
Abstract. The two dimensional fast Fourier transform (2-D FFT) is an indispensable
operation in many digital signal processing applications but yet is deemed
computationally expensive when performed on a conventional general purpose
processors.  This paper presents the implementation and performance figures for the
Fourier transform on a FPGA-based custom computer.  The computation of a 2-D FFT

requires O(N2log2N) floating point arithmetic operations for an NxN image.  By

implementing the FFT algorithm on a custom computing  machine (CCM) called Splash-
2,  a computation speed of 180 Mflops and a speed-up of 23 times over a Sparc-10
workstation is achieved.

1  Introduction

Two dimensional convolution is a fast and simple way of filtering an image in
the spatial domain if the template being used is relatively small (i.e., 8x8 pixels).  As
the template grows in size, the computational burden increases geometrically.  Con-
volution of larger templates can be done much faster by converting an image in the
spatial domain to the frequency domain  and then applying a filter by doing point-by-
point multiplication[6].  The filtered image in the frequency domain is then converted
back to the spatial domain by doing an inverse Fourier transform.

Image and digital signal processing (DSP) applications typically require high
calculation throughput [4,10].  The 2-D fast Fourier transform application presented
here was  implemented for near real-time filtering of video images on the Splash-2
FPGA-based custom computing machine (CCM).  This application requires the abil-
ity to do floating point arithmetic.  The use of floating point allows a large dynamic
range of real numbers to be represented and helps to alleviate the underflow and over-
flow problems often seen in fixed point formats.  An advantage of using a CCM for
floating point is the ability to customize the format and algorithm data flow to suit the
application’s needs.

An overview of the FFT algorithm and the method used for filtering video
images are given in Section 2.  A description of the floating point format used in the
application is given in Section 3.  The implementation of the 2-D FFT on the Splash-
2 architecture is shown in Section 4.  In Section 5, error analysis is presented to show
that the chosen floating-point format used is adequate for this application.  The per-
formance of this implementation of an FFT was compared to a wide range of architec-
tures in Section 6.
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2  Image Filtering using the Fourier Transform

  An example illustrating the application of the Fourier transform to images is
shown in Figure 1.  An exponential highpass filter is used to attenuate the low fre-
quency components in order to perform edge detection.  The black pixels of the filter
in Figure 1 correspond to zero values and the white pixels correspond to values of one
with the remaining gray pixels  ranging between 0.0 and 1.0.  The four corners of the
images in the frequency domain are the locations of the low frequency components.
The high-frequency components are located near the center of the image.

2.1  Discrete Fourier Transform
The 2-D DFT of a NxN image,f(x,y), is defined by the expression,

The 2-D DFT expression can be decomposed into multiple 1-D Fourier transforms.
The above equation can be expressed in the form:

This shows that an NxN 2-D DFT can be computed by first performing N 1-D DFTs
(one for each row), followed by another N 1-D DFTs (one for each column).

Original Image Frequency Domain

Highpass Filter in the Frequency Domain

Filtered Frequency Domain Image Filtered Image

Figure 1: Fourier Transform Filtering Method.
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N = e-j2πx/N or e-j2πy/N  and is called the twiddle factor.



2.2  Fast Fourier Transform
The fast Fourier transform algorithm (FFT) consists of a variety of tricks for

reducing the computation time required to compute a DFT[10].  The number of com-
plex multiplications and additions required to implement an N-point DFT is propor-

tional to N2. The 1-D DFT can be decomposed so that the number of multiply and add
operations is proportional to N log2N.  The FFT algorithm achieves its computational
efficiency through a divide and conquer strategy.  The essential idea is a grouping of
the time and frequency samples in such a way that the DFT summation over N values
can be expressed as a combination of two point DFTs.  The two point DFTs are called
butterfly computations and requires one complex multiply, and two complex addi-
tions to compute.  The notation used for a butterfly structure is shown in Figure 2.  By
using the FFT partitioning scheme, an 8 point FFT can be computed as shown in Fig-
ure 2.  Each stage of the N point FFT is composed of N/2 radix-2 butterflies and there
are a total of log2N stages. Therefore there are a total of  (N/2)log2N butterfly struc-
tures per FFT.  In addition, the input is in bit-reverse order and the output is in linear
order.  A  2-D FFT can be decomposed into two arrays of 1-D DFTs, each of which
can be computed as a 1-D FFT.

3  Floating Point Arithmetic

In order to implement an FFT on Splash-2, [1,2] floating point arithmetic
adder/subtracter and multiplier units were selected to satisfy the numerical dynamics
of this application [12].  Until recently, any meaningful floating point arithmetic has
been virtually impossible to implement on FPGA based systems due to the limited
density, routing resources and speed of older FPGAs.  In addition, mapping difficul-
ties occurred due to the inherent complexity of floating point arithmetic.  With the
introduction of high level languages such as VHDL [9], rapid prototyping of floating
point formats has become possible making such complex structures more feasible to
implement.  Although low level design was possible, the strategy used in all applica-
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tion development was to specify all aspects of the design in VHDL and rely on auto-
mated synthesis to generate the FPGA mapping.

3.1  Floating Point Format Representation
The floating-point format used in this application is similar the IEEE 754 stan-

dard for storing floating point numbers [7]. For the FFT implementation presented
here, a smaller 18-bit floating-point format was developed.  The format was chosen to
accommodate two specific requirements:  (1) the dynamic range of the format needed
to be quite large in order to represent very large and small, positive and negative real
numbers accurately, and (2) the data path width into one of the Xilinx 4010 proces-
sors [14] of Splash-2 is 36 bits wide and real and imaginary operands of a complex
number are needed to be input on every clock cycle.  Based on these requirements the
format in Figure 3 was used.

The 18 bit floating point value (v) is computed by:

The range of real numbers that this format can represent is              x 1019 to              x

10-19.

3.2  Floating-Point Addition/Subtraction and Multiplication
The aim in developing a floating point adder/subtracter routine was to pipeline

the unit in order to produce  a result every clock cycle. The floating point addition and
subtraction algorithm that was implemented is similar to what is done in most tradi-
tional processors; however, the computation is performed in three stages to improve
performance.  A summary of the resulting size and speed of the 18-bit floating point
units is given in Table 1.

Floating point multiplication is much like integer multiplication.  Because
floating-point numbers are stored in sign-magnitude form, the multiplier needs only
to deal with unsigned integer numbers.  Like the architecture of the floating point
adder, the floating point multiplier unit  is a three stage pipeline that produces a result
every clock cycle. The bottleneck of this design was the integer multiplier.  For more
information regarding the algorithms used the reader is referred to [12].

The Synopsys Version 3.0a VHDL compiler was used along with the Xilinx
5.0 tools to compile the VHDL description of the floating point arithmetic units.   The
Xilinx timing tool, xdelay, was used to estimate the speed of the designs.
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Figure 3:  18 Bit Floating-Point Format.
Bit#:  1716      10 9                                   0

1.626±3.6875±

v = -1s 2(e - 63)(1.f)



The floating point arithmetic units have also been incorporated in another application:
an FIR filter [13].   The FFT application operates at 10 Mhz and the results of the
transform are stored in memory on the Splash-2 array board.  These results were
checked by doing the same transform on a Sparc workstation and we noted the results
matched.  Therefore, the maximum clock speed of the arithmetic units given by the
xdelay program is conservative and we conclude that the arithmetic units can operate
at least at 10 MHz.

4  FFT Implementation

Implementing filtering method discussed in Section 2 involved  mapping a 2-D
FFT,  a filter, and a 2-D IFFT to a two-board, Splash-2 system [1, 2].  The filtering
method was constructed in such a way that the FFT and the IFFT are computed in
parallel and are continuously provided video images from a frame buffer.  This sec-
tion discusses the recirculation method used to implement the FFT, the butterfly oper-
ator used in the FFT, and the filtering process.

4.1  FFT Recirculation Method
To calculate a 2-D FFT, a method requiring the recirculation of data through a

butterfly operator was implemented.  A block diagram of this method is shown in Fig-
ure 4.  Two banks of memory are used to store the input and output data of each stage
of the FFT.  A bank of memory consists of three processing elements that store the
real and imaginary components of the two 18-bit floating point numbers into their
local memories.  Since the local memories are only 16 bits wide, the two 18-bit float-
ing point values are divided between the three memories. To compute an FFT on an
input image, a frame of data is accepted from the frame buffer, converted from 8-bit
integer values to 18-bit floating point values, and stored into Bank 1.  The 2-D FFT is
computed by first computing a 1-D FFT of each row of the image and then a 1-D FFT
on each column of the row transforms.  The 1-D FFT is computed in the same manner
as shown in Figure 2.  The first stage of the FFT is computed by reading each row of
data points in bit-reversed order from Bank 1 and passing it to the butterfly operation.
The results of the butterfly operation are stored in the second bank of memory.  Once
each butterfly is computed  in the first stage,  the second stage is computed by first

Adder/ Subtracter Multiplier

FG Function Generators 28% 44%

Flip Flops 14% 14%

Stages 3 3

Speed 8.6 MHz 4.9 MHz

Tested Speed 10 MHz 10 MHz

TABLE 1. Summary of Properties of 18-bit Floating Point Units.



reading the data out of the second bank of memory in linear order, and then into the
butterfly operator.  The results of this stage are stored in Bank 1.  The recirculation
method continues by reading data out of one bank of memory while the other bank of
memory is storing the results.  The recirculation terminates when a 1-D FFT is calcu-
lated on each row of the image.  The second set of 1-D FFTs are computed in the
same manner except it is done on each column of the result of the first set of 1-D
FFTs.  Once the final stage of the last FFT is calculated, the  data is passed over the
crossbar from X11 to X15 where the data is filtered.  The complete 2-D FFT process

involves 2N2 log2N passes through the butterfly operator.

4.2  Butterfly Implementation
The butterfly operation is the heart of the FFT algorithm.  It is pipelined in

order to compute a real and complex result every clock cycle.  The butterfly diagram
shown in Figure 2 involves calculating a complex floating point multiplication and
two floating point additions/subtractions.  The complex multiply involves four multi-
plications and two additions/subtractions.  In total, eight floating point operations are
calculated every clock cycle at 10 Mhz.  The throughput of the butterfly operation is
therefore 80 Mflops.

Figure 5, shows a block diagram of how the butterfly operation was partitioned
between five processing elements on Splash-2.  The real and imaginary parts of the

complex multiplication of BWk
N  is given respectively by the equations:

(4.1)

(4.2)
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Figure 4:  Splash-2  FFT Image Filtering Method.
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Both the A and B inputs of the butterfly operation shown in Figure 2 are denoted in
Figure 5 as f(x).  TheA value is inserted into the pipeline followed by theB value on
the next clock cycle.  The A input is not multiplied by the twiddle factor. In order to
pass theA value through the pipeline without changing its value, multiplexers are
used to multiply it by one and add zero to it.   When the real and imaginary values of
B are inserted into the pipeline, these pass through four processing elements in order

to calculate the complex multiply of BWkN.  The first processing element (PE 1)
reads the real component of the appropriate twiddle factor and multiplies it by real
component of B.  The result and the twiddle factor is passed via the crossbar to PE 3,
and the real and imaginary components of B are passed to PE 2.  The second PE mul-
tiplies the imaginary component of B and the appropriate twiddle factor, and the

result is passed to the third PE.  The third PE reads the result from PE 1 (B.reWk
N.re)

off the crossbar and adds it to the result from PE 2 (B.imWk
N.im)  to produce the final

result of the real component of the complex multiply (BWk
N.re).  The imaginary

component, BWk
N.im, of the complex multiply is computed in the same manner in

PEs 3 and 4.  The butterfly operation is completed by adding A to  BWk
N in the first

clock cycle to produce X, and subtracting BWk
N from A in the second clock cycle to

produce Y.
The 18-bit format was not used to store the twiddle factors in the local memo-

ries of PE 1 and 2 since the memory data bus width is only 16 bits wide.  A smaller
16-bit format was created by decreasing the exponent field of the 18 -bit floating point
number by 2 bits.  Since twiddle factors can be expressed in terms of sine and cosine
functions by using Euler's rule, the value of the floating point number will never have
an exponent greater than 0 (because the value will always be less than or equal to
one).  Because of this, the exponent field was changed to range from 0 to -31 instead
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of 63 to -63 in order to decrease the size of the exponent field from 7 bits to 5 bits.
When the twiddle factor is read into the processing element, a conversion is done
from the 16-bit format to the 18-bit format used in the arithmetic units.

4.3  Filtering
Once the input image is transformed to the frequency domain, point-by-point

multiplication of the matrix filter coefficients, H(u,v) and the transformed image can
be computed to filter the image.  The values of the elements of the matrix H(u,v),
range between 0 and 1.0 and are stored in the local memories in the same manner as
the twiddle factors of the butterfly operation.  The filter coefficients are calculated
before run-time and stored in the local memories of chips X15 and X16 as indicated
in Figure 4.  Filter chips consist of a floating point multiplier unit and filter coefficient
addressing logic.  X15 and X16 are used to filter, respectively, the real and imaginary
components of the transformed image.

Many different types of filters have been calculated, such as, ideal, Butter-
worth, exponential and trapezoidal filters[6].  These filters can be down-loaded on the
fly from the Sparc-2 host to the local memories of the Splash board in approximately
400ms.

5  Error Analysis

To test round-off error associated with 18-bit floating point format, a forward
FFT followed by an inverse FFT was calculated without doing any filtering This pro-
cess should ideally result in an image which is exactly the same as the original image.
However, due to round off error the output image differed slightly.

Statistics such as RMS and absolute error were calculated  to quantify the
error.  Equations used for calculating the RMS and absolute error are:

(5.1)

(5.2)

where I(x,y) is the original image, and I’(x,y) is the output image.
Multiple images were tested and the average RMS error was 0.4% and the

average absolute error was 0.2%.  Each pixel value can have a gray-scale value from
0 to 256.  The output image had a maximum deviation of 2 gray-scale values from the
corresponding pixel in the original image.  Subjectively, no difference could visually
be seen between the original and output images.

The calculated statistical values indicate that the smaller 18-bit floating-point
format is adequate for this application.  By down-sizing the floating point format we
were able to do more floating-point operations per Splash board resulting in increased
performance.
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6  Performance

In order to compare the performance of this application thoroughly, a wide
range of architectures were selected.  The architectures ranged from a general purpose
workstation to special purpose DSP processors.  Since the FFT is a common DSP
algorithm,  it is used as a benchmark by many DSP chip manufactures.  Two DSP
chips were selected; one which has approximately the typical performance of a DSP
chip, and one which is representative of high end performance.

The test case used to evaluate the different architectures is a 2-D spatial filter
of dimensions 512x512 pixels.  This process involves performing a 512x512 2-D
FFT, filtering the image by doing 512x512 point-by-point multiplications for each of
the real and imaginary values of the image in the frequency domain, followed by a
512x512 2-D IFFT to convert the image back to the spatial domain.  The execution
time, Mflops rating, and the speed-up factor of the Splash-2 implementation over the
given architecture is shown in Table 2.

The performance of the Splash-2 implementation of the FFT was calculated in
the following way:  The number of clock cycles required to compute the NxN  2-D

FFT is 2 N2 log2N.  The application was run at 10 Mhz and therefore the execution

time for doing a 512x512, 2-D FFT is 2 (512)2 log2(512) / 10x106 = .47186 seconds
or 2 frames per second.  Since the FFT and the IFFT are pipelined and are being com-
puted concurrently, the time for the complete filtering process is the time for calculat-
ing one 2-D FFT.   The speed of this application was verified by using a logic analyzer
to check the time between output frames.    In addition, there are 18 floating point
units distributed between the FFT, filter and IFFT designs. These units output a result
every clock cycle at 10 Mhz therefore, this application operates at 180 Mflops (inte-
ger-to-floating point and floating-point-to-integer operations are not included in this
figure).

The Cooley-Tukey FFT algorithim[6] was  implemented  in C and was com-
piled using the highest optimization level of thegcc compiler on a Sparc workstation.

Execution Time (sec) Mflops Speed-up Factor

Splash-2 .47 180 1

Sparc-2 18 32 38.3

Sparc-10 11 60 23.4

Intel i860 .35 200 .74

TI DSPTMS320C40 1.7 80 3.6

Sharp LH9124 DSP .08 240 .17

TABLE 2. Comparison of Splash-2 Implementation with Other Architectures.



The execution time for the Intel i860 based processing board, Texas Instru-
ments and Sharp DSP chips was calculated by doubling the time required to do a sin-
gle 512x512 2-D complex FFT and adding a very small amount of time for the
filtering process.  The time for doing an FFT was doubled in order to account for the
time to do and IFFT.  The i860 processing board consisted of  two, 50 Mhz, i860
chips and 200 Mbytes of RAM.  The  Sharp DSP chip was chosen since it was the
fastest DSP chip surveyed out of  almost 60 DSP chips[3].  The Sharp DSP can calcu-
late a complex multiply in one clock cycle at 40 Mhz[11]. The Texas Instruments
DSP chip was selected because its performance was about average for the DSP chips
in the survey. The algorithm used in the survey to benchmark the DSP chips was a
1024, one dimensional FFT.

It is essential to note that the other implementations used 32-bit single preci-
sion floating point arithmetic, and the Splash-2 design takes advantage of the ability
to use a smaller 18-bit floating point format.  However, this smaller format requires
less computation per floating point arithmetic unit than the 32-bit implementation. To
implement single precision floating point arithmetic units on the Splash-2 architec-
ture, the size of the floating point arithmetic units would  increase between 2 to 4
times over the 18 bit format.  A three stage floating point multiply unit would require
two Xilinx 4010 chips and a three stage adder/subtracter unit could fit into a single
Xilinx chip.  The 24-bit multiplier needed in single precession floating point multiply
can be broken up into four 12-bit multipliers, allocating two per chip[5].  We found
that a 16x16 parallel bit multiplier was the largest parallel integer multiplier that
could fit into a Xilinx 4010 chip.  When synthesized, this multiplier used 75% of the
chip area.  However, there was no need to emulate the 32-bit floating-point arithmetic
since the desired accuracy was achieved with an 18-bit format.  This illustrates an
important advantage of FPGA-based computers over traditional approaches.

The Splash-2 performance is more than an order of magnitude better than a
general purpose workstation and is similar to an i860 processing board which is faster
than many DSP processors.  In addition, the Splash-2 implementation is less than six
times slower than one of the fastest DSP processors on the market.

7  Conclusions

Due to the flexibility of a CCM, customization of the floating point format was
performed to achieve maximum accuracy with the smallest number of bits.  By taking
advantage of the parallelism of the Splash-2 architecture,  address calculation, butter-
fly operations and filtering could be done concurrently.  By pipelining the butterfly
operation, a real and complex result was obtained every clock cycle at 10 Mhz.  The
performance of this application is much faster than a Sparc-10 workstation and is sim-
ilar to that of a typical DSP processor.

The Splash-2 architecture has been used to improve the performance of a wide
range of applications and can be considered as a general purpose custom computing
platform.  Applications include pattern matching, text searching and genome data
base searching, and many different image processing algorithms[2, 8].  The genome
base search implementation has shown a speed-up of   three orders of magnitude over



the MasPar-1. The Splash-2 implementation of a 2-D FFT has shown that the perfor-
mance is similar to a DSP chip and has shown that floating point arithmetic can be
done on CCMs effectively.
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