

147

Frequenz
60 (2006)
7-8

Faster than the FFT:
The chirp-z RAG-n Discrete Fast
Fourier Transform*

By Uwe Meyer-Bäse, Hariharan Natarajan, Encarnación Castillo, Antonio García

Abstract – DFT and FFTs are important but resource intensive building blocks and have found many applica-
tion in communication systems ranging from fast convolution to coding of OFDM signals. It has recently be
shown that the n-Dimensional Reduced Adder Graph (RAG-n) technique is beneficially in many applications
such as FIR or IIR filters, where multiplier can be grouped in multiplier blocks. This paper explores how the
RAG-n technique can be applied to DFT algorithms. A RAG-n fast discrete Fourier transform will be shown to
be of low latency and complexity and posses a VLSI attractive regular data flow when implemented with the
Bluestein chirp-z algorithm. VHDL code synthesis results for Xilinx Virtex II FPGAs are provided and demon-
strate the superior properties when compared with Xilinx FFT IP cores.

Index Terms – Fast Fourier Transform, OFDM, FPGA, n-Dimensional Reduced Adder Graph

1. Introduction

The recently introduced new algorithms like JPEG2000, MPEG,

or DVB, require high performance, programmability, and low

power in embedded systems. Figure 1 gives an overview of

possible implementation options for such systems [1]. The most

universal is a pure microprocessor, but usually lacks a sufficient

power/performance ratio for embedded applications. The other

extreme, a dedicated design, has the highest power/performance

ratio, but is very specialized and not universal enough in most

cases. An array of microprocessors is another attractive alterna-

tive that has been implemented in many variations [2-6], but

usually has a long development time and requires sophisticated

scheduling and compiler. A powerful microprocessor augmented

by a collection of dedicated co-processors seems to be the most

universal solution that allows rapid prototyping and provides still

enough computing power to fulfill these demanding multimedia

processing needs.

Discrete Fourier Transform (DFT) and its fast implementation,

the Fast Fourier Transform (FFT), have played a central role in

many digital signal processing applications. A possible FFT co-

processor configuration of the Xilinx LogiCore FFT IP [7-11] is

shown in Fig. 2.

The processor + co-processors system configuration requires

that first the (complex) data are transferred to the co-processor,

followed by the transform computations, and finally the “un-

load” phase to apply a bit reverse sort and transfer data back to

the main processor memory. Although this Butterfly based co-

processors are small in area, (Software code see [12]; HDL code

see for instance [13]) the downside of the Butterfly co-processor

is a substantial latency, i.e. the time that it takes until the first

DFT coefficient is available. There are however other system

configurations that do not have the high latency associated with

the Butterfly processing scheme for the processor + co-

processors system configuration.

A much shorter latency can be achieved when the Rader or

Bluestein chirp-z Transform (CZT) are used. Both algorithms

translate the DFT equation:

=

=

1

0

][][
N

n

kn

N
WnxkX 1,......1,0= Nk (1)

 with
Nknjkn

N eW /2
= (2)

into a convolution, i.e. FIR filter operation. The Rader transform

has the limitation that only prime length transform can be com-

puted and both, input and output sequences, appear in permu-

tated order. The disadvantage of the CZT algorithms is that

compared to the Rader algorithms two additional complex I/O

multiplication are required. But any transform length can be built

with the CZT algorithm and the following discussing will focus

therefore on the CZT transform.

The FIR part of the Rader and CZT algorithms are very re-

source demanding, and in the past such implementations were

not feasible. Burrus and Parks [2, p.37] for instance claim: “If

implemented on digital hardware, the chirp-z transform does not

seem advantageous for calculating the normal DFT.” With the

advent of the multiplier block coding with the reduced adder

graph technique, however we can lower the complexity of the

CZT that an implementation becomes feasible and advantageous.

The remainder of the paper is organized as follows. We will

give first a brief overview of multiplier block coding using CSD,

MAG, and RAG-n coding. Section 3 presents the CZT and de-
* FAMU-FSU College of Engineering, Department of Electrical and

Computer Engineering, Florida State University, Tallahassee,
USA

Fig. 1: Data path processing architecture options [1]

Fig. 2: FFT co-processor core [7]

148

Frequenz
60 (2006)

7-8

scribe then how to implement the CZT DFTs on FPGAs. Finally

we present synthesis results for Xilinx FPGA.

2. Multiplier Block Coding

There are only a few applications (e.g., adaptive filters) where a

general programmable filter architecture is needed. In many

applications, the filters are linear time-invariant (LTI) systems

and the coefficients do not change over time. In this case, the

hardware effort can essentially be reduced by exploiting the

constant coefficient multiplier coding and adder (trees) used to

implement the transposed FIR filter multiplier block, see Fig. 3a.

Statistically, half the digits in the two's complement coding of

a number are zero. As a result, if a constant coefficient is real-

ized with an array multiplier on average 50% of the partial prod-

ucts are zero. In case the canonic signed digit (CSD) system, i.e.,

digits can have ternary values

{ 1,0,1}= {1,0,1} , the density of

the non zero elements becomes 33%. Consider for instance the

coding the decimal number 1510=11112 using a 5-bit binary CSD

code reduced to

1111

2
= 10001

CSD
 which reduces the

implementation effort for an array multiplier from 3 adders to

one subtraction.

We have just seen that the cost of multiplication is a direct

function of the number of nonzero elements in the coefficient

coding. The CSD system reduces this cost on average to 33%. It

can, however, sometimes be more efficient first to factor the

coefficient into several factors, and realize the individual factors

in an optimal CSD sense. For instance the direct CSD codes for a

multiplier 45 requiring three adders, while realized as multiplier

adder graph (MAG), i.e., as factors (3*15=(2+1)*(16-1)) re-

quires one addition and one subtraction. The complexity for the

factor implementation is reduced by about 30%.

In several DSP systems we find that many multipliers share

the same input and we combine these multipliers in a multiplier

block. The transposed FIR filter shown in Figure 3(a) is a typical

example for a multiplier block. Dempster and Macleod [15,16]

have introduced a systematic algorithms, which produces a n-

Dimensional Reduced Adder Graph (RAG-n) of a block multi-

plier. In general, however, finding the optimal RAG-n is an NP-

hard problem. RAG-n determines in the first steps an optimal

coding and for the suboptimal part heuristics are applied. The

full 10 step RAG-n algorithms can be found in [15]. To illustrate

the RAG-n algorithm, consider coding the coefficients defining

the F6 halfband FIR filter of Goodman and Carey [13]. The

halfband filter F6 has four nonzero coefficients, namely which

are 346, 208, -44, and 9. For the direct CSD code realization, 9

adders are required. If the RAG-n algorithms is used the number

of adders is reduced from 9 to 5. The adder path delay is also

reduced from 4 to 3. Fig. 3b shows the resulting reduced-adder

graph.

3. The Bluestein Chirp-z Transform

In the Bluestein chirp-z transform (CZT) algorithm, the DFT

exponent nk is quadratic expanded to:

nk = (k n)2 / 2 + n

2 / 2 + k
2 / 2 (3)

The DFT therefore becomes

X[k] = W
k

2 /2 (x[n]W n
2 /2)

n=0

N 1

W
(k n)2 /2

 (4)

This algorithm is graphically interpreted in Fig. 4. The Bluestein

Chirp-z algorithm is computed using the following thee steps:

1. N multiplication of x[n] with W
n

2
/2

2. Linear convolution of

x[n]W

n
2

/2
W

n
2

/2

3. N multiplications with W

k
2

/2
.

For a complete transform, a length N convolution and 2N com-

plex multiplications are required. The advantage, compared with

the Rader algorithm, is that there is no restriction to primes in the

transform length N. CZT can be defined for every length. Nara-

simha et al. [14] have noticed that in the CZT algorithm many

coefficients of the FIR filter part are trivial or identical. For

instance, the length-8 CZT has an FIR filter of length 15, i.e.,

(5)

but there are only four different complex coefficients as graphi-

cally interpreted in Fig. 5. These four coefficients are 1, j, and

±e
j22.5º

, i.e., we have only two nontrivial real coefficients

(cos(22.5º) and sin(22.5º)) to implement.

The maximum DFT length N for a fixed number CN of (com-

plex) constant coefficients may be of general interest. This is

shown in following table.

DFT
length

8 12 16 24 40 48

CN 4 6 7 8 12 14

DFT
length

72 80 120 144 168 180

CN 16 21 24 28 32 36

Fig. 3a: FIR filter in the transposed structure

X[k] = W
k

2 / 2 (x[n]W n
2 / 2)

n=0

N 1

W
(k n)2 / 2

Fig. 3b: Realization of the Goodman and Carey halfband filter F6
using the RAG-n algorithm

C(n) = e

j2
n2 / 2 mod 8

8 n = 1,2,...,14

Fig. 4: The Bluestein chirp-z algorithm

149

Frequenz
60 (2006)
7-8

For comparison purpose consider the number of complex mul-

tiplier necessary to build a parallel radix-2 FFT architecture. A

column processor [18] will need N/2 variable (complex) multi-

plier, i.e. no optimization for constant coefficient can be applied.

A full pipelined architecture will require log2(N)N/2 constant

multiplier.

As mentioned before, the number of different complex coeffi-

cients does not directly correspond to the implementation effort,

because some coefficients may be trivial (i.e., +/-1 or +/-j) or

may show symmetry. In particular, the power-of-two length

transforms enjoy many symmetries. If we compute the maximum

DFT length for a specific number of nontrivial real coefficients,

we find as maximum length transforms to be:

DFT
length

10 16 20 32 40 48

RN 2 3 5 6 8 9

DFT
length

50 80 96 160 192

RN 10 11 14 20 25

Length 16 and 32 are therefore the maximum length DFTs

with only 3 and 6 real multipliers, respectively. In general,

power-of-two lengths are popular building blocks for Cooley-

Tukey FFTs, therefore we implemented CZT transforms of

length N=2n. The number of adders required for the CSD, MAG

and RAG-n methods for the CZT DFT up to length 70 is graphi-

cally interpreted in Figure 6(a). For each DFT length the three

different implementation efforts symbolized via (o, x, and *) are

shows. It can be seen that the effort depends strongly on the

symmetry of the coefficients and we may therefore refrain from

implementing certain DFT length and use a little larger DFT.

These more efficient DFTs with maximum transform length are

connected through an additional solid line .

3.1 Complex Bluestein Chirp-z DFT

So far we have discussed CZT DFTs of a real input sequences

and the complex twiddle factor multiplication can then be real-

ized with two real multiplications. For complex input DFTs we

have two choices how to implement the complex multiplication.

We may use the straight forward approach with 4 real multipli-

cations and 2 real additions, i.e.,

(a + jb)(c + js) = ac – bc + j(as + bc) (6)

or we may use a different factorization:

s[1] = a – b s[2] = c – s s[3] = c + s

m[1] = s[1] s m[2] = s[2] a m[3] = s[3] b

s[4] = m[1] + m[2] s[5] = m[1] + m[3]

(a +jb)(c + js) = s[4] + js[5] (7)

which requires 3 real multiplications and 5 real additions.

Figure 6 (b) shows for the complex FIR part of the chirp-z

transform the number of required adder for transforms up to

length 70. Although the results vary for different transform

length, the connection of the maximum length transform through

the solid line shows, that the 4*2+ algorithm is superior when

compared with the 3*5+ algorithms. This is due to the fact that

with the 4*2+ algorithms for a complex coefficient filter of

length L two multiplier blocks with size 2L are designed, while

for the 3*5+ algorithms three multiplier block filters with block

size L have to be used, where L=2N-1. In a larger multiplier

block RAG-n optimizes much better than in a shorter filter. We

used therefore the 4*2+ algorithm to implement the FIR filter

part of the CZT (see Fig. 4), while the (3*5+) algorithm was

used to implement the two complex input and output multiplica-

tion of the CZT.

4. Synthesis Results

The CZT architecture shown in Fig. 4 was modified such that

only one complex multiplier is shared by the I/O multiplications.

This does not reduce the registered performance because after all

input values are received, input complex multiplications are no

longer required and the multiplier can be used for the output

multiplications. This modification saves many gates because the

3x5+ complex multiplier requires already 12963 gates, or over

50% for a length 4 transform.

The circuits for length 4, 8, 16, 32, and 64 point CZT DFTs

have been developed using generic VHDL coding. The VHDL

code of these CZT designs [17] are available online via the FSU

Fig. 5: The 14 complex coefficients C(n) for a length 8 CZT DFT

Fig. 6: Bluestein chip-z transform implementation effort. (a) Number of

adders for all real coefficient of DFT length N. (b) Comparision of two

different complex multiplier designs

150

Frequenz
60 (2006)

7-8

library at www.lib.fsu.edu. The results are reported in Table 1.

Circuits have then been synthesized from their VHDL descrip-

tions and optimized for speed using ISE2 synthesis tools from

Xilinx. We found that with optimization goal “size” the regis-

tered performance and area do not change significant for this

adder intensive circuit type [17]. The device for all designs was a

2v1000fg256-6 from Xilinx Virtex II device family. Because the

Xilinx synthesis tools used embedded array multiplier, logic

cells with two 4-input and one 3-input tables, and block RAMs,

the best way to measurement the design area is the equivalent

number of gates (called Gates in Table 1+2) from the Xilinx

“Mapping Report File.” To have reliable timing data we use the

“Post Place & Route Static Timing Report” rather than the map

time estimations.

Table 1: CZT DFT synthesis results for 2v1000fg256-6 Xilinx Virtex II

device.

DFT length 4 8 16 32 64

Gates 21K 32K 52K 90K 154K

#4 LUT
(10240)

644
(6%)

1257
(12%)

2663
(26%)

4864
(47%)

8809
(86%)

Embedded
multiplier
(40)

3
(15%)

3
(15%)

3
(15%)

3
(15%)

3
(15%)

Number I/O
(172)

119 121 121 127 122

Peak
memory
usage (MB)

87 94 112 139 163

Registered
Perform-
ance (ns)

14.44 15.263 15.303 15.702 20.279

We have used four additional pipeline stages in our design:

two for the complex multiplier and two for the RAG-n FIR. The

total latency, i.e. the time between all input vectors are trans-

ferred and the first output DFT values is available, is therefore 4

clock cycles. In contrast the netlist optimized Xilinx LogiCore IP

block that uses the Butterfly architecture shown in Fig. 2 re-

quires from 66 to 3121 clock cycles until the first valid DFT

value is available. Different results and less optimal resource

utilization is expected if we use the pameterizable FFT cores

available also from Xilinx.

Table 2: Comparison of CZT and Xilinx FFT IP core latency and gate

count.

DFT
length

16 32 64 256 1024

CZT
latency

4 4 4 4 4

Xilinx
latency

66 132 82 561 3121

Slices 1386 908 1161 1616 1869

Gates 429K 159K 167K 181K 189K

FFT
radix

4 2 4 4 4

It can also be seen from Table 2 that the latency depends on

the radix of the Butterfly. A larger radix allows the computation

in less clock cycles, but is still essentially larger than the CZT

solution. In addition a large radix reduces the number of possible

transforms. A radix-R FFT can only implement length R
k
 FFTs,

i.e., for a radix-4 FFT possible transform length are 4, 16, 64,

etc. but 32, 128, 512, etc. point FFTs can not be build with a

radix-4 FFT.

We notice also from Table 2 that the 16 point Xilinx Logic-

Core FFT is implemented with logic cells only, and the slice

count is therefore larger as expected. For length larger than 16

two RAM block are required as working memory. Each of the

block RAMs requires about 65K equivalent gates.

It can also be seen from Table 1 that the registered perform-

ance of the 64-point DFT decreases due to the fact that the de-

vice is 86% full.

5. Conclusion

The paper shows that Bluestein Chirp-z DFT has become a

viable implementation path for fast discrete Fourier Transform

designs when the multiplier block is implemented with reduced

adder graph technique. The paper has demonstrated the dramatic

reduction in effort the RAG-n algorithm has, when implementing

this DFT real or complex constant coefficient filter. For instance

the length 63 TAP complex filter in 8 bit (plus sign) precision

used in the 32 point Bluestein Chirp-z DFT needs only 12 real

multipliers that can be implemented with 24 adders compared

with the worst case of (2 32 1) 8 4 = 2016 adders of a direct

realizations.

Synthesis results for 5 VHDL design examples show that up to

length 64 CZT DFT transforms fit in a 2v1000fg256-6 device

and all design have a latency of only 4 clock cycles compared

with 84 clock cycles of the equivalent 64 point Xilinx IP core.

Gates count for Butterfly and CZT designs are similar, which

CZT gate count design a little smaller.

Further investigations will focus on cell-based VLSI design of

the Bluestein Chirp-z DFT algorithms and building large length

FFTs (N>1024) with Bluestein DFT as basic building block.

Another investigation may also include a size/speed comparison

of the Bluestein DFTs with the Winograd DFT blocks.

The authors would like to thank Xilinx for their support under

the University programs. A. García and E. Castillo were sup-

ported by the Ministerio de Ciencia y Tecnología (MCyT, Spain)

under project TIC2002-02227.

References

[1] Altera Corporation, “DSP Netseminar series: Video & Image Processing

with FPGAs,” http://www.altera.com, 2004.

[2] F. Barat, R. Lauwereins, G. Deconinck, “Reconfigurable Instruction Set

Processors from a Hardware/Software Perspective”, IEEE Transactions

on Software Engineering, vol. 28(9), pp. 847-862, 2002.

[3] T. Miyamori, K. Olukotun, “REMARC: Reconfigurable Multimedia

Array Coprocessor”, Proc. Sixth Int'l Symp. Field-Programmable Gate

Arrays, 1998.

[4] S. Hauck, T.W. Fry, M.M. Hosler, J.P. Kao, “The Chimaera Recon-

figurable Functional Unit”, Proc. Workshop FPGAs and Custom Com-

puting Machines 1997.

[5] P. Kievits, E. Lambers, C. Moerman, R. Woudsma, “R.E.A.L. DSP

Technology for Telecom Baseband Processing”, ICSPAT 1998.

[6] G. Cichon, P. Robelly, H. Seidel, T. Limberg, G. Fettweis, “SAMIRA:

A SIMD-DSP architecture targeted to the Matlab™ source language”,

Proceedings GSPX, 2004.

[7] Xilinx Corporation, “High-Performance 16-Point Complex FFT/IFFT”,

Product Specification, 2000.

[8] Xilinx Corporation, “High-Performance 32-Point Complex FFT/IFFT”,

Product Specification, 2002.

[9] Xilinx Corporation, “High-Performance 64-Point Complex FFT/IFFT”,

Product Specification, 2000.

[10] Xilinx Corporation, “High-Performance 256-Point Complex

FFT/IFFT”, Product Specification, 2000.

[11] Xilinx Corporation, “High-Performance 1024-Point Complex

FFT/IFFT”, Product Specification, 2000.

151

Frequenz
60 (2006)
7-8

[12] C. Burrus, T. Parks, DFT/FFT and Convolution Algorithms, John Wiley

& Sons, New York, 1985.

[13] U. Meyer-Baese, Digital Signal Processing with Field Programmable

Gate Arrays. Springer-Verlag, Berlin Heidelberg New York, 2nd ed.,

2004.

[14] M. Narasimha, K. Shenoi, A. Peterson, “Quadratic residues: Application

to chirp filters and discrete Fourier transforms”, IEEE International

Conference on Acoustics, Speech, and Signal Processing, pp. 12-24,

1976.

[15] A. Dempster, M. Macleod, “Use of minimum-adder multiplier blocks in

fir digital filters,” IEEE Transactions on Circuits and Systems II, vol.

42, pp. 569-577, 1995.

[16] A. Dempster, M. Macleod, “Comments on ‘minimum number of adders

for implementing a multiplier and its application to the design of multi-

plierless digital filters”, IEEE Transactions on Circuits and Systems II,

pp. 242-243, 1998.

[17] H. Natarajan, “Implementation of Chip-z Discrete Fourier Transform on

Virtex II FPGA,” Master’s Thesis, Florida State University, Tallahas-

see, 2004.

[18] S. Gorman and J. Wills, “Partial Column FFT Pipelines,” IEEE Tran-

sactions on Circuits and Systems-II. vol. 42, pp. 414-423, 1995

Assistant Professor Dr. Uwe Meyer-Bäse

and H. Natarajan

Department of Electrical and Computer Engineering

Tallahassee, Florida 32310-6046,

USA

Fax: +1(850)410-6479

E-mail: umb@eng.fsu.edu; natara@eng.fsu.edu

Encarnacion Castillo and Prof. Dr. Antonio García

Dept. of Electronics and Computer Technology

University of Granada

18071 Granada

Spain

Fax: +34-958243230

E-mail: encas@ditec.ugr.es; agarcia@ditec.ugr.es

(Received on December 27, 2005)

(Revised on March 20, 2006)

