Communication and Technology, 
EUROSPEECH'95, Vol. 2, pp. 1045-1048,1995. 

[Sade95b] H. Sadegh Mohammadi and W. Holmes, "Low Cost Vector 
Quantization Methods for Spectral Coding in Low Rate 
Speech Coders", Proc. IEEE Int. Conf. on Acoustics, Speech, 
and Signal Processing, ICASSF95, Vol. 1, pp. 720-723,1995. 

[Saou92] S. Saoudi and J. Boucher, "A New Efficient Algorithm to 
Compute the LSP Parameters for Speech Coding", Signal 
Processing, Elsevier, Vol. 28, No. 2 , pp. 201-212,1992. 

[Saou95] A. Goalie and S. Saoudi, "An Intrinsically Reliable and Fast 
Algorithm to Compute the Line Spectrum Pairs (LSP) in Low 
Bit Rate CELP Coding", Proc. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, ICASSP'95, Vol. 1, pp. 728-
731,1995. 

[Tohk78] Y. Tohkura et al., "Spectral Smoothing Technique in Parcor 
Speech Analysis-synthesis", IEEE Trans, on Acoustics, 
Speech and Signal Processing, Vol. 26, No. 6, pp. 587-596, 
1978. 

144 



Chapter 7 
DSP56001 Implementation of the 
CELP FS1016 Spectral Analysis 
and Quantization 

In this chapter, the optimization methodology explained in 
Chapter 3 is used for an efficient real-time DSP56001 
implementation of the CELP FS1016 short-term spectral 
analysis block. The concepts to understand the algorithms and 
algorithmic optimization used in this chapter are given in 
Chapter 5 and 6. 

7.1. Short-term Spectral Analysis and Quantization in 
the CELP FS1016 Coder 

In Section 5.11 it is explained how spectral analysis and 
quantization is done in the CELP FS1016. The different 
functional blocks which were implemented on the DSP56001 
are shown in Figure 7.1. The shadowed regions correspond to 
the following subsystems: 

(1) Calculation of bandwidth expanded LPC. 

(2) LSP calculation and quantization. 

(3) LSP interpolation and conversion to LPC. 

145 



Optimized Implementation of Speech Processing Algorithms 

. O) 

Input Speech 

High-pass Filter 

± Hamming 
Windowing 

T 
Autocorrelation 

J. 
Levinson-Durbin 

;—r-
f 

Bandwidth 
Expansion 

• ( 2 ) 

1 Set Bandwidth Expanded LPC 

1 
Kabal Mixed-LSP 

Quantized-
search Kabal 

Quantization in 
x-domain 

(3) 

. 

1 Set of Quantized LSP 

Interpolation in 
x-domain 

TTTT 
LSP to LPC 

^TTT 
4 Sets of Quantized and Interpolated LPC 

Figure 7.1: Different functional blocks of the CELP FS1016 spectral 
analysis and quantization implemented on DSP56001. 

146 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

The details on the DSP56001 implementation of these three 
subsystems are given in Sections 7.4 to 7.6. .» 

An explanation of the DSP56001 and its arithmetic is given 
in [MOTO90] and [MOT093]. The simulation of the DSP56001 
quantization effects using C language and Matlab is explained 
in Section 3.10. 

In [Segu97], some of the functional blocks shown in 
Figure 7.1 were implemented on a DSP56001. This 
implementation is inefficient because it does not always exploit 
the parallelism and other resources of the DSP56001. 
Nevertheless, the study of the quantization effects done in 
[Segu97], using the methodology described in Chapter 3, as 
well as the algorithm transformations to account for these 
quantization effects are valid. This information was partially 
used in the implementation described in [Grass97b] which is 
presented in this chapter. 

7.2. Testing the Implemented Blocks 

All the functional blocks shown in Figure 7.1 were coded in C 
language (using double-precision floating-point arithmetic) and 
interfaced as Matlab functions. These programs are used to 
characterize the "infinite precision" behavior of each block and 
are the "reference system" to evaluate the degradation in 
performance in the case of a fixed-point implementation. 

Each functional block was then implemented on a 
DSP56001 in assembly language and on a workstation in C 
language, including the DSP56001 arithmetic effects 
(see § 3.10). This C program is thus a "model" of the 
corresponding DSP56001 implementation. Each of these C 
"models" is also interfaced as a Matlab function. 

It was checked that each DSP56001 implementation and its 
corresponding C model have exactly the same output under the 
same input. This verification was carried out using the whole 
TIMIT database. After that, the C model is used to measure the 
performance of the DSP56001 implementation. 

The advantage of this approach is that the C models are 
easily interfaced (within Matlab) with the rest of the system. 
The C models can also be used to try out different 

147 



Optimized Implementation of Speech Processing Algorithms 

implementation options before actually implementing them on 
the DSP56001. 

Each model is introduced in the reference system to obtain 
a modified system, and the deviation from the "infinite-
precision" behavior is observed using spectral distortion 
measure (see § 5.4). In this context, there are two possible ways 
to use this measure. The first way is comparing two sets of LPC 
coefficients, the one produced with the reference system and 
the other with the modified system, using Equations 5.15 to 
5.17. The second way is explained as follows. 

Spectral distortion measure was used in Section 6.2 to 
evaluate LSP-quantization in the "x-domain" on the whole 
TIMIT database. The LSPs were calculated with high accuracy 
and quantized using the 34-bit scalar quantizer of the CELP 
FS1016. All the operations were carried out using double 
precision floating-point arithmetic. The measured average 
spectral distortion, due to the 34-bit scalar quantizer, and the 
percentage of outliers are given in Table 7.1. This corresponds 
to the "infinite-precision" behavior of this system. The 
characterization of this "infinite-precision" behavior was also 
done for other systems which use Kabal's, Mixed-LSP, and 
"quantized-search Kabal" methods for LSP calculation, and is 
given in Table 7.1. In all cases, double precision floating-point 
arithmetic was used. 

The same measurement will be repeated for each modified 
system under test, to observe the deviation from the values 
given in Table 7.1. 

Algorithms to obtain the 
quantized LSPs 

High accuracy + quant, in x 
Kabal + quant, in x 
Mixed-LSP + quant, in x 
Q.-search Kabal 

Ave. SD 
(dB) 

1.53287 
1.53288 
1.53308 

1.53295 

% 2-4 dB 
outliers 

12.34501 
12.34532 

12.36305 

12.35014 

%>4dB 
outliers 

0.18884 
0.18884 
0.18853 

0.18946 

Table 7.1: Quantization performance of different "reference systems" 
differing in their LSP calculation method, and using double-
precision floating-point operations. 

The reader should not confuse "LSP-quantization" which is 
a (desired) functionality to be implemented, with the 

148 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

(undesired) quantization effects introduced in the implemented 
functional blocks due to the use of fixed-point arithmetic. 

7.3. Measure of Computational Complexity 

The maximum number of clock cycles and time needed for 
processing one frame of 30 ms, are used to measure the 
computational complexity of the different blocks. The clock 
frequency is 20 MHz. 

The computational complexity is also given in MIPS 
(million instructions per second) calculated assuming an 
"average instruction" of 2 cycles. The computational power of a 
DSP56001 at 20 MHz is thus 10 MIPS. 

7.4. Calculation of Bandwidth-expanded LPC 

This subsystem does the calculation of the bandwidth-expanded 
LPC vectors, as specified in the CELP FS1016 (see § 5.11). It 
contains the following functional blocks: high-pass filtering, 
30 ms Hamming windowing, calculation of the autocorrelation 
coefficients, Levinson-Durbin recursion, and 15 Hz bandwidth 
expansion [CELP3.2a]. The computational load for the 
DSP56001 implementation of these blocks is given in Table 7.2. 

Algorithm 

High-pass filter 
Windowing 

Autocorrelation 

Levinson-Durbin 

Bandwidth Expansion 

Total 

Number of 
cycles 

3390 
984 

6158 

1592 
52 

12176 

Execution 
time (us) 

169.5 
49.2 

307.9 

79.6 

2.6 

608.8 

MIPS 

0.0565 
0.0164 

0.1026 

0.0265 

0.0009 
0.2029 

Table 7.2: Computational load for the DSP56001 implementation of the 
calculation of the bandwidth expanded LPC coefficients. 

149 



Optimized Implementation of Speech Processing Algorithms 

High-pass Filter 

The input signal is filtered with the second order high-pass 
digital Butterworth filter, with a 100 Hz cut-off frequency 
[CELP3.2a]. The transfer function of the filter is given by: 

H(z) = 0.9459 1_2z~ +Z v 
1 - L889033 z_1 + 0.8948743 z - 2 (7.1) 

This filter was implemented using the canonical direct form II 
[Proa89] shown in Figure 7.2. The gain G = 0.9459 ensures an 
amplification of slightly less than 0 dB in the pass-band. 

The coefficients of the filter are scaled by a factor of two, in 
order to represent them in the fractional arithmetic of the 
DSP56001. By simulation on the TIMIT database, it was found 
that a scaling of 1/32 at the input is needed to avoid overflow in 
the internal nodes of the filter [Segu97]. This scaling is 
compensated at the output of the filter, to avoid unnecessary 
loss of dynamic range. The resulting structure is shown in 
Figure 7.3. 

The filtering is done at every speech sample (240 times per 
frame). It is thus essential to carefully optimize this block, as 
every DSP instruction inside the time loop of the filter would 
add 480 clock cycles per frame to the execution time. 

In the DSP56001 there is no barrel shifter, and a scaling 
needs 1 instruction (2 clock cycles) per factor of two. On the 
other hand, it is possible to realize a scaling by 224 by an 
internal transfer in the accumulator [MOT093]. Thus the 
structure of the filter was modified as shown in Figure 7.4. The 
operations in the shadowed regions are done using 4 MAC 
(multiply accumulate). There is a total of seven arithmetic 
instructions per sample (scaling by 224 and delays are done with 
data transfer). This corresponds to the minimum possible 
number of instructions in the time loop, as the DSP56001 has 
only one ALU. The scheduling of the operations was carefully 
optimized to take advantage of the parallelism of the 
DSP56001, performing all the data transfer in parallel with the 
arithmetic instructions. The time loop contains thus seven 
instructions (14 cycles). 

The high-passed values are stored in X memory, at the 
same location of the input data. 

150 



DSPS6001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

Xn ^ - < + > 
bO 
i > — • © - Y n 

a1 b1 
b0=1 
b1=-2 

a2 
I 

-D>—*© b2=1 
G = 0.9459 
a1 =1.889033 
a2=-0.8948743 b2 

Figure 7.2: Canonical direct form II structure of the high-pass filter. 

Figure 7.3: Scaling factors in the high-pass filter. 

2MAC 
G/64 2 16*2"23 2 2 4 

Xn 0 * @ > j )> •<+) 0 - Y n 

e*—<H 
-1 

% 

: -32*2"23 

-H>—*® 
-1 

16.2-23 

2MAC 

Figure 7.4: High-pass filter, as implemented on the DSP56001. 

151 



Optimized Implementation of Speech Processing Algorithms 

In the implementation of all the functional blocks shown in 
Figure 7.1 that are explained in the following sections, there is 
a kind of optimization that was always done (although not 
always mentioned explicitly): as much of the data transfer as 
possible is done in parallel to the arithmetic instructions. The 
high-pass filter implementation is a good example of this kind 
of optimization. 

Windowing 

As the 240 coefficients of the Hamming window are in the 
range [-1,+1) no scaling is needed. These coefficients are 
quantized to 24 bits for storage in the DSP56001 memory. The 
quantization effects introduced are negligible. As the high-
passed signal values are stored in X memory the window 
coefficients are stored in Y memory to take advantage of the 
parallelism of the DSP56001. One instruction is needed for 
performing multiplication and fetching the next sample and its 
corresponding window coefficient. Another instruction is used 
to store the windowed samples in both X and Y memory, for 
efficient implementation of the next functional block. A total of 
two instructions (4 cycles) per sample is needed. 

Calculation of the Autocorrelation Coefficients 

The autocorrelation coefficients {ro,ri,...,rio} needed by the 
Levinson-Durbin recursion (see § 5.2) are calculated as: 

239 
rk = S shw (n) • shw(n - k) ,_ 0 , 

n=k ('•*> 

here {shw(n)} are the high-passed and windowed speech 
samples, which are in the range [-1,+1). Thus, the 
autocorrelation coefficients are limited by: 

239 

| rk |< |r0 |< ]Tw(n)2 = 94.9850 < 27 k =1,...,10 
n=o y'-d) 

152 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

When the inner product of Equation (7.2) is done using MAC 
operations and the partial sum is accumulated in the 
DSP56001 accumulators A or B, there is no overflow. The 56-bit 
dynamic range of the accumulator registers can largely 
accommodate the dynamic range needs of this operation. 

A problem arises when the correlation coefficient have to be 
stored in 24-bit X or Y memory, or used in the 24-bit input of 
the multiplier. It was found by simulation [Segu97] that the 
dynamic range of the autocorrelation coefficients is larger than 
24 bits. This is due to the signal multiplication observed in 
Equation (7.2) that doubles the dynamic range of the signals. 
The problem could be overcome by storing the variables in the 
48-bit concatenated XY memory. But, as this coefficients are 
used in the Levinson-Durbin recursion, time-consuming long-
word multiplications and divisions would be needed [Moto93]. 

An efficient solution is to reduce the dynamic range of the 
(rit) by means of normalization steps. The first autocorrelation 
coefficient or energy, ro, is calculated on the accumulator A and 
then normalized using 23 normalization instructions of the 
DSP56001, obtaining a mantissa mo and exponent eo: 

r 0 = m 0 - 2 e 0 

0.5 < m0 < 1 (7.4) 

The mantissa is stored in a 24-bit register for further use, and 
the exponent is used to scale the correlation coefficients: 

r¿=r k -2" e ° fork = 1,...,10 

r ,5=r 0 -2- e o =m 0 (7.5) 

Note that this scaling does not change the functionality of the 
Levinson-Durbin recursion (see Equation 5.12). From 
Equations (7.3) to (7.5) it is seen that: 

|r£|<r¿ = m 0 < l (7.6) 

the scaled correlation coefficients are within the range [-1,+1). 
Also, the scaling reduces the dynamic range of the correlation 
coefficient so that the {r£} can be represented with 24-bit for 
storage and further use as input of the multiplier. 

The calculation of each of the 11 correlation coefficients 
uses a loop repeated (240-k) times. Thus any extra instruction 

153 



Optimized Implementation of Speech Processing Algorithms 

inside this loop would add 5170 clock cycles per frame to the 
execution time. It is thus essential to reduce the number of 
instructions in the loop to the bare minimum. The windowed 
samples were stored in both X and Y memory in the windowing 
operation, to take advantage of the parallelism of the 
DSP56001. In this way, only one instruction (2 cycles) is needed 
inside the loop, for performing multiplication and accumulation 
and fetching the next samples Shw(n) and Shw(n - k). 

Levinson-Durbin Recursion 

The Levinson-Durbin recursion is used to calculate the 10-th 
order LPC coefficients {aio(k)} from the autocorrelation 
coefficients as shown in Equation (5.12). The autocorrelation 
coefficients were calculated and dynamically scaled as 
explained in the previous subsection, to obtain a set of bounded 
autocorrelation coefficients, {!•£}, which have reduced dynamic 
range needs. The use of this scaled correlation coefficients also 
decreases the dynamic range needed in the Levinson-Durbin 
recursion and makes it easier to prevent overflows. 

It was found by simulation that the final LPC coefficients 
(aio(k)} need a scaling of 1/16 to be represented in the fractional 
arithmetic of the DSP56001. The Levinson-Durbin recursion 
was modified to include this scaling, as shown in 
Equation (7.7). 

Bandwidth Expansion 

In bandwidth expansion (see § 5.3) each LPC coefficient aio(k) 
is multiplied by a factor 0.994k. This operation is similar to the 
windowing. The ten expansion factors are quantized to 24-bit 
and stored in Y memory, while the LPC coefficients are stored 
in X memory. One instruction is needed for performing 
multiplication and fetching the next aio(k) and its 
corresponding expansion factor. Another instruction is used to 
store the expanded LPC coefficients in X memory, overwriting 
the original LPC coefficients. 

154 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

k,=-4 

(1-

' 2 + k l r í 

e! = r ¿ ( l - k í ) 

k 2 = -

a2(l) =
 k Ä k , a2(0) = ¿ , a2(2) = ^ 

16 16 16 
for m = 3,...,10: 

£ m = £ m - l ( l - k m ) 

a m (m) = ^ , am(0) = ¿ 

k m = 1 6 a m ( m ) 

Lam(j) = B 1 n - 1 ( J ) + k ^ a ^ G n - j ) for l < j < m (7.7) 

Experimental Evaluation of the Calculation of Bandwidth 
Expanded LPC 

Spectral distortion measure was used to compare the 
bandwidth expanded LPC obtained with the DSP56001 
implementation and with a C (double precision floating-point) 
program. The measured average spectral distortion was 
0.013 dB. 

Also, a reference system using high accuracy method for 
LSP calculation and double precision floating-point arithmetic 
is compared with a modified system. The modified system is 
obtained by substituting, in the reference system, the 
calculation of bandwidth expanded LPC by its corresponding 
DSP56001 model. The quantization performance is measured in 
both systems and given in Table 7.3. It is observed that the 
degradation introduced in the performance is negligible. 

155 



Optimized Implementation of Speech Processing Algorithms 

Reference system 

Modified system 

Ave. SD 
(dB) 

1.53287 

1.53310 

% 2-4 dB 
outliers 

12.34501 

12.34874 

%>4dB 
outliers 

0.18884 

0.18899 

Table 7.3: Quantization performance of the "reference system" and the 
modified system which uses DSP56001 LPC calculation. 

7.5. LSP Calculation and Quantization 

Algorithmic optimization of LSP calculation and quantization is 
discussed in Chapter 6. Based on comparisons in accuracy, 
reliability and computational complexity, three LSP calculation 
algorithms were retained for DSP56001 implementation. These 
algorithms are Kabal's, Mixed-LSP and "quantized-search 
Kabal". 

As the LSPs obtained with Kabal's and Mixed-LSP 
algorithm are in the "x-domain", the quantization is done in 
this domain for computational saving (see § 6.2). Furthermore, 
in the "quantized-search Kabal" algorithm, the LSP calculation 
and quantization are embedded for efficiency (see § 6.3). 

The computational load for the DSP56001 implementation 
of the different functional blocks is given in Table 7.4. Details 
on the implementation of these blocks are given in the next 
subsections. In Table 7.5, the total computational load for the 
three implemented ways to obtain quantized LSP is given. 

Algorithm 

Kabal 
Mixed-LSP 
"Q.-search Kabal" 
Quantization (Q34) 

Number of 
cycles 

10540 
6986 
4262 

2168 

Execution 
time ((Js) 

527.0 

349.3 
213.1 
108.4 

MIPS 

0.1757 
0.1164 

0.0710 
0.0361 

Table 7.4: Computational load for the DSP56001 implementation of 
LSP-quantization and Kabal's, Mixed-LSP and "quantized-
search Kabal" algorithms for LSP calculation. 

156 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

Algorithm 

Kabal + Q34 
Mixed-LSP + Q34 

"Q.-search Kabal" 

Number of 
cycles 

12708 
9154 
4262 

Execution 
time [jLw] 

635.4 

457.7 

213.1 

MIPS 

0.2118 
0.1526 
0.0710 

Table 7.5: Total computational load for DSP56001 implementation, to 
obtain quantized LSPs, using either the methods of Kabal's, 
Mixed-LSP or "quantized-search Kabal". 

Kabal's Algorithm 

Kabal's algorithm for LSP calculation is explained in 
Section 5.9. The main arithmetic task in this algorithm is 
polynomial evaluation which is done with the efficient 
recursion of Equation (5.32). It was found, by simulation on the 
TIMIT database, that a scaling of 1/64 is needed on the 
coefficients {q'i} and {p'i}. As the LPC coefficients aio(k) were 
already scaled by 1/16 in the Levinson-Durbin recursion, they 
are scaled by 1/4, before using them in the calculation of {q'i} 
and (p'i) with Equation 5.27. The recursion of Equation 5.32 
was modified to account for this scaling: 

temp! = 2 • X; /64 + pi 

temp2 = 2 • X; • tempx -1/64 + p2 

tempo = 2 • x¡ • temp2 - tempx + p'3 

temp! = 2 • Xj • temp0 - temp2 + P4 
temp2 = Xj • temp1 - temp0 + 0.5 • j>'5 (7.8) 

For the zero-crossing search and bisections, only the sign of 
temp2 is used. On the other hand, a linear interpolation is done 
on the final interval, using the last two values calculated with 
Equation (7.8). As this two values are close to zero, they are 
scaled up by 32, before moving them to a 24-bit register to 
avoid excessive round-off error in the linear interpolation. 

157 



Optimized Implementation of Speech Processing Algorithms 

Experimental Evaluation ofKabal's Algorithm Implementation 

A reference system using Kabal's method for LSP calculation 
and double precision floating-point arithmetic is compared with 
a modified system. The modified system is obtained by 
substituting, in the reference system, Kabal's algorithm by its 
corresponding DSP56001 model. 

The LSPs obtained with the reference and the modified 
system were converted to LPC, and compared using spectral 
distortion measure. The measured average spectral distortion 
was 0.0023 dB. 

Quantization performance is measured in both the 
reference and the modified system and given in Table 7.6. It is 
observed that there is no degradation in the performance due to 
the DSP56001 implementation of Kabal's algorithm. 

Reference system 

Modified system 

Ave. SD 
(dB) 

1.53288 

1.53287 

% 2-4 dB 
outliers 

12.34532 

12.34454 

%>4dB 
outliers 

0.18884 

0.18884 

Table 7.6: Quantization performance of the "reference system" and the 
modified system which uses DSP56001 Kabal's algorithm. 

Mixed-LSP 

Mixed-LSP algorithm for LSP calculation is explained in 
Section 6.1. In this algorithm the roots of the 4-th order 
polynomial Dio(x) are calculated and ordered, to obtain the 
intervals containing a zero-crossing. The position of the zero-
crossings are refined by five bisections and a final linear 
interpolation, similarly to Kabal's method. 

The root calculation and ordering is explained and 
optimized in Appendix D.4 to D.5. As this calculation is a 
highly non-linear algorithm, care must be taken in scaling the 
internal nodes of this algorithm, as the propagation of the 
amplification is non-linear. 

First a simulation was done to determine the optimum 
scaling, and then this scaling was partially included in the 
algorithm, taking into account its (non-linear) propagation 

158 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

through the algorithm. The algorithm was then re-simulated, to 
determine again the needed scaling. Several steps of this 
optimization were done, until an algorithm that has all the 
internal signals and parameters in the range [-1,+1) was 
obtained. It was also checked that the dynamic range did not 
exceed 24 bits. 

As there is no square root operation in the DSP56001, the 
five square roots were done using a 4-th order polynomial 
fitting in the region 0.5 < x < 1: 

f(x) = Vx = p0 + P1 • x + p2 • x
2 + p3 • x

3 + p4 • x
4 

0.5 < x < 1 (7.9) 

The argument of the square root is normalized using 23 
normalization instructions, obtaining a mantissa x and 
exponent e: 

arg = x-2 e , 0 . 5 < x < l (7.10) 

The square root of the mantissa is done with the following 
polynomial evaluation: 

temp = P3 + x • p4 

temp = p2 + x • temp 
temp = P1 + x • temp 

temp = P0 + x • temp (7.11) 

and the result is multiplied by V2 if the exponent is odd, and 
shifted by half of the exponent. In total, a square root 
evaluation needs 140 clock cycles. 

Once the intervals containing the zero-crossings are found, 
the rest of the implementation (bisections and linear 
interpolation) is done as in Kabal's algorithm, previously 
explained. 

Experimental Evaluation of Mixed-LSP Implementation 

A reference system, using Mixed-LSP method for LSP 
calculation and double precision floating-point arithmetic, is 
compared with a modified system. The modified system is 

159 



Optimized Implementation of Speech Processing Algorithms 

obtained by substituting, in the reference system, Mixed-LSP 
algorithm by its corresponding DSP56001 model. 

The LSPs obtained with the reference and the modified 
system were converted to LPC, and compared using spectral 
distortion measure. The measured average spectral distortion 
was 0.0011 dB. 

Quantization performance is measured in both the 
reference and the modified system and given in Table 7.7. It is 
observed that there is no degradation in the performance. 

Reference system 

Modified system 

Ave. SD 
(dB) 

1.53308 

1.53308 

% 2-4 dB 
outliers 

12.36305 

12.36274 

% >4 dB 
outliers 

0.18853 

0.18853 

Table 7.7: Quantization performance of the "reference system" and the 
modified system which uses DSP56001 Mixed-LSP algorithm. 

Quantized-search Kabal 

"Quantized-search Kabal" algorithm for LSP calculation (and 
quantization) is explained in Section 6.3. In this algorithm the 
search for zero crossings is done on the grid defined by the 
quantization levels of the 34-bit quantizer of Figure 5.5. 
(converted to the "x-domain"). 

The values of the quantization tables of Figure 5.5 were 
quantized to 24 bits for storage in the DSP56001 memory. The 
quantization effects introduced are negligible. This tables were 
converted to the "x-domain" using the mapping Ci = COS(2TC f¡), 
thus the values are in the range [-L+1), and no scaling is 
needed. 

Polynomial evaluation is done using the efficient Kabal's 
recursion of Equation (5.32), thus the scaling and quantization 
issues are the same as in Kabal's algorithm, previously 
explained. In particular, the modified recursion given in 
Equation (7.8) is used. In appendix E.l it is shown that the 
maximum possible number of polynomial evaluations is 71 
(while it is 150 in Kabal's algorithm). This number is used in 

160 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

the calculation of the maximum number of clock cycles and 
time needed for processing one frame of 30 ms. 

To avoid expensive comparisons, the quantization tables of 
Figure 5.5 were modified to include, with each quantization 
level, an index (offset) to the first "allowed" value of the next 
quantization table. Also, some flags indicating conditions such 
as "first element of the table", "last element of the table" and 
"particular case of qxs" (qxs = 0.2563, qxs = 0.0392, or 
qxs= -0.1175) are stored in the quantization table, to be used 
in the control flow of the algorithm. 

The flow control of the algorithm was simplified by the use 
of two flags, called "mark" and "last_mark", which are used to 
keep track of the conditions needed in the correction criteria 
(see § 6.3). The use of these two flags is explained as follows. 

The flag "last_mark" is cleared at the beginning of the 
algorithm. This flag is used to store the value of "mark" at the 
end of the last search for a quantized LSP. 

At the beginning of the search for a quantized LSP, the flag 
"mark" is set to one, to indicate that the first allowed value of 
the quantization table is being tested. This value of the 
quantization table is used in the polynomial evaluation of 
Equation (7.8). If the zero-crossing is not detected, the flag 
"mark" is cleared, indicating that the zero crossing is not a t the 
first allowed value, and the search proceeds, testing the next 
value of the quantization table, until either the zero crossing is 
detected, or the last element of the table is reached. 

Then, the flag "mark" is used to decide whether a "single-
correction" ("mark" = 0) or a "coupled-correction" ("mark"=l) is 
to be tested. 

If the position of the quantized LSP is single- or coupled-
corrected, the value of "mark" is set to one, to indicate that a 
coupled correction cannot be done in the next search. 

If the 5-th quantized LSP takes one of these three values: 
qxs= 0.2563, qxs= 0.0392, or qx5= -0.1175, the flag "mark" is 
set to one, to indicate tha t a coupled correction cannot be done 
in the next search. 

Then the flag "mark" is copied onto "last_mark" to be used 
in the next search (if "last_mark"=l, coupled correction cannot 
be done). 

161 



Optimized Implementation of Speech Processing Algorithms 

The resulting algorithm is robust and simple in its 
implementation. In Table 7.5 it is observed that this algorithm 
needs 66 % less cycles than Kabal's algorithm + quantization 
and 53 % less cycles than Mixed-LSP algorithm + quantization. 

Experimental Evaluation of Q.-search Kabal Implementation 

A reference system, using "quantized-search Kabal" for LSP 
calculation and double precision floating-point arithmetic, is 
compared with a modified system. The modified system is 
obtained by substituting, in the reference system, "quantized-
search Kabal" algorithm by its corresponding DSP56001 model. 

The LSPs obtained with the reference and the modified 
system were converted to LPC, and compared using spectral 
distortion measure. The measured average spectral distortion 
was 0.0072 dB. 

Quantization performance is measured in both the 
reference and the modified system and given in Table 7.8. It is 
observed that there is no degradation in the performance. 

Reference system 

Modified system 

Ave. SD 
(dB) 

1.53295 
1.53292 

% 2-4 dB 
outliers 

12.35014 
12.34967 

% >4 dB 
outliers 

0.18946 
0.18946 

Table 7.8: Quantization performance of the "reference system" and the 
modified system which uses DSP56001 "quantized-search 
Kabal" algorithm. 

LSP Quantization in the "x-domain" 

The algorithm for LSP quantization in the "x-domain" is 
explained in Section 6.4. This algorithm is used to quantize the 
LSPs which were first calculated with the methods of Kabal or 
Mixed-LSP. 

This algorithm for LSP quantization is very similar to the 
"quantized-search Kabal" algorithm, except that the actual 

162 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

LSPs are known. Thus the single- and coupled-correction 
criteria of Equations (6.4) and (6.9) are used. 

Efficient DSP56001 implementation is obtained with the 
use of flags and offsets, as it is done in the implementation of 
"quantized-search Kabal" explained previously. 

Experimental Evaluation of LSP Quantization in the 
"x-domain" 

A reference system using high accuracy method for LSP 
calculation and double precision floating-point arithmetic is 
compared with a modified system. The modified system is 
obtained by substituting, in the reference system, LSP 
quantization by its corresponding DSP56001 model. 

Both systems gave exactly the same LSP indices. The only 
source of error is due to the 24-bit representation (for storage in 
the DSP56001 memory) of the quantization tables. 

Quantization performance is measured in both the 
reference and the modified system and given in Table 7.9. It is 
observed tha t there is no degradation in the performance. 

Reference system 
Modified system 

Ave. SD 
(dB) 

1.53287 
1.53284 

% 2-4 dB 
outliers 

12.34501 

12.34516 

% >4 dB 
outliers 

0.18884 
0.18884 

Table 7.9: Quantization performance of the "reference system" and the 
modified system which uses DSP56001 LSP-quantization. 

7.6. LSP Interpolat ion and Conversion to LPC 

In this subsystem, two adjacent sets of quantized LSP 
parameters are interpolated obtaining four sets of LSP 
parameters, which are then converted to LPC coefficients to be 
used in the synthesis filter (see § 5.11). The computational load 
for the DSP56001 implementation of these blocks is given in 
Table 7.10. 

163 



Optimized Implementation of Speech Processing Algorithms 

Algorithm 

Interpolation 

4 set LSP to 4 set LPC 

Number of 
cycles 

236 

906 

Execution 
time (fis) 

11.8 
45.3 

MIPS 

0.0039 

0.0151 

Table 7.10: Computational load for the DSP56001 implementation of LSP 
interpolation and conversion to LPC. 

Algorithmic optimization of LSP interpolation and 
conversion to LPC is discussed in Section 5.10 and 6.8. 

In Section 6.8 it is shown that LSP interpolation can be 
done in the "x-domain" instead of "co-domain". As the LSPs 
obtained with the methods of Kabal, Mixed-LSP and 
"quantized-search Kabal" are in the "x-domain", the 
computationally expensive conversion from "x-domain" to 
"co-domain" for interpolation, and then from "co-domain" to 
"x-domain" for LSP to LPC transformation is avoided. 

In Section 5.10, three methods for LSP to LPC 
transformation are discussed. It is shown that Kabal's method 
is the least expensive. Besides, this algorithm is highly regular 
and numerically stable which is advantageous for efficient 
implementation. 

As the quantized LSPs used in the linear interpolation are 
in the range [-L+1), the resulting interpolated LSPs are also in 
this range. The weights used in the interpolation, given in 
Table 5.1 are also in the range [-L+1). Furthermore, the 
dynamic range needs of the interpolation operation can largely 
be accommodated in 24-bits registers. 

In LSP to LPC conversion, it was found that a scaling of 
1/32 is needed in the recursion of Equation C. 7, which is 
modified as follows: 

164 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

c 1 0 = - x x / 3 2 c ' 1 0 = - x 2 / 3 2 

C20 = - 2 • X3 • C10 + Ï/32 C20 = - 2 • X4 ' c'10 + 1/32 

C2 1= 2 ( C 1 0 - X 3 / 3 2 ) c2 1 = 2 ( c i 0 - x 4 / 3 2 ) 
c30 = _ 2 • X5 • C20 + C21 C30 = - 2 • X6 • C20 + C21 

C31 = 2 - ( c 2 0 - X 5 c 2 1 )+ 1/32 C31 = 2 - ( c 2 0 - x 6 C21)+1/32 

C32 — C21 —2- x 5 /32 c32 = c21 — 2-x 6 /32 
c40 = - 2 • X7 • C30 + c3 1 C40 = - 2 • x 8 • C30 + C31 

c4i = 2 ( c 3 0 - x 7 C31) + C32 C41 = 2-(c30 - x 8 C31)+C32 

c42 = C31 - 2 • X7 • C32 + 1/32 C42 = C31 - 2 • x 8 • C32 + 1/32 

c 43 = C32 - 2 x 7 / 3 2 C43 = C 3 2 - 2 x 8 / 3 2 
c50 - "2 • x 9 • C40 + C41 C50 = - 2 • X10 • C40 + C41 

Pi = 2 ( c 4 o - x 9 C 4 1 ) + c4 2 q 4 = 2 ( c 4 0 - x 1 0 c 4 1 ) + c 4 2 

P3 = c 4 i - 2 x 9 - C 4 2 + C 4 3 q3 = C 4 1 - 2 - x 1 0 - C 4 2 + C43 

p'2 = c 4 2 - 2 - x 9 - c 4 3 + l / 3 2 q 2 = C 4 2 - 2 x 1 0 C43+ 1/32 

P i = C 4 3 - 2 x 9 / 3 2 qi = c 4 3 - 2 x 1 0 / 3 2 

P s = 2 C 5 0 q 5 = 2 c 5 0 

(7.12) 

The scaling by 1/32 is done with a multiplication (2 cycles) 
instead of 5 shifts (10 cycles). The last terms of the recursion 
give the coefficients {q'i} and {p'¡} scaled by a factor of 1/32. This 
coefficients are used to obtain the LPC coefficients: 

a i = P Í + q ' i a 1 0 = p i - q i + l/16 

a2 = (p2 + Pi)+(q'2 - qi) a9 = (p2 + P i ) - (q2 - qi) 

a3 =(p3 +P2)+(q3 -Qa) a8 = ( p 3 + p ' 2 ) - ( q 3 - q 2 ) 

a 4 = ( P 4 + P 3 ) + ( q 4 - q 3 ) a 7 = ( P ; + p 3 ) - ( q 4 - q 3 ) 

a 5 = ( P 6 + P i ) + ( I s - Q i ) a6 = ( p 5 + p 4 ) - ( q ' 5 - q 4 ) (7.13) 

Note tha t the obtained LPC coefficients are scaled by a 
factor of 1/16, which is needed to avoid overflows. This scaling 
should be taken into account in the implementation of the 
synthesis filter for the stochastic codebook search. 

165 



Optimized Implementation of Speech Processing Algorithms 

Experimental Evaluation of LSP Interpolation and Conversion 
to LPC 

The reference system contains all the algorithms to obtain the 
four interpolated LPC, and uses high accuracy method for LSP 
calculation and double precision floating-point arithmetic. 

The modified system is obtained by substituting, in the 
reference system, the LSP interpolation and conversion to LPC, 
by its corresponding DSP56001 model. 

Both systems are compared using spectral distortion 
measure. The measured average spectral distortion was 
0.00083 dB, and the maximum value of spectral distortion was 
0.017 dB. 

It is seen that the distortion introduced by this subsystem 
is really small, due to the numerical robustness of Kabal's 
method for LSP to LPC conversion and the fact that the 
interpolation was done in the "x-domain" avoiding (inexact) 
trigonometric calculations. 

7.7. Total Computational Complexity 

In Figure 7.1 it is observed that three possible ways to obtain 
the 4 sets of interpolated LPC, from 30 ms of speech (240 
samples) were implemented. These three variants depend on 
the LSP calculation method used, which is either Kabal's, 
Mixed-LSP or "quantized-search Kabal". The total 
computational load for each variant is given in Table 7.11. 

LSP calculation 
method 

Kabal 
Mixed-LSP 

"Q.-search Kabal" 

Number of 
cycles 

26026 
22472 

17580 

Execution 
time [fis] 

1301.3 

1123.6 

879.0 

MIPS 

0.4338 

0.3745 

0.2930 

Table 7.11: Total computational load for DSP56001 implementation to 
obtain the four sets of interpolated LPC, from a frame of 240 
speech samples. Three variants are shown, depending on the 
LSP calculation method used. 

166 



DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

7.8. Program Listings 

The listings for the C, Matlab, and DSP56001 assembly 
programs are given in [Gras97b]. 

7.9. Further Work 

The optimization of the implementation of the CELP FS1016 
spectral analysis and quantization can be seen as a preparation 
for an optimal low power, small size custom VLSI 
implementation. The careful algorithmic optimization and 
transformation of the algorithms to improve the use of the 
dynamic range available and to prevent overflows, is of great 
importance for an optimal VLSI implementation. 

In Table 7.11 it is observed that the most efficient 
implementation is the one that uses "quantized-search Kabal" 
for LSP calculation. This implementation should be chosen for 
the VLSI implementation. 

The next step is to use the quantized C models to find the 
minimum wordlength needed, while keeping an acceptable 
performance. Preliminary work suggests that a word-length of 
16 to 20 is needed as input of the multiplier and storage. The 
accumulator of the ALU should have 32 to 40 bits, plus 8 bits 
extension. 

For the VLSI implementation, we propose an architecture 
similar to the one of the DSP56001, with a bit-parallel MAC 
and separate X and Y data memories, buses and address 
generation units. Only the subset of instructions used in the 
algorithms need to be implemented. As the sequencing of 
DSP56001 instructions was carefully optimized, it can be used 
directly in the controller of the designed unit. 

In the efficient implementation of the CELP FS1016 it is 
also of great importance to optimize the search on the 
stochastic codebook, using methods such as the methods 
proposed in [Bour97] or [Chan95]. 

167 



Optimized Implementation of Speech Processing Algorithms 

7.10. Conclusions and Summary of the Chapter 

In this Chapter, the optimized implementation of the CELP 
FS1016 spectral analysis and quantization on a DSP56001 was 
presented. The key points for this optimized implementation 
are careful algorithmic optimization, study of the fixed-point 
quantization effects, and careful match between algorithms and 
target architecture. 

Algorithmic optimization is discussed in Chapter 6, and 
deals with the choice and modification of the algorithms, as 
well as their optimal interrelation in the whole system. 

The study of the quantization effects is done to find the 
optimum scaling, modifying the algorithms to include this 
scaling and also to improve the use of the dynamic range 
available. This is done by using normalization and 
denormalization at some localized nodes of the algorithms 
which have higher dynamic range needs. 

The parallelism of the DSP56001 is exploited, trying to 
perform as much as the data transfer as possible in parallel to 
the arithmetic instructions. 

Finally, it is shown that the optimal implementation on a 
fixed-point commercial DSP such as the DSP56001 can be seen 
as a preparation for an optimal low power, small size, custom 
VLSI implementation. 

7.11. References 

[Bour97] M. Bouraoui et al., "HCELP: Low Bit Rate Speech Coder for 
Voice Storage Applications", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'97, Vol. 2, 
pp. 739-742,1997. 

[CELP3.2a] The US FS1016 based 4800 bps CELP voice coder, Fortran 
and C simulation source codes, version 3.2a (CELP 3.2a). 
Available by ftp from ftp.super.org and other sites. 

[Chan95] C. Chan, "An Extremely Low Complexity CELP Speech 
Coder for Digital Telephone Answering Device Applications", 
Proc. Int. Conf. on Signal Processing Applications and 
Technology, ICSPAT95, Vol. 2, pp. 1892-1896,1995. 

168 

ftp://ftp.super.org


DSP56001 Impl. of the CELP FS1016 Spectral Analysis and Quantization 

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral 
Analysis and Quantization for the CELP FS1016 Speech 
Coder, IMT Report No 421 PE 10/97, University of 
Neuchâtel, IMT, Oct. 1997. 

[MOTO90] DSPS6000/DSP56001 Digital Signal Processor User's 
Manual, DSP56000UM/AD Rev.2, Motorola Inc., 1990. 

[MOT093] A. Chrysafis and S. Lansdowne, "Fractional and Integer 
Arithmetic Using the DSP56000 Family of General-purpose 
Digital Signal Processors", APR3/D Rev. 1, Motorola Inc., 
1993. 

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal 
Processing, Macmillan, New York, 1989. 

[Rupp96] B. Rupp, Implantation Temps Réel d'un Codec CELP selon la 
norme "U.S. Fédéral Standard 1016" sur un Processeur de 
Traitement de Signal DSP56001, (in French), practical 
semester project, winter semester 1995/96, Ecole 
polytechnique fédérale de Lausanne, Laboratoire de 
microtechnique EPFL - UNI NE, Neuchâtel, 1996. 

[Saou95] A. Goalie and S. Saoudi, "An Intrinsically Reliable and Fast 
Algorithm to Compute the Line Spectrum Pairs (LSP) in Low 
Bit Rate CELP Coding", Proc. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing, ICASSP'95, Vol. 1, pp. 728-
731,1995. 

[Segu97] F. Seguin, Implantation en Temps Réel d'un Codec CELP sur 
un Processeur de Traitement de Signal DSP56001, (in 
French), diploma work, winter semester 1996/97, Ecole 
polytechnique fédérale de Lausanne, Laboratoire de 
microtechnique EPFL - UNI NE, Neuchâtel, 1997. 

169 



Chapter 8 
Conclusions 

The research presented in this Ph.D. report addressed the 
optimized implementation of some functional blocks which are 
found frequently in digital speech processing applications. 

It was shown that algorithmic optimization and the choice 
of a fixed-point arithmetic are essential to meet the tight 
constraints in power consumption and size of applications such 
as digital hearing aids or portable communications devices. 

A methodology for optimization of speech processing 
algorithms was proposed, as well as a practical and simple 
method for evaluating fixed-point quantization effects on these 
algorithms. Although the application is restricted to digital 
speech processing algorithms, the method presented is general 
enough to be easily extended to other classes of DSP 
algorithms. 

The developed method allows the simulation of a system in 
final working conditions and at the same time benefit of the 
flexibility of using a high level language, independently of the 
hardware. In this way, different implementation possibilities 
can be easily tried out, before doing the actual implementation. 

The proposed optimization methodology was used in the 
implementation of a noise reduction/speech enhancement 
algorithm for digital hearing aids on a fixed-point commercial 
DSP and using a low power VLSI architecture. 

Two novel efficient algorithms for LSP calculation from 
LPC coefficients, named Mixed-LSP and "quantized-search 

171 



Optimized Implementation of Speech Processing Algorithms 

Kabal" were presented. These proposed LSP calculation 
algorithms were compared with existing algorithms from the 
point of view of accuracy, reliability and computational 
complexity. 

Kabal's algorithm was found to be the most efficient and 
accurate of the existing methods. This algorithm, as well as 
Mixed-LSP and "quantized-search Kabal", were implemented 
on a DSP56001 and their computational complexity in MIPS 
was compared. It was found that "quantized-search Kabal" 
algorithm was more efficient than Kabal's algorithm, for the 
implementation in the CELP FS1016 speech coder. 

These results were used in the efficient DSP56001 
implementation of the CELP FS1016 spectral analysis and 
quantization. 

To summarize, the key points for optimized low power 
implementations are careful algorithmic optimization, study of 
the fixed-point quantization effects, and careful match between 
algorithms and target architecture. 

Possible extensions of the work done were given at the end 
of Chapter 4, 6 and 7. 

172 



Appendix A 
Fixed-point Quantization Effects 

A.l. Macros and Functions to Simulate Different Types 
of Truncation or Rounding 

/* rounding */ 
#define RNDl(a) (((a)<0) ? ceil ((a-0.5) :floor ((a)+0.5)) 

/* 2sc truncation */ 
#define TCTRNK(a) (floor(a)) 

/* Sign magnitude truncation */ 
tdefine SMTRNK(a) (((a) < 0) ? ceil(a) : floor(a)) 

/* convergent rounding */ 
#define RND(a) crnd(a, prec) 

/* convergent rounding */ 
double crnd(double a, int prec) 
{ 

double al; long a0; 

a0= 2.0*conv[prec]*fabs(modf(a,&al)) ; 

if (a < 0) a= ceil(a-0.5) ; 
else a= floor(a+0.5); 

/* Correction for convergent rounding */ 
if ((aO==conv[prec])&&(fmod(al,2.0)==0)) 

(a < 0) ? (a++) : (a--); 

return a; 
} 

173 



Optimized Implementation of Speech Processing Algorithms 

A.2. Block Diagram of the DSP56001 

0) O) 

mm 

(Ort 
1-CM 

s £^° 
Q E M CVI 

CM CM 

5 5 „ 

a * x x l 
<0 (O <f 
¡n in S 
CM CM 

1IÏÏI 
ili! 

IjSl 

m 

j\? I^» !$• 

Ij'l i 

« H i 

II 

f j 9 « 
S 

BJ g 
05 

^P ^n ^P ^P 

11 

- J . 1 - * . 

• » - • 

t -

go 

- T 
• • 

i 
i 
i 

ri" 
i 
i 

i 
i 
i 

Q. 
(0 
Q O 

S ° go 
IO 
IO 

• f - T 

I 

< 

S 

(1 
< 5 
4 - 1 

a 
<n 
m 
T 
m 
+ 
•* CM 
X 

CM 

V 
Q 

<o 
D 

fc 
3 
y 
< 

6-
bi

t 

m 
5 
I-

H 
Eco» 

S ' a ? 
2 S O 
ü. Q o 

H 
1 1 1 1 

In
te

rn
al

 
D

at
a
 

B
us

 
S

w
itc

h
 

O 
OC 

174 



Fixed-point Quantization Effects 

A.3. Arithmetic Instructions of the DSP56001 

Instruction 

ABS D (parallel move) 

ADD S,D (parallel 

move) 

ADDR S,D (parallel 

move) 

ASR D (parallel move) 

CMP Sl, S2 (parallel 

move) 

DIVS1D 

MACR (+,-) S1,S2,D 

(parallel move) 

MPYR (+,-) S1.S2.D 

(parallel move) 

NORM Ra,D 

SBC S,D (parallel 

move) 

SUBL S,D (parallel 

move) 

Tec S1.D1 

Description 

Store the absolute value of the destination operand D in the 

destination accumulator 

Add the source operand S to the destination operand D and 

store the result in the destination accumulator 

Add the source operand S to one-half the destination operand 

D and store the result in the destination accumulator 

Arithmetically shift the destination operand D one bit to the 

right and store the result in the destination accumulator 

Subtract the source one operand, Sl, from the source two 

accumulator, S2, and update the condition code register 

Divide the destination operand D (48-bit positive fraction 

dividend sign extended to 56-bit) by the source operand S (24-

bit signed fraction divisor) and store the partial remainder and 

the formed quotient (one new bit) in the destination 

accumulator D 

Multiply the two signed 24-bit source operands Sl and S2 and 

add/subtract the product to/from the specified 56-bit 

destination accumulator D, and then round the result using 

convergent rounding 

Multiply the two signed 24-bit source operands Sl and S2 

round the result using convergent rounding, and store the 

resulting product (with optional negation) in the specified 56-

bit destination accumulator 

Based upon the result of one 56-bit normalization iteration on 

the specified destination operand D, update the specified 

address register Ra and store the result back in the 

destination accumulator 

Subtract the source operand S and the carry bit C of the 

condition code register from the destination operand D and 

store the result in the destination accumulator 

Subtract the source operand S from two times the destination 

operand D and store the result in the destination accumulator 

Transfer data from the specified source register Sl to the 

specified destination accumulator Dl if the specified condition 

"cc" is true 

175 



Optimized Implementation of Speech Processing Algorithms 

TST S (parallel move) 

ADC S,D (parallel 

move) 

ADDL S,D (parallel 

move) 

ASL D (parallel move) 

CLR D (parallel move) 

CMPM S1.S2 (parallel 

move) 

MAC (+,-) S1.S2.D 

(parallel move) 

MPY(+,-)Sl,S2,D 

(parallel move) 

NEG D (parallel move) 

RND D (parallel move) 

SUB S1D (parallel 

move) 

SUBR S1D (parallel 

move) 

TFR S1D (parallel 

move) 

Compare the specified source accumulator S with zero and set 

the condition code accordingly 

Add the source operand S and the carry bit C of the condition 

code register to the destination operand D and store the result 

in the destination accumulator 

Add the source operand S to two times the destination operand 

D and store the result in the destination accumulator 

Arithmetically shift the destination operand D one bit to the 

left and store the result in the destination accumulator 

Clear the 56-bit destination accumulator 

Subtract the magnitude of the source one operand, Sl, from the 

magnitude of the source two accumulator, S2, an update the 

condition code register 

Multiply the two signed 24-bit source operands Sl and S2 and 

add/subtract the product to/from the specified 56-bit 

destination accumulator D 

Multiply the two signed 24-bit source operands Sl and S2 and 

store the resulting product (with optional negation) in the 

specified 56-bit destination accumulator 

Negate (56-bit twos-complement) the destination operand D 

and store the result in the destination accumulator 

Round the 56-bit value in the specified destination operand D 

by convergent rounding and store the result in the most 

significant portion of the destination accumulator (Al to Bl) 

Subtract the source operand S from the destination operand D 

and store the result in the destination operand D 

Subtract the source operand S from the one-half the 

destination operand D and store the result in the destination 

accumulator 

Transfer data from the specified source data ALU register S to 

the specified destination data ALU accumulator D 

176 



Appendix B 
LeRoux-Gueguen Algorithm 

The Levinson-Durbin recursion given in Equation (5.12) is an 
efficient way to determine the LPC coefficients (see § 5.2), but if 
the goal is to compute the reflection coefficients, {km}, the LPC 
coefficients are also computed, as intermediate quantities. As 
the LPC coefficients are not bounded and have large dynamic 
range, the implementation of the Levinson-Durbin algorithm in 
a fixed-point device is difficult. LeRoux and Gueguen [Lero77] 
solved the problem by introducing the quantities: 

e m ( i ) = r¡ + H 1 n ( I )Ti . !+ . . .+B1n(In)Ti-111 (B . l ) 

where (am(i)} are the /n-th order LPC coefficients and rk is the 
&-th autocorrelation coefficient of the windowed speech signal: 

N-I 
rk = X w(n) ' s(n) ' w ( n - k) • s(n - k) 

n=k 

rk=r_k (B.2) 

B.l. LeRoux-Gueguen Algorithm 

The reflection coefficients, {km), are computed using the 
relations: 

177 



Optimized Implementation of Speech Processing Algorithms 

e0(i) = r; for i = -p + l,...,p 
for m = l,...,p: 

= -e s_1(m) 
m 6 ^ ( 0 ) 

em(i) = B1n-1(I)+ kmem_1(m-i) for i = -p+ l + m,...,p 

(B.3) 

the values em(i) for i = l,...,m, turn out to be zero, thus they 
need not be computed. 

One important result of the formulation is that if the 
autocorrelation sequence is normalized, i.e., 11¾ | < 1, all the 
quantities em(i) lie between -1 and +1. Consequently the 
computation can be easily implemented using fixed-point 
arithmetic. The normalization of the autocorrelation sequence 
needs 10 divisions. 

The total computational cost is 90 multiplications, 90 
additions and 20 divisions. 

B.2. References 

[Lero77] J. LeRoux and C. Gueguen, "A Fixed Point Computation of 
Partial Correlation Coefficients", IEEE Trans, on Acoustics, 
Speech and Signal Processing, Vol. 25, No. 3, pp. 257-259, 
1977. 

[Papa87] P. Papamichalis, Practical Approaches to Speech Coding 
(Chapter 5), Prentice-Hall, Englewood Cliffs, New Jersey, 
1987. 

178 



Appendix C 
LSP to LPC Transformation 

C l . Direct Expans ion Method 

The symmetrical and antisymmetrical polynomials, Pio(z) and 
Qio(z), are given by: 

P10(Z) = (I + Z-1) n ( 1 + c i z " 1 + z _ 2 ) = I P i z _ i 

i=l,3,5,7,9 i=0 

Q10(Z)=(I-Z-1) n f 1 + ^ - 2 " 1 + 2 - 2 ) = ! ^ 
1=2,4,6,8,10 i=0 

with c¡ =-2cos((0i) ( C l ) 

where the {coi} are the LSPs. The coefficients {p¡} and {q¡} are 
found by multiplying the product terms of Equation ( C l ) : 

Po = P n = 1 

Pi =Pio = 1+Si 

P2 - P 9 - 5 + s i + s2 

p 8 = p 8 = 5 + 4s 1 +B2+B 3 

P4 = P7 = 10 + 4S1 + 3s2 + S3 + S4 

P5 = P6 = 10 + 6S1 + 3s2 + 2s3 + S4 + S5 

179 



Optimized Implementation of Speech Processing Algorithms 

Qi = -qio = - i + s i 

Q2 = -<l9 = 5 - s 'l + s2 
q 3 = - q 8 = - 5 + 4 s i - s ^ + s î , 

q4 = - q 7 = 10 - 4S1 + 3s2 - S3 + S4 

q5 = -q6 = -10 + 6si - 3s2 + 2s3 - S4 + s'5 (C.2) 

where {s¡} and {s'¡} are the summation of product terms of the 
odd- and even-suffixed c¡ respectively: 

5 1 = C1 + C3 + C5 + C7 + Cg 

5 2 - C1C3 + C1C5 + C1C7 + C1C9 + C3C5 + C3C7 + C3C9 + C5C7 + 

+C5C9 + C7C9 

53 = C1C3C5 + C1C3C7 + C1C3C9 + C1C5C7 + C1C5C9 + C1C7C9 + 

+C3C5C7 + C3C5C9 + C3C7C9 + C5C7C9 

5 4 = C1C3C5C7 + C1C3C5C9 + C1C3C7C9 + C1C5C7C9 + C3C5C7C9 

5 5 = C1C3C5C7C9 

S'l = C2 + C 4 + C 6 + C 8 + C 1 0 

s2 = C2C4 + C2C6 "*" C2C8 + C2C10 + C4C6 + C4C8 + C4C10 + C6C8 + 

+C 6C 1 0 +C 8C 1 0 

53 = C2C4C6 + C2C4C8 + C2C4C10 + C2C6C8 + C2C6C10 + C2C8C10 + 

+C4C6C8 + C4C6C10 + C4C8C10 + C6C8C10 

5 4 = C2C4C6C8 + C2C4C6C10 + C2C4C8C10 + C2C6C8C10 + C4C6C8C10 

s5 = C2C4C6C8C10 

(C.3) 

finally the LPC filter is given by: 

_ P10(z) + Q10(z) 
L 1 0 W _ 2 (C.4) 

A 1 0 (Z) = 

The total computational cost is 62 multiplications and 92 
additions. The shift operations (by a factor of two) were not 
counted. 

180 



LSP to LPC Transformation 

C.2. LPC Analysis Filter Method 

When the filter of Figure C l is excited with an 11-term 
impulse sequence, the resulting output sequence {l,ai,...,aio} 
gives the LPC coefficients. Each second-order section requires 1 
multiplication and 2 additions and the first-order sections 
require 1 addition. Thus, the total cost would be 110 
multiplications and 253 additions, but several savings are 
possible. The output sequences of each section, denoted as h¡ 
and h'i, for the upper and lower branch respectively, are shown 
in Figure C l and given by: 

h 0 = {1,1,0,0,0,0,0,0,0,0,0,0} 

h i = {Lpu ,P u , l ,0,0,0,0,0,0,0,0} 
h 2 = {LP21»P22'P22'P21»^0»°»0,0,0,0} 
h 3 = {LP31»P32.P33>P33»P32>P31»1»°A0,0} 
h 4 = {Xp41.P42>P43>P44>P44>P43>P42>P4lA0,0} 
n 5 = V*P51'P52>P53>P54>P55>P55>P54>P53>P52>P51>1} 

W0 = {L-1,0,0,0,0,0,0,0,0,0,0} 
h i - ^q 1 1 -q u -1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} 

h 2 = {X<l21> <l22 ,-¢22.-^21.-^0,0,0,0,0,0} 
h 3 - {^^31.^32.^33.-^33.-^32.-^31.-^0.0.0.°} 
h 4 = {Lq4i,q42.q43.q44.-q44.-q43.-q42,-q4i.-^o.o} 
h 5 =^^51,^52,^53.^54,^55,-^55.-^54.-^53,-^52.-^51'-1} (C. 5) 

Thus, only 30 different terms are calculated, as outputs of a 
second order section. Ten extra additions are needed to obtain 
the LPC coefficients from these terms. The total cost is reduced 
to 30 multiplications and 70 additions, at the cost of increased 
effort in the flow control of the algorithm. 

181 



Optimized Implementation of Speech Processing Algorithms 

-2cos(cog) 

• 7 - 1 - , rz" 1 T 
-2cos(co2) -2cos(coio) 

Figure C l : Filter used to generate the LPC coefficients, in the LPC 
analysis filter method. The {co¡( are the LSP parameters. 

C.3. Kabal's Method 

The polynomials Pio(z) and Qio(z) are expressed as: 

10 
P10(Z) ^ d + Z " 1 ) - £ PiZ-1 

i=0 
10 

Q10(Z) = ( 1 - z - 1 ) - X q ^ 
i=0 (C.6) 

As P'io(z) and Q'io(z) are symmetrical, only their first five 
coefficients need to be calculated. The coefficients {q'¡} and {p'i} 
are obtained using the following recursions: 

182 



LSP to LPC Transformation 

c 1 0 = _ x l c 10 = _ x 2 
c 20 = - 2 ' x 3 c10 + 1 c 20 - _ 2 - X 4 - C 1 0 + 1 

c2i = 2-c10
 - 2 - X 3 c2i = 2 -c 1 0 -2 -x 4 

c 30 = _ 2 • X 5 • C 2 0 + C 2 1 C3 0 = - 2 • X 6 • C2Q + C2 1 

c 3 1 = 2 • c 20 - 2 • x 5 • c 21 + ! C3 1 = 2 • C2 0 - 2 • X 6 • C2 1 + 1 
c 3 2 - c 2 1 - 2 x 5 C 3 2 = C 2 1 - 2 - X 6 

C40 = - 2 • X 7 • C 3 0 + C 3 1 C4 0 = - 2 • X 8 • C 3 0 + C 3 1 

C 4 1 = 2 • C 3 0 - 2 • x 7 • C 3 1 + C 3 2 C 4 1 = 2 • C3 0 - 2 • X 8 • C 3 1 + C 3 2 

C42 — C 3 1 - 2 - X 7 • C 3 2 + 1 C 4 2 = C3 1 — 2 • X 8 • C 3 2 + 1 

C 4 3 = c 3 2 _ 2 - X 7 C 4 3 = C 3 2 - 2 - X 8 

c 50 = ~ 2 • x 9 • C 4 0 + C 4 1 C5 0 = - 2 • X 1 0 • C4 0 + C 4 1 

c5i = 2 - c 4 0 - 2 - x 9 -c4 1+c4 2 c51 = 2-c 4 0 -2-x 1 0 -c 4 1 + c42 

c 52 = c 4 1 - 2 - x 9 c 42 + c 4 3 c 52 = c
4 1 - 2 • X 1 0 • C 4 2 + C 4 3 

c 5 3 = C 4 2 - 2 • X 9 • C 4 3 + 1 C5 3 = C 4 2 - 2 • X 1 0 • C4 3 + 1 

c 5 4 - c 4 3 - 2 - x 9 C 5 4 = C4 3 - 2 - X 1 0 

(C.7) 

where {x¡} are the LSPs in the "x domain", with x¡ = cos(coi). The 
last terms of this recursion give the coefficients {q'¡} and {p'¡}: 

Ps =2-C50 q5 =2c ' 5 0 

P 4 = c
5 1 Q4=C51 

P3 = c52 ^3 - c52 

P2 = c53 °i2 = C53 

P i = C54 q i = C54 (C.8) 

Following Equation (C.6), the LPC coefficients are given by: 

183 



Optimized Implementation of Speech Processing Algorithms 

_ _PÍ + qí _ _ P Í - q í + 2 
a i - — 2 ~ a i o - g 

„ _ (P2+Pl )+(q2-q i ) n _ ( p 2 + P l ) - ( q 2 - q i ) 
a 2 - ^ a 9 - -

n _(P3+P2)+(q3-q 2 ) o _ (P3+P2) - (q3-q 2 ) 
a 3 - ^ a 8 - -

(P4 + P3)+(q4-q3) „ _(PA+PS)-(!Ú-<Ú) 
2 a7 

„ _(P5+P4)+(q5-q 4 ) „ _(P5 + p 4 ) - (q5 -q4 ) 
a5 ^ a 6 - % (C.9) 

The total computational cost is 20 multiplications and 59 
additions. This is the least expensive of the three algorithms for 
LSP to LPC conversion given in this appendix. Besides, the 
algorithm is highly regular, which is a advantageous for 
efficient implementation. 

184 



Appendix D 
Mixed-LSP Method 

D.I. Derivation of the Polynomials P'io(x) and Q'io(x) 

The derivation given in this section is done for an LPC order 
p = 10, but it can be extended to any even p. Starting from the 
auxiliary function \|/m(z), given in Equation (5.39): 

n 
V1 0(Z) = Z 2 A1 0(Z) (D . l ) 

where Aio(z) is the 10-th order LPC analysis filter, given by: 

A10 (z) = 1 + Xk=iak • z _ k (D.2) 

the function \|/m(z) is evaluated on the unit circle, z = ei": 

j - l l - rn 

Vl0(e*») = e 2 A10(eJt0) = ¥í¿(e j f i ,) + J-VÍ0(ejtu) (D.3) 

The symmetrical and antisymmetrical polynomials, Pio(z) and 
Qio(z), given in Equation (5.24) are also evaluated on the unit 
circle: 

185 



Optimized Implementation of Speech Processing Algorithms 

. 1 1 
- j — e o 

P10(e iM) = A10(e j ff l) + e- j-u-wA10(e- j ( a) = 2e 2 v « ( e i B ) 
i i 

10 

Q1 0Ce^) = A 1 0 (eJ ( 0 ) -e-J l l t o A 1 0 (e-J° , ) = 2 j e 2
 v <«y«>) 

10 

(D.4) 

Thus, the zero crossings of ^ ioie i") and x^'WeO correspond to 
the odd- and even-suffixed LSPs, respectively. Equation (D.3) 
can be arranged as: 

jllco 

\)/10(ejto) = e 2 ( l + a i - e - J M +. . .+a 10 
-j-lO-co • C 0 \ 

= Jl f0J
5m J4to e 2 ( e j a m + a , -e j4 ,B+...+a9 - e " ' 4 " + a 1 0 -e"-1001) -J5MÌ 

COS — + J • sin 
to [R10(ejœ) + j-I10(e*»)] 

thus, the real and imaginary parts of \|iio(e>") are: 

V « ( e j r a ) = c o S g j . R 1 0 ( e ^ ) - s i n g j . I 1 0 ( e ^ ) 
10 

V® (en = S i n [ I J • R1 0Ce^) + COs[IJ • I M ( e * ) 

where RioCei") and Iioie)10) are given by: 

R 1 0 (e j t o i= (l + a10)cos(5co)+...+(a4 +a 6)cos(co) + a 5 

= A 5 cos(5co) + A 4 008(4(0^...+A1 cos((fl) + A 0 

1 io (e jt° ) = ( 1 - a io ) • sin(5co)+.. .+(a4 - a 6 ) • sin(co) 

- E 5 sin(5co) + E 4 sin(4co)f.. .+E ! sin(co) 

(D.5) 

(D.6) 

(D.7) 

Using the mapping x = cos(co), the Chebyshev polynomials 
of first kind are given by: 

186 



Mixed-LSP Method 

Tn(x) = cos(nto) = 2xTn_i(x) - Tn_2(x) 

T0(x) = cos(0)= 1 

T1(X) = cos(œ) = x 

T2(x) = cos(2co) = 2 x 2 - 1 

T3 (x) = cos(3co) = 4x3 - 3x 

T4(x) = cos(4co) = 8x4 - 8x2 + 1 

T5(x) = cos(5co) = 16x5 - 2Ox3 + 5x (D.8) 

while the Chebyshev polynomials of second kind are given by: 

Un(x) = sin(no)) = 2xUn_!(x)-Un_2(x) 

U0(X)-O 

Ux(x) = sin(co) = ± V l - x 2 

U2 (x) = sin(2co) = ± V l - x 2 • (2x) 

U3(x) = sin(3co) = ± V l - x 2 • (4x2 - 1) 

U4(x) = sin(4(o) = ± V l - x 2 • (8x3 -4x) 

U5(x) = sin(5co) = + V l - x 2 • (16x4 - 12x2 + 1) (D.9) 

In the upper semicircle of the z-plane, coe[0,Jt], in which the 
LSPs are located, the trigonometric formulas for double-angle 
give: 

cos(co) = 2 cos2 — I - 1 => cos| ^ ©=i¥ 
cos(co) = 1 - 2 sin2 — => sin 

2 J V 2 (D.10) 

Then, using the mapping x = cos(to) and Chebyshev 
polynomials of first and second kind Equation (D.7) is 
expressed as: 

187 



Optimized Implementation of Speech Processing Algorithms 

R10(x) = 16A5x
5 + 8A4X

4 + (-20A5 + 4A3 )x
3 + (-8A4 + 2A2)X

2 + 

+(5A5 - 3A3 + A1)X + (A4 - A2 + A0) 

= DKx5 + D,x4 + Dox3 + D9X
2 + D1X + Dn 

I10(X) = ±Vl-x 2[ l6E 5x 4 + 8E4x3 + (4E3 - 12E5)x2 + 

+(2E2 - 4E4)x + (E5 - E3 + E1)] 

= ± V I - X 2 [ B 4 X 4 + B3x3 + B2X
2 + B1X + B0] 

= ±Vl-X2F10(X) 

(D.ll) 

and using the mapping x = cos(co) and the trigonometric 
formulas for double angle, Equation (D.6) can be expressed as: 

V^x) = ^ - R 1 0 ( x ) - ^ . V Î ^ - I ' 1 0 ( x ) 

= ^ - [ R 1 0 ( x ) - ( l - x ) - I ' 1 0 ( x ) ] = ^ - ¥ ' 1
(

0
r ) ( x ) 

V $ « = ̂  • Rio W + ^ • V T ^ • Ii0(X) 

= ^ ^ - [ R 1 0 ( x ) + (l+x).I'10(x)] = ̂ - V '«(x) 

(D.12) 

In the upper semicircle of the z-plane, eoe [0,ji], in which the 
LSPs are located, the terms: 

1 + X (CD, , 
= cos — and 

3F-G) 2 K.2) V 2 \2) (D.13) 

are different from zero, except at x = -1 and x = +1, 
respectively. Thus, these terms can be removed without 
affecting the position of the other zeros (LSPs). Then the 
functions: 

Vi«(x) = [R10(X)-(I-X) T10(X)] 

Vi^(X) = [R10(X) + (l + x).I'10(x)] (D.14) 

188 



Mixed-LSP Method 

have all the zero crossings (LSPs) of Kabal's polynomials P'io(x) 
and Q'io(x). The leading coefficient, which is the coefficient that 
multiplies the higher power of x ( x5 ) is, for both functions: 

y = 16 • (A6 + E6) = 16-[(1+a10)+ (1-a1 0)] = 32 (D.15) 

while in Equation (5.30) it is seen that the leading coefficient of 
Kabal polynomials, P'io(x) and Q'io(x), is 16. Thus, Kabal's 
polynomials can be expressed as: 

P í o ( x ) = Ví|W = C10(X) -D 1 0(X) 

Q l o ( x ) = Ví|W = C10(X) + D10(X) ( D 1 6 ) 

where Cio(x) is a 5-th order polynomial and Dio(x) is the 4-th 
order polynomial, given by: 

2 • D10(X) = I'10(x) = 16E6x4 + 8E4x3 + (4E3 - 12E6)x2 + 
+(2E2-4E4)x + ( E 6 - E 3 + E 1 ) (D.17) 

where: 

E5 = l - a 1 0 , E 4 = B 1 - B 9 , E 3 = a 2 - a 8 , 

E 2 = a 3 - a 7 , E1 = B 4 -B 6 (D.18) 

From Equation (D.16): 

Ql0(X)-Pi0(X) 

Thus the polynomial Dio(x) could have also been obtained from 
Kabal's derivation, using Equation (5.30) and realizing that 
P'io(x) and Q'io(x) have the same leading term. Nevertheless, 
the derivation given in this section leads naturally to Equation 
(D. 16) which is the base of the Mixed-LSP algorithm. 

For the purpose of the Mixed-LSP algorithm, only the 
position of the roots of Dio(x) is of interest. Thus the factor of 2, 
multiplying Dio(x) in Equation (D.17) will be ignored. 

189 



Optimized Implementation of Speech Processing Algorithms 

D.2. Properties of the Roots of Dio(x) 

As Dio(x) is a fourth order polynomial, it has four roots, in 
which Dio(x)=0. In section D.6, it is proved that the roots of 
Dio(x) are real, different, and inside the interval (-1,1). 
Furthermore, the roots of Dio(x) correspond to the values of x in 
which functions P'io(x) and Q'io(x), cross each other, as it can be 
seen in Equation (D.16), setting Dio(x)=0. 

D.3. Direction of the Sign Changes 

Kabal's polynomials, P'io(x) and Q'io(x), given in Equation 
(5.30), can be expressed as: 

Pi0(x) = 16(x - X1Xx - X3Xx - x5)(x - x7)(x - X9) 
Q'10(x) = 16(x-x 2 ) (x -x 4 ) (x-x 6 )(x-X8 )(x-X10) 

(D.20) 

where the {x¡}, which are the roots of P'io(x) and Q'io(x), 
correspond to the LSPs in the "x domain". On the other hand, 
Dio(x), can be expressed as: 

D10(x) = 8 • E5(x - T1Xx - r2)(x - r3)(x - r4) 

= 8-(1-a1 0)(x-T1Xx-r2)(x-r3)(x-r4) (D.21) 

where {r¡} are the roots of Dio(x). In Equation (5.18), it is seen 
that the LPC coefficient aio, is equal to the reflection coefficient 
kio. Thus, aio is bounded in magnitude by 1, and (1-aio) is 
always positive. As the leading terms of P'io(x), Q'io(x) and 
Dio(x) are positive, and their roots are smaller than +1, then: 

D10(X = +l)>0, Pi0(X = +l)>0, Q'10(x = +l)>0 (D.22) 

Therefore the directions of the sign changes at every zero 
crossing (+ to - , or - to +) are known. This property can be used 
for improving efficiency and reliability of the Mixed-LSP 
algorithm. From Equation (D. 19) and (D.22), it is also seen 
that: 

Q'10(x = +1) - Pi0(x = +1) = 2 • D10(X = +1) > 0 

=> Q'10(x = +1) > Pi0(X -+1) (D.23) 

190 



Mixed-LSPMethod 

D.4. Calculation of the Roots of Dio(x) 

In this section the calculation of the roots of the 4-th order 
polynomial Dio(x) is optimized. It is reminded that Dio(x) has 
four roots which are real, different and in the interval (-1,1). 

Resolution of a 4-th Order Polynomial 

Given the 4-th order polynomial, with real coefficients 
[Ango72], [Barb89]: 

x 4 + a x 3 + b x 2 + c x + d = 0 (D.24) 

factoring this polynomial as a multiplication of two second 
order polynomials with real coefficients: 

x 4 + ax3 + bx2 + ex + d = (x2 + P1X + qi)(x2 + p2x + q 2 ) = 0 (D.25) 

The following system of equations has to be solved for pi, p2, qi 
andq2: 

a = Pi + P2 

b = qi + q2 +P1P2 

c = Piq2+P2qi 
d = q i q 2 (D.26) 

Considering the trial solutions for the system (D.26), where the 
unknown variable z has been introduced: 

p i =I+I iT-b + z - q i = f + e - | 3 ^ 
P 2 =H(!) -b + Z ' q 2 =f-£ i f) -d (D.27) 

where e=±l. Introducing these trial solutions in the system of 
equations given in (D.26), leads to Equations (D.28) and (D.29): 

191 



Optimized Implementation of Speech Processing Algorithms 

a = Hi1'-"« [i-W-b + z 

b = z 
- + £• 
2 er- ^ W ^ 

= a 

y 

d = 

If-IfT b + z = b 

- f—JLi.' -* 
-\ 

J (D.28) 

It is seen that the equalities in (D.28) are always satisfied for 
any value of z. Thus z is chosen to satisfy the equation of c: 

C = >J5FH 
v 

f-e'< 
V 

HfT-Hl-M 
giving: 

V 

»f-*-

(D.29) 

§r-w-
az where e = sign c for consistency 

thus z must be a solution of the 3-rd order equation: 

z3 + rz2 + sz +1 = 0 

r = -b, s = ac-4d, t = d ( 4 b - a 2 ) - c 2 (D.31) 

then there are three possible solutions for z, namely za, Zb, and 
Zc, and at least one of these solutions is real. For pi, p2, qi and 
q2 to be real, a real value of z must be chosen. 

192 



Mixed-LSP Method 

Thus, to solve the 4-th order polynomial given in Equation 
(D.24), the 3-rd order polynomial of Equation (D.31) must be 
solved first. 

Property 

If the roots of the original 4-th order polynomial of 
Equation (D.24) are real and different, then the roots of 
the 3-rd order polynomial of Equation (D.31) are real 
and different. 

Proof 

If the 4-th order polynomial of (D.24) has four different real 
roots, xi, X2, X3 and X4, then it can be expressed as: 

x4 +ax3 + bx2 + cx + d - (x-X 1 ) (X-x 2 ) (x-x 3 ) (x-x 4 ) 

a = - X 1 — X 2 — X 3 — X 4 

D = X1Xo +
 X1 X3 ~^~ X1 X4 "̂" X2 X3 X 2 X 4 X 3 X 4 

C = -X 1X 2X 3 — X 1X 2X 4 — X 1X 3X 4 — X 2X 3X 4 

d = X1X2X3X4 (D.32) 

there are three possible ways to factor the fourth order 
polynomial of (D.24) into a multiplication of two second order 
polynomials with real coefficients, as in Equation (D.25), each 
factorization corresponds to one root, za, zb, or zc, of the third 
order polynomial of Equation (D.31). These factorizations are 
given next: 

Factorization 1: 

x4 + ax3 + bx2 + ex + d = (x2 + p l ax + q^ ̂ x2 + p2ax + q2a ) 

Pla - _ X 1 _ X 2> P 2 a = - X 3 ~ x 4 

Qla - xlx2> Q2a = X 3 X 4 

Note: (p l a , q u ) can be exchanged with (p2a,q2a) (D.33) 

and from Equation (D.27): 
za =qia+q2a = X1X2+X3X4 (D.34) 

193 



Optimized Implementation of Speech Processing Algorithms 

Factorization 2: 

x4 + ax3 + bx2 + ex + d = (x2 + p lbx + q lb)(x2 + p2bx + q2b) 

P i b = - X i - X 3 > P 2 b = - X 2 ~ x 4 

l i b = x l x 3 ' l2b = X2X4 

Note: (Pib,qib) can be exchanged with (p2b,q2b) (D.35) 

and from Equation (D.27): 
z b = q i b + <l2b = X 1 X 3 + X 2 X 4 (D.36) 

Factorization 3: 

x4 + ax3 + bx2 + ex + d = (x2 + p lcx + qlc )(x
2 + p2cx + q2c) 

P l c = _ x l _ x 4 > P 2 c = _ x 3 - X 2 

<hc = x l x 4> °l2c - X3X2 

Note: (p l c )q l c) can be exchanged with (p2c,q2c) (D.37) 

and from Equation (D.27): 
zc = q i c + q 2 c = X 1 X 4 + X 3 X 2 (D.38) 

From Equations (D.34), (D.36) and (D.38) it is seen that if the 
roots of the 4-th order polynomial of Equation (D.24) are real, 
then the roots of the 3-rd order polynomial of Equation (D.31) 
are real. Furthermore, if the roots of the 4-th order polynomial 
of Equation (D.24), are different, that is X1 * x2 ^ x3 ^ x4, then: 

za - zb = ( x l x 2 + X 3 X 4 ) - ( x l x 3 + X 2 X 4) = ( x l ~ 3 ^ ) " ( x2 ~ X 3) * ° 
z a ~ z c = ( X 1 X 2 + X 3 X 4 ) - ( X 1 X 4 + X 3 X 2 ) = ( X 1 - X 3 ) - ( X 2 - X 4 ) ^ O 

Z b - Z c = ( x l x 3 + X 2 x 4 ) - ( X 1 X 4 + X 3 x 2 ) = ( x l - X 2 ) ( x 3 - X 4 ) ' t 0 

(D.39) 

it is seen that the roots of the 3-rd order polynomial of Equation 
(D.31) are also different. 

194 



Mixed-LSP Method 

Resolution of a 3-rd Order Polynomial 

Given the 3-rd order polynomial, with real coefficients[Ango72], 
[Barb89]: 

z 3 + r z 2 + s z + t = 0 (D.40) 

The change of variable z = w - r / 3 , gives a third order 
polynomial in w, with zero quadratic coefficient: 

w3 - pw - q = 0 (D.41) 

with: 

r2 ^ rs 2r3 

p = -s + — and q = - t + , n . „ v 
F 3 3 27 (D.42) 

setting w = u + v, gives: 

u3 + v3 + (3uv - p)(u + v) - q = 0 (D A3) 

imposing the condition 3uv - p = 0, the following system of 
equations is obtained: 

u3 + v3 = q 

UV = f (D.44) 
Thus, u3 and v3 are the roots of the quadratic equation: 

3 

x 2 " q X + 27 (D-45) 

There are three possible cases : 

Casel : D = 27q2 - 4p3 < 0 => f | 1 > i | l 

Case 2: D = 27q2 - 4 p 3 = 0 => ($) =(^ 

Case 3: D = 27q2 - 4 P
3 > 0 => ( j ) ' < [fj ^ 

Only in case 1, which is explained next, the roots of the 3-rd 
order polynomial of (D.40) are real and different. Therefore, 
only this case is used in the resolution of the roots of Dio(x). 

195 



Optimized Implementation of Speech Processing Algorithms 

Case 1 

In this case, the two solutions of the quadratic Equation (D.45) 
are complex conjugate, xi=m.eJ9 and X2=m.e"J6, and the system 
given in Equation (D.44) is satisfied by: 

(U , V ) : 

1 .8 1 .8 

(m3e 3 , m 3 e 3 ) 
1 ,8+2it 1 .-8-271 

(m3e 3 ,m3e 3 ) 
1 , e - 2 n 1 ,-6+2)1 

(m3e 3 , m 3 e 3 ) 
(D.47) 

with: 

c o s ( 0) = 3 q j l and m = £ Ê 
2 P V P 3V3 (D.48) 

and the original 3-th order polynomial of Equation (D.40) has 
three different real zeros: 

1 .8 1 .8 

m ö e ° + m ° e — = 2 e 
cosi — I -

1 .9+271 1 .-8-27C 
J-

Z) 3 

p fn-Q 
z i = m 3 e 3 + m 3 e 3 — = - 2 , 1 - cos 

b 3 V3 I 3 
1 .8-271 

— m w Ck « 

1 .-8+27C , — , 

3 J—r~ r o P i H+8 
• d o á — = -2J— cos 

3 \3 I 3 

r 

3 (D.49) 

Note tha t case 2 is included in case 3 when: 

cos(e) = ! ï J Ï = l 
2 P V P (D.50) 

and, in this case, the original cubic polynomial of Equation 
(D.40) has three real zeros, but two of these zeros are equal: 

2 u o - | . z b = Z c = - " - o - | 

with Un = 
3q 
2p (D.51) 

196 



Mixed-LSP Method 

Calculation of the Roots ofDw(x) 

The coefficients of Dio(x) are calculated from the LPC values, 
{a¡}, and normalized, to obtain the 4-th order equation: 

x 4 +ax 3 + bx2+cx + d = 0 (D-52) 

with the coefficients: 

E5 = l - a 1 0 , B4 - 16E5 , 
•p 

E 4 = a i - a 9 , B 3 = 8 E 4 , a = - 3 -
4 B 

E 3 = a 2 - a 8 ) B 2 = 4 E 3 - 1 2 E 5 ) b = § ^ 

E 2 = a 3 - a 7 , B1 = 2 E 2 - 4 E 4 , c = | i 
B 4 

E1 = a 4 - a 6 , B0 = E 5 - E 3 + E 1 , d = f s . ^ 

Equation (D.52) is solved using the resolution of a 4-th order 
polynomial explained previously. Thus, the following 3-rd order 
equation must be solved: 

z3 + rz2 + sz +1 = 0 (D.54) 

with the coefficients: 

r = -b , s = ac-4d, t = d ( 4 b - a 2 ) - c 2 (D.55) 

As the roots of Dio(x) are real and different, only case 1 of the 
method for resolution of a 3-rd order equation explained in the 
previous subsection applies, and za, Zb, and zc are given by 
Equation (D.49). If Z is chosen as the biggest in absolute value 
among za, Zb, and zc: 

if cosG > 0 => Z = z„ = 2J- cosí ' r 

3) 3 

else => Z = Zu = -2,1— cos — ._. _„N 
b V3 L 3 J 3 (D.56) 

where t = cos(0) is given by Equation (D.48). The curves for 
cos(rc/3-arccos(t)/3) and cos(arccos(t)/3) for te [-1,+1] are given 
in Figure D.I. 

197 



Optimized Implementation of Speech Processing Algorithms 

0.9 

0.8 

0.7 

0.6 

0.5 

" = = ^ — - i r 

^^ 
y 

S 

S 

S 

• 
• 

/ 
/ 

/ 
- / 
I 

! 

•'• " " 1 I ^ -

__, -" 

\ -

• < 

-0.5 0.5 

Figure D.l: The curves for cos(n/3-arccos(t)/3), plotted with a continuous 
line, and cos(arccos(t)/3), plotted with a dashed line, for 
te [-1,+I]. 

It can be noticed that the curve of interest, which 
corresponds to cos(arccos(t)/3) for te [0,+1], is almost linear. 
This curve can be modeled either using polynomial fitting of 
five coefficients, or a table of 9 elements and linear 
interpolation. 

Finally, calculation of the roots of Dio(x) is summarized as: 

-» 

E 5 = 1 - a 10 

E 4 =B 1 -B 9 

E3 = a 2 - a 8 

E2 = a 3 - a 7 

E 1 = B 4 - B 6 

r = -b 
s = ac - 4d 

t = d ( 4 b - a 2 ) - c 2 

B4 = 16E5 

B3 = 8E4 

B2 = 4E3 - 12E5 

B1= 2 E 2 - 4 E 4 

B0 = E5 - E 3 +E 1 

_2 

-» 

-» 

p = - s + : 

, r s 2 r d 

- t + 
3 27 

" B 4 

B 4 ' 
c = 

-> cos(e) = ̂ . / I 
2 p V P 

(D.57) 

198 



Mixed-LSP Method 

ís_co = sign[cos(e)] fp~ facos(a co) ̂  r 
-> Z = s CO-2J—cos [a_ co = abs[cos(9)] V 3 v 3 ) 3 

z 
O1 = — + e-1 2 

(D.58) 

The C program for the resolution of the roots of Dio(x) is 
given in [Gras97b]. This calculation needs the following 
operations: 20 multiplications, 34 add/sub, 2 divisions and 5 
square roots. Three comparison/swapping operations are 
needed for root ordering, as explained in the next section. 

D.5. Optimization of the Root Sort ing 

In order to obtain the five intervals where only one even-
suffixed and one odd-suffixed LSP are contained, the roots of 
Dio(x) must be ordered. Given that these roots are related by 
Equation (D.58), only the following ordered sets are possible: 

T1 < T2 < r3 < r4 

ri < r3 < r2 < r4 

rl < r3 < r4 < r2 

r3 < T1 < r2 < T4 (D.59) 

The ordering algorithm needs three comparisons and swapping. 

199 



Optimized Implementation of Speech Processing Algorithms 

D.6. Property of the Roots of Dio(x) 

Property 

The roots of Dio(x) are real, different and inside the 
interval (-1,1). 

Proof 

The Levinson-Durbin recursion, given in Equation (5.12), leads 
to the recursion [Proa89]: 

A0(Z) = B0(Z)=I 

for m = X • • • i P : 

Am(z) = A1n-1(Z) + It1nZ-1B1n-1(Z) 

Bm (z) = Ic1nA111-1(Z) + Z-1B111-1(Z) (D.60) 

where Bm(z) are the reciprocal polynomials of Am(z), given by: 

B1n(Z) = Z-11A1n(Z-1) (D.61) 

If the LPC analysis filter Ap(z) is minimum phase (i.e., all 
the zeros are inside the unit circle) then the reflection 
coefficients {ki,...,kp} are bounded in magnitude by one. 
Conversely, if the reflection coefficients {ki kp} are bounded 
in magnitude by one, then Ap(z) is minimum phase as well as 
all the lower-order LPC analysis filters {Ai(z),...,A,>-i(z)} 
[Proa89]. Note that the Ap(z) obtained using the Levinson-
Durbin recursion is minimum phase. 

For any of the filters {Ai(z),...,Ap(z)}, a symmetrical 
polynomial Pm(z) and an antisymmetrical polynomial Qm(z) can 
be formed by adding and subtracting to Am(z) its time reversed 
system function z"(m+1)Am(z"1) [Kaba86]: 

P1n(Z) = A1n(Z) + Z-1B1n(Z) 

Q1n(Z) = A 1 n (Z ) -Z - 1 B 1 n (Z ) (D.62) 

If m is even, Pm(z) and Qm(z) have a zero at z = -1 and at 
z = +1, respectively. If m is odd, Qm(z) have a zero at z = -1 and 
a zero at z = +1 [Kaba86]. These trivial zeros could be removed 
by polynomial division : 

200 



Mixed-LSP Method 

Pm(z) Qm(z) Pm(z) = m _u and Qm(z) = m ^ , m even 
(1 + z *) (1-z 1J 

Pm(z) = Pm(z) and Qm(z) = . , m _ 2 \ , m odd 
(1-z" 2 ) ' (D.63) 

The polynomials P'm(z) and Q'm(z) are symmetrical, and if 
Am(z) is minimum phase, then the roots of P'm(z) and Q'm(z) lie 
on the unit circle and are interlaced [Soon84]. 

The m-th order LSP parameters are defined as the angular 
positions of the roots of P'm(z) and Q'm(z) located on the upper 
semicircle of the z-plane, they are denoted as {0¾}, in the 
angular frequency domain, and their ordering property is 
expressed as [Kaba86]: 

0<co1 <co2 <...<œm <7i (D.64) 

Combining Equation (D.60) with Equation(D.62), gives: 

2Pm(z) = Pm_1(z)(l + km)(l+Z-1) + Qm_1(z)(l-km)(l-z-1) 

2Qm(z) = Pm_1(z)(l + k m ) ( l -z - 1 ) + Qm_1(z)(l-km)(l+z-1)(D.65) 

and using Equations (D.63) and (D.65): 

Pi0(Z)-Ql0(Z) - Z - 1 ^ k 1 0 ) Q 9 ( Z ) , 

2 = ¡T^] = _ Z ( l - k l o ) Q 9 ( z ) ( D . 6 6 ) 

The polynomials P'io(z), Q'io(z) are symmetric and of 10-th 
order, while Q'9(z) is symmetric and of 8-th order. The 
symmetry of these three polynomials is used to group their 
terms as: 

Pi0(Z) - z-5 • [(Z+5 + z"5) + Pi(Z+4 + z"4)+...+pfc] 

Q'10(z) = z"5 • [(Z+5 + z"5) + qitz+4 + z"4)+...+q'5] 

Q9(Z) = z-4 -[(Z+4 +Z-4HoCi(Z+3 +z-3)+...+ai] (D.67) 

Introducing Equation (D.67) into Equation (D.66), applying the 
mapping x = cos(co) and using Equation (D. 19), the following 
relation is obtained: 

D10(X) = P Í 0 ( X ) ; Q ' 1 0 ( X ) = ( 1 - k10)Q9(x) ( D . 6 8 ) 

201 



Optimized Implementation of Speech Processing Algorithms 

As kio is bound in magnitude by one, the factor (1-kio) is 
different from zero. The roots of Dio(x) correspond to the roots 
of Q'9(x), which are the even-suffixed LSPs of a 9-th order LPC 
system, in the "x domain", in which x = cos(co). From the 
ordering property of Equation (D.64), it is seen that these roots 
are real, different, and in the interval (-1,+1). 

D.7. References 

[Ango72] A. Angot, Complements de mathématiques a l'usage des 
ingénieurs de l'electrotechnique et des telecommunications, 
Masson, Paris, 1972. 

[Barb89] E. Barbeau, Polynomials, Springer, New York, 1989. 

[Gras97b] S. Grassi, DSP56001 Implementation of the Spectral 
Analysis and Quantization for the CELP FS1016 Speech 
Coder, IMT Report No 421 PE 10/97, University of 
Neuchâtel, IMT, Oct. 1997. 

[Kaba86] P. Kabal and P. Ramachandran, "The Computation of Line 
Spectral Frequencies Using Chebyshev Polynomials", IEEE 
Trans, on Acoustics, Speech and Signal Processing, Vol. 34, 
No. 6, pp. 1419-1426,1986. 

[Proa89] J. Proakis and D. Manolakis, Introduction to Digital Signal 
Processing (Chapter 7), Macmillan, New York, 1989. 

[Soon84] F. Soong and B. Juang, "Line Spectrum Pair (LSP) and 
Speech Data Compression", Proc. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing, ICASSP'84, 
pp. 1.10.1-1.10.4,1984. 

202 



Appendix E 
Quantized-search Kabal Method 

The reader is reminded that the name "quantized-search 
Kabal" refers to the version of "quantized-search Kabal" 
algorithm which uses both "horizontal single-correction" and 
"enhanced vertical coupled-correction" criteria (see § 6.3). 

E.l. Maximum Number of Evaluations 

To obtain the maximum number of evaluation in "quantized-
search Kabal" and "quantized-search Chan" algorithms, one of 
the longest possible search paths on the quantization tables of 
Figure 5.5 has to be found. The search is constrained by the 
ordering property of the LSP parameters given in 
Equation (5.25). One of longest path can be easily found by 
inspection of the quantization tables of Figure 5.5. A weight is 
assigned to each point of the i-th quantization table, 
corresponding to the maximum length to arrive to this point, 
starting from the first element of the first table, this weight is 
then used to find the longest path to arrive to every point of the 
i+l-th quantization table, and the process is repeated up to the 
¿0-th quantization table. One of the longest path, obtained with 
this method is described by the set of LSP indices 
{ 1, 6, 4, 5, 14, 5, 4, 3, 3, 7 }. The length of this path is 52. Thus 
52 evaluations are needed to search through this path. 
Additionally, the search could advance one extra point (except 

203 



Optimized Implementation of Speech Processing Algorithms 

in the last LSP which is the last of the table) and then come 
back by means of a single correction. This would add 9 more 
evaluations. One extra evaluation per LSP could be used to test 
single correction, for a total of 10 evaluation. Thus the 
maximum number of possible evaluations is given by 
52 + 9 +10 = 71. In practice, the maximum number of 
evaluations found by simulation on the whole TIMIT database 
is 68. 

E.2. Differences with the Reference Algorithm 

The "quantized-search Kabal" algorithm was compared with 
the high accuracy method followed by quantization (reference 
algorithm). The differences between the LSP indices calculated 
with the algorithm under evaluation and the reference 
algorithm were counted, and the results are given in Table E.l. 
The number of frames containing one, two, three, four and 
more than four differences of one on the LSP indices are 
denoted as nl , n2, n3, n4 and n5 respectively. The number of 
frames containing at least one difference bigger than one on the 
LSP indices is denoted as nn. 

"Q.-search Kabal" 

m 

0 

m 

706 

ns 

3 

U4 

0 

ns 

0 

nn 

2 

Table E.l : Comparison among "quantized-search Kabal" algorithm, and 
high accuracy method + quantization in the "x-domain", in 
terms of differences in the obtained indices. 

It is seen that there are no frames containing one 
difference of one on the LSP indices. This is due to the fact that 
the single-correction criterion proposed in Equations 6.6 to 6.8 
is perfectly equivalent to the "horizontal single-correction" 
criterion. 

The 706 frames containing two differences of one on the 
LSP indices are due to the fact that the "enhanced vertical 
coupled-correction" criterion of Equations 6.11 and 6.12 does 
not correspond exactly to the "horizontal coupled-correction" 
criterion. Thus there are some missed "coupled-corrections" and 
coupled corrections that were erroneously done. These 706 

204 



Quantized-Search Kabal Method 

frames have an average spectral distortion of 2.42 dB while the 
same frames, using the reference algorithm, have a spectral 
distortion of 2.39 dB. Furthermore this frames correspond to 
the 0.1098 % of the tested frames. Thus they do not affect 
significantly the quantization performance. 

In Table E.l it is observed that there are three frames 
containing three differences of one on the LSP indices and two 
frames containing at least one difference bigger than one on the 
LSP indices. Four of these five particular cases correspond to 
missed zero-crossings due to the coarse quantization grid, as 
observed in Figure E.l, and one of the cases corresponds to a 
doubly detected zero crossing. The spectral distortion was 
measured on these five frames using both "quantized-search 
Kabal" and the reference algorithm, and is given in Table E.2. 

Speech file I frame 

2371/ 57 
2785/24 

2858/113 

5199/9 
6205/50 

Reference 

3.9462 

2.2258 
0.5224 

3.4225 
1.4617 

"Q.search Kabal" 

15.9480 
10.5166 

5.7037 

3.2096 
5.8248 

Table E.2 : Spectral distortion for the frames with missed or doubly-
detected zero-crossing. 

It is observed that most of these frames introduce a very 
high distortion, but they correspond only to the 0.0008 % of the 
tested frames. Furthermore, in listening tests using the CELP 
FS1016 speech coder, these cases did not introduce additional 
audible distortion. Thus, to keep the low complexity of 
"quantized-search Kabal" it was decided not to add any extra 
computation to avoid these unlikely conditions. 

205 



Optimized Implementation of Speech Processing Algorithms 

neQ ir •' V neg 

-1 -0.5 0.5 

Figure E.l: Missing zero-crossing in speech file 2371, frame 57, when 
searching the 7-th LSP. 

206 



Sara Grassi 
Electronics and Signal Processing Laboratory 

Institute of Microtechnology, University of Neuchâtel, 

Breguet 2, CH-2000 Neuchâtel, Switzerland 

sara.grassi@imt.unine.ch 

Born March 9th, 1966, in Maracay, Venezuela. 

Citizenship : Venezuelan I Italian 

Current Field of Research : Speech coding and enhancement 

Languages : Spanish I Italian I English I French 

Educational Degrees 

October 1990 - October 1991 : M.Sc. in Communications & 
Digital Signal Processing, Imperial College of Science and 
Technology, University of London. 

September 1982 - January 1988 : Electronic Engineer, 
Universidad Simon Bolivar, Caracas, Venezuela. 

Working Experience 

Since March 1992 : Research Assistant at the Institute of 
Microtechnology, University of Neuchâtel, Switzerland. 

March 1988 - August 1990 : Project Engineer with Microtel 
S.A., Venezuela. 

April 1987 - Sept. 1987 : Degree project undertaken in 
association with GENTE CA., Venezuela. 

mailto:sara.grassi@imt.unine.ch


July 1985 - August 1985 : Industrial training with Maraven 
S.A., a branch of "Petróleos de Venezuela". 

Teaching Experience 

Since March 1992 definition and supervision of student projects 
at the University of Neuchâtel, Switzerland. 

Sept. 1985 - March 1987 : Teaching assistant in Electronics I, 
Electronics II, Electronics III at the Electronics and Circuits 
Department, Universidad Simon Bolivar, Caracas, Venezuela. 

Publications 

S. Grassi, M. Ansorge, and F. Pellandini, "Fast LSP Calculation 
and Quantization with Application to the CELP FS1016 Speech 
Coder", Proc. EUSIPCO'98, Sept. 1998. 

S. Grassi, M. Ansorge, and F. Pellandini, "Optimized Real Time 
Implementation of Spectral Analysis and Quantization for the 
CELP FS1016 Speech Coder", Proc. Cost #254 Workshop on 
Intelligent Communications, L'Aquila, Italy, June 4-6,1998. 

S. Grassi, A. Dufaux, M. Ansorge, and F. Pellandini, "Efficient 
Algorithm to Compute LSP Parameters from 10-th order LPC 
Coefficients", Proc. ICASSP'97, Vol. 3, pp. 1707-1710, 1997. 

S. Grassi, A. Heubi, M. Ansorge, and F. Pellandini, "Study of a 
VLSI Implementation of a Noise Reduction Algorithm for 
Digital Hearing Aids", Proc. EUSIPCO'94, Vol.3, pp. 1661-1664, 
1994. 

S. Grassi, "Noise Elimination in Speech Using Adaptive 
Filtering in Subbands", Master Thesis, Imperial College, 
London, October 1991. 

A. Heubi, S. Grassi, M. Ansorge, and F. Pellandini, "A Low 
Power VLSI Architecture for Digital Signal Processing with an 
Application to Adaptive Algorithms for Digital Hearing Aids", 
Proc. EUSIPCO'94, Vol. 3, pp. 1875-1878,1994. 


