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Abstract – DFT and FFTs are important but resource intensive building blocks and have found many applica-
tion in communication systems ranging from fast convolution to coding of OFDM signals. It has recently be 
shown that the n-Dimensional Reduced Adder Graph (RAG-n) technique is beneficially in many applications 
such as FIR or IIR filters, where multiplier can be grouped in multiplier blocks. This paper explores how the 
RAG-n technique can be applied to DFT algorithms. A RAG-n fast discrete Fourier transform will be shown to 
be of low latency and complexity and posses a VLSI attractive regular data flow when implemented with the 
Bluestein chirp-z algorithm. VHDL code synthesis results for Xilinx Virtex II FPGAs are provided and demon-
strate the superior properties when compared with Xilinx FFT IP cores. 
 
Index Terms –  Fast Fourier Transform, OFDM, FPGA, n-Dimensional Reduced Adder Graph 
 
 
 

1. Introduction 

The recently introduced new algorithms like JPEG2000, MPEG, 

or DVB, require high performance, programmability, and low 

power in embedded systems. Figure 1 gives an overview of 

possible implementation options for such systems [1]. The most 

universal is a pure microprocessor, but usually lacks a sufficient 

power/performance ratio for embedded applications. The other 

extreme, a dedicated design, has the highest power/performance 

ratio, but is very specialized and not universal enough in most 

cases. An array of microprocessors is another attractive alterna-

tive that has been implemented in many variations [2-6], but 

usually has a long development time and requires sophisticated 

scheduling and compiler. A powerful microprocessor augmented 

by a collection of dedicated co-processors seems to be the most 

universal solution that allows rapid prototyping and provides still 

enough computing power to fulfill these demanding multimedia 

processing needs.  

Discrete Fourier Transform (DFT) and its fast implementation, 

the Fast Fourier Transform (FFT), have played a central role in 

many digital signal processing applications. A possible FFT co-

processor configuration of the Xilinx LogiCore FFT IP [7-11] is 

shown in Fig. 2.  

The processor + co-processors system configuration requires 

that first the (complex) data are transferred to the co-processor, 

followed by the transform computations, and finally the “un-

load” phase to apply a bit reverse sort and transfer data back to 

the main processor memory. Although this Butterfly based co-

processors are small in area, (Software code see [12]; HDL code 

see for instance [13]) the downside of the Butterfly co-processor 

is a substantial latency, i.e. the time that it takes until the first 

DFT coefficient is available. There are however other system 

configurations that do not have the high latency associated with 

the Butterfly processing scheme for the processor + co-

processors system configuration.  

A much shorter latency can be achieved when the Rader or 

Bluestein chirp-z Transform (CZT) are used. Both algorithms 

translate the DFT equation:  
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into a convolution, i.e. FIR filter operation. The Rader transform 

has the limitation that only prime length transform can be com-

puted and both, input and output sequences, appear in permu-

tated order. The disadvantage of the CZT algorithms is that 

compared to the Rader algorithms two additional complex I/O 

multiplication are required. But any transform length can be built 

with the CZT algorithm and the following discussing will focus 

therefore on the CZT transform.  

The FIR part of the Rader and CZT algorithms are very re-

source demanding, and in the past such implementations were 

not feasible. Burrus and Parks [2, p.37] for instance claim: “If 

implemented on digital hardware, the chirp-z transform does not 

seem advantageous for calculating the normal DFT.” With the 

advent of the multiplier block coding with the reduced adder 

graph technique, however we can lower the complexity of the 

CZT that an implementation becomes feasible and advantageous. 

The remainder of the paper is organized as follows. We will 

give first a brief overview of multiplier block coding using CSD, 

MAG, and RAG-n coding. Section 3 presents  the  CZT  and  de- 
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Fig. 1: Data path processing architecture options [1] 

Fig. 2: FFT co-processor core [7] 
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scribe then how to implement the CZT DFTs on FPGAs. Finally 

we present synthesis results for Xilinx FPGA. 

2. Multiplier Block Coding 

There are only a few applications (e.g., adaptive filters) where a 

general programmable filter architecture is needed. In many 

applications, the filters are linear time-invariant (LTI) systems 

and the coefficients do not change over time. In this case, the 

hardware effort can essentially be reduced by exploiting the 

constant coefficient multiplier coding and adder (trees) used to 

implement the transposed FIR filter multiplier block, see Fig. 3a.  

Statistically, half the digits in the two's complement coding of 

a number are zero. As a result, if a constant coefficient is real-

ized with an array multiplier on average 50% of the partial prod-

ucts are zero. In case the canonic signed digit (CSD) system, i.e., 

digits can have ternary values
 
{ 1,0,1}= {1,0,1} , the density of 

the non zero elements becomes 33%. Consider for instance the 

coding the decimal number 1510=11112 using a 5-bit binary CSD 

code reduced to  
 
1111

2
= 10001

CSD
 which reduces the 

implementation effort for an array multiplier from 3 adders to 

one subtraction.  

We have just seen that the cost of multiplication is a direct 

function of the number of nonzero elements in the coefficient 

coding. The CSD system reduces this cost on average to 33%. It 

can, however, sometimes be more efficient first to factor the 

coefficient into several factors, and realize the individual factors 

in an optimal CSD sense. For instance the direct CSD codes for a 

multiplier 45 requiring three adders, while realized as multiplier 

adder graph (MAG), i.e., as factors (3*15=(2+1)*(16-1)) re-

quires one addition and one subtraction. The complexity for the 

factor implementation is reduced by about 30%. 

In several DSP systems we find that many multipliers share 

the same input and we combine these multipliers in a multiplier 

block. The transposed FIR filter shown in Figure 3(a) is a typical 

example for a multiplier block. Dempster and Macleod [15,16] 

have introduced a systematic algorithms, which produces a n-

Dimensional Reduced Adder Graph (RAG-n) of a block multi-

plier. In general, however, finding the optimal RAG-n is an NP-

hard problem. RAG-n determines in the first steps an optimal 

coding and for the suboptimal part heuristics are applied. The 

full 10 step RAG-n algorithms can be found in [15]. To illustrate 

the RAG-n algorithm, consider coding the coefficients defining 

the F6 halfband FIR filter of Goodman and Carey [13]. The 

halfband filter F6 has four nonzero coefficients, namely which 

are 346, 208, -44, and 9. For the direct CSD code realization, 9 

adders are required. If the RAG-n algorithms is used the number 

of adders is reduced from 9 to 5. The adder path delay is also 

reduced from 4 to 3. Fig. 3b shows the resulting reduced-adder 

graph. 

3. The Bluestein Chirp-z Transform 

In the Bluestein chirp-z transform (CZT) algorithm, the DFT 

exponent nk is quadratic expanded to: 

 

  
nk = (k n)2 / 2 + n

2 / 2 + k
2 / 2  (3) 

 

The DFT therefore becomes 
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This algorithm is graphically interpreted in Fig. 4. The Bluestein 

Chirp-z algorithm is computed using the following thee steps: 

 

1.  N multiplication of x[n] with   W
n
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2.  Linear convolution of 
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3.  N multiplications with  W

k
2

/2
. 

 

For a complete transform, a length N convolution and 2N com-

plex multiplications are required. The advantage, compared with 

the Rader algorithm, is that there is no restriction to primes in the 

transform length N. CZT can be defined for every length. Nara-

simha et al. [14] have noticed that in the CZT algorithm many 

coefficients of the FIR filter part are trivial or identical. For 

instance, the length-8 CZT has an FIR filter of length 15, i.e., 

 

(5) 

 

 

but there are only four different complex coefficients as graphi-

cally interpreted in Fig. 5. These four coefficients are 1, j, and 

±e
j22.5º

, i.e., we have only two nontrivial real coefficients 

(cos(22.5º) and sin(22.5º)) to implement. 

The maximum DFT length N for a fixed number CN of (com-

plex) constant coefficients may be of general interest. This is 

shown in  following table. 

 

DFT 
length 

8 12 16 24 40 48 

CN 4 6 7 8 12 14 

DFT 
length 

72 80 120 144 168 180 

CN 16 21 24 28 32 36 

Fig. 3a: FIR filter in the transposed structure 

  

X[k] = W
k

2 / 2 (x[n]W n
2 / 2 )

n=0

N 1

W
(k n)2 / 2

Fig. 3b: Realization of the Goodman and Carey halfband filter F6 
using the RAG-n algorithm 

  
C(n) = e

j2
n2 / 2 mod 8

8 n = 1,2,...,14

Fig. 4: The Bluestein chirp-z algorithm 
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For comparison purpose consider the number of complex mul-

tiplier necessary to build a parallel radix-2 FFT architecture. A 

column processor [18] will need N/2 variable (complex) multi-

plier, i.e. no optimization for constant coefficient can be applied. 

A full pipelined architecture will require log2(N)N/2 constant 

multiplier. 

As mentioned before, the number of different complex coeffi-

cients does not directly correspond to the implementation effort, 

because some coefficients may be trivial (i.e., +/-1 or +/-j) or 

may show symmetry. In particular, the power-of-two length 

transforms enjoy many symmetries. If we compute the maximum 

DFT length for a specific number of nontrivial real coefficients, 

we find as maximum length transforms to be: 

 
 

DFT 
length 

10 16 20 32 40 48 

RN 2 3 5 6 8 9 

DFT 
length 

50 80 96 160 192  

RN 10 11 14 20 25  

 

Length 16 and 32 are therefore the maximum length DFTs 

with only 3 and 6 real multipliers, respectively. In general, 

power-of-two lengths are popular building blocks for Cooley-

Tukey FFTs, therefore we implemented CZT transforms of 

length N=2n. The number of adders required for the CSD, MAG 

and RAG-n methods for the CZT DFT up to length 70 is graphi-

cally interpreted in Figure 6(a). For each DFT length the three 

different implementation efforts symbolized via (o, x, and *) are 

shows. It can be seen that the effort depends strongly on the 

symmetry of the coefficients and we may therefore refrain from 

implementing certain DFT length and use a little larger DFT. 

These more efficient DFTs with maximum transform length are 

connected through an additional solid line . 

3.1 Complex Bluestein Chirp-z DFT 

So far we have discussed CZT DFTs of a real input sequences 

and the complex twiddle factor multiplication  can then be real-

ized with two real multiplications. For complex input DFTs we 

have two choices how to implement the complex multiplication. 

We may use the straight forward approach with 4 real multipli-

cations and 2 real additions, i.e.,  

(a + jb)(c + js) = ac – bc + j(as + bc) (6) 

or we may use a different factorization: 

s[1] = a – b   s[2] = c – s   s[3] = c + s 

m[1] = s[1]  s     m[2] = s[2]  a     m[3] = s[3]  b 

s[4] = m[1] + m[2]     s[5] = m[1] + m[3] 

(a +jb)(c + js) = s[4] + js[5] (7) 

which requires 3 real multiplications and 5 real additions. 

 

Figure 6 (b) shows for the complex FIR part of the chirp-z 

transform the number of required adder for transforms up to 

length 70. Although the results vary for different transform 

length, the connection of the maximum length transform through 

the solid line shows, that the 4*2+ algorithm is superior when 

compared with the 3*5+ algorithms. This is due to the fact that 

with the 4*2+ algorithms for a complex coefficient filter of 

length L two multiplier blocks with size 2L are designed, while 

for the 3*5+ algorithms three multiplier block filters with block 

size L have to be used, where L=2N-1. In a larger multiplier 

block RAG-n optimizes much better than in a shorter filter. We 

used therefore the 4*2+ algorithm to implement the FIR filter 

part of the CZT (see Fig. 4), while the (3*5+) algorithm was 

used to implement the two complex input and output multiplica-

tion of the CZT. 

4. Synthesis Results 

The CZT architecture shown in Fig. 4 was modified such that 

only one complex multiplier is shared by the I/O multiplications. 

This does not reduce the registered performance because after all 

input values are received, input complex multiplications are no 

longer required and the multiplier can be used for the output 

multiplications. This modification saves many gates because the 

3x5+ complex multiplier requires already 12963 gates, or over 

50% for a length 4 transform. 

The circuits for length 4, 8, 16, 32, and 64 point CZT DFTs 

have been developed using generic VHDL coding. The VHDL 

code of these CZT designs [17] are available online via the FSU 

Fig. 5: The 14 complex coefficients C(n) for a length 8 CZT DFT 

Fig. 6: Bluestein chip-z transform implementation effort. (a) Number of 

adders for all real coefficient of DFT length N. (b) Comparision of two 

different complex multiplier designs 
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library at www.lib.fsu.edu. The results are reported in Table 1. 

Circuits have then been synthesized from their VHDL descrip-

tions and optimized for speed using ISE2 synthesis tools from 

Xilinx. We found that with optimization goal “size” the regis-

tered performance and area do not change significant for this 

adder intensive circuit type [17]. The device for all designs was a 

2v1000fg256-6 from Xilinx Virtex II device family. Because the 

Xilinx synthesis tools used embedded array multiplier, logic 

cells with two 4-input and one 3-input tables, and block RAMs, 

the best way to measurement the design area is the equivalent 

number of gates (called Gates in Table 1+2) from the Xilinx 

“Mapping Report File.” To have reliable timing data we use the 

“Post Place & Route Static Timing Report” rather than the map 

time estimations.  

 

Table 1: CZT DFT synthesis results for 2v1000fg256-6 Xilinx Virtex II 

device. 
 

DFT length 4 8 16 32 64 

Gates 21K 32K 52K 90K 154K 

#4 LUT 
(10240) 

644 
(6%) 

1257 
(12%) 

2663 
(26%) 

4864 
(47%) 

8809 
(86%) 

Embedded 
multiplier 
(40) 

3 
(15%) 

3 
(15%) 

3 
(15%) 

3 
(15%) 

3 
(15%) 

Number I/O 
(172) 

119 121 121 127 122 

Peak 
memory 
usage (MB) 

87 94 112 139 163 

Registered 
Perform-
ance (ns) 

14.44 15.263 15.303 15.702 20.279 

 

 

We have used four additional pipeline stages in our design: 

two for the complex multiplier and two for the RAG-n FIR. The 

total latency, i.e. the time between all input vectors are trans-

ferred and the first output DFT values is available, is therefore 4 

clock cycles. In contrast the netlist optimized Xilinx LogiCore IP 

block that uses the Butterfly architecture shown in Fig. 2 re-

quires from 66 to 3121 clock cycles until the first valid DFT 

value is available. Different results and less optimal resource 

utilization is expected if we use the pameterizable FFT cores 

available also from Xilinx. 

 

Table 2: Comparison of CZT and Xilinx FFT IP core latency and gate 

count. 
 

DFT 
length 

16 32 64 256 1024 

CZT 
latency 

4 4 4 4 4 

Xilinx  
latency 

66 132 82 561 3121 

Slices 1386 908 1161 1616 1869 

Gates 429K 159K 167K 181K 189K 

FFT 
radix 

4 2 4 4 4 

 

 

It can also be seen from Table 2 that the latency depends on 

the radix of the Butterfly. A larger radix allows the computation 

in less clock cycles, but is still essentially larger than the CZT 

solution. In addition a large radix reduces the number of possible 

transforms. A radix-R FFT can only implement length R
k
 FFTs, 

i.e., for a radix-4 FFT possible transform length are 4, 16, 64, 

etc. but 32, 128, 512, etc. point FFTs can not be build with a 

radix-4 FFT.  

We notice also from Table 2 that the 16 point Xilinx Logic-

Core FFT is implemented with logic cells only, and the slice 

count is therefore larger as expected. For length larger than 16 

two RAM block are required as working memory. Each of the 

block RAMs requires about 65K equivalent gates.  

It can also be seen from Table 1 that the registered perform-

ance of the 64-point DFT decreases due to the fact that the de-

vice is 86% full. 

5. Conclusion 

The paper shows that Bluestein Chirp-z DFT has become a 

viable implementation path for fast discrete Fourier Transform 

designs when the multiplier block is implemented with reduced 

adder graph technique. The paper has demonstrated the dramatic 

reduction in effort the RAG-n algorithm has, when implementing 

this DFT real or complex constant coefficient filter. For instance 

the length 63 TAP complex filter in 8 bit (plus sign) precision 

used in the 32 point Bluestein Chirp-z DFT needs only 12 real 

multipliers that can be implemented with 24 adders compared 

with the worst case of (2 32 1) 8 4 = 2016 adders of a direct 

realizations. 

Synthesis results for 5 VHDL design examples show that up to 

length 64 CZT DFT transforms fit in a 2v1000fg256-6 device 

and all design have a latency of only 4 clock cycles compared 

with 84 clock cycles of the equivalent 64 point Xilinx IP core. 

Gates count for Butterfly and CZT designs are similar, which 

CZT gate count design a little smaller.   

Further investigations will focus on cell-based VLSI design of 

the Bluestein Chirp-z DFT algorithms and building large length 

FFTs (N>1024) with Bluestein DFT as basic building block. 

Another investigation may also include a size/speed comparison 

of the Bluestein DFTs with the Winograd DFT blocks. 
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