

FARSI HANDWRITTEN WORD RECOGNITION
USING CONTINUOUS HIDDEN MARKOV
MODELS AND STRUCTURAL FEATURES

By:

MOHAMMAD MEHDI HAJI

Advisors:

H. J. EGHBALI PH. D
S. D. KATEBI PH. D

JANUARY 2005

IN THE NAME OF GOD

FARSI HANDWRITTEN WORD RECOGNITION
USING CONTINUOUS HIDDEN MARKOV MODELS

AND STRUCTURAL FEATURES

BY:

MOHAMMAD MEHDI HAJI

THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE (MSC.)

IN

COMPUTER ENGINEERING
SHIRAZ UNIVERSITY

SHIRAZ, IRAN

EVALUATED AND APPROVED BY THE THESIS COMMITTEE AS: Excellent

JANUARY 2005

Acknowledgements

 It is not possible to forget the many people who contributed to this thesis, directly or

indirectly. I would like to thank S. D. Katebi, H. J. Eghbali and A. Towhidi for their

invaluable supervision, guidance and encouragements. I must also express my sincere

thanks to all of the faculty members of Computer Science and Engineering

Department of Shiraz University for their endeavors in my six years of academic

education.

 Special thanks must go to M. Khorsheed at University of Cambridge and M.

Dehghan at Amirkabir University of Technology as they replied my each mail with

requested information.

 I would like to thank my best friends A. Yousefan, M. Adab, M. Eftekhari, A.

Nayyeri, A. Sharifi, B. Haghhooei, R. Pariz, V. Daneshmand, M. Ahmadi, B. Daei,

M. Hosseini, etc. for all their encouragements and contributions during this work. I

would also like to thank all employees in the engineering school and particularly the

Kharazmi library for their true effort and friendship.

 I am also indebted to my family for their endless support, patience and providing a

relaxing environment throughout my life.

ABSTRACT

FARSI HANDWRITTEN WORD RECOGNITION USING
CONTINUOUS HIDDEN MARKOV MODELS AND STRUCTURAL

FEATURES

By:

Mohammad Mehdi Haji

 Recognizing handwritten words has been and still is one of the most challenging problems in

Artificial Intelligence (AI). Words are rather complex patterns, having many variations in handwriting

style. Despite the considerable progress achieved in recent years, performance of handwriting

recognition systems is still far from human's both in terms of accuracy and speed.

 A complete offline recognition system for Farsi handwritten words is presented. To the best of our

knowledge, this work is the first to use continuous hidden Markov models with structural features to

recognize Farsi handwritten words. Most parts of a complete recognition system are addressed. A new

machine learning approach based on the naive Bayes classifier is developed for text segmentation. Four

different algorithms for document image binarization are compared and contrasted. Different skew and

slant correction algorithms are surveyed for handwritten documents, and the problem of multiple skews

is dealt with in a two-stage process. The first stage corrects the global skew, and after extracting text

lines, in the second stage, the skew of each line is corrected locally. Five different skeletonization

algorithms are compared and contrasted with the main focus on preserving text characteristics. A

simple and effective skeleton post-processing technique is also described. Most of the normalization

methods are adaptive, meaning that they do not use any parameters to be set experimentally. Each word

image is represented by a sequence of structural features. The features are independent of the baseline

location, so the difficult and crucial problem of baseline detection is avoided. The recognition is

performed by continuous hidden Markov models.

 There is no publicly available dataset for Farsi handwritten word images, and it is not wise to compare

different systems evaluated on different datasets. The executable version of training, recognition and

evaluation modules of the system is provided in the thesis webpage,

http://pasargad.cse.shirazu.ac.ir/~mhaji/handrec, so it can be trained and evaluated on different

datasets. The proposed method achieves a maximum recognition rate of about 82% on a 100-word

lexicon. The striking aspect of the recognition system is its excellent generalization performance, as in

our experiments, the system trained with multi-font machine-printed word images could recognize

handwriting.

Contents Page

1 INTRODUCTION 1
 1.1 General Characteristics of Farsi Script 1

 1.2 Methodology 3

 1.3 Feature Extraction 5

 1.4 Literature Survey 5

2 TEXT SEGMENTATION 11
 2.1 Introduction 11

 2.2 Naive Bayes Classifier 14

 2.3 Training Data Generation 15

 2.4 Training 18

 2.5 Classification 18

 2.6 Postprocessing 20

3 BINARIZATION 22
 3.1 Introduction 22

 3.2 The Otsu's Method 23

 3.3 The Niblack's Method 25

 3.4 The Wu and Manmatha's Method 26

 3.5 The Liu and Srihari's Method 27

 3.6 Preprocessing 32

 3.7 Postprocessing 33

4 SKEW CORRECTION 35
 4.1 Introduction 35

 4.2 The Hough Transform for Skew Detection 39

 4.3 The Projection Profile Method for Skew Detection 42

 4.4 Dealing with Multiple Skews 47

Contents Page

5 SLANT CORRECTION 49
 5.1 Introduction 49

 5.2 Horizontal Shear Transformation 50

 5.3 Projection Profile Technique for Slant Detection 51

 5.4 Comparison with a Structural Method 53

6 SKELETONIZATION 55
 6.1 Introduction 55

 6.2 The SPTA 58

 6.3 The Zhang-Suen's Algorithm 59

 6.4 The DTSA 60

 6.5 The Huang et al.'s Algorithm 61

 6.6 Experimental Results 62

 6.7 Postprocessing 66

7 STRUCTURAL FEATURES OF ARABIC/FARSI WORDS 68
 7.1 Introduction 68

 7.2 Preprocessing 68

 7.3 Link Extraction 69

 7.4 Loop Extraction 70

 7.5 Structural Features 71

8 HIDDEN MARKOV MODELS FOR HANDWRITTEN WORD

 RECOGNITION 74
 8.1 Introduction 74

 8.2 Markov Models 75

 8.3 Hidden Markov Models 77

 8.4 The Three Fundamental Problems for Hidden Markov Models 80

 8.4.1 Solution to Problem 1 80

 8.4.2 Solution to Problem 2 82

Contents Page

 8.4.3 Solution to Problem 3 84

 8.4.4 The Segmental K-Means Algorithm 84

 8.4.5 The Baum-Welch Algorithm 85

 8.5 Continuous Hidden Markov Models 87

 8.6 Training and Recognition 89

REFERENCES 95

APPENDIX A 102

List of Figures Page

Figure 1.1. The Farsi character set. 2

Figure 2.1. A document image and its corresponding text mask. 16

Figure 2.2. The discretization rules for the DCT-18 features. 17

Figure 2.3. The conditional probabilities for the 'IsText' concept. 19

Figure 2.4. Applying the proposed text segmentation and postprocessing algorithm to

an image with complex background. 21

Figure 3.1. Applying the Otsu's algorithm to a bimodal image. 25

Figure 3.2. Applying the Niblack's algorithm to a bimodal image. 26

Figure 3.3. Applying the Wu and Manmatha's algorithm to a bimodal image. 28

Figure 3.4. The flowchart of Liu and Srihari's method. 31

Figure 3.5. Applying the four binarization methods to a non bimodal image. 32

Figure 3.6. The block diagram of a binarization algorithm equipped with super-

resolution. 32

Figure 3.7. Preprocessing can enhance the binarized output of low-quality images. 33

Figure 3.8. A median filter can not remove all noise, and adversely affects corners of

shapes. 34

Figure 3.9. Quality improvement of a binarized image by postprocessing. 34

Figure 4.1. Applying HLT to simple binary images. 41

Figure 4.2. Applying HLT to handwritten document images. 42

Figure 4.3. The projection profile technique for skew detection. 43

Figure 4.4. Plotting goodness measure of projection profiles of Figure 4.3(c) against

angles -45o to 45o. 44

Figure 4.5. Image downsampling using MIN and MAX techniques. 45

Figure 4.6. A noisy image before (a) and after (b) skew correction using the projection

profile based method. 47

Figure 4.7. Skew correction by line fitting. 47

Figure 5.1. Examples of slanted handwritten words. 50

Figure 5.2. Shear transforming a word image at different angles. 51

List of Figures Page

Figure 5.3. Vertical histograms of one image horizontally sheared by three different

angles. 52

Figure 5.4. Plotting the SD measure of vertical histograms of sheared images from

-45o to 45o. Each plot has a maximum corresponding to the slant angle. 52

Figure 5.5. Plotting variance of vertical histograms of sheared images from -45o to

45o. 52

Figure 5.6. The rule set for smoothing a slant corrected image, where 0 denotes

background, 1 represents text and X means don't care. 53

Figure 5.7. Applying rule-based smoothing after slant correction. 53

Figure 5.8. A comparison between two slant correction techniques for a handwritten

English word. 54

Figure 5.9. Structural slant correction methods tend to fail in the presence of high

noise. 54

Figure 6.1. The classification of skeletonization algorithms. 56

Figure 6.2. A point p and its 8-neighbors (n0 to n7). 58

Figure 6.3. Applying the implemented skeletonization algorithm to an image

containing simple geometrical patterns. 63

Figure 6.4. Applying the implemented skeletonization algorithm to the Farsi character

set. 64

Figure 6.5. Applying the implemented skeletonization algorithm to the English

character set. 65

Figure 6.6. Applying the implemented skeletonization algorithm to a Farsi word

image with noisy border. 66

Figure 6.7. Postprocessing after skeletonization. 67

Figure 7.1. Skeleton modification by removing pixels that match the templates. 69

Figure 7.2. Two examples of visiting links in the canonical order. 70

Figure 7.3. Examples of different types of loops. 71

Figure 8.1. A Markov model for weather. 76

Figure 8.2. Left-to-Right HMMs. 78

Figure 8.3. The block diagram of the handwritten recognition system. 90

Figure 8.4. An overview of the complete segmentation-recognition system. 90

List of Figures Page

Figure 8.5. Examples of handwritten words used to evaluate the system performance.

 91

Figure 8.6. Examples of handwritten words used to evaluate the system performance.

 92

Figure 8.7. Examples of handwritten words used to evaluate the system performance.

 93

Figure 8.8. Examples of handwritten words used to evaluate the system performance.

 94

CHAPTER 1

INTRODUCTION

1.1 General Characteristics of Farsi Script
 Farsi and Arabic scripts have minor differences. From recognition point of view,

Arabic script is a little more complicated, but similarities outweigh differences. Both

scripts are written from right to left, and most letters are connected to the base line. As

opposed to English, there is no lower or upper case in Arabic/Farsi. But the more

distinguishing feature is that Arabic/Farsi texts whether machine-printed or

handwritten are cursive, i.e. letters belonging to the same word are connected

whenever possible. More precisely, all but six Farsi letters can be connected from

both sides; the six letters 'ژ' ,'ز' ,'ر' ,'ذ' ,'د' and 'و' can be joined to the succeeding letter

from the right side only. Thus, these letters cause discontinuity within the same word.

This feature is in sharp contrast with Latin scripts in which texts can be written

whether cursively or discretely. So, it is not surprising that Arabic/Farsi text

recognition is more difficult than English, and even the problem of machine-printed

text recognition is not yet completely solved for these two languages.

 Table of Figure 1.1 depicts that every Arabic/Farsi letter can have up to four

different shapes depending on the location of the letter within word. Farsi alphabet

has 32 basic letters, with four letters 'ژ' ,'چ' ,'پ' and 'گ' more than Arabic. In

Arabic/Farsi there are certain diacritics to indicate a difference in pronunciation and

meaning from the same word when unmarked. For example, the Farsi word ' ردѧم' has

two different pronunciation/meanings: ' ردѧُم' that means died, and ' ردѧَم' that means man.

But the diacritics are not usually used in writing because in most cases the exact

pronunciation/meaning can be inferred from the context. From recognition point of

view, the diacritics are better not to be presented, because they may raise the

recognition error. By looking at table of Figure 1.1, you can see that 18 out of the 32

Farsi letters have dots, appearing on above or below the baseline. More precisely, 10

letters have one dot, 3 have two dots and 5 have three dots. The number of dots of a

 1

certain letter does not change with its different forms, except for the letter 'ی' that has

two dots in initial and middle forms and no dot in isolated and final forms. The

Arabic/Farsi alphabet has sets of letters that the letters in each set are almost identical

in the absence of dots; these sets are {ن ,ث ,ت ,پ ,ب}, {خ ,ح ,چ ,ج}, {ذ ,د}, {ژ ,ز ,ر},

 Therefore, any erosion or deletion of .{ق ,ف} and {غ ,ع} ,{ظ ,ط} ,{ض ,ص} ,{ش ,س}

the dots result in a misinterpretation, and so any denoising or skeletonization

algorithm must take care of dots.

Character Isolated Initial Middle Final Transliteration
Alef ـا ـا آ آ a
Beh ـب ـبـ بـ ب b
Peh ـپ ـپـ پـ پ p
The ـت ـتـ تـ ت t
Theh ـث ـثـ ثـ ث Th
Jeem ـج ـجـ جـ ج j
Cheh ـچ ـچـ چـ چ ch
Heh ـح ـحـ حـ ح h
Kheh ـخ ـخـ خـ خ kh
Dal ـد ـد د د d
Thal ـذ ـذ ذ ذ th
Reh ـر ـر ر ر r
Zeh ـز ـز ز ز z
Zheh ـژ ـژ ژ ژ zh
Seen ـس ـسـ سـ س s
Sheen ـش ـشـ شـ ش sh
Sad ـص ـصـ صـ ص s
Zad ـض ـضـ ضـ ض th
Tah ـط ـطـ طـ ط t
Zah ـظ ـظـ ظـ ظ z
Ain ـع ـعـ عـ ع a
Ghain ـغ ـغـ غـ غ gh
Feh ـف ـفـ فـ ف f
Ghaf ـق ـقـ قـ ق gh
Kaf ـک ـکـ کـ ک k
Gaf ـگ ـگـ گـ گ g
Lam ـل ـلـ لـ ل l
Meem ـم ـمـ مـ م m
Noon ـن ـنـ نـ ن n
Waw ـو ـو و و v
Heh ـه ـهـ هـ ه h
Yeh ـی ـيـ يـ ی y

Figure 1.1. The Farsi character set.
Each character can have up to four different shapes.

 2

 The above characteristics imply that each Arabic/Farsi word image consists of some

connected components where each one represents a dot, connected dots, one letter or

some connected letters. For example, the Farsi word 'ارانѧѧب' has 5 letters and 6

connected component, but the word ' دѧکم' has three letters and only one connected

component.

 Another aspect of Arabic and Farsi scripts which complicates the segmentation-

based recognition techniques is that usually, and particularly for handwritten texts,

succeeding letters overlap, and hence no vertical partitioning can exactly separate the

letters from each other.

1.2 Methodology
 The methods of handwritten and machine-printed text recognition can be divided

into two categories (Amin, 1998): 1) Holistic strategies in which the recognition is

globally performed on the whole representation of a word, so there is no need to

segment a word to its individual characters. But it is necessary that we can segment

the text lines into words, which is not always possible, because the intra-word space is

sometimes greater than inter-word space; 2) Analytical strategies in which words are

segmented either explicitly or implicitly. In the explicit segmentation, an attempt is

made to isolate single letters which are then separately recognized (Vinciarelli, 2002);

but in the implicit segmentation, the text (line or word) image is converted into a

sequence of small size units (a sequence of observations) and the recognition is

performed at this intermediate level rather than the word or character level.

 Every holistic method uses a lexicon, a list of the allowed interpretations of the input

word image. Usually the error rate of a holistic method increases with the lexicon size

because the higher number of classes increases the probability of misclassification.

Having a lexicon, the extracted feature vector of the input word is compared with

feature vectors of all lexicon entries, and the entry having the maximum score (e.g.

minimum distance or maximum probability) is assumed as the interpretation of the

input. Holistic approaches have been successful when the lexicon is small, with a

maximum size of a few hundred words. When the lexicon size increases, the number

of compatible words for an input image rise and choosing the correct classification

becomes difficult. Thus, the holistic approaches have been applied to such problems

as postal address recognition or bank check reading where lexicon is limited and

 3

small. For general text recognition where the lexicon size is usually between 5000 and

10000, lexicon pruning techniques are effective because they have the double benefit

of improving the recognition results and speeding up the system. For example when

the input word image has no dot, all lexicon entries with no dot can be excluded from

the list of alternatives. In (Zimmermann and Mao, 1999) an effective lexicon

reduction technique based on key characters and word-length estimation is presented.

Language models can also be used to reduce the number of alternatives.

 Analytical methods perform implicit or explicit segmentation on the input image. In

implicit segmentation, words are segmented into small units which are then

transformed into a sequence of observation vectors. Each unit is usually a part of a

letter, so that a number of successive units can belong to a single letter. On the other

hand, in explicit segmentation, words are segmented directly into the single letters;

which is usually fulfilled by a dynamic programming technique to find the optimal

word hypotheses, thus explicit segmentation is more expensive than implicit

segmentation. It is worth noting that Arabic/Farsi letters of the same font have

different lengths, so word segmentation based on a fixed size width can't be applied,

even for machine-printed words. Also according to Sayre's paradox (Vinciarelli,

2002): "a letter can not be segmented before having been recognized, and can not be

recognized before having been segmented". It is clear that more segmentation error

results in less recognition rate, and until now there is no method that is able to

segment handwritten words exactly into letters. Therefore, explicit segmentation is

more error prone and almost all successful handwritten recognition systems have used

implicit segmentation.

 After explicit segmentation, each letter can be individually recognized by a classifier

which is usually an Artificial Neural Network (ANN) or Hidden Markov Model

(HMM). Character recognition has been one of the most successful application areas

of ANNs. The main advantages of an ANN over other classifiers is that it require less

knowledge about the problem and being capable of implementing more complex

partitioning of feature space. However, an ANN usually needs much training, and if a

new class wants to be added later, the whole training process must be repeated.

 Implicit segmentation results in a sequence of observations which is usually

recognized by the HMM approach. HMMs are the prevalent technique in Automatic

Speech Recognition (ASR), and in recent years they have proved to be very effective

in handwritten recognition. A HMM can represent probability distribution over the

 4

sequence of data which has been used for its training, and it is not only being able to

work on a sequence of small fragments, not necessarily corresponding to letters, but

can also deal with noise in the sequence itself. A HMM assigns a probability to a

sequence of observations which describes how probable the sequence is. Another

advantage of HMMs is that their powerful theoretic framework limits the amount of

heuristics to improve the system performance.

1.3 Feature Extraction
 The extracted features can be either local or global. Global features, either structural

(topological) or statistical, are usually used in holistic approaches. For example

number of connected components, holes, ascenders and descenders are global

structural features; coefficients of Fourier transform and invariant moments are global

statistical features. Structural features do not depend on the writing style and can

tolerate a high degree of variability, but they are not robust to noise and their

extraction may be difficult. Statistical features, on the other hand, are easy to extract

and robust, but they are not as stable as structural features with respect to cursive

variability.

 Analytical approaches usually use local features being extracted from small sliding

windows. For example, percentage of foreground pixels within a window,

foreground-background transition statistics, percentage of the foreground pixels in

core, ascenders and descenders regions have been successfully used as local features.

1.4 Literature Survey
 In (Khorsheed, 2000) two holistic approaches for recognition of handwritten Arabic

words are presented. The first one, which uses global statistical features, transforms

the word image into a normalized polar map, and then applies a 2D Fourier transform

to extract features which are invariant to scaling, rotation and translation

(displacement), and the recognition is simply based on Euclidean distance, i.e. the

lexicon entry with minimum Euclidean distance to the input is returned as the answer.

The second method utilizes structural feature vectors obtained from small strokes of

the word skeleton. These vectors are then transformed into a sequence of observations

that is fed to a HMM classifier. Khorsheed has surveyed the two possible models: a

HMM for each word and a single HMM for all words.

 5

 Trenkle et al. (Trenkle et al., 1995) have presented a holistic method based on

sliding neural networks for Arabic word recognition which scans continuously over a

word image to search characters. The sliding neural network system uses networks in

a two-stage approach. The first stage is to detect plausible locations of character

centers, and at the second stage, the characters are recognized at those detected

locations. During both stages, the neural network slides across the word image,

producing a recognition signal at each location. Thus, there is no need to explicitly

segment a word into its characters. By completing the second stage, the character

hypotheses are combined by a dynamic programming algorithm which uses a pruned

list of words to find the most probable word hypothesis. The recognition rate of the

system is about 70% for a large lexicon of size 50,000 words.

 In (Erlandson et al., 1996) a holistic approach for recognition of multi-font Arabic

text is presented. The system computes a vector of structural features for each input

word image which is then matched against a database of feature vectors of a lexicon

by a vector matching algorithm. Like other systems of this kind, in the database there

are several feature vectors corresponding to multiple fonts for each lexicon entry. In

the training stage (building the database of feature vectors) noise models are also

applied to word images, before feature extraction, to simulate low quality data,

making the system robust to noise. The extracted features are dots, holes, junctions,

endpoints, directional segments, directional cavities, descenders and intra-word gaps.

By equipping the system with a lexicon pruner, a word recognition rate of 65% for a

48000 word lexicon was achieved, and the authors conclude that achieving a higher

performance is very difficult.

 In (Al-Yousefi and Udpa, 1992) statistical features and a quadratic Bayesian

classifier are used to recognize Arabic characters. The striking aspect of the system is

that a character is segmented into primary and secondary parts (dots and zigzags),

thus reducing the number of classes from 28 (the number of basic letters of Arabic

alphabet) to 18. The system uses a simple histogram-based method to explicitly

segment a word into characters. A 9D feature vector extracted from normalized

moments of the horizontal and vertical projections is used to classify primary

characters, and a simple procedure classifies secondaries into one of the four classes

(1 dot, 2 dots, 3 dots and zigzag). As expected, the segmentation method can not deal

with handwritten text; the authors also didn’t report the performance for machine-

 6

printed text. However, a recognition rate of 99.5% was reported for isolated forms of

machine-printed characters of three different fonts and five different sizes.

 In (Lu et al., 1999) a language-independent OCR system is introduced. Since

segmentation at character or word level is problematic, the text lines are used as the

basic unit for training and recognition, so there is no need to perform any

segmentation. A 14-state left-to-right continuous HMM is employed to model each

character, and a word model is then obtained by concatenating character models. Sets

of statistical features are extracted from narrow vertical overlapping windows, and a

Linear Discriminant Analysis (LDA) is applied to reduce the dimension of feature

vector from 80 to 15. The system uses the same feature extraction, training and

recognition modules for different scripts, but obviously, a separate language model is

utilized for each script. The language models extracted from training corpora can

improve recognition results of speech and text recognition systems by incorporating

high level knowledge. The recognition process is a search for the most probable

sequence of characters, given the input feature vectors, lexicon and language model.

Since the classical Viterbi algorithm is slow when the language models are large, a

multi-pass search algorithm is used instead. The system is trained for the Arabic,

English and Chinese languages. By using character trigram and simple word unigram

models for Arabic, a character error rate of between 0.8% and 4.7% is obtained for

different test conditions.

 In (Ahmed and Ward, 2000) an expert system for analysis and recognition of general

symbols is introduced. The system uses structural pattern recognition techniques for

modeling symbols by a set of straight lines, achieving high accuracy for explicitly

segmented characters. A structural pattern recognition technique, by using a set of

rules and grammars, describes relations between sub-patterns being able to build

complex patterns. Their system stores some models for each symbol (an average of 97

models/symbol) and it is shown to be able to map similar styles of a symbol to the

same representation. The main advantage of the system over a statistical pattern

recognition technique is the ability to learn new symbols by simply adding their

models to the system knowledge base. Generally, each statistical approach needs

retraining for adding (recognizing) each new symbol (class).

 In (Arica and Yarman-Vural, 2000) a technique is described to convert 2D

information into a 1D observation sequence. Although there are 2D-HMMs for image

analysis, but in practice, they are not as successful as 1D-HMMs, because of the large

 7

number of parameters which requires a large amount of training data. Therefore, 1D-

HMMs are usually preferred even for analyzing 2D image data. The Arica's method

extracts a set of directional skeletons of the binarized character by scanning the image

matrix in various directions. These directional skeletons are then appended one after

another to form a 1D observation sequence. By using a left-to-right discrete HMM as

the recognizer, and about 200 samples per class for training, the system has achieved

a recognition rate of 87-96% for English handwritten digits and letters.

 In some systems (Amin and Mari, 1989) the vertical histogram of word image is

used for explicit segmentation. The basic idea is that the histogram at connectivity

points of a word has its least values. Thus, the word image separates into a number of

segments which are then connected together to form the basic characters. Some

systems extract key feature segments by tracing contour of the sub-words, and then

identify the cut points in each segment. The baseline is important characteristic of

Arabic/Farsi scripts; the connection point is where the normal thickness of the

baseline changes. Based on this fact, Parhami and Taraghi (Parhami and Taraghi,

1981) have identified connection points of Farsi machine-printed words. In one recent

study (Motawa et al., 1999), morphological operators have been applied to a word

image to find singularities and regularities. Singularities represent the start, end or

transition to another character; while regularities contain the required information for

connecting a character to its successor, which means that regularities are promising

candidates for segmentation. The boundary pixels or the contour, which provide

important information of an object, can also be used for word segmentation. For

example, a transition from a column having all its black pixels within the baseline

boundaries to an unlike column corresponds to a connection point. Segmentation can

also be performed by tracing the outer contour of a word and calculating the distance

between the extreme points of intersection of the contour with a vertical line (El-

Sheikh and Guindi, 1988).

 In (Almuallim and Yamaguchi, 1987) a structural recognition method for Arabic

handwritten words is introduced. The system is composed of four phases. In the first

step words are thinned and the baseline is detected. Since segmenting a word into

individual letters is difficult and error-prone, the words are segmented into strokes.

The extraction of a stroke is done by finding its start point and then following the

curve until an end point is reached. The first unvisited start point is found by a search

for a black point from right to left around the baseline. The algorithm attempts to

 8

extract the strokes in the same order that have been written. Moreover, adjacent

strokes which form a loop are also detected, because loops are unique features of

some letters, simplifying the task of recognition. The strokes are then further

classified using their topological and geometrical properties. Finally, based on their

relative positions, strokes are combined in several steps into equivalent character

string of the input word image. The stroke extraction algorithm can not handle all

situations, resulting in incorrect segmentation of words, and the system failures. Also,

like all structural analysis methods, noise can highly degrade the performance; for

example, spurious branches in the image skeleton, caused by noise, confuse extraction

and consequently combination of strokes. Another drawback is that their system does

not utilize any learning method for parameter adjustment; so they have to be manually

adjusted on a set of test images. The system has been tested on a set of 400 word

images and a maximum recognition rate of about 91% has been reported. It must be

Almuallim and Yamaguchi did not use a lexicon, but they evaluated the average word

rather than character recognition rate. If we have the average character recognition

rate Rc, a rough estimate of the average word recognition rate Rw is (Rc)5, based on

the fact that the average length of a word is 5. For example, when Rc is 90%, Rw is

only about 60%. A better estimate for Rw is made by the following formula:

 l

l

l)R(
N
N

R c
1

w ∑
=

= (1.1)

where N is the size of language lexicon, and Nl is the number of words of length l.

 Dehghan et al. (Dehghan et al., 2001) present a holistic system for recognition of

Arabic/Farsi handwritten words using discrete HMMs and Kohonen self-organizing

vector quantization. After the preprocessing step which includes binarization, noise

removal, slant correction, baseline and stroke width estimation, a stroke width

compensation step is applied to have the stroke width of at least three pixels wide to

ensure proper contour generation. Then, a word image is represented by the chain-

code, and the histogram of chain-code directions of the image strips, scanned from

right to left by a sliding window, is used as feature vector. In order to limit the

number of observation symbols for discrete HMM training, the feature space must be

quantized into a set of codebook vector; the weights of Kohonen self-organizing

feature map (SOFM) are used as the codebook vectors. Since without much training

data, HMM parameters, and specially the observation symbol probabilities, are poorly

 9

estimated, they have to be smoothed after training. In this system, a separate HMM is

trained for each word, and the neighborhood information preserved in the SOFM is

used for smoothing the observation probabilities of the HMMs, proved to be very

effective. With a 198-word lexicon, a recognition rate of 65% is achieved by the

system.

 Both discrete and continuous HMMs have been successfully used for handwritten

recognition, but due to their lower computation costs, discrete HMMs are more

appealing. However, discrete HMMs inherently suffer from some problems (Rabiner,

1989) such as quantization error caused by quantizing of input vectors into a limited

set leading to loss of information and recognition deterioration. To obviate these

problems, Dehghan et al. (Dehghan et al., 2001) used fuzzy vector quantization

instead of self-organizing vector quantization of the previous system. The fuzzy c-

means clustering (FCM) algorithm is used to generate a fuzzy codebook, so a

sequence of feature vectors extracted from the input image frames is now mapped to

an observation sequence of membership vectors instead of a sequence of single values

in the case of conventional discrete HMMs. Thus, a modified version of Baum-Welch

re-estimation algorithm is used for training. The system performance is slightly

improved by using FCM, with a recognition rate of 67.2% on the same dataset (198-

word lexicon).

 10

CHAPTER 2

TEXT SEGMENTATION

2.1 Introduction
 A text segmentation algorithm aims at detecting text regions in an image. Identifying

text areas in images have wide applications in document image analysis and

understanding, image compression and content-based image retrieval. In document

image binarization (Liu and Srihari, 1997) and skew correction (Avanindra and

Subhasis Chaudhuri, 1997) algorithms, it is often necessary to remove non-text items

from the input image because they usually require predominant text area to have an

accurate estimate of text characteristics. Paper text is still one of the main sources of

information and it is clear that huge amount of such valuable data in the paper form,

makes their updating and retrieval much difficult. Thus, there is a need to convert the

text from paper to electronic format. This task is usually done by an OCR engine and

text extraction is an essential component in the page segmentation module of the

engine (Wu et al., 1999).

 Text segmentation also has applications in training-based image compression

algorithms such as Vector Quantization (VQ), which need to classify the data into

statistically consistent parts, and thereafter use an appropriate codebook for each part

(Gersho and Gray, 1992). The text in natural images and video frames such as street

signs, vehicle license plates, billboards, writing on shirts, sport scores, time and

location stamps, is a powerful source of knowledge in building image and video

indexing and retrieval systems (Chen et al., 2001). This kind of text also provides

useful content information for video understanding and automatic navigation systems.

 Due to the wide range of applications, numerous methods for text segmentation also

referred to as text detection have been proposed. Some of them require binary input

images; which restricts their application when the text is embedded in an image with a

complex background, because binarization techniques usually produce poor results for

complicated images (Wu et al., 1997). On the other hand, some methods also use the

 11

color information to detect text areas; color information can be helpful, but it is not

available in all situations. Moreover, for a human observer, intensity information is

enough to segment the text areas. Therefore, most methods perform text segmentation

on gray-scale images; even if a color input image is available, it is first converted to

gray-scale (Wu et al., 1999; Chen et al., 2001).

 The main text segmentation methods in the literature can be classified into connected

component-based (Fletcher and Kasturi, 1988), edge-based (Pietikäinen and Okun,

2001; Jie Xi et al., 2001) and texture-based methods (Li and Gray, 1998). Connected

component-based ones are bottom-up approaches that work by grouping small

components satisfying several heuristic constraints into successively larger

components to form text lines and columns. They are relatively independent of

changes in text size and orientation, but having difficulties with complex images with

non-uniform backgrounds, because in such cases thresholding techniques can not

produce the expected binary image, for example, if a text string touches a graphical

object in the original image, they may form one connected component in the resultant

binary image.

 The basic idea of the edge-based algorithms is that the edges of text symbols are

typically stronger than those of noise, textured-background and other graphical items

(Yuan and Tan, 2000; Chen et al., 2001; Jie Xi et al., 2001). In these top-down

techniques, a binary edge image is first generated using an edge detector, and then

adjacent edges are connected by applying morphological operations or other

algorithms such as run-length smoothing (Jie Xi et al., 2001). Connected components

of the resultant image are the candidate text regions, as each one represents either

several merged lines or a graphical item. Then, these regions are decomposed into

smaller regions by analyzing their vertical and horizontal projection profiles, and

finally each of these small regions satisfying certain heuristic constraints is labeled as

text. Edge-based methods are fast and can detect text in complex backgrounds but are

restrictive to detect only horizontally or vertically aligned text strings.

 Text segmentation can also be taught of as a special case of texture segmentation in

which characters correspond to texels. By treating text as a distinct texture, a texture

segmentation algorithm can be applied to separate them. In texture-based methods the

input image is usually considered as a composite of two (text and non-text) or three

(text, picture and background) texture classes. Many segmentation algorithms employ

a classification window (block) of a certain size in the hope that all or majority of

 12

pixels in the window belong to the same class (Choi and Baraniuk, 2001). Thereafter,

a classification algorithm can be used to label each window in the feature space. For

example, in (Deng and Latifi, 2000) the number of classes is two, and a 2-means

classification is used to classify each block of the image as text or non-text according

to its local energy in the wavelet transform domain. By using a 3-means clustering in

(Wu et al., 1999) each image pixel is labeled as text, picture or background according

to a 9-D feature vector based on Gaussian filtering. A large number of statistical and

geometrical features have been proposed for texture segmentation such as features of

co-occurrence matrix, spatial gray-level dependency matrix (Ohya et al., 1994), the

Fourier power spectrum, moments of wavelet coefficients (Unser, 1995), Gaussian

filters (Wu et al., 1999), Gabor filters (Jain and Farrokhnia, 1991), Voronoi

tessellation (Tuceryan and Jain, 1990). Among these, wavelet based features are of

most interest. The wavelet transform has become a very effective tool in texture

segmentation and classification due to its multi-resolution properties. It provides a

powerful transform domain for modeling images that are well characterized by their

edges.

 In texture-based methods, irrespective of the employed features, the size of

classification window is crucial. A large window results in robust segmentation in

homogeneous regions but poor segmentation along the boundaries between regions.

On the other hand, classification using small windows is not reliable because small

amount of data (pixels) do not provide sufficient statistical information.

 All of the methods have difficulties with multi-size text strings and text-like texture

areas. The former causes false negatives, while the latter results in false positives. The

problem of detecting text strings of different sizes can be addressed by pyramid

approaches (Wu et al., 1997) to some extent, while reducing false positives needs

more sophisticated approaches; for example in (Chen et al., 2001) a Support Vector

Machine (SVM) is utilized for this task. Despite the many efforts spent on the text

segmentation problem, there is no general method to detect arbitrary text strings;

because in the most general form, detection must be insensitive to noise, background

model and lighting conditions. Also, it must be invariant to text language, color, size,

font and orientation even in a same image.

 The literature on text segmentation is extensive but there appears to be very little

appropriate literature on using machine learning techniques on this subject. A text

segmentation algorithm should have adaptation and learning capability, but a learner

 13

usually needs much time and training data to achieve satisfactory results, which

restricts its practicality. To overcome these problems, a simple procedure for

generating training data from manually segmented images is presented, and then a

Naive Bayes Classifier (NBC), which is fast both in training and application phase, is

applied. It will be shown that surprisingly excellent results can be obtained by this

simple classifier.

2.2 Naive Bayes Classifier
 The Naive Bayes Classifier (NBC) is applicable to learning tasks where each

instance is described by a conjunction of attribute values and a target function which

takes a value from a finite set V. A set of training examples for the target function is

provided, a new instance described by the attribute values (a1, a2, …, an) is then

presented, and the learner is asked to predict the target value or classification. The

Bayesian approach to classify the new instance is to assign the most probable that is

the Maximum A Posteriori (MAP) hypothesis, given the attribute values that describe

the instance (Mitchell, 1997).

),...,,|(maxarg 21MAP nj
Vv

aaavPv
j∈

= (2.1)

where vMAP is the most probable target value. Using Bayes' theorem Equation (2.1)

can be written as follows:

)()|,...,,(maxarg
),...,,(

)()|,...,,(
maxarg

21

21

21
MAP

jjn
Vv

n

jjn

Vv

vPvaaaP
aaaP

vPvaaaP
v

j

j

∈

∈

=

=

(2.2)

Using training data the two terms in Equation (2.2) must be calculated. It is very easy

to estimate each P(vj) by counting the frequency of occurrence of each target value in

the training data. However, estimating the different P(a1, a2, …, an) terms in this way

is not possible unless a huge set of training data is available. In order to make the

classifier much more practical and computationally efficient, the simplifying

assumption that the attribute values are conditionally independent given the target

value is used. This independence assumption implies that:

)|()|,...,,(21 ji
i

jn vaPvaaaP ∏= (2.3)

Substituting Equation (2.3) into Equation (2.2) results in the approach used by NBC,

given by Equation (2.4):

 14

)|()(maxargNB ji
i

j
Vv

vaPvPv
j

∏=
∈

(2.4)

where vNB denotes the target value output given by the NBC.

 Despite the fact that the independence assumption is often violated in practice, NBC

has shown itself a serious competitor with more sophisticated classifiers. This

classifier is shown to be very effective in many practical domains such as text

categorization and medical diagnosis (Mitchell, 1997). NBC has several distinctive

features which make it suitable for the text segmentation task. First, it is a

probabilistic classifier, i.e. it outputs posterior probability distribution over classes. In

this work, text segmentation is treated as a two-class classification task, and a

probabilistic classifier is appropriate here since it assigns a score to each instance

expressing the degree to which that instance is thought to be positive. The second

advantage of NBC is that the learning task is not sensitive to the relative number of

training instances in the positive (text) and negative (non-text) classes. It is only

important to have non-zero probability estimates in Equation (2.4). Lastly, in naive

Bayes methods, learning time is short and actually linear in the number of training

examples making it suitable for real-time learning. From Equation (2.4) it is clear that

learning is simply done through counting the frequency of various data combinations

within the training examples.

2.3 Training Data Generation
 A large training set facilitate the task of learning, tuning and comparing various

classifiers. A simple procedure was implemented to generate a large set of training

data from a small set of hand-segmented images. A set of eight images, selected from

a wide category, was used for extracting the training data. The images contained both

English handwritten and machine-printed texts with different fonts, sizes and intensity

values. Furthermore, since the method is intended to be language-independent, two

Farsi document images were also included. For each training image a binary mask is

created manually. The mask contains white rectangles correspond to the text strings

(Figure 2.1).

 The proposed algorithm is a block-based segmentation which use features in

Discrete Cosine Transform (DCT) domain. It is observed that DCT-18 features are

different for text and non-text textures (Chaddha et al., 1995), so the same features are

used in this work. These are 18 elements of an 8x8 transformed image block with

 15

indices: 4, 5, 6, 12, 13, 14, 20, 21, 22, 44, 45, 46, 52, 53, 54, 60, 61 and 62 when

counting coefficients at 1 and going line after line, denoted by A1 to A18. The

procedure used to generate training data file is outlined in Algorithm 2.1, where

I(i1:i2, j1:j2) notation is used to refer to the sub-image specified by the rectangle with

(j1,i1) top-left corner and (j2,i2) bottom-right corner. The vertical sampling period,

denoted by vp, was chosen to be 4 and horizontal sampling period, denoted by hp,

was set to 8 in this work.

(a) A part of a Farsi document (b) The text mask of (a)

Figure 2.1. A document image and its corresponding text mask.

for each training image I and its corresponding mask M
{
 for i = 0 : vp : ⎣ ⎦ 18/)I(rows*8 −
 {
 for j = 0 : hp : ⎣ ⎦ 18/)I(columns*8 −
 {
 [A1 A2 A3 … A18] = dct18(I(i:i+7, j:j+7))
 if M(i:i+7, j:j+7) has more white than black pixels
 {
 /* it is a positive training instance */
 write [A1 A2 A3 … A18 1] to the output file.
 }
 else
 {
 /* it is a negative training instance */
 write [A1 A2 A3 … A18 0] to the output file.
 }
 }
 }
}

Algorithm 2.1 The procedure for generating training data file for the 'IsText' concept.

 For small squares, such as 8x8, the DCT is more efficiently computed by the DCT

transform matrix T given by Equation (2.5) for an NxN block.

 16

⎪
⎪
⎩

⎪⎪
⎨

⎧

−≤≤−≤≤
+

−≤≤=

=

10,11
2

)12(cos2

10,01

NqNp
N

pq
N

Nqp
NTpq

π

(2.5)

Then, the 2D-DCT of the square matrix A can be computed by T × A × T '.

continuous discrete
(-inf,-15.8] S2
(-15.8,-0.7] S1
(-0.7,0.8] CE
(0.8,16.1] B1

 A1

(16.1 nf) ,i B2

continuous discrete
(-inf,-13.1] S2
(-13.1,-0.4] S1
(-0.4,0.3] CE
(0.3,11.3] B1

 A2

(11.3 nf) ,i B2

continuous discrete
(-inf,-9.5] S2
(-9.5,-0.3] S1
(-0.3,0.4] CE
(0.4,11.4] B1

 A3

(11.4 nf) ,i B2
continuous discrete
(-inf,-11.5] S2
(-11.5,-0.5] S1
(-0.5,0.4] CE
(0.4,11.3] B1

 A4

(11.3 nf) ,i B2

continuous discrete
(-inf,-10] S2
(-10,-0.3] S1
(-0.3,0.2] CE
(0.2,9.4] B1

 A5

(9.4,inf) B2

continuous discrete
(-inf,-6.3] S2
(-6.3,-0.3] S1
(-0.3,0.2] CE
(0.2,6.6] B1

 A6

(6.6,inf) B2
continuous discrete
(-inf,-10.6] S2
(-10.6,-0.4] S1
(-0.4,0.3] CE
(0.3,8.5] B1

 A7

(8.5,inf) B2

continuous discrete
(-inf,-7.3] S2
(-7.3,-0.2] S1
(-0.2,0.2] CE
(0.2,6.2] B1

 A8

(6.2,inf) B2

continuous discrete
(-inf,-5.2] S2
(-5.2,-0.2] S1
(-0.2,0.2] CE
(0.2,4.8] B1

 A9

(4.8,inf) B2

continuous discrete
(-inf,-4.6] S2
(-4.6,-0.2] S1
(-0.2,0.2] CE
(0.2,4.3] B1

A10

(4.3,inf) B2

continuous discrete
(-inf,-3.3] S2
(-3.3,-0.1] S1
(-0.1,0.2] CE
(0.2,3.7] B1

A11

(3.7,inf) B2

continuous discrete
(-inf,-3.4] S2
(-3.4,-0.2] S1
(-0.2,0.2] CE
(0.2,2.9] B1

A12

(2.9,inf) B2
Continuous discrete
(-inf,-3.4] S2
(-3.4,-0.1] S1
(-0.1,0.1] CE
(0.1,3.3] B1

A13

(3.3,inf) B2

continuous discrete
(-inf,-2] S2
(-2,-0.1] S1
(-0.1,0.1] CE

(0.1,2] B1

A14

(2,inf) B2

continuous discrete
(-inf,-2] S2
(-2,-0.1] S1
(-0.1,0.1] CE

(0.1,2] B1

A15

(2,inf) B2
Continuous discrete

(-inf,-2] S2
(-2,-0.2] S1
(-0.2,0.2] CE

(0.2,3] B1

A16

(3,inf) B2

continuous discrete
(-inf,-2.3] S2
(-2.3,-0.1] S1
(-0.1,0.1] CE
(0.1,2.4] B1

A17

(2.4,inf) B2

continuous discrete
(-inf,-2.2] S2
(-2.2,-0.1] S1
(-0.1,0.2] CE
(0.2,2.3] B1

A18

(2.3,inf) B2

Figure 2.2. The discretization rules for the DCT-18 features.

 Using the above procedure, about 100,000 training instances were generated from

the eight images, but there was no need for such a large amount of data because it was

 17

observed that only a small fraction of these data provides reasonable estimates for

the terms of Equation (2.4). So in order to reduce the computational cost, 10,000

instances were selected randomly and used for the purpose of learning.

 The NCB is a discrete classifier, and hence each attribute value must be converted to

discrete form. For this purpose, each continuous attribute value was converted to only

five discrete values: ‘S2’, ‘S1’, ‘ZE’, ‘B1’ or ‘B2’ (respectively for ‘very small’,

‘small’, ‘around zero’, ‘big’ and ‘very big’). The discretization rules were set in such

a way to have approximately 2000 instances in each of the 5 bins for each attribute

value. Therefore a different set of rules is used for each of the 18 attributes as given in

Table of Figure 2.2.

2.4 Training
 For the 'IsText' concept, let v1 = 'Yes' and v2 = 'No'. The evaluation of conditional

probabilities is carried out on the discretized training data and the results are given in

Table of Figure 2.3. Since all estimated probabilities are non-zero, no attempt is made

to smooth them. When NBC is used, no conditional probability is allowed to be zero

because only a zero value causes the estimate of zero in Equation (2.3) which is a

biased underestimate of the probability. The m-estimate of probability (Mitchell,

1997) is simple and effective technique to avoid zero probability estimates.

 It must be mentioned that the probability estimates of a NBC can also be acceptable

if some of the underlying independence assumptions are violated. It is well-known

that NBC is the optimal classifier when the independence assumptions are satisfied,

but Rish (Rish, 2001) has shown that NBC also works well for functionally dependent

features. The optimality of NBC has proved for some problems that have a high

degree of feature dependencies such as disjunctive and conjunctive concepts

(Domingos and Pazzani, 1997). By analyzing the impact of distribution entropy on the

classification error, Rish has demonstrated that NBC is a good performer for low-

entropy (almost deterministic) feature distributions.

2.5 Classification
 No prior information about the source image is assumed, and so P(v1) = P(v2) = 0.5.

Therefore, according to Bayes' rule:

 18

)|()...|()|()|()...|()|(
)|()...|()|(

)Text(
21822211181211

1181211

vaPvaPvaPvaPvaPvaP
vaPvaPvaP

P
+

= (2.6)

 The usual decision criterion (Equation (2.4)) suggests selecting the class with the

highest posterior probability, or if P(Text) exceeds 0.5 the input block should be

labeled as text.

V
P(A1|V) Yes No

S2 0.3199 0.0938
S1 0.1496 0.2496
CE 0.0687 0.3212
B1 0.1369 0.2462

 A1

B2 0.3250 0.0893

V
P(A2|V) Yes No

S2 0.3116 0.0821
S1 0.1656 0.2458
CE 0.0490 0.3475
B1 0.1428 0.2274

 A2

B2 0. 309 3 0.0972

V
P(A3|V) Yes No

S2 0.3228 0.1018
S1 0.1513 0.2661
CE 0.0566 0.3112
B1 0.1654 0.2329

 A3

B2 0.3038 0.0881
V

P(A4|V) Yes No
S2 0.3454 0.0635
S1 0.1384 0.2568
CE 0.0442 0.3333
B1 0.1291 0.2869

 A4

B2 0.3429 0.0595

V
P(A5|V) Yes No

S2 0.3459 0.0684
S1 0.1344 0.2390
CE 0.0416 0.3576
B1 0.1304 0.2674

 A5

B2 0. 478 3 0.0677

V
P(A6|V) Yes No

S2 0.3323 0.0771
S1 0.1386 0.2522
CE 0.0448 0.3191
B1 0.1403 0.2822

 A6

B2 0.3440 0.0694
V

P(A7|V) Yes No
S2 0.3342 0.0584
S1 0.1359 0.2464
CE 0.0473 0.3578
B1 0.1166 0.2666

 A7

B2 0.3659 0.0709

V
P(A8|V) Yes No

S2 0.3387 0.0572
S1 0.1367 0.2585
CE 0.0395 0.3655
B1 0.1209 0.2515

 A8

B2 0. 643 3 0.0673

V
P(A9|V) Yes No

S2 0.3412 0.0578
S1 0.1318 0.2795
CE 0.0452 0.3174
B1 0.1314 0.2733

 A9

B2 0.3503 0.0720

V
P(A10|V) Yes No

S2 0.3537 0.0610
S1 0.1359 0.2941
CE 0.0450 0.3212
B1 0.1221 0.2608

A10

B2 0. 433 3 0.0629

V
P(A11|V) Yes No

S2 0.3697 0.0553
S1 0.1287 0.3015
CE 0.0404 0.3358
B1 0.1192 0.2505

A11

B2 0. 421 3 0.0569

V
P(A12|V) Yes No

S2 0.3473 0.0623
S1 0.1285 0.2623
CE 0.0570 0.3667
B1 0.1206 0.2445

A12

B2 0. 465 3 0.0642
V

P(A13|V) Yes No
S2 0.3543 0.0618
S1 0.1295 0.3151
CE 0.0334 0.2672
B1 0.1380 0.2952

A13

B2 0. 448 3 0.0606

V
P(A14|V) Yes No

S2 0.3609 0.0457
S1 0.1177 0.2782
CE 0.0385 0.3523
B1 0.1143 0.2738

A14

B2 0. 687 3 0.0500

V
P(A15|V) Yes No

S2 0.3571 0.0584
S1 0.1105 0.2994
CE 0.0408 0.2738
B1 0.1280 0.3047

A15

B2 0. 636 3 0.0637
V

P(A16|V) Yes No
S2 0.3719 0.0853
S1 0.0968 0.2168
CE 0.0570 0.3597
B1 0.1344 0.2714

A16

B2 0. 400 3 0.0669

V
P(A17|V) Yes No

S2 0.3495 0.0661
S1 0.1280 0.2894
CE 0.0427 0.3057
B1 0.1346 0.2818

A17

B2 0. 452 3 0.0570

V
P(A18|V) Yes No

S2 0.3355 0.0669
S1 0.1361 0.3142
CE 0.0488 0.3324
B1 0.1354 0.2265

A18

B2 0. 442 3 0.0601

Figure 2.3. The conditional probabilities for the 'IsText' concept.

 19

 However, there is no justification for such a decision criterion, and especially when

the probability estimates are inaccurate. In (Lachiche and Flach, 2003) it is shown that

if the NBC decision criterion is treated as an additional model parameter, which has to

be learned from the training data, rather than a fixed threshold, significant

improvements will result.

 After classification, the image is post-processed by morphological operations to fill

small black (non-text) holes within white (text) areas in order to reduce false

negatives. In the classification phase, if a high decision threshold is selected (rather

than 0.5) for the text class, the number of false positives (the block mistakenly marked

as text) is obviously reduced, because only almost confident text blocks are classified

as text. The threshold of 0.8 has worked well in our experiments, so to classify an 8x8

block of image, the DCT-18 features by Equation (2.5) is evaluated, and then their

nominal equivalents are computed according to the rules of Table of Figure 2.2.

Lastly, P(Text) is evaluated using Equation (2.6) and the conditional probabilities of

Figure 2.3; if P(Text) exceeds 0.8, the input block is classified as text. This way a

binary image is formed, with white pixels for text and black pixels for non-text areas.

In order to improve the segmentation accuracy, this image should be post-processed.

2.6 Postprocessing
 The post-processing step is based on the following assumptions: 1) the input image

has more false negatives than false positives and 2) text areas are usually large and do

not contain non-text areas (holes). In the first step, all isolated white pixels (without

any white 8-neighbor) are removed, and then the morphological closing (dilation

followed by erosion) with a 3x3 rectangular structuring element is applied.

 In order to show its capabilities, the proposed text segmentation and post-processing

algorithm is applied to the gray-scale image of Figure 2.4(a) which contains two texts

of different colors and other textures. The output of naive Bayes classification is given

in the image of Figure 2.4(b); each small square shows the probability that the

corresponding square in the input image is thought to be text. Thresholding this image

at 0.8 results in the binary image of Figure 2.4(c) having less false positives. The final

text mask obtained by the post-processing step is given in the image of Figure 2.4(d).

 The above experiment shows that the proposed method is not very sensitive to non-

uniform background and works well if the text is darker or lighter than the

 20

background. In contrast, many existing approaches assume that background is

uniform, showing poor performance when this assumption is not satisfied.

(a) input image (b) text probabilities

(c) image (b) thresholded at 0.8

(d) image (c) after post-processing
Figure 2.4. Applying the proposed text segmentation and postprocessing
algorithm to an image with complex background.

 21

 22

CHAPTER 3

BINARIZATION

3.1 Introduction
 Since many vision algorithms and operators only handle two-level (binary) images,

binarization (thresholding) is a major step in such algorithms to convert gray-scale

images into binary images. In binarization algorithms, a threshold or a threshold surface

is usually computed first and then if a pixel has a higher intensity than that threshold or

value of the threshold surface in that point, it is labeled as foreground (object); otherwise

it is labeled as background. Due to the fact that binarization is usually applied in primary

steps of a vision algorithm, say a recognition problem, and its result greatly influences the

performance of the whole system, from the early days of automatic image processing

much attention is devoted to this task. Binarization is challenging for gray-level images

with poor contrast, strong noise and variable modalities in histograms, and it is still a

difficult problem in vision.

 Thresholding methods are divided into two classes: global and local. In global methods

a single threshold is computed and applied to the whole image. Among many proposed

global thresholding algorithms, Otsu's statistical method (Otsu, 1979), Tsai's moment-

preserving method (Tsai, 1985) and Kapur et al.'s entropy method (Kapur et al., 1985) are

satisfactory, and since Otsu's method is fast and easy to implement, perhaps it is the most

widely used. Obviously global techniques can not produce satisfactory result when the

gray-scale input image has non-uniform shading or its histogram is multi modal. Local

(adaptive) thresholding algorithms, in contrast, use a separate threshold for each pixel or

a small group of neighboring pixels based on the information contained in a

neighborhood. In comparison with global methods, local algorithms usually involve more

computation and so they are slower when running on a single-processor computer. A

 23

local algorithm is better suited for parallel processing and dealing with large and high

resolution images which can not be completely kept in memory; they are usually superior

in extracting characters with uneven gray-levels because of adaptation to local image

properties, but do not necessarily yield better recognition results because they often do

not preserve character stroke connectivity. Of the local algorithms, Niblack's method

(Niblack, 1989) is simple and very effective and according to one experiment (Trier and

Taxt, 1995) it is the best operator when the goal is character recognition.

 General purpose thresholding methods such as Otsu's and Niblack's are not aware of the

fact that the image being processed is a document image that has some special features,

and they can not use this valuable information. Therefore researchers have developed

algorithms specially designed for document image binarization. In (Liu and Srihari,

1997) a texture feature based thresholding algorithm is introduced to cope with images

with complex patterns; In (Wu and Matmatha, 1998) a simple and effective method is

proposed to separate text from textured, hatched or shaded background. A document

binarization method for low-quality camera images is proposed in (Seeger and Dance,

2001).

3.2 The Otsu's Method
 This is one the most widely used global thresholding techniques in machine vision.

Although this method is not specially designed for document image binarization, for

clean document image with simple backgrounds, it produces satisfactory results. As

opposed to some algorithms which need a priori knowledge about the number of peaks in

histogram, Otsu's method is completely automatic and it does not need any user defined

parameter. It can also be used in more sophisticated binarization algorithms. This method

selects the threshold based on the minimization of the within-group variance of the two

groups of pixels separated as a result of a global threshold. In order to evaluate the

threshold, the probabilistic histogram of the image must be computed first. In the

probabilistic histogram P, the value of P(i) represents the probability of i'th gray level in

that image. For ordinary 8-bit gray level images, obviously there are 256 levels, so the

values of P(0), P(1), …, P(255) must be evaluated. This is performed using the following

formula:

 24

P(i) = (number of pixels with gray level value of i) / (total number of pixels). (3.1)

 If the histogram is bimodal, the best threshold is the value that separates the two modes

of P from each other. If so, each threshold t determines a variance for the group of values

that are less that or equal to t and a variance for the group of values greater than t. Otsu

suggested that best threshold is that one which minimizes the weighted sum of within-

group variances. Variance is a measure of homogeneity. A group with high variance will

have low variance and a group of low homogeneity will have high variance. Therefore

the criterion suggested by Otsu emphasizes high group homogeneity. An equal criterion

is a dividing that maximizes the resulting squared differences between the group means

which is related to the between-group variances. Due to the fact that the sum of within-

group variances and between-group variances is a constant, both criteria cause the same

result.

 Having evaluated P, the best threshold is obtained as follows. Let 2
Wσ be the weighted

sum of group variances, that is, the within-group variance. Let)(2
1 tσ be the variance for

the group with values less than or equal to t, and)(2
2 tσ be the variance for the group with

values greater than t. Let)(1 tq be the probability for the group with values less than or

equal to t and)(2 tq be the probability for the group with values greater than t. Let

)(1 tµ be the mean of first group and)(2 tµ be the mean of second group. The within-

group variance is defined by:

)().()().()(2
22

2
11

2 ttqttqtW σσσ += (3.2)

Where

∑

=

=
t

i
itq

0
1)(P)(

(3.3)

∑
+=

=
255

1
2)(P)(

ti
itq

(3.4)

)(/)(.P)(1
0

1 tqiit
t

i
∑

=

=µ

(3.5)

)(/)(.P)(2

255

1
2 tqiit

ti
∑

+=

=µ

(3.6)

 25

)(/)(P))(()(1

0

2
1

2
1 tqitit

t

i
∑

=

−= µσ

(3.7)

)(/)(P))(()(2

255

1

2
2

2
2 tqitit

ti
∑

+=

−= µσ

(3.8)

 Now the best threshold can be determined by a simple sequential search through all

possible values of t to find the threshold that minimizes)(2 tWσ . From the statistical point

of view, however, in many cases it is not necessary to try all possible 256 values, and

computational time can be reduced. The interested reader can refer to the original paper

(Otsu, 1979).

 In Figure 3.1 the Otsu's algorithm is applied to a bimodal gray-level image. The selected

threshold is 97 and the resultant binary image is useful since the original image has a

bimodal distribution.

(a) Original image (b) Binarized image

(c) Histogram of original image

Figure 3.1. Applying the Otsu's algorithm to a bimodal image.

 26

3.3 The Niblack's Method
 As mentioned before, global thresholding techniques are not sufficient for binarizing

document images with complex backgrounds; local methods in such cases are more

useful and of them Niblack's local average method is selected because it is frequently

cited to be promising. This method operates on the following threshold:

),(.),(),(yxVkyxMyxT += (3.9)

Where M(x,y) is the local mean and V(x,y) is the local variance computed in a

moving ww× window. As seen, Niblack's method, like other local methods, has some

user-defined parameters: w and k; which must be fine tuned by the user. The

recommended value for w is 15 and a typical value for k is -1. These parameters are

image-dependent; generally small values of w lead to noisy results and inconsistent stroke

width and large values cause some characters to merge or split.

 In Figure 3.2 the Niblack's algorithm is applied to a 120 by 275 gray-level image; as

shown in Figure 3.2(b) the resultant binary image for default values of w and k is not

useful because of split characters. The method becomes considerably slower as the

window size becomes larger; in the experiments carried out in this work, for example, the

computation time of Figure 3.2(c) was five times as much as that of Figure 3.2(b). Also,

for large windows, it acts just like a global method.

(a) Original image (b) Binarized image with w=15 and k=-1

(c) Binarized image with w=30 and k=-1 (d) Binarized image with w=30 and k=-0.5

Figure 3.2. Applying the Niblack's algorithm to a bimodal image.

 27

3.4 The Wu and Manmatha's Method
 This is a simple and global method to binarize complex documents with text over

textured/shaded backgrounds, poor contrast or considerable noise. The algorithm consists

of two basic steps. First, the input image is smoothed using a Gaussian low-pass filter,

causing text enhancement against background texture. Since many images do not have

well-separated foreground and background, this step is necessary. Because the text has

normally lower frequency than the shading, the smoothing operation affects the

background more than foreground, and actually it tends to clean up the background.

Second, the threshold is selected from the intensity histogram of smoothed image. Since

the text is normally darker than other image objects, the threshold is set to the first valley

counted from the left side of the histogram. To extract text against darker background, the

last valley is selected instead. In both cases, the intensity histogram must be smoothed

before threshold selection since it usually contains many local minima. This can be done

by convolving the histogram again with a Gaussian kernel. This method is also effective

when the bimodal histogram assumption is not valid.

 To compare this technique with the other implemented methods, it is applied to the

same bimodal image as shown in Figure 3.3. The smoothed image obtained by a 5 by 5

Gaussian kernel with the variance of 1.44 is given in Figure 3.3(b). Figure 3.3(c) shows

the histogram of smoothed image and Figure 3.3(d) depicts the smoothed histogram

obtained by a Gaussian kernel of length 15. The selected threshold is 77 and the resultant

binary image shown in Figure 3.3(e) is useful. This method is faster than Niblack's, but

due to convolution which is a time consuming process, it is rather slower that Otsu's.

3.5 The Liu and Srihari's Method
 Like Wu and Manmatha's algorithm, this method belongs to the global category and

specially designed for document image binarization. This method uses two fundamental

features of document images to select a reasonable threshold. First, characters normally

occupy a separable gray-level range in the histogram. Second, text images contain highly

structured-stroke units. In this method the Otsu's algorithm is iteratively applied to the

image histogram to find a limited number of (usually two) candidate thresholds. For each

 28

threshold value, the input image is binarized accordingly and some texture features are

extracted from run-length histogram; the threshold for which these features have better

values is considered best and applied as the global threshold.

 To select the candidate thresholds, the entire histogram of the gray-level input image is

first split using Otsu's algorithm, and in each subsequent iteration the part of the

histogram with lower mean is further divided. This is because of the assumption that the

(a) Original image (b) Smoothed image with a

5 by 5 Gaussian kernel

(c) Histogram of smoothed image (d) Smoothed histogram of smoothed image

(e) Binarized image

Figure 3.3. Applying the Wu and Manmatha's algorithm to a bimodal image.

text is usually darker than other image items, and hence occupies the lower part of the

histogram. This iterative strategy can handle an unknown number of histogram peaks.

According to experiments, however, it is sufficient that Otsu's algorithm is only applied

twice. Therefore the next step of the algorithm is to choose between just two candidate

thresholds 1T and 2T , (1T > 2T).

 Liu and Srihari concluded that the horizontal run-length histogram of a binarized image

contains the essential information for evaluating quality of document image binarization.

 29

The horizontal run-length histogram will then be denoted by R which is a one-

dimensional array R(i), Li1 ≤≤ , where L is the longest horizontal run to be counted.

The maximum possible length of a horizontal run-length is equal to or less than the

number of columns of the binarized image C, so in implementation L is set to be C. In the

histogram, R(i) is the count of the horizontal run-lengths of length i. Having the

histogram, five texture features is extracted: Stroke Width (SW), Stroke-Like Pattern

Noise (SPN), Unit-Run Noise (URN), Long-Run Noise (LRN) and Broken Character

(BC). A detailed description about these features is found in the original paper, but for

completeness, the definitions are given here (based on the assumption that in the input

image the text is darker than other image items):

 R(i)maxargSW
Li2 ≤≤

= (3.10)

)SW(R
)(SWR

(i)Rmax

(i)Rmax
SPN

22

11

2Li2

1Li2 ==
≤≤

≤≤

(3.11)

R(SW)
R(1)

R(i)max
R(1)URN

Li2

==
≤≤

(3.12)

R(SW)
R(i)

R(i)max
R(i)

LRN Mi

Li2

Mi ∑∑ >

≤≤

> ==

(3.13)

R(SW))R(1),max(

R(i)min

R(i)max

R(i)min
BC SWi1

Li1

SWi1 ≤≤

≤≤

≤≤ ==

(3.14)

where 1R is the histogram obtained with 1T and 2R is the histogram obtained with 2T ;

M is a constant that in this implementation was set to 3.

 To select the best threshold from 1T and 2T , the following scheme is applied. Let 1B is

the binarized image obtained with 1T , and 2B is the binarized image obtained with 2T .

First, the SW feature is checked, and the threshold with larger SW is selected. This is

usually 1T , and the associated binarized image is the same as Otsu's. Hence, the next step

is applied to verify and correct this selected threshold. In the second step the SPN, URN

and LRN features are checked. If selected threshold (from the previous step) is 1T and

SPN is low (less than 2.25 in this implementation) and URN and LRN features of 1B are

 30

less than URN and LRN features of 2B , the overall quality of 1B is better than 2B and the

selected threshold is 1T . Otherwise, if the BC feature of 2B is low (less than 0.8 in this

implementation) the selected threshold will be 2T ; otherwise, neither 1T nor 2T leads to an

acceptable binary image, and the selected threshold is set to the average of 1T and 2T .

 The second step of this implementation is a little different from the original decision

procedure (Liu and Srihari, 1997). By the following decision method, only three pre-

specified values for M, low SPN and acceptable BC range are required; automatic tuning

of these parameters seems difficult because of the lack of ground truth data, so the

algorithm must be calibrated using a limited number of experiments and visual

judgments. In this study, a set of ten images was used to determine them experimentally,

and now they seem to be adequate for a broad range of images. The flowchart of the

implemented method is presented in Figure 3.4.

 Although this method is able to deal with images with complex backgrounds, for

comparison, it is applied to the same bimodal image of Figure 3.1. The first selected

threshold is 97 (Otsu's threshold) and the second is 64. For 97 the SW feature is 7, and

for 64 it is 5; and since other features associated with 97 have acceptable values, it is

selected as the final threshold, and the output binarized image is the same as Otsu's result.

Liu and Srihari's method is about two times slower that Otsu's but faster than Wu and

Manmatha's. All of these global techniques, however, are fast enough so that can be used

in any real-time application.

 In order to show the superiority of Liu and Srihari's algorithm over others', it is applied

to the rather complex image of Figure 3.5(a). The histogram of this image is presented in

Figure 3.5(b), and as shown in Figure 3.5(c), Otsu's method fails to find the true

threshold. But Liu and Srihrari's method successfully binarize the image; in this case, T1

= 153 (which results in binary image of Figure 3.5(c)) and T2 = 97. For T1, SW1 = 2,

URN1 = 0.05, LRN1 = 0.26 and BC1 = 0.05, and for T2, SW2 = 4, URN2 = 0.08, LRN2 =

1.32 and BC2 = 0.009; since SW2 is larger SW1 and BC2 is smaller than 0.8, the algorithm

rejects T1 in the favor of T2 and the associated binary image is depicted in Figure 3.5(d)

in which the small dots are due to the input image noise, and can be removed by a post-

processing step.

 31

Figure 3.4. The flowchart of Liu and Srihari's method.

 The Wu and Manmatha's method for the same image selects the threshold of 78 which

yields the nicely binarized image of Figure 3.5(e). By inspection of Figure 3.5(f) in can

be seen that the outcome of Niblack's adaptive method is useless because the background

is left and there are broken characters; for both images of Figures (d) and (e), in contrast,

stroke connectivity is maintained.

 In further experiments, images with various size characters and images containing both

machine-printed and handwritten text were processed; in each case, the overall quality of

the Liu and Srihari's returned image was quite acceptable.

 32

(a) The input image (b) Histogram of (a)

(c) Otsu's result (d) Liu and Srihari's result

(e) Wu and Manmatha's result (f) Niblack's result

Figure 3.5. Applying the four binarization methods to a non bimodal image.

3.6 Preprocessing
 The outcome of binarization algorithms for low-resolution images sometimes can be

enhanced by a preprocessing step termed "super-resolution" (Taylor and Dance, 1998);

which is trading of gray-scale intensity resolution for spatial resolution. The block

diagram of a binarization algorithm equipped with super-resolution is presented in Figure

3.6. In the first step, the input image is sharpened. There are several ways for this purpose

(Jain, 1989), the simplest one, however, is to convolve the image with the negative of a

Laplacian kernel. Next, this image upsampled (usually by a factor of 3), and then the

binarization algorithm is applied as usual. Finally, the binarized image is downsampled to

have the same size as input.

Figure 3.6 The block diagram of a binarization algorithm equipped with super-resolution.

Sometimes, this preprocessing step can be effective as shown in Figure 3.7.

 33

(a) Low-quality input image (b) Binarized image without preprocessing

(c) Unsharpened version of (a) (d) Binarized image with preprocessing

Figure 3.7. Preprocessing can enhance the binarized output of low-quality images.

3.7 Postprocessing
 The binarized output of a binarization algorithm often needs a postprocessing step

particularly when the input image is noisy, and so causing noisy output. This was already

shown in Figure 3.5(d). Usually binarized image contains some extra connected-

components which are due to sudden intensity changes of in noisy regions of the input. A

simple median filtering is not sufficient to remove this type of noise; since an extra

component can be larger than one pixel in size, and so not removed by one pass.

Moreover, the median filtering adversely affects other components by smoothing their

corners (Figure 3.8) which may lead to higher recognition errors.

 One of the effective postprocessing techniques, which can be incorporated into any

thresholding algorithm, is surveyed in (Trier and Taxt, 1995) and its modified version is

given below:

1. Smooth the original image by a 3 by 3 mean filter to reduce noise.

2. Calculate the gradient magnitude image G of the smoothed image using , e.g.,

Sobel's edge detector (Shapiro and Stockman, 2001).

3. Remove all isolated pixels (connected-components of size 1) of the binarized

image.

 34

4. For each remaining connected-component Ci of the binarized image, calculate

the average gradient magnitude of its border pixels, using corresponding

pixels in G, and call it Mi.

5. Compute the average of Mi 's and call it T, it is a criterion for the average

strength of the connected-components.

6. Remove all connected-components of the binarized image having an average

border pixels gradient below kT, where k is an image-dependent parameter;

the value of 0.9 is a good choice for low amount of noise, but it must be

increased for the input images containing more noise.

 Figure 3.9 illustrates quality improvement gained by this postprocessing step. From

Figure 3.9(c), it is clear that the median filter has caused broken characters, and thereby

can not be used as a postprocessor. In contrast, Figure 3.9(d) shows that the mentioned

postprocessing method has improved the quality of the noisy binarized image.

(a) A binary image containing noise and a shape (b) The image after applying a 3 by 3 median filter
Figure 3.8. A median filter can not remove all noise, and adversely affects corners of
shapes.

(a) Noisy input image (b) Binarized image before postprocessing

(c) Image (b) after median filtering (d) Image (b) after postprocessing

Figure 3.9. Quality improvement of a binarized image by postprocessing.

CHAPTER 4

SKEW CORRECTION

4.1 Introduction
 Document skew is a distortion that is often introduced during scanning or copying of a

document and it is unavoidable. The skew angle is the angle that text lines deviate from

the x-axis. Since page decomposition techniques require properly aligned images as

input, document skew must be corrected in advance; otherwise, serious performance

degradations will result.

 In general there can be three types of skew within a page (Okun et al., 1999): 1) a global

skew, when all text lines have the same orientation; 2) multiple skews, when some text

lines have a different orientation than the others; and 3) non-uniform skew, when the

orientation fluctuates within a text line. It must be noticed that a handwritten document

image is usually expected to have multi-skew or even worse, non-uniform skew. A

number of methods have been proposed for global skew detection. Nevertheless, it is

assumed that even if there are multiple skews, they belong to a limited range, and hence

we find the dominant global skew. Once the global orientation is detected, the document

skew can be corrected by a rotation at this angle. In other words, "skew correction" is

applied after "skew detection". Global skew detection algorithms can be divided into

seven categories based on the underlying techniques: 1) projection profile (Shridhar and

Kimura, 1995; Postl, 1986); 2) Hough transform (Jiang et al., 1997); 3) Fourier transform

(Postl, 1986); 4) nearest-neighbor clustering (Yue Lu and Chew Lim Tan, 2003); 5)

correlation (Avanindra and Subhasis Chaudhuri, 1997); 6) mathematical morphology

(Najman, 2004); and 7) Artificial Neural Networks (Rondel and Burel, 1995). Some of

these algorithms can detect a limited range of skew angles (usually varying from 5± to

), while others are able to find and correct any skew angle (Okun et al., 1999). Some 45±

 35

methods are designed for specific image formats, low-resolution or compressed images

(Spitz, 1998). Some are designed to work with machine-printed documents (Changming

Sun and Deyi Si, 1997), such methods can not deal with documents containing

handwritten or non-Latin scripts. Most methods assume that text has already separated

from graphics; otherwise it is often required that text is predominant in the image to have

accurate estimates.

 In projection profile based methods, histograms of foreground pixels or other features of

connected-components (such as center of mass) are computed for a number of

orientations close to the expected skew angle, and for each histogram a variation measure

,for example mean square deviation, is evaluated. The histogram that maximizes the

variation corresponds to the global skew angle. The histogram at is called horizontal

projection profile; for a document without skew, the horizontal projection profile must

have the maximum variation, and for skewed documents the histogram at skew angle has

the maximum variation. The histogram with maximum variation has peaks whose widths

are approximately equal to the average character height, and its valleys have minimum

heights in comparison with other histograms. These methods are simple, robust and easy

to implement; they can also work with gray-scale documents, tolerate noise and do not

require predominant text area in the input image, but since the computation of histograms

at different angles needs many image rotations which is a time-consuming operation, the

range and resolution of detectable angles are restricted. Moreover, a projection profile

based method may not find a good estimate in a multi-column document.

0

 The Hough transform has been widely used for skew detection. This transformation

maps each point in the original (x,y) plane to all points in the (,)θ ρ parameter plane that

is the Hough space of lines through (x,y) with slope θ and distance ρ from the origin. A

line in the original image forms a cluster in the parameter plane. Once the locations of the

clusters are determined, the skew of each line and the average skew are easily evaluated

by searching for a peak in the transformation space. The Hough transformation is useful

not only in the detection of solid lines but also broken lines and even text lines. The high

computational complexity of the Hough transform confines the detectable skew range. In

order to reduce processing time, instead of applying the transform to entire the

foreground pixels, it can be applied to other representative points such as edge points or

 36

center of mass of connected-components. The Hough transform is computed in O(n2)

time; also it needs a 2D accumulator. Therefore, methods based on this transform are

usually slower than others. Another drawback is that when the text becomes sparse

choosing a peak in the transform space is difficult, i.e., it can not be done by searching

for the maximum value; because it is possible that the angle giving maximum value does

not correspond to the skew angle. But as an advantage, it must be cited that the presence

of graphics in the input image does not drastically degrade the accuracy. Just as the

projection profile based methods can operate faster when the detectable skew range is

limited, so the Hough transform based algorithms will benefit when the input document

image is known to have a limited skew.

 The basic idea of the methods based on nearest-neighbor clustering (NNC) is that the

points belonging to the same line can not significantly deviate from that line. Generally,

an algorithm based on this idea has the following steps. First, connected-components of

the binarized input image are obtained. Then, the direction vector of all k-nearest-

neighbors of connected-components are computed and accumulated in a histogram, and

finally, the angle corresponding to the peak of histogram is returned as the document

skew angle. It must be noticed that the presence of ascenders, descenders (i.e., upper and

lower parts of characters) or dots cause connections that are not parallel to the text lines,

thus reducing the accuracy. To remedy this problem, in some algorithms (Yue Lu and

Chew Lim Tan, 2003; Okun, 1999) only connected-components satisfying certain size

and/or positional conditions are taken into account, thereby, these algorithms must be

tuned for their parameters. The main advantage of a method utilizing NNC is that it does

not limit the detectable skew range; also it does not require predominant text area in the

input image and can also deal with multi-column document images and even multiple

skews. But, an algorithm of this type can only work with clean binarized images, and as

mentioned before needs fine tuning. An accurate NNC based algorithm is presented in

(Yue Lu and Chew Lim Tan, 2003); in this work connected-component chains with the

largest possible number of nearest neighbor pairs are selected, and their slopes are

computed to give the global skew angle.

 The correlation function has also been used in skew estimation (Avanindra and Subhasis

Chaudhuri, 1997). The basic idea is that the correlation between two columns (vertical

 37

lines) of the document image is maximized when one column is shifted relatively to the

other such that character levels are aligned. The correlation based methods require

predominant text area in the input image; otherwise, a prior text/graphics separation is

necessary to have good estimates. But the major limitation is that such a method gives a

true estimate only when the skew range is limited (usually from to), and fails

to detect a high amount of skew angle, but it does not mean that correlation methods are

not practical; because for ordinary scanned document the actual skew angle is quite

small. These methods can deal with handwritten and non-Latin scripts as well, but text

lines of different sizes degrade the accuracy, and as a further disadvantage, any

correlation based algorithm use some parameters (usually two) which must be set for

different types of documents beforehand. A fast correlation based method is presented in

(Avanindra and Subhasis Chaudhuri, 1997), in which instead of finding the correlation

for the entire image, it is calculated over randomly selected small windows to increase

speed, and since these windows can be processed independently, as a further advantage,

the algorithm can be implemented on a parallel hardware. It is a Monte Carlo

probabilistic algorithm that needs at least half the input image area is occupied by text to

ensure that the probability of a randomly selected window is higher than 0.5.

10− 10

 In the methods based on the Fourier transform (Postl, 1986) the direction having

maximum density in transform space is regarded as the skew angle. These methods are

not implemented in this study, but it is clear that a vertical line in the input image will

have the maximum density direction. Thus, generally, finding the true skew angle in the

transform space is not easy and straightforward. Also, it is often said that the Fourier

transform is computationally expensive for large methods (Changming Sun and Deyi Si,

1997). The Fast Fourier Transform (FFT) was first used in (Postl, 1986); in this method

The coefficients of the power spectrum are calculated and stored in a buffer. Then,

directional criteria for a number of angles are calculated. Last, the angle that maximizes

the directional criterion is taken as the document skew angle.

 Artificial Neural Networks (ANN) have been widely used for document analysis and

recognition, but not much work is dedicated to the problem of skew detection. In (Rondel

and Burel, 1995) two neural networks are used to detect the global skew; the first one

gives a rough estimate which is used to initialize the weights of the second network.

 38

Then, the second network outputs the document skew angle. No ANN based method is

implemented in this study, but due to numerous advantages of ANNs, they are worthy of

study for the skew detection problem.

 A typical method based on mathematical morphology iteratively applies special

morphological operators (modified versions of opening and closing) to the input image to

form one connected-component (blob) from each text line. Then, a line is fitted to each

blob and its slope is accumulated in an angle histogram; finally, the angle corresponding

to the histogram peak is returned as the skew angle. It must be mentioned that there are

fast implementations for the two basic morphological operators (i.e., erosion and

dilation), for example, the Fourier transform can be used for this purpose. Advanced

operators can be derived by the combination of erosion and dilation, and used in skew

estimation. All morphological operators are applicable to both binary and gray-scale

images, but there exist faster implementations for binary images (Nadadur and Haralick,

2000).

In the rest of this chapter, the Hough transform is surveyed and its basic algorithm for

skew detection is given, and due to the importance of this transform and lack of visual

examples in the literature, a number of examples are presented to illustrate how this

transform can be useful in skew detection. Then, the basic idea of the projection profile

technique is clarified, and finally, a simple skew detection procedure, satisfying script-

independency, is proposed in detail, and it will be shown that this projection profile based

procedure is robust enough to be used in a real recognition system.

4.2 The Hough Transform for Skew Detection
 Hough transform is a general method for detecting arbitrary curves (lines, ellipses, etc.)

in gray-scale images. Hough Line Transform (HLT), as it is clear from the name, aims to

detect straight lines and is a popular method for skew detection. In HLT, conceptually, all

possible lines (at all orientations and positions) are placed into the image and the number

of pixels on each line are counted and stored in the corresponding position of the Hough

space.

 The simple version of HLT for skew detection is given in Algorithm 4.1. It must be

mentioned that since the ordinary line equation y = mx + b does not work for vertical

 39

lines, d = c.cos(θ) – r.sin(θ) is used as an alternative, where d is the perpendicular

distance from the origin of the image (upper left corner) to the line, and θ is the angle this

perpendicular makes with horizontal (column) axis. In order to compute gradient

magnitude and direction of the input image, any edge detector can be used. The constant

gradient_threshold in the algorithm is used to only take strong enough edge points, and it

is reasonable to set its value to the average gradient magnitude of the input image. An

alternative approach is to use the binary edge map BM instead of M, with 1's representing

strong edge points and 0's representing background, and now the if command must be

changed accordingly:

 if BM[r,c] > 0
 {
 d = round(absolute(c×cos(D[r,c]) - r×sin(D[r,c])));
 A(d,D[r,c]) = A(d,D[r,c]) + 1;
 }
Once the execution have been completed and the accumulator array has been filled, the

angles corresponding to the local peaks of the Hough space (accumulator array) represent

the dominant skew angles of the input document image. So theoretically, a Hough

transform based method is also able to detect multiple skews. The accumulator array does

tell us about where the line segments begin and end, and in the skew detection there is no

need for this information.

Let I[r,c] be the input gray-scale image having R rows and C columns.
Let M[r,c] be the gradient magnitude of I[r,c].
Let D[r,c] be the gradient direction of I[r,c].
Let A[ρ,θ] be the accumulator array (the Hough space).

A = 0; // initialize the accumulator to zero.
for r = 0 to R-1
{
 for c = 0 to C-1
 {
 if M[r,c] > gradient_threshold
 {
 d = round(absolute(c×cos(D[r,c]) - r×sin(D[r,c])));
 A(d,D[r,c]) = A(d,D[r,c]) + M[r,c];
 }
 }
}

Algorithm 4.1 HLT for skew detection

 40

(a) (b) Hough space of (a) (c) (d) Hough space of (c)

(e) (f) Hough space of (e) (g) (h) Hough space of (g)

(i) (j) Hough space of (i) (k) (l) Hough space of (k)

(m) (n) Hough space of (m) (o) (p) Hough space of (o)

(q) (r) Hough space of (q) (s) (t) Hough space of (s)

(u) (v) Hough space of (u) (w) (x) Hough space of (w)

Figure 4.1. Applying HLT to simple binary images.

 In Figure 4.1, HLT is applied to twelve images, containing one to four rectangles of

different sizes and at various directions and positions; for each case the Hough space is

depicted; it is clear that the relative position of the objects does not change the angles

 41

corresponding to the Hough space peaks, and as mentioned before, the objects at different

directions will form different clusters in the Hough space, so HLT may be used to correct

multiple skews.

 Figure 4.2 shows the Hough space of two handwritten document images. Figure 4.2(b)

has no peak corresponding to the document skew angle, and for this non-Latin document

image the HLT technique fails. By further experiments, we found out that the method

also fails for low resolution images.

(a) A handwritten Farsi document (b) The Hough space of (a)

(c) A handwritten English document (d) The Hough space of (c)

Figure 4.2. Applying HLT to handwritten document images.

4.3 The Projection Profile Method for Skew Detection
 It is expected that the projection profile at the global skew angle of the document has

narrow peaks and deep valleys, depending on weather the projection passes through a text

line or between text lines. Figure 4.3, for example, shows a document image at two

different directions and the associative horizontal projection profiles. Obviously, at this

point we need a criterion to select the better projection profile. Let f be a function

returning its maximum value for the horizontal projection profile at the global skew

angles, then the global skew angle of the gray-scale image I is:

θ)))(I,((max arg
maxmin

rotaten_profile_projectiohorizontalfw_angleglobal_ske
θθθ ≤≤

= (4.1)

 42

 It may seem, at first sight, that variance or autocorrelation are good choices for f, but as

noted by Bloomberg (Bloomberg et al., 1995) neither can be a good measure. The

variance function usually results in a broad peak, being difficult to choose the global

skew from; the autocorrelation function is more computationally demanding, and giving a

large oscillating signal for the projection at the global skew angle. In that reference the

goodness measure is taken as the sum of the squares of the successive differences of the

projection profile (histogram). Formally, if the histogram is denoted by h, SD is given by:

 ∑ −−=
i

ihihSD 2))1()(((4.2)

 This function has a very sharp peak at the global skew angle, leading to very accurate

results, but on the other hand, such a narrow peak restricts the use of the binary search to

find the maximizing angle. There are three modifications which can speed up the basic

method.

(a) A skewed document (b) horizontal histogram of (a)

(c) The same document with more skew (d) horizontal histogram of (c)

Figure 4.3. The projection profile technique for skew detection.

 First, for computing the projection profile at a certain angle, it is not necessary to rotate

the image by the angle, and then compute the horizontal projection profile. One

possibility is to shear the image in vertical direction which is faster than rotation, and as

proved in (Slavik and Govindaraju, 2001): "correcting first for skew by rotation and then

 43

for slant by a shear transformation in the horizontal direction is equivalent to first

correcting for slant by a shear transformation in the horizontal direction and then for

skew by a shear transformation in vertical direction". The other possibility is to compute

the sum of pixels along parallel lines at an angle; Algorithm 4.2 is for this purpose.

(a) variance is used as the goodness measure (b) SD is used as the goodness measure

Figure 4.4. Plotting goodness measure of projection profiles of Figure 4.3(c) against
angles -45o to 45o.

 Second, if in (4.1) f has only one maximum, it can be found by a binary (Algorithm 4.3)

rather than the exhaustive search in the range [minθ , maxθ], thus reducing the runtime.

Bloomberg has suggested performing the binary search on the variance of the projection

values, which has a sufficiently wide peak, but it may also fail because as you see in

Figure 4.4(a) the function has local maxima. But, it seems that when the skew range is

limited (e.g., -5o to 5o) the function has only one maximum, and so the binary search is

possible.

 Third, another advantage of projection profile based methods is that they actually don’t

need high resolution input images. Obviously, any image operation such as rotation or

shear transformation is done faster for smaller images. Therefore, reducing the size of

input image, as much as structure of text lines is preserved, leads to faster processing.

This can be done by a MIN or MAX downsampling technique depending on whether the

background is lighter than text or darker. These two techniques are faster than the

ordinary downsampling methods, because the latter usually perform interpolation and

smoothing to achieve better visual quality, which is not necessary for skew detection. In

the MIN downsampling technique, the minimum of each M × N rectangle (when non-

overlapping rectangles are considered) of the original gray-scale image is chosen as the

value of output image in that location; as opposed to the MAX technique in which

 44

"maximum" performs the same job. For a binary image, MIN and MAX correspond to

logical AND and OR, thus even a faster processing will result.

 Figure 4.5 shows the downsampled versions of the 260 × 580 gray-scale image of

Figure 4.3(c). It is clear that for ordinary document images with lighter background, the

MIN method must be used; and as shown in Figure 4.5(a), a rough estimate of the skew

angle can be made in the low-resolution image as well. Having a coarse estimate, the

angle range [minθ , maxθ] can be restricted, because the actual skew angle is somewhere

around it, and a more accurate result can be found in a higher resolution. This is a coarse-

to-fine search strategy in which the approximate location of a solution is found quickly in

a large and low-resolution space. Then, this estimate is refined successively in smaller

spaces with higher resolutions.

(a) MIN downsampled by factor 4 × 4 (b) MAX downsampled by factor 4 × 4

(c) MIN downsampled by factor 3 × 3

(d) MAX downsampled by factor 3 × 3
Figure 4.5. Image downsampling using MIN and MAX techniques.

Let I[r,c] be the input gray-scale image having R rows and C columns.

projection_profile = 0; // initialize all elements to zero.
for r1 = 0 to R-1
{
 for c1 = 0 to C-1
 {
 r2 = r1.cos(θ) + c1.sin(θ); // new row after rotation
 projection_profile[r2] = projection_profile[r2] + I[r1,c1];
 }
}

Algorithm 4.2 Computing the projection profile at angle θ

 As mentioned before, any projection profile based method tends to fail with unaligned

text lines in multiple columns, however, according to experiments carried out in this

work, for any other type of document image, whether machine-printed or handwritten, of

 45

any size and script, the method is able to correct the global skew angle. Figure 4.6 show

that the method works well in the presence of considerable amount of noise. It seems that

no other algorithm is so robust to noise. For such a noisy image with many broken

characters, it is not surprising that any method, relying on structural information, fails.

Let f be the function, assumed to have only one maximum in the range [xmin,
xmax].

x1 = xmin;
x3 = x ; max
x2 = (x1 + x3) / 2;

while |x2-x1| > error
{
 x12 = (x1 + x2) / 2;
 x = (x + x) / 2; 23 2 3
 maximizer = arg max (f(x1), f(x12), f(x2), f(x23), f(x3));

 if maximizer == x1
 {
 x3 = x ; 12
 x2 = (x1 + x3) / 2;
 }
 else if maximizer == x12
 {
 x3 = x2;
 x2 = x12;
 }
 else if maximizer == x2
 {
 x1 = x12;
 x3 = x23;
 }
 else if maximizer == x23
 {
 x1 = x2;
 x2 = x23;
 }
 else
 {
 x1 = x ; 23
 x2 = (x1 + x3) / 2;
 }
}

return arg max (f(x1), f(x2), f(x3));

Algorithm 4.3 Binary search for finding the maximizer of a function

 46

(a) (b)
Figure 4.6. A noisy image before (a) and after (b) skew correction using the projection
profile based method.

4.4 Dealing with Multiple Skews
 It is often expected that handwritten text lines slightly deviate from the global skew

angle. In such cases, global skew correction followed by page segmentation result in a

number of line (or word) images to be processed. Therefore, it is useful to perform a local

skew correction in each line (or word) image.

 A simple method for local skew detection is to fit a line to all text pixels in the line (or

word) image. Due to its wide range of applications, line fitting a well-studied problem in

statistics. The basic least square method for 2D space, which assumes y as the dependant

variable, is not appropriate for vision tasks, partly because the mathematical definition of

error as a difference along y-axis is not a true geometrical distance (Shapiro and

Stockman, 2001); the disadvantage is more pronounced when the points are arranged in a

near vertical direction. As mentioned in (Yuan and Tan, 2000), a better approximation is

acquired by treating x and y not as statistical variables but as locations of points, and in

this case, the error is defined as the sum of distances perpendicular to the orientation of

the fitted line. Algorithm 4.4, based on evaluation of eigenvalues, is for this purpose, and

skew correction by line fitting is illustrated by Figure 4.7.

(a) a binarized line image before skew correction

(b) and after skew correction

Figure 4.7. Skew correction by line fitting.

 47

It is clear that, by fitting a line to text pixels (black pixels for ordinary document images)

using Algorithm 4.4, tan-1(m) gives the skew angle.

This method is very fast, but as mentioned before, it can not be applied to the whole

document. For example, it fails when the image has more columns than rows; even if it

does not fail, its estimate is not as accurate as other skew detection methods.

Nevertheless, this method can be applied to the whole document image to find an

estimate θR of the actual skew angle θA and reducing the search space from [θmin, θmax] to

[θR - E, θR + E], where E must be selected so that θA falls within [θR - E, θR + E].

According to our experiments, E = 3o is a reasonable choice.

Let {(xi,yi)} be the set of points to be fitted by mx+y0

∑= ix
N

x 1 , ∑= iy
N

y 1 ; // averages of x and y coordinates

xxx ii −= , yyy ii −= ; // standardize data points

∑= 21
ix

N
a , ii yx

N
b ∑=

1 , ∑= 21
iy

N
c ;

2

4)()(22

2,1

bcaca +−±+
=λ ; // eigenvalues of the matrix [a b; b c]

),min(21 λλλ = ;

a
bm
−
−

=
λ

;

xmyy −=0 ;

Algorithm 4.4 Line fitting by evaluation of eigenvalues

 48

CHAPTER 5

SLANT CORRECTION

5.1 Introduction
 Slant is the deviation of average near-vertical strokes from the vertical direction.

Slant correction is an attempt to reduce the range of variations of handwritten and

machine-printed texts. In handwritten text, slant is due to the specific writing style,

and in machine-printed text it is an innate feature of certain fonts. It is clear that slant

is non-informative, but slanted words may considerably degrade the performance of

the whole system (Kavallieratou et al., 2000), so another normalization step which

must be performed before segmentation, feature extraction, training and recognition is

to remove or reduce the slant influence as much as possible.

 The literature includes a number of methods for uniform slant correction (Shridhar

and Kimura, 1995; Changming Sun and Deyi Si, 1997; Kavallieratou et al., 2000) and

some of them are robust, script-independent and applicable to both handwritten and

machine-printed texts. The uniform slant correction techniques perform successfully

when all near-vertical strokes have the same slant angle, which is usually the case for

machine-printed words. So as far as the recognition of machine-printed text is

concerned, there is no room for further study about slant removal methods. On the

contrary, in handwritten text, the slant angle usually varies within each word (Figure

5.1), and hence a uniform slant correction is not optimum.

 In all uniform slant correction techniques, the average slant angle is estimated first

and then a shear transformation in horizontal direction is applied to the word (or line)

image to correct its slant. The most effective methods are based on the analysis of

vertical projection profiles (histograms) at various angles (Shridhar and Kimura,

1995; Kavallieratou et al., 2000); actually these techniques are identical to the

projection profile based methods for skew correction, except that here the histograms

are computed in vertical rather than horizontal direction and shear transformation is

used instead of rotation.

 49

 Some method use statistics of chain-coded stroke contours; for example in (Shridhar

and Kimura, 1995) the chain elements at 45o, 90o and 135o are counted, then a simple

formula is used to estimate the slant angle; according to our experiments, this method

does not produce accurate result for handwritten words. In (Changming Sun and Deyi

Si, 1997) two methods has proposed; the first one computes the histogram of gradient

orientation of the input word image and returns the histogram peak as the slant angle;

the second method fits a minimum bounding parallelogram to each connected-

component of the binarized image, such that top and bottom sides of each

parallelogram are parallel to x-axis, then the slant angle is chosen as the median value

of all parallelogram angles. In the handwritten recognition system described in

(Procter et al., 2000), two methods are used in combined, and the overall slant

estimate is taken as the mean of the two estimates.

 To the best of our knowledge, the only survey on non-uniform slant correction is

presented in (Uchida et al., 2001), in which the problem is formulated as the optimal

estimation of local slant angles at all horizontal positions. The optimal local slant

angles which maximize a cost function, while satisfying several constraint for the

global and local validity, are efficiently searched for a by a dynamic programming

(DP) technique. Unfortunately, this method sometimes over-corrects slants of some

alphabets such as the Latin 'X' or Farsi/Arabic letter 'ر' (Reh). So it can sometimes

degrade the performance of recognition system, and this non-uniform technique can

not be used.

(a) Non-uniform slant (b) Uniform Slant

Figure 5.1. Examples of slanted handwritten words.

5.2 Horizontal Shear Transformation
 In this linear transformation, each pixel (x,y) is transformed to new coordinate (xs,ys)

by Equation (5.1), where yc is the y-coordinate of the center and θ is the angle of

transformation; for slant correction, yc is set to half the number of image rows.

 50

⎩
⎨
⎧

=
−−=

yy
yyxx

s

cs)tan().(θ
 (5.1)

 By this transformation, the height of the image is not changed, while the width of the

image will probably change. Figure 5.2 shows the results of shear transformation to a

word image at two different angles.

(a) original slanted word (b) transformed by θ = -10o (c) transformed by θ = -25o

Figure 5.2. Shear transforming a word image at different angles.

5.3 Projection Profile Technique for Slant Detection
 Like skew detection, here the basic idea is that the vertical histogram of a non-

slanted word has higher peaks, deeper valleys and more variations than any other

histogram. Figure 5.3 shows a handwritten word image at three different angles, the

image of Figure 5.3(b) has less slant and its histogram has more and higher peaks. All

we need is a criterion to judge between different histograms; in (Kavallieratou et al.,

2000) the Winger-Ville distribution (WVD) is employed for this purpose. But it was

found out that the same criterion utilized for skew detection can also work here.

Therefore, in the proposed system, the slant angle of the line (or word) image I is

estimated by the following formula:

θ)))(I,_(__(max arg
maxmin

shearhorizontalprofileprojectionverticalSDeslant_angl
θθθ ≤≤

= (5.2)

where SD is the sum of the squares of the successive differences of the projection

profile, and search range is adequate be [-45o, 45o].

 This method works well for both handwritten and machine-printed text. By being

robust to noise and script independent, it is the optimal uniform slant estimator.

Again, it is emphasized that this method requires a single line or word image as input.

Obviously, vertical histograms of two or more text lines give no useful information

about the slant. It contrasts with some other methods (Shridhar and Kimura, 1995;

Changming Sun and Deyi Si, 1997) which employ structural information and can

estimate the slant angle from the whole input document.

 51

(a) (b) (c)

(d) Vertical histogram of (a) (e) Vertical histogram of (b) (f) Vertical histogram of (c)
Figure 5.3. Vertical histograms of one image horizontally sheared at three different
angles.
Figure 5.4 shows that the SD measure gives a maximum for the vertical histogram of

horizontally sheared image at the slant angle, but the search space has local maxima

which make it impossible to use the binary search.

(a) (b) (c)

(d) (e) (f)
Figure 5.4. Plotting the SD measure of vertical histograms of sheared images from -45o
to 45o. Each plot has a maximum corresponding to the slant angle.

Figure 5.5, shows that variance can not be used as the criterion, because it fails for

image of Figure 5.4(a).

(a) for image of Figure 5.4(a), the maximum does
not correspond to the slant angle.

 (b) for image of Figure 5.4(e), variance gives
the same result as SD.

Figure 5.5. Plotting variance of vertical histograms of sheared images from -45o to
45o.

 52

 Slant corrected words usually has jagged edges which may complicate the extraction

of structural features. In order to remedy this problem, the image is smoothed by the

rule set of Figure 5.6.

1 1 1
1 0 0
1 1 1

→

1 1 1
1 1 0
1 1 1

1 0 0
1 1 0
1 0 0

→

1 0 0
1 0 0
1 0 0

(a) rule 1; rotating this rule at 90o, 180o
and 270o gives rules 2, 3 and 4.

(b) rule 5; rotating this rule at 90o, 180o
and 270o gives rules 6, 7 and 8.

1 1 1
1 0 1
1 1 1

→

1 1 1
1 1 1
1 1 1

1 1 1
1 0 X
1 1 1

→

1 1 1
1 1 X
1 1 1

(c) rule 9; the complement of this rule, is
rule 10.

(d) rule 11; rotating this rule at 45o, 90o,
135o, 180o, 225o, 270o , and 315o gives
rules 12 to 18.

Figure 5.6. The rule set for smoothing a slant corrected image, where 0 denotes
background, 1 represents text and X means don't care.

 Each rule is applied to all image pixels simultaneously, and the rules are applied one

after another (i.e., rule n is applied to the image smoothed by rule n-1). These rules

preserve the image connectivity, i.e. no rule breaks or merges connected components.

Figure 5.7 demonstrates that the post-processing step can smooth jagged edges of a

slant corrected word.

(a) A part of a slanted word (b) image (a) after slant correction (c) image (b) after smoothing
Figure 5.7. Applying rule-based smoothing after slant correction.

5.4 Comparison with a Structural Method
 In order to show the effectiveness of the proposed method, it is compared with a

structural slant correction technique (Shridhar and Kimura, 1995) which employs

statistics of chain-coded image this way: the chain code of entire border pixels of the

binarized image is extracted first, and then the slant is computed by:

 53

)(tan

2 31

3211

nn
nnn

−
++

−= −πθ
]

(5.3)

where n1, n2 and n3 denote the number of chain elements at angles 45, 90 and 135

respectively.

 Both methods are applicable to Farsi and English words. Figure 5.8 illustrates that

for a handwritten word, chain-code based method is not as accurate as the proposed

histogram based method, but the latter is significantly slower, because shear

transformation at various angles is a time consuming operation. For slanted word of

Figure 5.8(a), n1 = 200, n2 = 59 and n3 = 30; so θ ≈ 30o and the sheared image is

shown in Figure 5.8(b); while the histogram based method returns θ = 45o, leading to

the less slanted word of Figure 5.8(c).

(a) A slanted word (b) Slant corrected word using

chain-code based method
(c) Slant corrected word using
histogram based method

Figure 5.8. A comparison between two slant correction techniques for a handwritten
English word.

Figure 5.9 shows that the chain-code based method fails in the presence of high noise;

while the histogram based method still works properly.

(a) A noisy slanted word (b) Slant corrected word using

chain-code based method
(c) Slant corrected using
histogram based method

Figure 5.9. Structural slant correction methods tend to fail in the presence of high
noise.

 54

CHAPTER 6

SKELETONIZATION

6.1 Introduction
 Skeletonization or medial axis transform (MAT) of a shape has been one the most

surveyed problems in image processing and machine vision. A skeletonization

(thinning) algorithm transforms a shape into arcs and curves of thickness one which is

called skeleton. Ideally, the skeleton should retain basic structural properties of the

original shape; it should be well-centered, well-connected (preserve connectivity

information) and robust, and also allows a precise reconstruction (Ivanov et al., 2000).

Over years, it has been found to be so difficult to get an algorithm that satisfies all of

the requirements. There is no unique definition for skeleton, so different algorithms,

with different definitions, produce different skeletons for the same shape.

 By diminishing variability and distortion of instances of one class and reducing the

amount of data to be handled, skeletonization simplifies classification. Skeletons have

been proved to be effective in pattern recognition problems such as character

recognition, fingerprint recognition, chromosome recognition and analyzing X-ray

images. Skeletons provide compact representations that allow structural analysis of

objects, and they have also applications in image compression.

 The skeletonization techniques can be divided into two major categories (Ahmed,

1995): direct and indirect. The direct techniques produce skeletons by directly

removing pixels from the pattern. The direct methods can be further classified into

iterative and non-iterative. The iterative direct techniques compute skeletons by

iteratively deleting removable boundary pixel either sequentially (Naccache and

Shinghal, 1984) or parallel (Zhang and Suen, 1984) (Figure 6.1), until it causes no

further changes to the image. A pixel is tested and marked to be removed if its

neighbors (usually 8-neighbors) satisfy certain conditions. In sequential algorithms

pixels are tested in a fixed order in all iterations and removing a pixel in an iteration

depends on the resultant image of the previous iteration and the previous operations of

 55

this iteration. But, in parallel algorithms removing a pixel only depends on the result

of the previous iteration, so all pixels can be tested independently in each iteration.

The iterative methods yield thin and geometrically representative but not necessarily

well-centered skeletons.

Skeletonization
Algorithms

Direct Indirect

Itertive Non-Iterative

Sequential Parallel

Figure 6.1. The classification of skeletonization algorithms.

 The non-iterative techniques produce skeletons by connecting pixels having special

properties. A pixel with special properties may be the middle pixel of a component of

a scan line, the parts of polygonal regions where a pattern is divided into a set of

regular or irregular polygons, etc. (Ahmed, 1995).

 Indirect techniques are very similar to non-iterative techniques, and they are proved

to perform better than some widely used direct techniques (Ahmed, 1995). Indirect

techniques do not produce skeletons by removing or changing pixels, they rather

construct skeletons by computing appropriate logical properties such as distributions

of pattern pixels. In (Ahmed, 1995) an indirect technique is presented in which the

skeleton is constructed by dividing shape pixels into a set of adjacent clusters and then

connecting their centers. The cluster centers are computed by a modified version of

the self-organizing feature map (SOM) algorithm.

 Conventional skeletonization techniques implicitly assume connectivity of pixels

inside image region, performing poorly on sparse (non-connective) shapes. The

sparseness within image regions may be due to aging, uneven lighting or thresholding,

and in document images, it may also occur because of poor ink quality. In (Singh et

al., 2000) an indirect method utilizing SOM for the skeletonization of sparse shapes is

 56

introduced. The method requires neither well-separated shapes from background nor

connectivity inside regions, so it can be used in developing robust vision systems.

Given the pixel distribution of a shape, a piecewise-linear approximation of the shape

skeleton is iteratively evolved by using a minimum spanning tree-based SOM. The

adjacency relationships between the shape regions are detected and used in the

evolution of the skeleton by constraining the SOM to lie on the edges of the Delaunay

triangulation of the shape distribution. The final skeleton is obtained when the SOM

converges. The method is invariant to Euclidean transformations and adaptive in

terms of the topology of the shape distribution and in the number of map units.

 Skeletonization algorithms are notorious for being slow on ordinary serial

computers, and most of them suffer from irrational memory and CPU usage. These

disadvantages are more pronounced for large images. For example, a drawing of

standard A3 size, scanned at the typical resolution of 600 dpi, would be

approximately 7000 × 10000 pixels and require 8.3 Mb of memory if treated as a

binary image, which makes random access to different parts of the image very slow

(Ivanov et al., 2000). However, for a typical word image of size 200 × 200, neither

memory nor CPU inefficient usage is essential, and by using faster ubiquitous

hardware, almost all algorithms are practical for text recognition. In (Ivanov et al.,

2000) a fast and efficient skeletonization algorithm for large images is presented. Its

main idea is to generate a special polyline for each raster line considering them in top

to down direction, and then constructing the skeleton from points of these polylines.

The obtained skeletons are precisely reconstructable, and the amount of required

memory depends linearly on original image width, but not its area.

 Ji and Piper (Ji and Piper, 1992) have developed a skeletonization algorithm by

finding the points whose removal do not alter homotopy of the input image. They

have proved that the Hilditch's condition is a sufficient condition for removing a

single point from a binary image without altering its homotopy. The mathematical

morphology operators erosion and dilation are used to construct skeletons. The

computational complexity of the algorithm is O(n2) and the memory requirement is

O(n), where n is the linear scale of the image. The method is fast and can produce

reconstructable and thin, but not necessarily of unitary thickness, skeletons.

 There are hundreds of skeletonization algorithms in the literature. Of course it is not

possible to implement and experiment with all of them. For the skeletonization of the

Farsi script, five algorithms were implemented: two classical methods (SPTA

 57

(Naccache and Shinghal, 1984) and Zhang-Suen's (Zhang and Suen, 1984)), DTSA

(Sajjadi, 1996) designed for the Farsi scripts, one homotopy-preserving method (Ji

and Piper, 1992) and the fully parallel Huang et al.'s method (Huang et al., 2003). In

the rest of this chapter, we briefly describe each of these methods, showing that

Huang's is better than others for the purpose of this work. Finally, a simple and

effective skeleton post-processing procedure is described.

6.2 The SPTA
 The Safe-Point Thinning Algorithm (SPTA) (Naccache and Shinghal, 1984) is a

sequential method and like other iterative algorithms consists of iteratively deleting

edge-points (points along the edges of a shape) while keeping end-points (points at

the ends of a stroke), and also the shape connectedness should not be broken and

excessive erosion (iteratively removing a stroke) should not be occurred.

 Thinning is normally applied to binary images, and produces a binary image as

output. Hereafter, it is assumed that shape pixels are represented by black pixels and

background pixels are represented by white pixels. For a point p with the coordinate

(x,y), the set of points with coordinates (x+1,y), (x-1,y), (x,y-1) and (x,y+1) are called

its 4-neighbours, and its 8-neighbors are the set of points with coordinates (x+1,y),

(x+1,y-1), (x,y-1), (x-1,y-1), (x-1,y), (x-1,y+1), (x,y+1) and (x+1,y+1) (Figure 6.2).

n3 n2 n1
n4 p n0
n5 n6 n7

Figure 6.2. A point p and its 8-neighbors (n0 to n7).
The points n0, n2, n4 and n6 are also referred to as 4-neighbors of p.

 In the SPTA, an edge-point is defined as a black pixel with at least one white 4-

neighbor, an end-point is defined as a black point with at most one black 8-neighbor

and a break-point is defined as a point whose deletion would break the connectedness

of the pattern. The algorithm in each pass flags a point if it is an edge-point but not an

end-point, nor a break-point, and nor must its possible deletion cause excessive

erosion. All flagged points are removed at the end of a pass, and if there is no flagged

point the procedure stops. An edge-point can be of one or more of the following

types: 1) a left-edge point, having its left neighbor n4 white; 2) a right-edge point,

 58

having its right neighbor n0 white; 3) a top edge-point, having its top neighbor n2

white; and 4) a bottom edge-point having its bottom neighbor n6 white.

 By examining different combinations of the 8-neighbors of a left-edge point p the

authors have concluded that p can be safely removed (without breaking

connectedness, end-point deletion and excessive erosion) if the boolean expression S4

is true:

)).().(.(5632762104 nnnnnnnnnS +++++= (6.1)

 A boolean variable has the true value if its corresponding point is black and

unflagged. Similarly, for a right-edge point, trueness of the expression S0, for a top-

edge point, trueness of the expression S2 and for a bottom-edge point, trueness of the

expression S6 are sufficient conditions for safe deletion of the corresponding edge-

points.

)).().(.(1276326540 nnnnnnnnnS +++++= (6.2)

)).().(.(3410540762 nnnnnnnnnS +++++= (6.3)

)).().(.(7054104326 nnnnnnnnnS +++++= (6.4)

 Each pass in the SPTA involves two scans, where all black points (the shape points)

are examined in each scan. The scanning sequence can be either row-wise or column-

wise. The first scan of a pass, flags safely removable left-edge points and safely

removable right-edge points. In the second scan of the pass, safely removable top-

edge points and safely removable bottom-edge points are flagged. At the end of the

pass, all flagged points are removed (become white).

6.3 The Zhang-Suen's Algorithm
 This algorithm has been used as basis of comparison for skeletonization algorithms

for many years. It is a fast and simple parallel iterative algorithm, meaning that the

new value for a pixel can be calculated using only the values from the previous

iteration.

 Each pass in the algorithm involves two sub-iterations, where in a sub-iteration,

certain points are flagged, and at the end of the sub-iteration if there is no flagged

point the algorithm stops; otherwise the flagged points are removed and the next sub-

iteration starts. In the first sub-iteration, a pixel is flagged if it satisfies all of the

following four conditions:

 59

1. Its connectivity number is one. The connectivity number Cn of a pixel p

can be defined as the number of transitions from black (foreground) to

white (background) within the pixel 8-neighbors. It has a value in the

range of zero to four.

2. It has at least two and at most six black neighbors.

3. At least one of n0, n4 and n6 is white.

4. At least of n0, n2 and n6 is white.

Now if there is no flagged point the algorithm stops, otherwise all flagged point are

removed and the second sub-iteration starts where it is the same as the first sub-

iteration except for conditions 3 and 4:

3. At least one of n0, n2 and n4 is white.

4. At least one of n2, n4 and n6 is white.

 As it will be shown later, the Zhang-Suen's algorithm sometimes removes the letter

dots, which carry the necessary information to distinguish certain Arabic/Farsi letters

from each other. Therefore, this skeletonization must not be used in the context of

Arabic/Farsi text recognition. Actually, it always removes 2×2 squares and sometime

cause excessive erosion.

6.4 The DTSA
 To overcome the problems of the Zhan-Suen's algorithm for the Arabic/Farsi scripts,

Sajaddi proposed Decision Table Skeletonization Algorithm (DTSA). This parallel

iterative algorithm involves four sub-iterations in each pass, and all shape (black)

pixels are examined in each sub-iteration. Certain points are flagged within a sub-

iteration; at the end of the sub-iteration if there is no flagged point the algorithm

stops; otherwise the flagged points are removed and the next sub-iteration starts.

 In the first sub-iteration, each left-edge point for which the boolean expression D4 is

true is flagged. In the second sub-iteration, each bottom-edge point for which the

boolean expression D6 is true is flagged. In the third sub-iteration, each right-edge

point for which the boolean expression D0 is true is flagged. In the forth (last) sub-

iteration, each top-edge point for which the boolean expression D2 is true is flagged.

Where the definitions of left-edge point, right-edge point, top-edge point and bottom-

edge point are the same as those of the SPTA and:

)).).((.(625353621700 nnnnnnnnnnSD ++⊕++++= (6.5)

 60

)).).((.(047575043122 nnnnnnnnnnSD ++⊕++++= (6.6)

)).).((.(261717265344 nnnnnnnnnnSD ++⊕++++= (6.7)

)).).((.(403131407566 nnnnnnnnnnSD ++⊕++++= (6.8)

6.5 The Huang et al.'s Algorithm
 Huang et al. (Huang et al., 2003) have proposed a fully parallel thinning algorithm

which involves one iteration in each pass. It uses the information of 3×3 windows (i.e.

the state of 8-neighbors) like the previous iterative algorithms, but in order to preserve

connectivity, 3×4, 4×3 and 4×4 masks are also used. The algorithm is very efficient

and robust to noise of contour.

 All the following rules are applied simultaneously to each pixel p to determine

whether it should be flagged or not:

• If p has zero, one or eight black neighbors, it is not flagged.

• If p has two black neighbors,

It is flagged if the two neighbors are consecutive, i.e. n0 and n1 are

black, or n1 and n2 are black, or n2 and n3 are black, …, or n7 and n0 are

black.

• If p has three black neighbors,

It is flagged if the three neighbors are consecutive, or if they match any

of the following templates:

0 1 0
1 p 0
1 0 0

0 1 0
0 p 1
0 0 1

1 1 0
0 p 1
0 0 0

0 1 1
1 p 0
0 0 0

Where 1 denotes a black and 0 denotes a white pixel.

• If p has four black neighbors,

It is flagged if the four neighbors are consecutive, or if they match any

of the following templates:

1 1 0
0 p 1
0 0 1

0 1 1
1 p 0
1 0 0

• If p has five black neighbors,

It is flagged if the five neighbors are consecutive.

• If p has six black neighbors,

It is flagged if the six neighbors are consecutive.

 61

• If p has seven black neighbors,

It is flagged if its white neighbor is a 4-neighbor.

 These rules remove two-pixel-width rectangular patterns, resulting in loss of

information or pattern connectivity. To obviate this problem, the pixel p is preserved

(not flagged) if it matches any of the following templates:

x 0 x
1 p 1
1 1 1
x 0 x

x 0 0
1 1 0
0 p 0
0 0 x

x 0 0
0 p 0
0 1 1
0 0 x

0 0 0 0
0 p 1 0
0 1 1 0
0 0 0 0

x 0 0 0
0 p 1 0
0 0 1 x

x 1 1 x
0 p 1 0
x 1 1 x

0 0 0 x
0 1 p 0
x 1 0 0

At the end of a pass, if there is no flagged pixel the algorithm stops; otherwise the

flagged pixels are removed and the next pass starts.

6.6 Experimental Results
 For evaluating the quality of the implemented skeletonization algorithms, the

following items are considered: the width and connectivity of skeleton, excessive

erosion and robustness to border noise. Rather than go into a long detailed

explanation, ineffectiveness of the homotopy-preserving and Zhang-Suen's algorithms

is simply shown by actual examples. In the first experiment, the algorithms are

applied to the image of Figure 6.3(a), which contains simple geometrical objects.

Figure 6.3(b) shows that the homotopy-preserving algorithm removes small objects,

and Figure 6.4(d) shows that the Zhang-Suen's algorithm removes the 2×2 square and

excessively erodes the two-pixel-width slanted line. The SPTA, DTSA and Huang et

al.'s algorithms provide acceptable outputs. The results of the SPTA and DTSA are

similar, but the former is more computationally expensive.

 The algorithms are applied to the Farsi (Figure 6.4(a)) and English (Figure 6.5(a))

character set. As shown in Figure 6.4(b) and Figure 6.5(b), the homotopy-preserving

algorithm does not preserve connectivity. The Zhang-Suen's algorithm removes some

of the dots (Figure 6.4(d)), so some letters have the same skeleton, for example 'ت'

and 'ث', which leads to misidentification. Also notice the skeleton of 'K', in the image

 62

of Figure 6.5(d), which has been excessively eroded. Thus, the homotopy-preserving

and Zhang-Suen's algorithms are applicable neither for Arabic/Farsi nor for English.

The other three algorithms produce acceptable skeletons for both character sets.

 To compare the five algorithms in the presence of border noise, the image of Figure

6.6(a) is presented to each of them. Figure 6.6(b) shows that the homotopy-preserving

algorithm is not robust to the border noise, and the skeleton is not of unitary

thickness.

(a) The input image (b) The skeleton using the

homotopy-preserving algorithm

(c) The skeleton using the SPTA (d) The skeleton using the

Zhang-Suen's algorithm

(e) The skeleton using the DTSA

(f) The skeleton using the
Huang et al.'s algorithm

Figure 6.3. Applying the implemented skeletonization algorithm to an image
containing simple geometrical patterns.

 63

 The Zhang-Suen's algorithm produce no spurious branch, meaning its robustness to

the border noise, but as illustrated before, it has serious drawbacks that prevent its

applicability. Among the other three algorithms, Huang et al.'s is more robust to

noise; the resultant skeleton has only one spurious branch. Figure 6.6(e) shows that

the DTSA is very sensitive to the border noise.

(a) The input image (b) The skeleton using the

homotopy-preserving algorithm

(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's

algorithm

(e) The skeleton using the DTSA

(f) The skeleton using the Huang et al.'s
algorithm

Figure 6.4. Applying the implemented skeletonization algorithm to the Farsi character
set.

 64

(a) The input image (b) The skeleton using the

homotopy-preserving algorithm

(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's

algorithm

(e) The skeleton using the DTSA

(f) The skeleton using the Huang et al.'s
algorithm

Figure 6.5. Applying the implemented skeletonization algorithm to the English
character set.

 65

(a) The input image (b) The skeleton using the

homotopy-preserving algorithm

(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's

algorithm

(e) The skeleton using the DTSA

(f) The skeleton using the Huang et al.'s
algorithm

Figure 6.6. Applying the implemented skeletonization algorithm to a Farsi word
image with noisy border.

 Overall, these experiments show the superiority of the Huang et al.'s algorithm over

others, as verified by many other experiments.

6.7 Postprocessing
 A skeletonization algorithm usually produces a distorted skeleton with some

spurious branches which need a postprocessing step to be removed. The technique

described here uses the maximum circle idea. Since the local features of the pattern

are affected by the algorithm, the original pattern is also used to modify the skeleton.

 Definition 6.1. A feature-point is a black pixel in the skeleton having a connectivity

number other than two; i.e. p is a feature-point if and only if Cn(p) ≠ 2.

 66

 Definition 6.2. An end-point is a feature-point having a connectivity number of one;

i.e. p is an end-point if and only if Cn(p) = 1. An end-point can be deleted without

affecting the pattern connectivity.

The algorithm is as follows: first, for each end-point ep, the radius Rep of the largest

circle of black pixels within the original image that is centered at ep is evaluated

(Algorithm 6.1). Then, the nearest non end-point nep to ep is found, and the link

between ep and nep is removed if dist(ep,nep) < Rep + Rnep. Where Rnep is the radius of

the largest circle of black pixels within the original image that is centered at nep.

 Figure 6.7 shows the advantage gained by the postprocessing step.

Let I[r,c] be the binary input image having R rows and C columns, and the
background is represented by zeros.
Let Center(rc,cc) be the center of the largest circle of black pixels.

maxRadius = min(min(rc, R – rc – 1), min(cc, C – cc – 1));

if I[rc,cc] == 0
{
 return 0;
}

for r = 1 to maxRadius
{
 for r1 = rc – r to rc + r
 {
 for c1 = cc – r to cc + r
 {
 if rccrr cc ≤−+− 2

1
2

1)()(AND I[r1,c1] == 0
 {
 retrun r;
 }
 }
 }
}

return r;

Algorithm 6.1 Evaluating the radius of largest circle of black pixels at a point

(a) The input image

(b) The skeleton using the
Huang et al.'s algorithm

(c) The skeleton after
postprocessing

Figure 6.7. Postprocessing after skeletonization.

 67

 68

CHAPTER 7

STRUCTURAL FEATURES OF

ARABIC/FARSI WORDS

7.1 Introduction
 A method to extract structural features from Arabic/Farsi word images is presented

in this chapter. Structural features are capable of tolerating many variations, but they

are not robust to noise, and hard to extract. Since the recognition is based on 1D

HMMs, the features must preserve the sequential characteristics of words, meaning

that a 2D word image must be converted to a 1D signal so that the relative ordering of

the characters is retained. The basic idea of the proposed method is based on the

techniques described in (Khorsheed, 2000; Almuallim and Yamaguchi, 1987). The

skeleton of a word image is decomposed into a number of links in a certain order.

Then, each set of links that from a loop (cycle) is replaced with a special link

representing the loop. Each link is then represented by a 10D feature vector. The

features are the curvature of the link, its length relative to the word height, the

position of the its two ends relative to the first row of the image, the connection type

and four curved features. The features are irrespective of the baseline location, so the

difficult and crucial problem of baseline detection is avoided

7.2 Preprocessing

 The preprocessing step has two duties: 1) normalization for word height; 2) skeleton

modification. Before skeletonization the input word is resized to have a height of 128

pixels. This is done by detecting the word area that is the minimum rectangle

containing the word in the input image. In order to be robust to noise, the upper side

of the rectangle is set to be the first row having a horizontal white run-length with a

length of higher than 2, and the lower side of the rectangle is set to be the last row

 69

having a horizontal white run-length with a length of higher than 2. The left side of

the rectangle is set to be the first column having a vertical white run-length with a

length of higher than 2, and similarly the right side of the rectangle is set to be the last

column having a vertical white run-length with a length of higher than 2.

 Before link extraction, the skeleton is modified to have as small pixels as possible. A

pixel p is removed if matches any of the following templates or their rotations at

angles 90o, 180o and 270o:

0 1 x
1 p 0
x 0 0

 x 1 x
1 p 1
x 0 x

 These rules actually remove 4-connectivity of the pattern, and they must be applied

sequentially in order to preserve 8-connectivity. Figure 7.1 illustrates how these rules

modify a skeleton by removing some pixels.

(a) The input skeleton

Figure 7.1. Skeleton modification by removing pixels that match the templates.

7.3 Link Extraction
 In speech recognition and online handwritten recognition, the input signal is one-

dimensional itself, but here the 2D word image must be converted to a 1D observation

sequence. This is done by tracing the skeleton of the word image to extract its links. A

link is a set of neighboring pixels between two feature-points. So a link is extracted by

starting from a feature-point and then moving from the current pixel to its adjacent

until reaching another feature-point. The process is started from the right-most end-

point. In order to extract the links in a canonical order, the following two rules are

applied: 1) if fp1 and fp2 are two feature-points such that fp1 is located to the right of

fp2, then all links branching from fp1 must be extracted before any of the branching

links from fp2; 2) the first link that must be visited, from the links branching from a

feature-point fp, is the one that makes the minimum angle with the current link

(ending at fp) and the other branching links must be visited in a clockwise order.

 70

Figure 7.2 shows two examples of visiting links in the canonical order. Different

types of feature-points are also shown in the Figure.

 Definition 7.1. A dot is a feature-point having a connectivity number of zero; i.e. p

is a dot if and only if Cn(p) = 0.

 Definition 7.2. A branch-point is a feature-point having a connectivity number of

three; i.e. p is a branch-point if and only if Cn(p) = 3.

 Definition 7.3. A cross-point is a feature-point having a connectivity number of four;

i.e. p is a cross-point if and only if Cn(p) = 4.

(a) (b)

Figure 7.2. Two examples of visiting links in the canonical order. Lower-numbered
links are visited before higher-numbered ones.

7.4 Loop Extraction
 Loop extraction makes the number of strokes smaller, thus leading to lower

computational cost and easier modeling. Loops are important distinctive features as a

number of letters have loops inside. A loop can be of any of the following types: 1)

simple-loop, which is a single link beginning from a feature-point and returning to the

same point again; 2) multi-link-loop, which is a loop consisting of two or more links

forming a closed path; 3) double-loop, which is a loop that contains one or more other

loops (Figure 7.3). Simple-loop can be seen in letters 'ف ـ' ,'ظ' ,'ط' ,'ض' ,'ض ـ' ,'ص' ,'ص ـ',

' and sometimes 'ـ ھ ' ,'ه' ,'و' ,'م' ,'م ـ' ,'ق' ,'ق ـ' ,'ف' ـج ' ,'ج' ,' ـچ ' ,'چ' ,' ـح -Multi .'خ' and ,'خ ـ' ,'ح' ,'

link-loop can be seen in letters 'ـ غ ' ,'ـغ ـ' ,'ـ ع ' ,'ـع ـ' ,'ـ ظ ' ,'ظ' ,'ـ ط ' ,'ط' ,'ـ ض ' ,'ـضـ' ,'ـص' ,'ـصـ',

' فــ .'ـ خ ' and 'ـخ ـ' ,'ـ ح ' ,'ـح ـ' ,'ـچ' ,'ـچـ' ,'ـج' ,'ـجـ' and sometimes 'ـھ' ,'ـو' ,'ـم' ,'ـمـ' ,'ـق' ,'ـقـ' ,'ـف' ,'

Double-loop can be seen in letters 'ھ ـ' and 'ـھ ـ'. Simple-loops are straightforward to

detect; Algorithm 7.1 is to find multi-link-loops and double-loops in a graph with

vertices corresponding to feature-points of a word skeleton and edges corresponding

to the links between the feature-points. We use the edge-list representation to describe

a word graph.

 71

Figure 7.3. Examples of different types of loops.

Let G(V,E) be the graph with the set of vertices V, and the set of edges E.
Let L be a list for DFS, where L[0] denotes the first element.

for each vertex v in V
{
 L.push_front(v);
 while L is not empty
 {
 u = L.front(); // = L[L.size()-1].
 Let e(u,t) be an unvisited neighboring edge of u.
 if no such edge exists
 {
 L.pop_front(); // remove u from the list.
 }
 else
 {
 Mark e as visited.
 if there is an unvisited edge d between t and L[i], a vertex in L
 {
 Mark d as visited.
 Now, {(L[i],L[i+1]), (L[i+1],L[i+2]), ...,
 (L[L.size()-2],L.front()), (L.front(),t), (t,L[i])} is a cycle.
 Replace the cycle with a special cyclic edge c (an edge that
 represents the cycle).
 if the cycle has already contained a cyclic edge
 {
 c is marked as a double-cyclic edge (or a double-loop).
 }
 }
 L.push_front(t);
 }
 }
}

Algorithm 7.1. A DFS algorithm for detecting multi-link-loops and double-loops in a
word graph.

7.5 Structural Features

 After forming the word graph, each edge, corresponding to a link or a loop of the

original word, is transformed into a 10D feature vector. The features have the

following descriptions:

• Normalized length feature (f1): The length of an edge (the number of its

pixels) divided by the height of the word image (128). This feature is

defined to be 2 for loops, and 0 for dots. f1 is invariance against translation,

rotation and scaling.

 72

• Curvature feature (f2): The curvature of an edge, defined as the proportion

of the Euclidean distance between the two vertices of the edge by its actual

length. Thus, the curvature becomes zero for a simple loop, and one for a

straight line. This feature is defined to be 2 for multi-link-loops, 3 for

double-loops, and 4 for dots. f2 is invariance against translation, rotation

and scaling.

• Slope feature (f3): The slope of the line between the two vertices of an

edge partitioned into 8 equal interval, labeled 1, 2, ..., 8. This feature is

defined to be 0 for loops and dots. f3 is invariance against translation and

scaling.

• Connection type feature (f4): The (connection) type of the two endpoints of

an edge (to the previous and next edges). It has one of the following

values:

Value Type of beginning vertex Type of ending vertex

0 end-point end-point
1 end-point branch-point
2 end-point cross-point
3 branch-point end-point
4 branch-point branch-point
5 branch-point cross-point
6 cross-point end-point
7 cross-point branch-point
8 cross-point cross-point
9 when the edge is a dot
10 when the edge is a loop

 f4 is invariance against translation, rotation and scaling.

• Endpoint distance feature (f5): The normalized distance from the more

distance vertex of an edge, from to the middle row of the word image, to

the first row. This feature is defined to be 0 for loops, and helps

determining whether a dot is above or below a character. f5 is invariance

against horizontal translation and scaling.

• Number of segments feature (f6): The number of segments of the polyline

fitted to an edge (Algorithm 7.2). f6 is invariance against translation,

rotation and scaling.

• Curved features (f7-f10): Percentage of pixels above the top feature-point,

below the bottom feature-point, left of the left feature point, and right of

 73

the right feature point respectively. These features are invariance against

translation and scaling.

Let p be the set of vertices to be fitted by a polyline, where p[0] denotes
the first element.

first = 0; // index of the first point of the current line segment
last = 0; // index of the last point of the current line segment

for current = 1 to size(p)
{
 d = ∑

=

current

firsti

(perpendicular distance between p[i] and the straight connecting

 p[first] and p[current]);

 if d > (current – first + 1) * ERROR
 {
 p[first], p[first+1], ..., p[last] is a line segment.
 first = last;
 }
 last = current;
}

p[first], p[first+1], ..., p[last] is the last line segment.

Algorithm 7.2. Fitting a polyline to a set of points.

 74

CHAPTER 8

HIDDEN MARKOV MODELS FOR

HANDWRITTEN WORD

RECOGNITION

8.1 Introduction
 The output of a real-world process may be observed in the form of a continuous or

discrete signal. A primary problem of interest is to build models for such real-world

signals. A model for a signal is accompanied by several advantages. First, it provides

the basis for a theoretical description of a signal processing system which can be used

to process the signal to have a desired output. Second, a model can provide valuable

information about the signal source without having to have the source available.

Finally and most importantly, models actually work well and enable us to realize

important practical systems (Rabiner, 1989).

 There are several ways to model a signal depending on its type and properties.

Generally, a signal model can be deterministic or stochastic (statistical). The

deterministic models use some known properties of the signal and estimate parameter

values of the model. On the other hand, in the statistical models, a parametric random

process characterizes the signal. For applications such as speech recognition and

handwritten recognition that are accompanied by uncertainty, stochastic models

achieve better performance. The Hidden Markov Model (HMM), also referred to as

Markov sources or probabilistic functions of Markov chains in the communication

literature, is a widely used statistical model.

 In this chapter, first we review the basic theory of Markov models, and then

explaining HMMs. Finally, the theory is extended to continuous HMMs. All

mathematical formulations needed to be implemented and some implementation

issues are discussed.

 75

8.2 Markov Models
 An important class of stochastic processes is Markov processes, which has some

special properties making them mathematically manageable. It is often desirable to

analyze a sequence of random variables that are not independent, but rather the value

of each variable depends on previous elements in the sequence. In a Markov process,

the value of the current random variable is adequate to predict the value of future

random variables i.e. future behavior of the process. In other words, future elements

of the sequence are conditionally independent of past elements, given the present

element. Let X = (X1, …, XT) be a sequence of random variable taking values in the

finite state space S = {s1, …, sN}. The Markov properties are:

)|(),...,,|(1211 tkttkt XsXPXXXsXP === ++ (8.1)

)|()|(121 XsXPXsXP ktkt ===+ (8.2)

The second property is called time invariance. If the sequence X has both Markov

properties, it is said to be a Markov chain.

 A Markov chain can be completely descried by the stochastic initial state vector ∏

and the stochastic transition matrix A:

)(1 ii sXP ==π (8.3)

 a ij = P(Xt+1 = sj | Xt = si) (8.4)

 Where ii ∀≥ ,0π , and 1
1

=∑ =

N

i iπ , and jia ij ,,0 ∀≥ , and iaN

j ij ∀=∑ =
,1

1
.

 To illustrate the ideas, consider an example about weather prediction which is about

trying to guess what the weather will be tomorrow based on a history of weather

observations in the past. For simplicity, assume that there are three types of weather:

Sunny, Cloudy and Rainy, and the weather lasts all day, i.e. it doesn't change from one

state to another in the middle of the day. If we make the Markov assumption (which is

not valid in real world), then the 3-state finite state machine of Figure 8.1 with

arbitrary state transition probabilities represents a Markov chain. Note that the sum of

probabilities of outgoing arcs from each state is 1. From Figure 8.1 it is clear that a

Markov model can be taught of as a nondeterministic finite state machine with

probabilities attached to arcs.

 76

0.
10.

2 0.1
0.3

Figure 8.1. A Markov model for the weather prediction example.

 Let s1 = Sunny, s2 = Cloudy and s3 = Rainy, and the weather on the first day be

Sunny. Then:

∏ = (1.0, 0.0, 0.0)
















=

4.03.03.0
2.06.02.0
1.01.08.0

A

 The probability of a sequence of states X1, …, XK is easily calculated for a Markov

chain:

 P(X1, ..., XK) = P(X1) P(X2 | X1) P(X3 | X1, X2) ... P(XK | X1, ..., XK-1)

 = P(X1) P(X2 | X1) P(X3 | X2) ... P(XK | XK-1)

 = ∏
−

=
+

1

1
11

K

t
XXX tt

aπ

(8.5)

 So in the above example, the probability that the weather for the next seven days will

be Sunny, Sunny, Rainy, Rainy, Sunny, Cloudy, Sunny, or more formally the

probability of the observation sequence O = s1, s1, s3, s3, s1, s2, s1, can be calculated

as:

P(O | Model) = 1π P(s1 | s1) P(s1 | s1) P(s3 | s1) P(s3 | s3) P(s1 | s3) P(s2 | s1) P(s1 | s2)

 = 1π a11 a11 a13 a33 a31 a12 a21

 = 1.0 (0.8) (0.8) (0.1) (0.4) (0.3) (0.1) (0.2)

 = 1.536 × 10-4 (8.6)

 Generally, when we talk about Markov models, we mean first-order Markov models

in which a history of size one is used to predict future behavior. But, sometimes the

future states require a larger history in order to be predicted. In an nth order Markov

 77

model, n previous states are used to predict the next state. In general, by elaborating

the state space as a cross-product of the finite previous states, every nth order Markov

model can be encoded in a first-order Markov model. So theoretically, the first-order

Markov assumption is not restrictive.

8.3 Hidden Markov Models
 HMMs are powerful tools in the field of signal processing. Despite their limitations,

variants of HMMs are still the most widely used technique in modern speech

recognition systems. The similarity between speech and handwritten text, which both

are made up of symbols with ambiguous boundaries and variations in appearance, has

suggested extending the application of the HMMs to handwritten text recognition.

The HMM does not model the whole pattern as a single feature vector; rather, it

explores the relationship between consecutive segments of a pattern, since each

segment is relatively smaller and easier to be characterized (He and Kundu, 1991).

 A HMM can be considered as a nondeterministic finite state machine where each

state is associated with a random function. Within a discrete period of time t, the

model is assumed to be in some state and generates an observation by a random

function of the state. Based on the transition probability of the current state, the

underlying Markov chain changes to another state at time t+1. The state sequence that

the model passes through is unknown, only some probabilistic function of the state

sequence that is the observations produced by the random function of each state can

be seen. A HMM can also be considered as a double stochastic process or a partially

observed stochastic process. A HMM is characterized by the following elements:

 N: The number of states of the model (8.7)

 S = {s1, s2, ..., sN}: The set of states (8.8)

 ∏ = { iπ = P(si at t = 1)}: The initial state probabilities (8.9)

 A = {a ij = P(sj at t+1 | si at t)}: The state transition probabilities (8.10)

 M: The number of observation symbols (8.11)

 V = {v1, v2, ..., vM}: The set of possible observation symbols (8.12)

 B = {bi(vk) = P(vk at t | si at t}: The symbol emission probabilities (8.13)

 Ot: The observed symbol at time t (8.14)

 T: The length of observation sequence (8.15)

 78

 λ = (A, B, ∏): The compact notation to denote the HMM. (8.16)

 Obviously, there are the following three constraints: ∑
=

=
N

i
i

1
1π , ia

N

j
ij ∀=∑

=

,1
1

 and

ivb
M

k
ki ∀=∑

=

,1)(
1

.

 The structure of the state transition matrix A determines the topology of the HMM. If

jia ij ,0 ∀≠ meaning that each state in the model is reachable from any state within

one transition, the model is called fully-connected or Ergodic. The widely used

topology in speech/text recognition is the so called Left-to-Right (LR) or Bakis model

in which lower numbered states account for observations occurring prior to higher

numbered states. The temporal order in LR-HMMs is imposed by introducing

structural zeros to the model in the form of the constraint ∏ = {1, 0, ..., 0} and

j ,0 >= ia ij meaning that the model begins at the first (i.e. left most) state and at

each time instant it can only proceed to the same or a higher numbered state. As a

further constraint, in LR-HMM the number of forward jumps at each state is often

limited in order to restrict large state changes, i.e. ∆+>= ija ij ,0 for some fixed ∆

(Figure 8.2).

(a) A 5-state Left-to-Right HMM

(b) A 5-state Left-to-Right HMM with maximum relative forward jump of 2

Figure 8.2. Left-to-Right HMMs.

 The following example helps understand the application of HMMs. Suppose you

were locked in a room for several days, and you were asked about the weather

 79

outside. The only available piece of information is whether the person who comes into

the room giving your daily meal is carrying an umbrella or not, so V = {True, False}

for the observation of carrying umbrella. Let's assume P(Umbrella | Sunny) = 0.1,

P(Umbrella | Cloudy) = 0.3 and P(Umbrella | Rainy) = 0.7. We want to draw

conclusion form our observations (carrying an umbrella or not) about the weather

outside as it is hidden from us. Let wi be the weather condition on day i, and the

boolean value of ui mean whether you see an umbrella on the same day. Using Bayes'

rule:

),...,(

),...(),...,|,...(
),...|,...,(

1

111
11

n

nnn
nn uuP

wwPwwuuP
uuwwP =

(8.17)

 The probability P(w1, ...,wn) is the same as the Markov model of the previous

example, and P(u1, ...,un) is the apriori probability of seeing a particular sequence of

umbrella events. The probability P(u1,...,un | w1,...,wn) can be calculated as

)|(1 ii
n
i wuP=∏ if we assume, for all i, given wi, ui is independent of all uj and wj for all

j ≠ i.

 For the weather prediction, we can therefore omit the apriori probability P(u1, ...,un)

as it is independent of the weather. Based on the first-order Markov assumption, the

likelihood L, a measure proportional to the probability, can be computed as:

 P(w1,..., wn | u1, ..., un) ∝

 L(w1,..., wn | u1, ..., un) = P(u1,...,un | w1,..., wn) P(w1, ..., wn)

 =)|()|(111 −== ∏∏ ii
n
iii

n
i wwPwuP (8.18)

 Suppose the day you were locked in was sunny. The next day, the person carried an

umbrella into the room, and you would like to predict the weather on the next day.

 First we calculate the likelihood assuming the next day to be sunny:

 L(w2 = Sunny | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Sunny) .

 P(w2 = Sunny | w1 = Sunny) = 0.1 (0.8) = 0.08 (8.19)

 Then we calculate the likelihood assuming the next day to be cloudy:

 L(w2 = Cloudy | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Cloudy) .

 P(w2 = Cloudy | w1 = Sunny) = 0.3 (0.1) = 0.03 (8.20)

 Finally for the next day to be rainy:

 L(w2 = Rainy | w1 = Sunny, u2 = True) = P(u2 = True | w2 = Rainy) .

 80

 P(w2 = Rainy | w1 = Sunny) = 0.7 (0.1) = 0.07 (8.21)

 Thus, it is more likely that the next day was sunny.

8.4 The Three Fundamental Problems for HMMs
 Most applications of HMMs need to solve the following problems:

 Problem 1. Given a model λ = (A, B, ∏), how do we efficiently compute P(O | λ), the

probability of occurrence of the observation sequence O = O1, O2, ..., OT.

 Problem 2. Given the observation sequence O and a model λ, how do we choose a

state sequence S = s1, s2, ..., sT so that P (O, S | λ), the joint probability of the

observation sequence O = O1, O2, ..., OT and the state sequence given the model, is

maximized. In other words, we want to find a state sequence that best explains the

observation.

 Problem 3. Given the observation sequence O, how do we adjust the model

parameters λ = (A, B, ∏) so that P (O | λ) or P (O, S | λ) is maximized. In other words,

we want to find a model that best explains the observed data.

8.4.1 Solution to Problem 1

 It deals with computing the probability that the model λ produces the observation

sequence O. The most straightforward way to compute P (O | λ) is to find P (O | S, λ)

for a fixed state S, multiply it by P (S | λ), and then sum up over all possible state

sequences of length T :

 ∑=
S

SPSOPOP)|().,|()|(λλλ (8.22)

 Since
TT sssssss aaaSP

132211
...)|(

−
= πλ and)()...()(),|(21 21 Tsss ObObObSOP

T
=λ ,

Equation (8.22) can be rewritten as:

 ∑ −
=

S
Tssssssss ObaObaObOP

TTT
)()...()()|(

122111 21πλ (8.23)

 Computing the probability by Equation (8.23) is not practical since there are NT state

sequences, requiring (2T-1)NT multiplications and NT-1 additions. Thus, an efficient

procedure should be used instead. There are two alternatives: the forward procedure

and the backward procedure.

 The forward procedure calculates the forward variable αt(s) for each state s defined

as:

 αt(s) = P(O1, O2, ..., Ot, st = s | λ) (8.24)

 81

 That is the probability of the partial observation sequence up to time t and the state s,

given the model λ. The following three-step procedure computes αt(s) for all instances

of time:

1. Initialization:

 NsObs ss ≤≤= 1),()(11 πα (8.25)
2. Induction:

11,1),(])([)(1

1
1 −≤≤≤≤= +

=
+ ∑ TtNrObasr tr

N

s
srtt αα

(8.26)

 This calculates the forward probability of state r at time t+1 based on the joint

probability of the previous forward variables from all states at time t and the transition

probabilities from each of those states to state r. It is due to the fact that state r can be

reached (with probability a sr) independently from any of the N states at time t.

3. Termination:

∑

=

=
N

s
T sOP

1

)()|(αλ

(8.27)

 Calculating the forward variables over all states at all instances of time requires N(N-

1)(T-1)+(N-1) additions and N + N(N+1)(T-1) multiplications, i.e. of the order of N2T

as compared to 2TNT required for the direct method.

 The backward procedure follows the same approach but in the opposite direction by

calculating the backward variable βt(s) for each state s defined as:

 βt(s) = P(Ot+1, Ot+2, ..., OT | st = s, λ) (8.28)

 That is the probability of the observation sequence from t+1 to T given the state s at

time t and the model λ. Like αt(s), βt(s) can be computed by the following three-step

procedure for all instances of time:

1. Initialization:

 NssT ≤≤= 1,1)(β (8.29)
2. Induction:

1...,,2,1,1),()()(11

1

−−=≤≤= ++
=

∑ TTtNsrObas ttr

N

r
srt ββ

(8.30)

3. Termination:

∑

=

=
N

s
ss sObOP

1
11)()()|(βπλ

(8.31)

 Computing P(O | λ) using the backward variables also involves of the order of N2T

calculations.

 82

8.4.2 Solution to Problem 2

 Here we have to find the most likely state sequence (the hidden part of the model)

associated with an observation sequence. The famous Viterbi algorithm is a dynamic

programming approach to find the optimal path. It intermediately keeps the best

possible state sequence at each instance of time for each of the N states, and finally it

gives the best path for each of the N states as the last state for the observation

sequence, from which the one with highest probability is selected.

 The four-step Viterbi algorithm follows the same strategy as the forward procedure

but it replaces summation with maximization (or minimization, depending on the

optimality criterion). For a given the observation sequence O = O1, O2, ..., OT and the

model λ, the algorithm involves the following steps:

1. Initialization:

)()(11 Obs ssπδ = (8.32)

 Nss ≤≤= 1,0)(1ψ (8.33)
 Where δt(s) denotes the accumulated weight when we are in state s at time t, and

ψt(s) represents the state at time t-1 which has the lowest cost (maximum probability)

corresponding to the state transition to state s at time t.

2. Induction:

)(])([max)(11 tsrstNrt Obars −≤≤
= δδ (8.34)

 TtNsars rst

Nr
t ≤≤≤≤= −

≤≤
2,1],)([maxarg)(1

1
δψ (8.35)

3. Termination:

)]([max
1

* sP TNs
δ

≤≤
= (8.36)

)]([maxarg
1

* sq T
Ns

T δ
≤≤

= (8.37)

4. Path Backtracking:

 1....,,2,1),(*
11

* −−== ++ TTtqq ttt ψ (8.38)

 Now, Q* = {q1
*, q2

*, ..., qT
} is the optimal state sequence, and P is the joint

probability of the observation sequence O and the optimal state sequence Q*.

 Like the forward and backward procedures, the complexity of the Viterbi algorithm

is of the order of N2T.

 A direct implementation of the above algorithm does not take care about underflow.

It is clear that the probabilities we are calculating involve multiplying together very

small numbers, which will rapidly underflow the range of floating point numbers on a

 83

computer. To remedy this problem, the Viterbi algorithm is changed to work with

logarithms. This not only solves the underflow problem, but also speeds up the

computation, since addition is much faster than multiplication. A quick

implementation of the Viterbi algorithm is highly desirable because it is a runtime

algorithm, and not a training algorithm which can usually proceed offline. The

efficient and practical version of the Viterbi algorithm is given below:

0. Preprocessing:

 Nsss ≤≤= 1),log(~ ππ (8.39)

 Nsraa rsrs ≤≤= ,1),log(~ (8.40)

 TtNsObOb tsts ≤≤≤≤= 1,1)),(log()(~ (8.41)

1. Initialization:

)(~~)(~
11 Obs ss += πδ (8.42)

 Nss ≤≤= 1,0)(1ψ (8.43)
2. Induction:

)(~]~)(~[max)(~
11 tsrstNrt Obars ++= −≤≤

δδ (8.44)

 TtNsars rst

Nr
t ≤≤≤≤+= −

≤≤
2,1],~)(~[maxarg)(1

1
δψ (8.45)

3. Termination:

)](~[max
1

* sP TNs
δ

≤≤
= (8.46)

)](~[maxarg

1

* sq T
Ns

T δ
≤≤

= (8.47)

4. Path Backtracking:

 1....,,2,1),(*
11

* −−== ++ TTtqq ttt ψ (8.48)

 Now, Q* = {q1
*, q2

*, ..., qT
} is the optimal state sequence, and exp(P) is the joint

probability of the observation sequence O and the optimal state sequence Q*.

 You may notice that the Viterbi algorithm only involves multiplications, but the

forward/backward algorithm involves additions too. Logarithms can still be used to

prevent floating point underflow, here we need to calculate log(x+y) which can be

achieved by the following technique (Manning and Schütze, 1999):

 if y – x > log big
 return y;
 else if x – y > log big
 return x;
 else

 84

 return min(x,y) + log(exp(x - min(x,y)) + exp(y – min(x,y)));

 Where big is suitable large constant like 1030.

8.4.3 Solution to Problem 3
 There are two general approaches for estimating the model parameters (training)

depending on the probability that is chosen for maximization. The segmental k-means

(Juang and Rabiner, 1990) algorithm adjusts the parameters so that P (O, Q*| λ) is

maximized, where Q* is the optimal state sequence corresponding to the observation

sequence O. The Baum-Welch algorithm (Rabiner, 1989) adjust the parameters to

increase P (O | λ) until a maximum value is reached, here P (O | λ) involves summing

up P (O, S | λ) over all possible state sequences S, meaning that the algorithm does not

focus on a particular state sequence. The segmental k-means algorithm is often

preferred, because it requires much less computation as compared to the Baum-Welch

algorithm, and also in text recognition applications, both modeling and decoding must

be performed on the observation datasets and the criterion P (O, Q*| λ) seems quite

natural for both these tasks.

8.4.4 The Segmental K-Means Algorithm

 The segmental k-means algorithm requires a number of observation (training)

sequences. Let there are w number of such sequences. Each sequence

iTOOOO ,...,, 21= consists of Ti observation vectors, so we have∑
=

w

i
iT

1
observation

vectors. Instead of w number of such sequences, if one long sequence is given, it can

be segmented into an arbitrary number of short sequences. Each observation symbol

Oi is assumed to be a vector of dimension of one or higher; and all observation

vectors must be of equal dimension. The algorithm consists of the following steps:

1. Randomly choose N observation vectors C1,C2,...,CN, and assign each of the

remaining observation vectors to one of these N vectors from which its Euclidean

distance is minimum. Therefore N clusters, each called a state, numbered from 1 to N

are formed. The notation sOt ∈ means that the tth observation symbol Ot of an

observation sequence is assigned to state s. This initial choice of clustering does not

influence the final HMM, but it can decide the number of iterations for training. To

make the initial choice of clusters as widely distributed as possible a good strategy

 85

when w ≥ N is to choose C1 as the first observation vector of the first sequence, C2 as

the second observation vector of the second sequence and so on (Dugad and Desai,

1996). This step provides a good initialization for the complete training procedure.

2. Calculate the initial and the transitions probabilities:

Ns
O
sO

s ≤≤
∈

= 1,
 of soccurrence ofnumber total

}{ of soccurrence ofnumber ˆ
1

1π

(8.49)

11,,1,
}{ of soccurrence ofnumber total

} and { of soccurrence ofnumber ˆ 1 −≤≤≤≤
∈

∈∈
= +

i
t

tt
rs TtNsr

rO
sOrO

a

(8.50)

3. Calculate the mean and covariance matrix for each state:

NsO

N sO
t

s
s

t

≤≤= ∑
∈

1,1
µ̂

(8.51)

 NsOO
N

V st
T

sO
st

s
s

t

≤≤−−= ∑
∈

1),ˆ()ˆ(1ˆ µµ
(8.52)

4. Calculate the probability distribution for each observation vector for each state:

))ˆ(ˆ)ˆ(

2
1exp(

|ˆ|)2(

1)(ˆ
2
1

2

T
stsst

s

Dts OVO
V

Ob µµ
π

−−−=

(8.53)

 It has been proved that the algorithm converges to the state-optimized likelihood

function for a wide range of density functions including Gaussian. Here, the Gaussian

density is optionally chosen.

5. Use the Viterbi algorithm with the new probabilities to find the optimal state

sequence Q* for each training sequence. An observation vector is reassigned a state if

its original assignment is different from the corresponding estimated optimal state, i.e.

assign Ot to s if qt
* = s.

6. If any vector is reassigned a new state in Step 5, then use the new state assignment

and repeat Step 2 to Step 6; otherwise, stop.

8.4.5 The Baum-Welch Algorithm
 The Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm. The

EM algorithm is a widely used approach to learning in the presence of unobserved

(hidden) variables. It searches for a maximum likelihood hypothesis by iteratively re-

estimating the expected values of the hidden variables given its current hypothesis,

 86

then recalculating the maximum likelihood hypothesis using these expected values for

the hidden variables. In other words, the current hypothesis is used to estimate the

unobserved variables, and then the expected values of these variables are used to

calculate an improved hypothesis. It can be proved that the algorithm converges to a

local maximum hypothesis (Mitchell, 1997).

 An initial hypothesis (HMM) can be constructed in any way, but a reasonable initial

estimate is obtained by using the first four steps of the segmental k-means algorithm.

First, we should introduce some concepts and formulas that will be used in the final

formulas. Consider γt(s) = P(st = s | O, λ) that is the probability of being in state s at

time t given the observation sequence O and the model λ. Using the Bayes law we

have:

 Ns
OP

ss
OP

OssPt ttt
s ≤≤=

=
= 1,

)|(
)()(

)|(
)|,()(

λ
βα

λ
λ

γ

(8.54)
 Where αt(s) and βt(s) are the forward and backward variables.

 We also define ξt(r,s) = P(st = r, st+1 = s | O, λ) that is the probability of being in state

r at time t and making a transition to state s at time t+1. Using the Bayes law and the

causality property of Markov chain, it can be shown that:

Nsr

OP
sObar

sr ttsrst
t ≤≤= ++ ,1,

)|(
)()()(

),(11

λ
βα

ξ

(8.55)

 If γt(s) is summed up from t = 1 to T, the expected number of times state s is visited

is obtained, and if it is summed up only to T-1, the expected number of transitions out

of state s is obtained. Similarly, if ξt(r,s) is summed up from t = 1 to T-1, the expected

number of transitions from state r to s is obtained:

∑
−

=

1

1
)(

T

t
t sγ = expected number of transitions from state s, 1≤s≤N

(8.56)

∑
−

=

1

1
),(

T

t
t srξ = expected number of transitions from state r to state s, 1≤r,s≤N

(8.57)

 γt(r) and ξt(r,s) can be related by summing up ξt(r,s) over s:

Nrsrr

N

s
tt ≤≤= ∑

=

1,),()(
1
ξγ

(8.58)

 The Baum-Welch re-estimation formulas are now defined as follows:

 Nsss ≤≤= 1),(ˆ 1γπ (8.59)

 87

Nsrrsra
T

t
t

T

t
trs ≤≤= ∑∑

−

=

−

=

,1,)(),(ˆ
1

1

1

1
γξ

(8.60)

Nsssvb
T

t
t

T

vOt
tks

kt

≤≤= ∑∑
===

1,)()()(ˆ
1,1

γγ

(8.61)

 The re-estimation formula for sπ is simple the probability of being in state s at time

1. The formula for a rs is the ratio of expected number of transitions from state r to

state s to the expected number of times making a transition out of state r. The formula

for bs(vk) is the ratio of the expected number of times of being in state s and observing

symbol vk to the expected number of times of being in state s.

8.5 Continuous Hidden Markov Models
 Thus far, HMMs have been applied for process with discrete observation sequences,

i.e. all observation vectors belong to a finite alphabet V = {v1, v2, ..., vM}. In such a

case, the model is a Discrete Hidden Markov Model (DHMM). The discrete

observations can be the indices of codebook obtained by Vector Quantization (VQ)

which is a clustering technique for producing an approximation of distribution of a

multi-dimensional signal in a codebook. VQ is responsible for loosing some

information from the signal. The loss is due to the quantization error (distortion) that

can be reduced but not be eliminated by increasing the codebook size (number of

clusters).

 A Continuous Hidden Markov Model (CHMM) is an extension of DHMM to

overcome the distortion problem. CHMM has more parameters than DHMM, thus

requiring more memory and more deliberate techniques to initialize the model as it

may easily diverge with randomly selected initial parameters.

 In CHMM the parameter B is represented differently as here there is not a finite set

of observation symbols V. The probability density function of an observation vector ot

in each state is considered to be a multivariate Gaussian mixture (other distributions

are also valid, but the multivariate Gaussian mixture is general and proved to be

promising):

 88

))()(
2
1exp(

||)2(

),;()(

1

1

1

∑

∑

=

−

=

−∑−−
∑

=

∑Ν=

M

m

T
imtimimt

im
K

im

M

m
imimtimti

oo
c

ocob

µµ
π

µ

(8.62)
 where:

 cim: The mth mixture gain coefficient in state i (8.63)

 μim: The mean of the mth mixture in state i (8.64)

 ∑im: The covariance of the mth mixture in state i (8.65)

 M: The number of mixtures used (8.66)

 K: The dimensionality of the observation space (8.67)

 The following constraints have to be satisfied to ensure the consistency of the model:

micim ,,0 ∀≥ , ∑
=

∀=
M

m
im ic

1
,1 and idoob tti ∀=∫

∞

∞−

,1)(

 The covariance matrix ∑ can be simplified by using a diagonal matrix with elements

representing the variance of each mixture. This approximation reduces the

computational cost to a great extent, but the number of mixtures should be increased

to make the model work better.

 In the case of multi-mixture CHMMs, the re-estimation formulas have to be

modified. Let γt(i,m) be the probability of being in the mth mixture of state i at time t:

∑∑
==

∑Ν

∑Ν
= M

k
ikiktik

imimtim
N

s
tt

tt
t

oc

oc

ss

ii
mi

11

),;(

),;(

)()(

)()(
),(

µ

µ

βα

βα
γ

(8.68)

 It should be clear that γt(i,m) = γt(i) when M=1.

 The re-estimation formulas for cim, μim and ∑im are now defined as follows:

∑∑

∑

= =

==

=

T

t

M

m
t

T

t
t

im

mi

mi

i
imc

1 1

1

th

),(

),(

 statein being of timesofnumber expected
 state of mixture in the being of timesofnumber expected

γ

γ

)

(8.69)

∑

∑

=

== T

t
t

T

t
tt

im

mi

omi

1

1

),(

),(
ˆ

γ

γ
µ

(8.70)

 89

∑

∑

=

=

−−
=Σ T

t
t

T

t

T
imtimtt

im

mi

oomi

1

1

),(

))()(,(

γ

µµγ)

(8.71)

8.6 Training and Recognition
 The recognition system is trained and evaluated on a dataset of 100 city names of

Iran. Thus a pattern recognition problem with 100 classes is considered. Most samples

in the dataset were automatically generated by a Java program drawing input string

with different fonts, sizes and orientations on output image. The dataset contains 150

samples for each word. The complete list of words and a few sample images

generated by the program are shown in Appendix A.

 Since the lexicon size is limited (100), a holistic approach based on model

discriminant CHMM is chosen as the recognition engine, i.e. each word in the lexicon

is modeled by a separate CHMM (Figure 8.3). The main advantage of the model

discriminant scheme is that if a new word is added, the recognition system can simply

be updated by adding the new word model to the system knowledgebase. But it has

the major drawback of using a predefined lexicon which limits the recognition outputs

to the lexicon words. Although a large lexicon of size ten thousands covers almost all

words in a language, but such a large lexicon requires much memory and causes a

severe delay in producing the ranked word list as the Viterbi algorithm has to be

executed for each word model λi. To overcome the memory and speed problems, an

alternative is to build a single HMM for all words, where each character is modeled

by a small group of the HMM states, and a word is represented by a path through the

model. This approach is called path discriminant HMM as a pattern is classified to the

word which has the maximum path probability over all possible paths. Previous

researches (Khorsheed, 2000) prove that a path discriminant (single-HMM) scheme

achieves less accuracy than a model discriminant (multi-HMM) scheme for a same

lexicon.

 The number of states of a word model is set to be the size of the shortest observation

sequence of the training instances of the word. A Bakis structure is selected for all

HMMs, with minimum relative forward jump of 0 (loop to current state) and

maximum relative forward jump of 2. The maximum allowed number of densities in

 90

each state is set to 10. No limit is imposed on the number of training iterations, i.e. the

training procedure continues until convergence.

Figure 8.3. The block diagram of the handwritten recognition system.

 Figure 8.4 shows an overview of the complete segmentation-recognition system.

Text Segmentation Global Skew
Correction Line Extraction Local Skew

Correction

Slant Correction

Input Image

Binarization Word
Segmentation

Denoising and
Smoothing

Skeletonization Feature Extraction Multi-CHMM
Recognition

Output Text

Height
Normalization

Figure 8.4. An overview of the complete segmentation-recognition system.

8.7 Experimental Results
 Here some experimental results for the isolated word recognition system are

presented. The multi-HMM recognition system can provide an N-best list of

hypotheses rather than a single hypothesis. The N-best list is generated by sorting the

entire probabilities P(O | λi). Given an N-best list of possible hypotheses, a system

may use other knowledge to find the correct hypothesis. It is said that a word image is

N-best recognized when the N-best list includes the correct word hypothesis for the

minimum value of N. Obviously the N-best recognition rate increases with N, and

reaching 100% when N equals to the lexicon size in worst case. Some of the words in

the following figures have overlapped and connected characters, contaminated with

noise. It is observed that some characters are broken into parts. Sometime loops are

 91

not present in such characters as 'م' and 'و' that normally have loops, but loops are

formed in characters that should not have them. All of these artifacts decrease the

recognition rate, as the proposed system use structural features.

(a) 5-best recognized (b) 2-best recognized (c) 4-best recognized

(d) not recognized for N ≤ 20 (e) 1-best recognized (f) 1-best recognized

(g) 1-best recognized (h) 1-best recognized (i) not recognized for N ≤ 20

(j) 7-best recognized (k) 1-best recognized (l) 1-best recognized

(m) 1-best recognized (n) 15-best recognized (o) 4-best recognized

(p) 4-best recognized (q) 1-best recognized (r) not recognized for N ≤ 20

(s) 1-best recognized (t) 1-best recognized (u) 1-best recognized

Figure 8.5. Examples of handwritten words used to evaluate the system performance.

 92

(a) not recognized for N ≤ 20 (b) 6-best recognized (c) 1-best recognized

(d) 1-best recognized (e) 1-best recognized (f) 1-best recognized

(g) 1-best recognized (h) 4-best recognized (i) 1-best recognized

(j) 1-best recognized (k) 1-best recognized (l) 1-best recognized

(m) 1-best recognized (n) 1-best recognized (o) 8-best recognized

(p) 2-best recognized (q) 2-best recognized (r) 3-best recognized

(s) not recognized for N ≤ 20 (t) 1-best recognized (u) 1-best recognized

(v) not recognized for N ≤ 20 (w) 1-best recognized (x) 1-best recognized
Figure 8.6. Examples of handwritten words used to evaluate the system performance.

 93

(a) 1-best recognized (b) 1-best recognized (c) 6-best recognized

(d) 1-best recognized (e) 1-best recognized (f) 2-best recognized

(g) 1-best recognized (h) 1-best recognized

(i) 1-best recognized (j) not recognized for N ≤ 20

(k) 2-best recognized (l) 1-best recognized

(m) not recognized for N ≤ 20 (n) 1-best recognized

(o) 4-best recognized (p) 1-best recognized (q) 1-best recognized

(r) 1-best recognized (s) 1-best recognized
Figure 8.7. Examples of handwritten words used to evaluate the system performance.

 94

(a) not recognized for N ≤ 20 (b) 2-best recognized (c) 1-best recognized

(d) not recognized for N ≤ 20 (e) 1-best recognized (f) not recognized for N ≤ 20

(g) 1-best recognized (h) 15-best recognized (i) 1-best recognized

(j) not recognized for N ≤ 20 (k) 3-best recognized

(l) 3-best recognized (m) 14-best recognized

(n) 1-best recognized (o) 10-best recognized

(p) 1-best recognized (q) 3-best recognized

Figure 8.8. Examples of handwritten words used to evaluate the system performance.

Conclusion
 A complete offline recognition system for Farsi handwritten words was presented.

To the best of our knowledge, this work was the first to use continuous hidden

Markov models with structural features to recognize Farsi handwritten words. In

addition to feature extraction and recognition, other parts of a complete recognition

system, including text segmentation, binarization, skew correction, slant correction

and skeletonization were addressed.

 A new machine learning approach based on the naive Bayes classifier, which is fast

both in training and application phase, was developed for text segmentation. It was

shown that excellent results could be obtained by this simple classifier. Lack of large

amount of proper training data usually restricts practicality of the modern AI methods.

To overcome this problem, a simple procedure for generating the required training

data from a set of 8 hand-segmented images was presented.

 Four different algorithms for document image binarization were compared and

contrasted: the Otsu's global method, the Niblack's local method, the Wu and

Manmatha's method and the Liu and Srihari's method. The last two methods are

designed specially for document image binarization, and performing better than the

first two general-purpose methods, particularly in the presence of textured, shaded or

noisy backgrounds. Excluding Niblack's, the other methods are quite fast, and even

suitable for real-time applications.

 Different skew and slant correction algorithms were surveyed for handwritten

documents, and the problem of multiple skews was dealt with in a two-stage process.

The first stage correct the global skew, and after extracting text lines, in the second

stage, the skew of each line is corrected locally. It was shown that the projection

profile based method for correcting global skew was robust and practical to be used in

real systems, and since this method was rather slow, some techniques were proposed

to speed it up. It was shown that the same technique utilized for skew correction could

be applied to remove the slant of handwritten words.

 Five different skeletonization algorithms were compared and contrasted: the SPTA,

the Zhang-Suen's algorithm, the DTSA, the Ji and Piper's homotopy-preserving

algorithm, and the Huang et al.'s algorithm. The main focus was on preserving text

 95

characteristics, such as not removing dots, obtaining well-connected skeletons of

unitary thickness, and robustness with respect to border noise. It was shown that the

Zhang-Suen's and the homotopy-preserving algorithms are not suitable for

recognition. Among the other three algorithms, Huang et al.'s is the most robust, as it

produces skeletons with the smallest number of spurious branches. It is also quite fast

and practical. All of the surveyed skeletonization algorithms were iterative; however,

it is worthy to survey non-iterative and indirect methods in the context of text

recognition. A simple and effective skeleton post-processing technique was also

described.

 There exist two main types of features: statistical and structural. Structural features

are capable of tolerating many variations, but not robust to noise, and hard to extract.

On the other hand, statistical features are robust to noise, and easy to extract, but with

the disadvantage of requiring a large set of training instances to attain well-trained

classifiers. Structural features were used in this study since they have been less

studied for offline handwritten recognition. The features were extracted from the

graph representing the skeleton of an input word image. The loops and edges of the

graph were visited in a canonical order, and then each one was represented by a 10D

feature vector. So, each input word image was represented by a 1D observation

sequence, being appropriate for 1D HMM-based classifier. The 10 features used to

describe the edges or loops were independent of the baseline location, so the difficult

and crucial problem of baseline detection was avoided.

 The recognition was based on continuous hidden Markov models (CHMMs). Unlike

discrete hidden Markov models (DHMMs), CHMMs do not quantize observation

vectors, so they don't involve the distortion problem of DHMMs. Since the lexicon on

which the system was intended to be trained was limited, a few hundred words, a

model discriminant recognition scheme was chosen, i.e. each word in the lexicon was

modeled by a separate CHMM. This scheme has two main advantages: 1) if a new

word is added, the recognition system can simply be updated by adding the new word

model to the system knowledgebase. When a neural network is used, for example,

once a new class is added, the whole network must be retrained, which is a time-

consuming procedure; and 2) the recognition can take advantage of being executed on

a parallel computer, so the recognition delay can be kept constant with increasing the

number of classes (the lexicon size).

 96

 There is no publicly available dataset for Farsi handwritten word images, and it is

not wise to compare different systems evaluated on different datasets. The executable

version of training, recognition and evaluation modules of the proposed system is

provided on the thesis webpage: http://pasargad.cse.shirazu.ac.ir/~mhaji/handrec. So

it can be trained and evaluated on different datasets, and simply compared with

others'. The proposed method achieved a maximum recognition rate of about 82% on

a small lexicon, containing word images of 100 cities of Iran. The striking aspect of

the recognition system is its excellent generalization performance, as seen in our

experiments, when multi-font machine-printed word images were used for training,

the recognition ability could be generalized to handwriting.

 To improve the recognition rate and dealing with large lexica, further research could

be carried out in the following areas: 1) comparing and combining different

classifiers; 2) combining statistical and structural features; 3) using more advanced

HMMs; and 4) using lexicon pruning techniques to limit candidate words. The

problem of recognizing handwritten text, with a performance comparable to human's,

seems so difficult that it will remain unsolved, unless much more elaborate techniques

are developed.

 97

REFERENCES

Adab, M. (2001). "Simultaneous Segmentation and Recognition of Farsi/Arabic Printed
Text", M. Sc. Thesis, Department of Control Engineering, Amir Kabir University,
Tehran, Iran.

Ahmed, M. and Ward, R. K. (2000). "An Expert System for General Symbol
Recognition", Pattern Recognition, vol. 33, pp. 1975-1988.

Ahmed, P. (1995). "A Neural Network Based Dedicated Thinning Method", Pattern
Recognition Letters, vol. 16, pp. 585-590.

Almuallim, H. and Yamaguchi, S. (Sep. 1987). "A Method of Recognition of Arabic
Cursive Handwriting", IEEE Trans. on PAMI, vol. 9(5), pp. 715-722.

Al-Yousefi, H. and Udpa, S. S. (Aug. 1992). "Recognition of Arabic Characters", IEEE
Trans. on PAMI, vol. 14(8), pp. 853-857.

Amin, A. (1998). "Off-Line Arabic Character Recognition: The State of the Art", Pattern
Recognition, vol. 31(5), pp. 517-530.

Amin, A. and Mari, J. (1989). "Machine Recognition and Correction of Printed Arabic
Text", IEEE. Trans. on Systems, Man and Cybernetics, vol. 19(5), pp. 1300-1306.

Arica, N. and Yarman-Vural, F. T. (2000). "One-Dimensional Representation of Two-
Dimensional Information for HMM Based Handwriting Recognition", Pattern
Recognition Letters, vol. 21, pp. 583-592.

Avanindra and Subhasis Chaudhuri (February 1997). "Robust Detection of Skew in
Document Images", IEEE Trans. Image Processing, vol. 6(2), pp. 344-349.

Bloomberg, D. S., Kopec, G. E. and Dasari, L. (Feb. 1995). "Measuring Document Image
Skew and Orientation", Proceedings of IS&T/SPIE EI’95 Conference 2422: Document
Recognition II, pp. 302-316.

Chaddha, N., Sharma, R., Agrawal, A. and Gupta, A. (1995). "Text segmentation in
mixed-mode images", Proceedings of the 28th Asilomar Conference on Signals, Systems
and Computers, vol. 2, pp. 1356-1361.

Changming Sun and Deyi Si (1997). “Skew and Slant Correction for Document Images
Using Gradient Direction”, IEEE International Conference on Document Analysis and
Recognition, vol. 1, pp.142-146.

 98

Chen, D., Bourlard, H. and Thiran, J. (Dec. 2001). “Text Identification in Complex
Backgrounds Using SVM”, Proceedings of the International Conference on Computer
Vision and Pattern Recognition, pp. 621-626.

Choi, H. and Baraniuk, R. G. (Sep. 2001). “Multiscale Image Segmentation Using
Wavelet-Domain Hidden Markov Models”, IEEE Trans. on Image Processing, vol.
10(9), pp. 1309-1321.

Dehghan, M., Faez, K., Ahmadi, M. and Shridhar, M. (2001). "Handwritten Farsi
(Arabic) Word Recognition: A Holistic Approach Using Discrete HMM", Pattern
Recognition, vol. 34, pp. 1057-1065.

Dehghan, M., Faez, K., Ahmadi, M. and Shridhar, M. (2001). "Unconstrained Farsi
Handwritten Word Recognition Using Fuzzy Vector Quantization and Hidden Markov
Models", Pattern Recognition Letters, vol. 22, pp. 209-214.

Deng, S. and Latifi, S. (2000). "Fast Text Segmentation Using Wavelet for Document
Processing", Proceedings of the 4th WAC, ISSCI, IFMIP, Maui, Hawaii, USA, pp. 739-
744.

Domingos, P. and Pazzani, M. (1997). "On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss", Machine Learning, vol. 29, pp. 103-130.

Dugad, R. and Desai, U. B. (May 1996). "A Tutorial on Hidden Markov Models",
Technical Report No. SPANN-96.1, Indian Institute of Technology, Bombay, India.

El-Sheikh, T. and Guindi, R. (1988). "Computer Recognition of Arabic Cursive Script",
Pattern Recognition, vol. 21(4), pp. 293-302.

Erlandson, E., Trenkle, J. and Vogt, R. (1996). "Word-Level Recognition of Multifont
Arabic Text Using a Feature-Vector Matching Approach", Proceedings of the SPIE, vol.
2660-08.

Fletcher, L. A. and Kasturi, R. (Nov. 1988). “A Robust Algorithm for Text String
Separation from Mixed Text/Graphics Images”, IEEE Trans. on PAMI, vol. 10(6), pp.
910-918.

Gersho, A. and Gray, R. M. (1992). Vector Quantization and Signal Compression,
Kluwer Academic Publishers.

He, Y. and Kundu, A. (Nov. 1991). "2-D Shape Classification Using Hidden Markov
Model", IEEE Trans. on PAMI, vol. 13(11), pp. 1172-1184.

Huang, L., Wan, G. and Liu, C. (2003). "An Improved Parallel Thinning Algorithm",
Proceedings of the Seventh International Conference on Document Analysis and
Recognition (ICDAR 2003), pp. 780-783.

 99

Ivanov, D., Kuzmin, E. and Burtsev, S. (2000). "An Efficient Integer-Based
Skeletonization Algorithm", Computers and Graphics, vol. 24, pp. 41-51.

Jain, A. K. (1989). Fundamentals of Digital Image Processing, Englewood Cliffs,
Prentice Hall.

Jain, A. K. and Farrokhnia, F. (1991). “Unsupervised Texture Segmentation Using Gabor
Filters”, Pattern Recognition, vol. 24, pp. 1167-1186.

Ji, L. and Piper, J. (1992). "Fast Homotopy-Preserving Skeletons Using Mathematical
Morphology", IEEE Trans. on PAMI, vol. 14(6), pp. 653 - 664.

Jiang, H. F., Han, C. C. and Fan, K. C. (1997). "A Fast Approach to the Detection and
Correction of Skewed Documents", Pattern Recognition Letters, vol. 18(7), pp. 675-686.

Jie Xi, Xian-Sheng Hua, Xiang-Rong Chen, et al. (August 2001). “A Video Text
Detection and Recognition System”, Proceedings of ICME 2001, Waseda University,
Japan, pp. 1080-1083.

Juang, B. H. and Rabiner, L. R. (Sep. 1990). "The Segmental K-Means Algorithm for
Estimating the Parameters of Hidden Markov Models", IEEE Trans. on Acoustics,
Speech and Signal Processing, vol. 38(9), pp. 1639-1641.

Kapur, J. N., et al. (1985). "A New Method for Gray-Level Picture Thresholding Using
the Entropy of the Histogram", Computer Vision, Graphics and Image Processing, vol.
29, pp. 273-285.

Kavallieratou, E., Fakotakis, N. and Kokkinakis, G. (2000). "A Slant Removal
Algorithm", Pattern Recognition, pp. 1261-1262.

Khorsheed, M. (June 2000). "Automatic Recognition of Words in Arabic Manuscripts",
Ph.D. Thesis, Churchill College, University of Cambridge.

Kim, G. and Govindaraju, V. (April 1997). "A Lexicon Driven Approach to Handwritten
Word Recognition for Real-Time Applications", IEEE Trans. on PAMI, vol. 19(4), pp.
366-379.

Kittler, J. and Illingworth, J. (1985). "On Threshold Selection Using Clustering Criteria",
IEEE Trans. on Systems, Man and Cybernetics, vol. 15, pp. 652-655.

Lachiche, N. and Flach, P. (2003). "Improving Accuracy and Cost of Two-Class and
Multi-Class Probabilistic Classifiers using ROC Curves", Proceedings of the 20th
International Conference on Machine Learning (ICML-2003).

 100

Li, J. and Gray, R. M. (Oct. 1998). “Text and Picture Segmentation by the Distribution
Analysis of Wavelet Coefficients”, Proceedings of IEEE International Conference on
Image Processing, Chicago, Illinois, vol. 3, pp 790-794.

Liu, Y. and Srihari, S. N. (May 1997). “Document Image Binarization Based on Texture
Features”, IEEE Trans. on PAMI, vol. 19(5), pp. 540-544.

Lu, Z., Bazzi, I., Kornai, A., Makhoul, J., Natarajan, P. and Schwartz, R. (1999). "A
Robust Language-Independent OCR System", Proceedings of 27th AIPR Workshop:
Advances in Computer-Assisted Recognition, SPIE Proceedings.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language
Processing, The MIT Press.

Mitchell, Tom M. (1997). Machine Learning, McGraw-Hill.

Motawa, D., Amin, A. and Sabourin, R. (Sep. 1999). "Segmentation of Arabic Cursive
Script", Proceedings of the 5th International Conference on Document Analysis and
Recognition, ICDAR99, pp. 625-628.

Naccache, N. J. and Shinghal, R. (1984). "SPTA: A Proposed Algorithm for Digital
Pictures", IEEE Trans. on Systems, Man and Cybernetics, vol. SMC-14(3), pp. 409-418.

Nadadur, D. and Haralick, R. (2000). "Recursive Binary Dilation and Erosion Using
Digital Line Structuring Elements in Arbitrary Orientations", IEEE Trans. on Image
Processing, vol. 9(5), pp. 749-759.

Najman, L. (2004). "Using Mathematical Morphology for Document Skew Estimation",
Proceedings of SPIE conference on Document Recognition and Retrieval, pp. 182-191.

Niblack, W. (1989). An Introduction to Digital Image Processing, Prentice Hall,
Englewood Cliffs, pp. 115-116.

Ohya, J., Shio, A. and Akamatsu, S. (Feb. 1994). “Recognizing Characters in Scene
Images”, IEEE Trans. on PAMI, vol. 16(2), pp. 214-224.

Okun, O., Pietikäinen, M. and Sauvola, J. (1999). "Document Skew Estimation without
Angle Range Restriction", International Journal on Document Analysis and Recognition,
pp. 132-144.

Otsu, N. (Jan. 1979). “A Threshold Selection Method from Gray Level Histograms”,
IEEE Trans. on Systems, Man and Cybernetics, vol. 9, pp. 62-66.

Parhami, B. and Taraghi, M. (1981). "Automatic Recognition of Printed Farsi Texts",
Pattern Recognition, vol. 14(6), pp. 395-403.

 101

Pietikäinen, M. and Okun, O. (June 2001). “Text Extraction from Grey Scale Page
Images by Simple Edge Detectors”, Proceedings of the 12th Scandinavian Conference on
Image Analysis, Bergen, Norway, pp. 628-635.

Postl, W. (1986). "Detection of linear oblique structure and skew scan in digitized
documents", Proceedings of International Conference on Pattern Recognition, pp. 687-
689.

Procter, S., Illingworth, J. and Mokhtarian, F. (August 2000). "Cursive Handwritten
Recognition Using Hidden Markov Models and a Lexicon-Driven Level Building
Algorithm", IEE Proceedings on Vision, Image and Signal Processing, vol. 147(4), pp.
332-339.

Rabiner, L. R. (1989). "A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition", IEEE Proceedings, vol. 77(2), pp. 257-286.

Rish, I. (2001). "An Empirical Study of the Naive Bayes Classifier", Proceedings of
IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence.

Rondel, M. and Burel, G. (August 1995). “Cooperation of Multi-Layer Perceptrons for
the Estimation of Skew Angle in Text Document Images”, Proceedings of the
International Conference on Document Analysis and Recognition, pp. 1141-1144.

Sajjadi, M. R. (Oct. 1996). "Skeletonization of Persian Characters", M. Sc. Thesis,
Computer Science and Engineering Department, Shiraz University, Iran.

Seeger, M. and Dance, C. (2001). "Binarising Camera Images for OCR", ICDAR 2001,
pp. 54–59.

Shapiro, L. G. and Stockman, G. C. (2001). Computer Vision, Prentice-Hall Inc.

Shridhar, M. and Kimura, F. (1995). “Handwritten Address Interpretation Using Word
Recognition with and without Lexicon”, IEEE International Conference on Systems, Man
and Cybernetics, vol. 3, pp.2341-2346.

Singh, R., Cherkassky, V. and Papanikolopoulos, N. (January 2000). "Self-Organizing
Maps for the Skeletonization of Sparse Shapes", IEEE Trans. on Neural Networks, vol.
11(1), pp. 241-248.

Slavik, P. and Govindaraju, V. (March 2001). "Equivalence of Different Methods for
Slant and Slew Corrections in Word Recognition Applications", IEEE Trans. on PAMI,
vol. 23(3), pp. 323-326.

Spitz, A. L. (1998). "Analysis of Compressed Document Images for Dominant Skew,
Multiple Skew and Logotype Detection", Computer Vision and Image Understanding,
vol. 70(3), pp. 321-334.

 102

Taylor, M. J. and Dance, C. R. (Sep. 1998). "Enhancement of Document Images from
Cameras", Proceedings of SPIE conference on Document Recognition, pp. 230-241.

Trenkle, J., Gillies, A., Erlandson, E. and Schlosser, S. (Oct. 1995). "Arabic Character
Recognition", Proceedings of Symposium on Document Image Understanding
Technology, Maryland, pp. 191-195.

Trier, D. and Taxt, T. (March 1995). "Evaluation of Binarization Methods for Document
Images", IEEE Trans. on PAMI, vol. 17(3), pp. 312-315.

Tsai, W. (1985). "Moment-Preserving Thresholding: A New Approach", Computer
Vision, Graphics and Image Processing, vol. 29, pp. 377-393.

Tuceryan, M. and Jain, A. K. (1990). “Texture Segmentation Using Voronoi Polygons”,
IEEE Trans. on PAMI, vol. 12, pp. 211-216.

Uchida, S., Taira, E. and Sakoe, H. (Sep. 2001). "Nonuniform Slant Correction Using
Dynamic Programming", IEEE International Conference on Document Analysis and
Recognition, pp. 434-438.

Unser, M. (Nov. 1995). “Texture Classification and Segmentation Using Wavelet
Frames”, IEEE Trans. on Image Processing, vol. 4(11), pp. 1549-1560.

Vinciarelli, A. (2002). "A Survey on Off-Line Cursive Word Recognition", Pattern
Recognition, vol. 35, pp. 1433-1446.

Vlontzos, J. and Kung, S. (1992). "Hidden Markov Models for Character Recognition",
IEEE Trans. on Image Processing, vol. 1(4), pp. 539-543.

Wu, V. and Manmatha, R. (Jan. 1998). "Document Image Clean-Up and Binarization",
Proceedings of SPIE conference on Document Recognition.

Wu, V., Manmatha, R. and Riseman, E. M. (1997). “Finding text in images”,
Proceedings of ACM International Conference on Digital Libraries.

Wu, V., Manmatha, R. and Riseman, E. M. (1999). “Textfinder: An Automatic System to
Detect and Recognize Text in Images”, IEEE Trans. on PAMI, vol. 21(11), pp. 1224-
1229.

Yuan, Q. and Tan, C. L. (2000). “Page Segmentation and Text Extraction from Gray-
Scale Images in Micro Film Format”, SPIE Proceedings on Document Recognition and
Retrieval, vol. 4307, pp.323-332.

 103

Yue Lu and Chew Lim Tan (August 2003). "Improved Nearest Neighbor Based
Approach to Accurate Document Skew Estimation", IEEE International Conference on
Document Analysis and Recognition, pp. 503-507.

Zhang, T. Y. and Suen, C. Y. (1984). "A Fast Parallel Algorithm for Thinning Digital
Patterns", Comm. ACM, vol. 27(3), pp. 236-239.

Zimmermann, M. and Mao, J. (1999). "Lexicon Reduction Using Key Characters in
Cursive Handwritten Words", Pattern Recognition Letters, vol. 20, pp. 1297-1304.

 104

Appendix A

 100 cities of Iran for which the training images were generated:

 همدان

 دزفول

 اسفراين

 چالوس

 لار

 لامرد

 نيريز

 خارك

 آيش

 لاوان

 طبس

 قشم

 نطنز

 پاوه

 آرج

 آستارا

 سراوان

 قزوين

 دامغان

 دوگنبدان

 اشنويه

 فسا

 رودبار

 اردآان

 شوشتر

بوشهر

برازجان

قم

تهران

محلات

ايذه

ساوه

اراك

آاشان

سمنان

ياسوج

اصفهان

شهرضا

ابرقو

يزد

شيراز

آباده

داراب

جهرم

مرودشت

فيروزآباد

شهرآرد

فردوس

مرند

بافت

ملاير

اردبيل

خلخال

مراغه

مياندوآب

ماآو

سلماس

اروميه

تبريز

سقز

بانه

سنندج

زنجان

ايلام

خوي

خمين

خرم آباد

آرمانشاه

اهواز

خرمشهر

ماهشهر

انآباد

رامهرمز

بهبهان

گناوه

شيروان

قوچان

مشهد

نيشابور

بجنورد

بروجرد

سبزوار

بيرجند

زابل

زاهدان

ايرانشهر

چابهار

آرمان

بم

جيرفت

زرند

رفسنجان

سيرجان

شاهرود

بندرعباس

بندرلنگه

گرگان

ساري

رشت

رامسر

 105

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure A.1 Some training images of the word 'Shiraz' from the underlying dataset

 106

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure A.2 Some training images of the word 'Tehran' from the underlying dataset

 107

 به نام خدا

وسته يس فارسی با استفاده از مدلهای پيص کلمات دستنويتشخ
 های ساختاریيژگيپنهان مارکوف و و

:لهيبوس

 محمد مهدی حاجی

 پايان نامه
فعاليتهای لازم برای اخذ ارائه شده به معاونت تحصيلات تکميلی به عنوان بخشی از

 درجه کارشناسی ارشد

:در رشته ی

 کامپيوتر گرايش هوش مصنوعی و رباتيکمهندسی
 دانشگاه شيراز

عالیارزيابی شده و تصويب شده توسط کميته پايان نامه با درجه

۱۳۸۳ديماه

 بسم االله الرحمن الرحيم

وسته يس فارسی با استفاده از مدلهای پيص کلمات دستنويتشخ
 های ساختاریيژگيپنهان مارکوف و و

:لهيبوس

 محمد مهدی حاجی

:استادان راهنما

 دکتر حسن اقبالی
ن کاتبیيدکتر سراج الد

)کيهوش مصنوعی و ربات(وتر يرشته مهندسی کامپ

۱۳۸۳ماه يد

