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ABSTRACT

FARSI HANDWRITTEN WORD RECOGNITION USING
CONTINUOUS HIDDEN MARKOV MODELS AND STRUCTURAL
FEATURES

By:

Mohammad Mehdi Haji

Recognizing handwritten words has been and till is one of the most challenging problems in
Artificial Intelligence (Al). Words are rather complex patterns, having many variations in handwriting
style. Despite the considerable progress achieved in recent years, performance of handwriting
recognition systemsis still far from human's both in terms of accuracy and speed.

A complete offline recognition system for Farsi handwritten words is presented. To the best of our
knowledge, this work is the first to use continuous hidden Markov models with structural features to
recognize Farsi handwritten words. Most parts of a complete recognition system are addressed. A new
meachine learning approach based on the naive Bayes classifier is developed for text segmentation. Four
different algorithms for document image binarization are compared and contrasted. Different skew and
dant correction algorithms are surveyed for handwritten documents, and the problem of multiple skews
is dealt with in a two-stage process. The first stage corrects the global skew, and after extracting text
lines, in the second stage, the skew of each line is corrected locally. Five different skeletonization
algorithms are compared and contrasted with the main focus on preserving text characteristics. A
simple and effective skeleton post-processing technique is also described. Most of the normalization
methods are adaptive, meaning that they do not use any parameters to be set experimentally. Each word
image is represented by a sequence of structural features. The features are independent of the baseline
location, so the difficult and crucial problem of baseline detection is avoided. The recognition is
performed by continuous hidden Markov models.

Thereisno publicly available dataset for Farsi handwritten word images, and it is not wise to compare
different systems evaluated on different datasets. The executable version of training, recognition and
evaluation modules of the system is provided in the thesis  webpage,
http://pasargad.cse.shirazu.ac.ir/~mhgji/handrec, so it can be trained and evaluated on different
datasets. The proposed method achieves a maximum recognition rate of about 82% on a 100-word
lexicon. The striking aspect of the recognition system is its excellent generalization performance, asin
our experiments, the system trained with multi-font machine-printed word images could recognize

handwriting.
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CHAPTER 1
INTRODUCTION

1.1 General Characteristics of Farsi Script

Farsi and Arabic scripts have minor differences. From recognition point of view,
Arabic script is a little more complicated, but similarities outweigh differences. Both
scripts are written from right to left, and most letters are connected to the base line. As
opposed to English, there is no lower or upper case in Arabic/Farsi. But the more
distinguishing feature is that Arabic/Farsi texts whether machine-printed or
handwritten are cursive, i.e. letters belonging to the same word are connected
whenever possible. More precisely, all but six Farsi letters can be connected from
both sides; the six letters 'Y, 'Y, 'y, 'Y, '3 and '5' can be joined to the succeeding letter
from the right side only. Thus, these letters cause discontinuity within the same word.
This feature is in sharp contrast with Latin scripts in which texts can be written
whether cursively or discretely. So, it is not surprising that Arabic/Farsi text
recognition is more difficult than English, and even the problem of machine-printed
text recognition is not yet completely solved for these two languages.

Table of Figure 1.1 depicts that every Arabic/Farsi letter can have up to four
different shapes depending on the location of the letter within word. Farsi alphabet
has 32 basic letters, with four letters ', 'z', '3’ and 'L more than Arabic. In
Arabic/Farsi there are certain diacritics to indicate a difference in pronunciation and
meaning from the same word when unmarked. For example, the Farsi word '2«' has
two different pronunciation/meanings: '3 <" that means died, and '2_=' that means man.
But the diacritics are not usually used in writing because in most cases the exact
pronunciation/meaning can be inferred from the context. From recognition point of
view, the diacritics are better not to be presented, because they may raise the
recognition error. By looking at table of Figure 1.1, you can see that 18 out of the 32
Farsi letters have dots, appearing on above or below the baseline. More precisely, 10

letters have one dot, 3 have two dots and 5 have three dots. The number of dots of a



certain letter does not change with its different forms, except for the letter 's' that has
two dots in initial and middle forms and no dot in isolated and final forms. The
Arabic/Farsi alphabet has sets of letters that the letters in each set are almost identical
in the absence of dots; these sets are {«, @, <, & 0, {7, & 2, &) {3 3}, {0, 3, 5},
{os, Ui}, {Um, oa), (b, B, {g, ¢} and {<, &}. Therefore, any erosion or deletion of
the dots result in a misinterpretation, and so any denoising or skeletonization

algorithm must take care of dots.

Character | Isolated | Initial | Middle | Final | Transliteration
Alef J | L L a
Beh - - - — b
Peh < = =+ e P
The ) 4 il S t
Theh & i S iy Th
Jeem z N -~ = ]
Cheh E = = & ch
Kheh ¢ = <~ | & kh
Dal 2 2 X X d
Thal kY 3 KW KW th
Reh 2 2 > > r
Zeh ) ) > > z
Zheh 3 3 3 3 zh
Seen o — e g s
Sheen g 5 _h g sh
Sad %) —a ——a Ua s
Zad Ua o o Ua th
Tah L L Ja N t
Zah L L a L z
Ain & —< - & a
Ghain ¢ S - & gh
Feh s 4 < -y f
Ghaf 3 3 A & gh
Kaf S < S S k
Gaf L S ks K g
Lam d A A A 1
Meem @ — — . m
Noon O = - O n
Waw 5 5 ~ ~ v
Heh ® A - 4 h
Yeh S = — - y

Figure 1.1. The Farsi character set.
Each character can have up to four different shapes.



The above characteristics imply that each Arabic/Farsi word image consists of some
connected components where each one represents a dot, connected dots, one letter or
some connected letters. For example, the Farsi word '0JJ%' has 5 letters and 6
connected component, but the word '~«S' has three letters and only one connected
component.

Another aspect of Arabic and Farsi scripts which complicates the segmentation-
based recognition techniques is that usually, and particularly for handwritten texts,
succeeding letters overlap, and hence no vertical partitioning can exactly separate the

letters from each other.

1.2 Methodology

The methods of handwritten and machine-printed text recognition can be divided
into two categories (Amin, 1998): 1) Holistic strategies in which the recognition is
globally performed on the whole representation of a word, so there is no need to
segment a word to its individual characters. But it is necessary that we can segment
the text lines into words, which is not always possible, because the intra-word space is
sometimes greater than inter-word space; 2) Analytical strategies in which words are
segmented either explicitly or implicitly. In the explicit segmentation, an attempt is
made to isolate single letters which are then separately recognized (Vinciarelli, 2002);
but in the implicit segmentation, the text (line or word) image is converted into a
sequence of small size units (a sequence of observations) and the recognition is
performed at this intermediate level rather than the word or character level.

Every holistic method uses a lexicon, a list of the allowed interpretations of the input
word image. Usually the error rate of a holistic method increases with the lexicon size
because the higher number of classes increases the probability of misclassification.
Having a lexicon, the extracted feature vector of the input word is compared with
feature vectors of all lexicon entries, and the entry having the maximum score (e.g.
minimum distance or maximum probability) is assumed as the interpretation of the
input. Holistic approaches have been successful when the lexicon is small, with a
maximum size of a few hundred words. When the lexicon size increases, the number
of compatible words for an input image rise and choosing the correct classification
becomes difficult. Thus, the holistic approaches have been applied to such problems

as postal address recognition or bank check reading where lexicon is limited and



small. For general text recognition where the lexicon size is usually between 5000 and
10000, lexicon pruning techniques are effective because they have the double benefit
of improving the recognition results and speeding up the system. For example when
the input word image has no dot, all lexicon entries with no dot can be excluded from
the list of alternatives. In (Zimmermann and Mao, 1999) an effective lexicon
reduction technique based on key characters and word-length estimation is presented.
Language models can also be used to reduce the number of alternatives.

Analytical methods perform implicit or explicit segmentation on the input image. In
implicit segmentation, words are segmented into small units which are then
transformed into a sequence of observation vectors. Each unit is usually a part of a
letter, so that a number of successive units can belong to a single letter. On the other
hand, in explicit segmentation, words are segmented directly into the single letters;
which is usually fulfilled by a dynamic programming technique to find the optimal
word hypotheses, thus explicit segmentation is more expensive than implicit
segmentation. It is worth noting that Arabic/Farsi letters of the same font have
different lengths, so word segmentation based on a fixed size width can't be applied,
even for machine-printed words. Also according to Sayre's paradox (Vinciarelli,
2002): "a letter can not be segmented before having been recognized, and can not be
recognized before having been segmented". It is clear that more segmentation error
results in less recognition rate, and until now there is no method that is able to
segment handwritten words exactly into letters. Therefore, explicit segmentation is
more error prone and almost all successful handwritten recognition systems have used
implicit segmentation.

After explicit segmentation, each letter can be individually recognized by a classifier
which is usually an Artificial Neural Network (ANN) or Hidden Markov Model
(HMM). Character recognition has been one of the most successful application areas
of ANNs. The main advantages of an ANN over other classifiers is that it require less
knowledge about the problem and being capable of implementing more complex
partitioning of feature space. However, an ANN usually needs much training, and if a
new class wants to be added later, the whole training process must be repeated.

Implicit segmentation results in a sequence of observations which is usually
recognized by the HMM approach. HMMs are the prevalent technique in Automatic
Speech Recognition (ASR), and in recent years they have proved to be very effective

in handwritten recognition. A HMM can represent probability distribution over the



sequence of data which has been used for its training, and it is not only being able to
work on a sequence of small fragments, not necessarily corresponding to letters, but
can also deal with noise in the sequence itself. A HMM assigns a probability to a
sequence of observations which describes how probable the sequence is. Another
advantage of HMMs is that their powerful theoretic framework limits the amount of

heuristics to improve the system performance.

1.3 Feature Extraction

The extracted features can be either local or global. Global features, either structural
(topological) or statistical, are usually used in holistic approaches. For example
number of connected components, holes, ascenders and descenders are global
structural features; coefficients of Fourier transform and invariant moments are global
statistical features. Structural features do not depend on the writing style and can
tolerate a high degree of variability, but they are not robust to noise and their
extraction may be difficult. Statistical features, on the other hand, are easy to extract
and robust, but they are not as stable as structural features with respect to cursive
variability.

Analytical approaches usually use local features being extracted from small sliding
windows. For example, percentage of foreground pixels within a window,
foreground-background transition statistics, percentage of the foreground pixels in

core, ascenders and descenders regions have been successfully used as local features.

1.4 Literature Survey

In (Khorsheed, 2000) two holistic approaches for recognition of handwritten Arabic
words are presented. The first one, which uses global statistical features, transforms
the word image into a normalized polar map, and then applies a 2D Fourier transform
to extract features which are invariant to scaling, rotation and translation
(displacement), and the recognition is simply based on Euclidean distance, i.e. the
lexicon entry with minimum Euclidean distance to the input is returned as the answer.
The second method utilizes structural feature vectors obtained from small strokes of
the word skeleton. These vectors are then transformed into a sequence of observations
that is fed to a HMM classifier. Khorsheed has surveyed the two possible models: a
HMM for each word and a single HMM for all words.



Trenkle et al. (Trenkle et al., 1995) have presented a holistic method based on
sliding neural networks for Arabic word recognition which scans continuously over a
word image to search characters. The sliding neural network system uses networks in
a two-stage approach. The first stage is to detect plausible locations of character
centers, and at the second stage, the characters are recognized at those detected
locations. During both stages, the neural network slides across the word image,
producing a recognition signal at each location. Thus, there is no need to explicitly
segment a word into its characters. By completing the second stage, the character
hypotheses are combined by a dynamic programming algorithm which uses a pruned
list of words to find the most probable word hypothesis. The recognition rate of the
system is about 70% for a large lexicon of size 50,000 words.

In (Erlandson et al., 1996) a holistic approach for recognition of multi-font Arabic
text is presented. The system computes a vector of structural features for each input
word image which is then matched against a database of feature vectors of a lexicon
by a vector matching algorithm. Like other systems of this kind, in the database there
are several feature vectors corresponding to multiple fonts for each lexicon entry. In
the training stage (building the database of feature vectors) noise models are also
applied to word images, before feature extraction, to simulate low quality data,
making the system robust to noise. The extracted features are dots, holes, junctions,
endpoints, directional segments, directional cavities, descenders and intra-word gaps.
By equipping the system with a lexicon pruner, a word recognition rate of 65% for a
48000 word lexicon was achieved, and the authors conclude that achieving a higher
performance is very difficult.

In (Al-Yousefi and Udpa, 1992) statistical features and a quadratic Bayesian
classifier are used to recognize Arabic characters. The striking aspect of the system is
that a character is segmented into primary and secondary parts (dots and zigzags),
thus reducing the number of classes from 28 (the number of basic letters of Arabic
alphabet) to 18. The system uses a simple histogram-based method to explicitly
segment a word into characters. A 9D feature vector extracted from normalized
moments of the horizontal and vertical projections is used to classify primary
characters, and a simple procedure classifies secondaries into one of the four classes
(1 dot, 2 dots, 3 dots and zigzag). As expected, the segmentation method can not deal

with handwritten text; the authors also didn’t report the performance for machine-



printed text. However, a recognition rate of 99.5% was reported for isolated forms of
machine-printed characters of three different fonts and five different sizes.

In (Lu et al.,, 1999) a language-independent OCR system is introduced. Since
segmentation at character or word level is problematic, the text lines are used as the
basic unit for training and recognition, so there is no need to perform any
segmentation. A 14-state left-to-right continuous HMM is employed to model each
character, and a word model is then obtained by concatenating character models. Sets
of statistical features are extracted from narrow vertical overlapping windows, and a
Linear Discriminant Analysis (LDA) is applied to reduce the dimension of feature
vector from 80 to 15. The system uses the same feature extraction, training and
recognition modules for different scripts, but obviously, a separate language model is
utilized for each script. The language models extracted from training corpora can
improve recognition results of speech and text recognition systems by incorporating
high level knowledge. The recognition process is a search for the most probable
sequence of characters, given the input feature vectors, lexicon and language model.
Since the classical Viterbi algorithm is slow when the language models are large, a
multi-pass search algorithm is used instead. The system is trained for the Arabic,
English and Chinese languages. By using character trigram and simple word unigram
models for Arabic, a character error rate of between 0.8% and 4.7% is obtained for
different test conditions.

In (Ahmed and Ward, 2000) an expert system for analysis and recognition of general
symbols is introduced. The system uses structural pattern recognition techniques for
modeling symbols by a set of straight lines, achieving high accuracy for explicitly
segmented characters. A structural pattern recognition technique, by using a set of
rules and grammars, describes relations between sub-patterns being able to build
complex patterns. Their system stores some models for each symbol (an average of 97
models/symbol) and it is shown to be able to map similar styles of a symbol to the
same representation. The main advantage of the system over a statistical pattern
recognition technique is the ability to learn new symbols by simply adding their
models to the system knowledge base. Generally, each statistical approach needs
retraining for adding (recognizing) each new symbol (class).

In (Arica and Yarman-Vural, 2000) a technique is described to convert 2D
information into a 1D observation sequence. Although there are 2D-HMMs for image

analysis, but in practice, they are not as successful as 1D-HMMs, because of the large



number of parameters which requires a large amount of training data. Therefore, 1D-
HMMs are usually preferred even for analyzing 2D image data. The Arica's method
extracts a set of directional skeletons of the binarized character by scanning the image
matrix in various directions. These directional skeletons are then appended one after
another to form a 1D observation sequence. By using a left-to-right discrete HMM as
the recognizer, and about 200 samples per class for training, the system has achieved
a recognition rate of 87-96% for English handwritten digits and letters.

In some systems (Amin and Mari, 1989) the vertical histogram of word image is
used for explicit segmentation. The basic idea is that the histogram at connectivity
points of a word has its least values. Thus, the word image separates into a number of
segments which are then connected together to form the basic characters. Some
systems extract key feature segments by tracing contour of the sub-words, and then
identify the cut points in each segment. The baseline is important characteristic of
Arabic/Farsi scripts; the connection point is where the normal thickness of the
baseline changes. Based on this fact, Parhami and Taraghi (Parhami and Taraghi,
1981) have identified connection points of Farsi machine-printed words. In one recent
study (Motawa et al., 1999), morphological operators have been applied to a word
image to find singularities and regularities. Singularities represent the start, end or
transition to another character; while regularities contain the required information for
connecting a character to its successor, which means that regularities are promising
candidates for segmentation. The boundary pixels or the contour, which provide
important information of an object, can also be used for word segmentation. For
example, a transition from a column having all its black pixels within the baseline
boundaries to an unlike column corresponds to a connection point. Segmentation can
also be performed by tracing the outer contour of a word and calculating the distance
between the extreme points of intersection of the contour with a vertical line (El-
Sheikh and Guindi, 1988).

In (Almuallim and Yamaguchi, 1987) a structural recognition method for Arabic
handwritten words is introduced. The system is composed of four phases. In the first
step words are thinned and the baseline is detected. Since segmenting a word into
individual letters is difficult and error-prone, the words are segmented into strokes.
The extraction of a stroke is done by finding its start point and then following the
curve until an end point is reached. The first unvisited start point is found by a search

for a black point from right to left around the baseline. The algorithm attempts to



extract the strokes in the same order that have been written. Moreover, adjacent
strokes which form a loop are also detected, because loops are unique features of
some letters, simplifying the task of recognition. The strokes are then further
classified using their topological and geometrical properties. Finally, based on their
relative positions, strokes are combined in several steps into equivalent character
string of the input word image. The stroke extraction algorithm can not handle all
situations, resulting in incorrect segmentation of words, and the system failures. Also,
like all structural analysis methods, noise can highly degrade the performance; for
example, spurious branches in the image skeleton, caused by noise, confuse extraction
and consequently combination of strokes. Another drawback is that their system does
not utilize any learning method for parameter adjustment; so they have to be manually
adjusted on a set of test images. The system has been tested on a set of 400 word
images and a maximum recognition rate of about 91% has been reported. It must be
Almuallim and Yamaguchi did not use a lexicon, but they evaluated the average word
rather than character recognition rate. If we have the average character recognition
rate R., a rough estimate of the average word recognition rate Ry, is (RC)S, based on
the fact that the average length of a word is 5. For example, when R, is 90%, Ry, is
only about 60%. A better estimate for R, is made by the following formula:
N
R, =2 R (L.1)

1=1

where N is the size of language lexicon, and N is the number of words of length I.
Dehghan et al. (Dehghan et al., 2001) present a holistic system for recognition of
Arabic/Farsi handwritten words using discrete HMMs and Kohonen self-organizing
vector quantization. After the preprocessing step which includes binarization, noise
removal, slant correction, baseline and stroke width estimation, a stroke width
compensation step is applied to have the stroke width of at least three pixels wide to
ensure proper contour generation. Then, a word image is represented by the chain-
code, and the histogram of chain-code directions of the image strips, scanned from
right to left by a sliding window, is used as feature vector. In order to limit the
number of observation symbols for discrete HMM training, the feature space must be
quantized into a set of codebook vector; the weights of Kohonen self-organizing
feature map (SOFM) are used as the codebook vectors. Since without much training

data, HMM parameters, and specially the observation symbol probabilities, are poorly



estimated, they have to be smoothed after training. In this system, a separate HMM is
trained for each word, and the neighborhood information preserved in the SOFM is
used for smoothing the observation probabilities of the HMMs, proved to be very
effective. With a 198-word lexicon, a recognition rate of 65% is achieved by the
system.

Both discrete and continuous HMMs have been successfully used for handwritten
recognition, but due to their lower computation costs, discrete HMMs are more
appealing. However, discrete HMMs inherently suffer from some problems (Rabiner,
1989) such as quantization error caused by quantizing of input vectors into a limited
set leading to loss of information and recognition deterioration. To obviate these
problems, Dehghan et al. (Dehghan et al., 2001) used fuzzy vector quantization
instead of self-organizing vector quantization of the previous system. The fuzzy c-
means clustering (FCM) algorithm is used to generate a fuzzy codebook, so a
sequence of feature vectors extracted from the input image frames is now mapped to
an observation sequence of membership vectors instead of a sequence of single values
in the case of conventional discrete HMMSs. Thus, a modified version of Baum-Welch
re-estimation algorithm is used for training. The system performance is slightly
improved by using FCM, with a recognition rate of 67.2% on the same dataset (198-

word lexicon).
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CHAPTER 2
TEXT SEGMENTATION

2.1 Introduction

A text segmentation algorithm aims at detecting text regions in an image. Identifying
text areas in images have wide applications in document image anaysis and
understanding, image compression and content-based image retrieval. In document
image binarization (Liu and Srihari, 1997) and skew correction (Avanindra and
Subhasis Chaudhuri, 1997) algorithms, it is often necessary to remove non-text items
from the input image because they usually require predominant text area to have an
accurate estimate of text characteristics. Paper text is still one of the main sources of
information and it is clear that huge amount of such valuable data in the paper form,
makes their updating and retrieval much difficult. Thus, there is a need to convert the
text from paper to electronic format. This task is usually done by an OCR engine and
text extraction is an essential component in the page segmentation module of the
engine (Wu et a., 1999).

Text segmentation also has applications in training-based image compression
algorithms such as Vector Quantization (VQ), which need to classify the data into
statistically consistent parts, and thereafter use an appropriate codebook for each part
(Gersho and Gray, 1992). The text in natural images and video frames such as street
signs, vehicle license plates, billboards, writing on shirts, sport scores, time and
location stamps, is a powerful source of knowledge in building image and video
indexing and retrieval systems (Chen et al., 2001). This kind of text also provides
useful content information for video understanding and automatic navigation systems.

Due to the wide range of applications, numerous methods for text segmentation also
referred to as text detection have been proposed. Some of them require binary input
images, which restricts their application when the text is embedded in an image with a
complex background, because binarization techniques usually produce poor results for
complicated images (Wu et a., 1997). On the other hand, some methods also use the

11



color information to detect text areas; color information can be helpful, but it is not
available in all situations. Moreover, for a human observer, intensity information is
enough to segment the text areas. Therefore, most methods perform text segmentation
on gray-scale images, even if a color input image is available, it is first converted to
gray-scale (Wu et al., 1999; Chen et al., 2001).

The main text segmentation methods in the literature can be classified into connected
component-based (Fletcher and Kasturi, 1988), edge-based (Pietikdinen and Okun,
2001, Jie Xi et al., 2001) and texture-based methods (Li and Gray, 1998). Connected
component-based ones are bottom-up approaches that work by grouping small
components satisfying several heuristic constraints into successively larger
components to form text lines and columns. They are relatively independent of
changes in text size and orientation, but having difficulties with complex images with
non-uniform backgrounds, because in such cases thresholding techniques can not
produce the expected binary image, for example, if a text string touches a graphical
object in the original image, they may form one connected component in the resultant
binary image.

The basic idea of the edge-based algorithms is that the edges of text symbols are
typically stronger than those of noise, textured-background and other graphical items
(Yuan and Tan, 2000; Chen et a., 2001; Jie Xi et al., 2001). In these top-down
techniques, a binary edge image is first generated using an edge detector, and then
adjacent edges are connected by applying morphological operations or other
algorithms such as run-length smoothing (Jie Xi et a., 2001). Connected components
of the resultant image are the candidate text regions, as each one represents either
several merged lines or a graphical item. Then, these regions are decomposed into
smaller regions by analyzing their vertical and horizontal projection profiles, and
finally each of these small regions satisfying certain heuristic constraintsis labeled as
text. Edge-based methods are fast and can detect text in complex backgrounds but are
restrictive to detect only horizontally or vertically aligned text strings.

Text segmentation can also be taught of as a special case of texture segmentation in
which characters correspond to texels. By treating text as a distinct texture, a texture
segmentation algorithm can be applied to separate them. In texture-based methods the
input image is usually considered as a composite of two (text and non-text) or three
(text, picture and background) texture classes. Many segmentation al gorithms employ

a classification window (block) of a certain size in the hope that all or majority of
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pixels in the window belong to the same class (Choi and Baraniuk, 2001). Thereafter,
a classification algorithm can be used to label each window in the feature space. For
example, in (Deng and Latifi, 2000) the number of classes is two, and a 2-means
classification is used to classify each block of the image as text or non-text according
to itslocal energy in the wavelet transform domain. By using a 3-means clustering in
(Wu et al., 1999) each image pixel is labeled as text, picture or background according
to a 9-D feature vector based on Gaussian filtering. A large number of statistical and
geometrical features have been proposed for texture segmentation such as features of
co-occurrence matrix, spatial gray-level dependency matrix (Ohya et al., 1994), the
Fourier power spectrum, moments of wavelet coefficients (Unser, 1995), Gaussian
filters (Wu et a., 1999), Gabor filters (Jain and Farrokhnia, 1991), Voronoi
tessellation (Tuceryan and Jain, 1990). Among these, wavelet based features are of
most interest. The wavelet transform has become a very effective tool in texture
segmentation and classification due to its multi-resolution properties. It provides a
powerful transform domain for modeling images that are well characterized by their
edges.

In texture-based methods, irrespective of the employed features, the size of
classification window is crucial. A large window results in robust segmentation in
homogeneous regions but poor segmentation along the boundaries between regions.
On the other hand, classification using small windows is not reliable because small
amount of data (pixels) do not provide sufficient statistical information.

All of the methods have difficulties with multi-size text strings and text-like texture
areas. The former causes false negatives, while the latter resultsin false positives. The
problem of detecting text strings of different sizes can be addressed by pyramid
approaches (Wu et al., 1997) to some extent, while reducing false positives needs
more sophisticated approaches; for example in (Chen et a., 2001) a Support Vector
Machine (SVM) is utilized for this task. Despite the many efforts spent on the text
segmentation problem, there is no genera method to detect arbitrary text strings;
because in the most general form, detection must be insensitive to noise, background
model and lighting conditions. Also, it must be invariant to text language, color, size,
font and orientation even in a same image.

The literature on text segmentation is extensive but there appears to be very little
appropriate literature on using machine learning techniques on this subject. A text

segmentation algorithm should have adaptation and learning capability, but a learner
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usually needs much time and training data to achieve satisfactory results, which
restricts its practicality. To overcome these problems, a simple procedure for
generating training data from manually segmented images is presented, and then a
Naive Bayes Classifier (NBC), which is fast both in training and application phase, is
applied. 1t will be shown that surprisingly excellent results can be obtained by this
simple classifier.

2.2 Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is applicable to learning tasks where each
instance is described by a conjunction of attribute values and a target function which
takes a value from afinite set V. A set of training examples for the target function is
provided, a new instance described by the attribute values (ai, az, ..., a,) is then
presented, and the learner is asked to predict the target value or classification. The
Bayesian approach to classify the new instance is to assign the most probable that is
the Maximum A Posteriori (MAP) hypothesis, given the attribute values that describe
the instance (Mitchell, 1997).

Vuap = AgMaxP(v; [a;,a,,...,a,) (2.1

vjeV
where viap IS the most probable target value. Using Bayes theorem Equation (2.1)
can be written as follows:

P(a;,a,,--a, |V;)P(v;)
Vyap = argmax 5
vjev (a,,a,,...,a,)
=argmax P(a;,a,,...,a, |V;)P(v;) (2.2)

vjev
Using training data the two terms in Equation (2.2) must be calculated. It is very easy
to estimate each P(v;) by counting the frequency of occurrence of each target value in
the training data. However, estimating the different P(as, ay, ..., a,) termsin this way
is not possible unless a huge set of training data is available. In order to make the
classifier much more practical and computationally efficient, the simplifying
assumption that the attribute values are conditionally independent given the target
value is used. Thisindependence assumption implies that:

P(a;,a,,...a, |vJ.):1?[P(ai [v;) (2.3)

Substituting Equation (2.3) into Equation (2.2) results in the approach used by NBC,
given by Equation (2.4):
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Vs =argmax P(v;)I1P(a; |v;) (2.4)

vjev
where vyg denotes the target value output given by the NBC.

Despite the fact that the independence assumption is often violated in practice, NBC
has shown itself a serious competitor with more sophisticated classifiers. This
classifier is shown to be very effective in many practical domains such as text
categorization and medical diagnosis (Mitchell, 1997). NBC has several distinctive
features which make it suitable for the text segmentation task. First, it is a
probabilistic classifier, i.e. it outputs posterior probability distribution over classes. In
this work, text segmentation is treated as a two-class classification task, and a
probabilistic classifier is appropriate here since it assigns a score to each instance
expressing the degree to which that instance is thought to be positive. The second
advantage of NBC is that the learning task is not sensitive to the relative number of
training instances in the positive (text) and negative (non-text) classes. It is only
important to have non-zero probability estimates in Equation (2.4). Lastly, in naive
Bayes methods, learning time is short and actually linear in the number of training
examples making it suitable for real-time learning. From Equation (2.4) it is clear that
learning is simply done through counting the frequency of various data combinations
within the training examples.

2.3 Training Data Generation

A large training set facilitate the task of learning, tuning and comparing various
classifiers. A simple procedure was implemented to generate a large set of training
data from a small set of hand-segmented images. A set of eight images, selected from
awide category, was used for extracting the training data. The images contained both
English handwritten and machine-printed texts with different fonts, sizes and intensity
values. Furthermore, since the method is intended to be language-independent, two
Farsi document images were also included. For each training image a binary mask is
created manually. The mask contains white rectangles correspond to the text strings
(Figure 2.1).

The proposed algorithm is a block-based segmentation which use features in
Discrete Cosine Transform (DCT) domain. It is observed that DCT-18 features are
different for text and non-text textures (Chaddha et al., 1995), so the same features are

used in this work. These are 18 elements of an 8x8 transformed image block with
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indices: 4, 5, 6, 12, 13, 14, 20, 21, 22, 44, 45, 46, 52, 53, 54, 60, 61 and 62 when
counting coefficients at 1 and going line after line, denoted by A; to Ais. The
procedure used to generate training data file is outlined in Algorithm 2.1, where
1(i1:i2, j1:j2) notation is used to refer to the sub-image specified by the rectangle with
(11,i1) top-left corner and (j2,i2) bottom-right corner. The vertical sampling period,
denoted by vp, was chosen to be 4 and horizontal sampling period, denoted by hp,

was set to 8 in thiswork.
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(a) A part of aFarsi document (b) The text mask of (a)
Figure 2.1. A document image and its corresponding text mask.

for each training image | and its correspondi ng mask M
{
for i =0 : vp: 8+ rows(l)/8]-1
{
for j =0 : hp : g columns(l)/8]-1

[Al A2 A3 ---A18] = dCtlS( |(||+7, ]]+7) )
if Mi:i+7, j:j+7) has nore white than bl ack pixels
{
/* it is a positive training instance */
wite [A; A, A3 ...A;g 1] to the output file.
}

el se

/* it is a negative training instance */
wite [A; A, A; ...A;g 0] to the output file.
}
}
}
}

Algorithm 2.1 The procedure for generating training datafile for the 'l sText' concept.

For small squares, such as 8x8, the DCT is more efficiently computed by the DCT
transform matrix T given by Equation (2.5) for an NxN block.
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1

W p = 0,0 < q < N —1
Ty = 5 oq s 1 (2.5)
\/:COSM 1<p<N-1,0<q<N-1
N 2N
Then, the 2D-DCT of the square matrix A can be computedby T x A X T .
continuous | discrete continuous | discrete continuous | discrete
(-inf,-15.8] S2 (-inf,-13.1] S2 (-inf,-9.5] S2
A, (-15.8,-0.7] S1 A, (-13.1,-0.4] S1 As (-9.5,-0.3] S1
(-0.7,0.8] CE (-0.4,0.3] CE (-0.3,04] CE
(0.8,16.1] B1 (0.3,11.3] Bl (0.4,11.4] Bl
(16.1,inf) B2 (11.3,inf) B2 (11.4,inf) B2
continuous | discrete continuous | discrete continuous | discrete
(-inf,-11.5] S2 (-inf,-10] S2 (-inf,-6.3] S2
A, (-11.5,-0.5] S1 As (-10,-0.3] S1 Aq (-6.3,-0.3] S1
(-0.5,0.4] CE (-0.3,0.2] CE (-0.3,0.2] CE
(0.4,11.3] B1 (0.2,9.4] Bl (0.2,6.6] Bl
(11.3,inf) B2 (9.4,inf) B2 (6.6,inf) B2
continuous | discrete continuous | discrete continuous | discrete
(-inf,-10.6] S2 (-inf,-7.3] S2 (-inf,-5.2] S2
A, (-10.6,-0.4] S1 Ag (-7.3,-0.2] S1 Aq (-5.2,-0.2] S1
(-0.4,0.3] CE (-0.2,0.2] CE (-0.2,0.2] CE
(0.3,8.5] B1 (0.2,6.2] Bl (0.2,4.8] Bl
(8.5,inf) B2 (6.2,inf) B2 (4.8,inf) B2
continuous | discrete continuous | discrete continuous | discrete
(-inf,-4.6] S2 (-inf,-3.3] S2 (-inf,-3.4] S2
A (-4.6,-0.2] S1 Ap (-3.3-0.1] S1 A (-3.4,-0.2] S1
(-0.2,0.2] CE (-0.1,0.2] CE (-0.2,0.2] CE
(0.2,4.3] B1 (0.2,3.7] B1 (0.2,2.9] Bl
(4.3,inf) B2 (3.7,inf) B2 (2.9,inf) B2
Continuous | discrete continuous | discrete continuous | discrete
(-inf,-3.4] S2 (-inf,-2] S2 (-inf,-2] S2
A (-3.4,-0.1] S1 A (-2,-0.1] S1 A (-2,-0.1] S1
(-0.1,0.1] CE (-0.1,0.1] CE (-0.1,0.1] CE
(0.1,3.3] Bl (0.1,2] B1 (0.1,2] Bl
(3.3,inf) B2 (2,inf) B2 (2,inf) B2
Continuous | discrete continuous | discrete continuous | discrete
(-inf,-2] S2 (-inf,-2.3] S2 (-inf,-2.2] S2
A (-2,-0.2] S1 A (-2.3,-0.1] S1 A (-2.2,-0.1] S1
(-0.2,0.2] CE (-0.1,0.1] CE (-0.1,0.2] CE
(0.2,3] Bl (0.1,2.4] B1 (0.2,2.3] Bl
(3,inf) B2 (2.4,inf) B2 (2.3,inf) B2

Figure 2.2. The discretization rules for the DCT-18 features.

Using the above procedure, about 100,000 training instances were generated from

the eight images, but there was no need for such alarge amount of data because it was
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observed that only a small fraction of these data provides reasonable estimates for
the terms of Equation (2.4). So in order to reduce the computational cost, 10,000
instances were selected randomly and used for the purpose of learning.

The NCB is adiscrete classifier, and hence each attribute value must be converted to
discrete form. For this purpose, each continuous attribute value was converted to only
five discrete values. ‘S2’, ‘Sl’, ‘ZE’, ‘B1’ or ‘B2 (respectively for ‘very small’,
‘small’, ‘around zero’, ‘big’ and ‘very big’'). The discretization rules were set in such
a way to have approximately 2000 instances in each of the 5 bins for each attribute
value. Therefore a different set of rulesis used for each of the 18 attributes as givenin
Table of Figure 2.2.

2.4 Training

For the 'IsText' concept, let vi = 'Yes and v, = 'No'. The evaluation of conditional
probabilitiesis carried out on the discretized training data and the results are given in
Table of Figure 2.3. Since all estimated probabilities are non-zero, no attempt is made
to smooth them. When NBC is used, no conditional probability is allowed to be zero
because only a zero value causes the estimate of zero in Equation (2.3) which is a
biased underestimate of the probability. The m-estimate of probability (Mitchell,
1997) is simple and effective technique to avoid zero probability estimates.

It must be mentioned that the probability estimates of a NBC can also be acceptable
if some of the underlying independence assumptions are violated. It is well-known
that NBC is the optimal classifier when the independence assumptions are satisfied,
but Rish (Rish, 2001) has shown that NBC also works well for functionally dependent
features. The optimality of NBC has proved for some problems that have a high
degree of feature dependencies such as digunctive and conjunctive concepts
(Domingos and Pazzani, 1997). By analyzing the impact of distribution entropy on the
classification error, Rish has demonstrated that NBC is a good performer for low-
entropy (almost deterministic) feature distributions.

2.5 Classification

No prior information about the source image is assumed, and so P(v1) = P(v2) = 0.5.

Therefore, according to Bayes rule:
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P(a, [v,)P(a, |V,)..P(as |v;)
P(a, |V;)P(a, |V,).-P(as |V;) + P(a, [V,)P(a; |V,)..P(ag |v,) (20

P(Text) =

The usual decision criterion (Equation (2.4)) suggests selecting the class with the
highest posterior probability, or if P(Text) exceeds 0.5 the input block should be
labeled astext.

\Y \Y \Y
P(A4]V) Yes No P(A,V) Yes No P(A3V) Yes No
S2 | 0.3199 | 0.0938 S2 | 0.3116 | 0.0821 S2 | 0.3228 | 0.1018
S1 | 0.1496 | 0.2496 S1 | 0.1656 | 0.2458 S1 | 0.1513 | 0.2661
A, CE | 0.0687 | 0.3212 A, CE | 0.0490 | 0.3475 As CE | 0.0566 | 0.3112
Bl | 0.1369 | 0.2462 B1 | 0.1428 | 0.2274 Bl | 0.1654 | 0.2329
B2 | 0.3250 | 0.0893 B2 | 0.3309 | 0.0972 B2 | 0.3038 | 0.0881
\Y \Y \Y
P(A4V) Yes No P(As|V) Yes No P(A¢V) Yes No
S2 | 0.3454 | 0.0635 S2 | 0.3459 | 0.0684 S2 | 0.3323 | 0.0771
S1 | 0.1384 | 0.2568 S1 | 0.1344 | 0.2390 S1 | 0.1386 | 0.2522
A, CE | 0.0442 | 0.3333 As CE | 0.0416 | 0.3576 As CE | 0.0448 | 0.3191
B1 | 0.1291 | 0.2869 B1 | 0.1304 | 0.2674 B1 | 0.1403 | 0.2822
B2 | 0.3429 | 0.0595 B2 | 0.3478 | 0.0677 B2 | 0.3440 | 0.0694
\Y; Vv \Y;
P(A;|V) Yes No P(Ag|V) Yes No P(Aq|V) Yes No
S2 | 0.3342 | 0.0584 S2 | 0.3387 | 0.0572 S2 | 0.3412 | 0.0578
S1 | 0.1359 | 0.2464 S1 | 0.1367 | 0.2585 S1 | 0.1318 | 0.2795
A, CE | 0.0473 | 0.3578 Ag CE | 0.0395 | 0.3655 Aq CE | 0.0452 | 0.3174
B1 | 0.1166 | 0.2666 B1 | 0.1209 | 0.2515 B1 | 0.1314 | 0.2733
B2 | 0.3659 | 0.0709 B2 | 0.3643 | 0.0673 B2 | 0.3503 | 0.0720
\Y; \Y \Y;
P(A10|V) Yes No P(A11|V) Yes No P(A]_glV) Yes No
S2 | 0.3537 | 0.0610 S2 | 0.3697 | 0.0553 S2 | 0.3473 | 0.0623
S1 | 0.1359 | 0.2941 S1 | 0.1287 | 0.3015 S1 | 0.1285 | 0.2623
As CE | 0.0450 | 0.3212 As CE | 0.0404 | 0.3358 A CE | 0.0570 | 0.3667
B1 | 0.1221 | 0.2608 B1 | 0.1192 | 0.2505 B1 | 0.1206 | 0.2445
B2 | 0.3433 | 0.0629 B2 | 0.3421 | 0.0569 B2 | 0.3465 | 0.0642
V \Y; V
P(A13|V) Yes No P(A14]V) Yes No P(A15|V) Yes No
S2 | 0.3543 | 0.0618 S2 | 0.3609 | 0.0457 S2 | 0.3571 | 0.0584
S1 | 0.1295 | 0.3151 S1 | 0.1177 | 0.2782 S1 | 0.1105 | 0.2994
A CE | 0.0334 | 0.2672 A CE | 0.0385 | 0.3523 Ass CE | 0.0408 | 0.2738
B1 | 0.1380 | 0.2952 B1 | 0.1143 | 0.2738 B1 | 0.1280 | 0.3047
B2 | 0.3448 | 0.0606 B2 | 0.3687 | 0.0500 B2 | 0.3636 | 0.0637
V \Y; V
P(AiglV) | Yes No P(A17]V) | Yes No P(AglV) | Yes No
S2 | 0.3719 | 0.0853 S2 | 0.3495 | 0.0661 S2 | 0.3355 | 0.0669
S1 | 0.0968 | 0.2168 S1 | 0.1280 | 0.2894 S1 | 0.1361 | 0.3142
A CE | 0.0570 | 0.3597 Ap CE | 0.0427 | 0.3057 A CE | 0.0488 | 0.3324
B1 | 0.1344 | 0.2714 B1 | 0.1346 | 0.2818 B1 | 0.1354 | 0.2265
B2 | 0.3400 | 0.0669 B2 | 0.3452 | 0.0570 B2 | 0.3442 | 0.0601

Figure 2.3. The conditional probabilities for the 'IsText' concept.
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However, there is no justification for such a decision criterion, and especially when
the probability estimates are inaccurate. In (Lachiche and Flach, 2003) it is shown that
if the NBC decision criterion is treated as an additional model parameter, which hasto
be learned from the training data, rather than a fixed threshold, significant
improvements will result.

After classification, the image is post-processed by morphological operations to fill
small black (non-text) holes within white (text) areas in order to reduce false
negatives. In the classification phase, if a high decision threshold is selected (rather
than 0.5) for the text class, the number of false positives (the block mistakenly marked
as text) is obviously reduced, because only almost confident text blocks are classified
astext. The threshold of 0.8 has worked well in our experiments, so to classify an 8x8
block of image, the DCT-18 features by Equation (2.5) is evaluated, and then their
nomina equivalents are computed according to the rules of Table of Figure 2.2.
Lastly, P(Text) is evaluated using Equation (2.6) and the conditional probabilities of
Figure 2.3; if P(Text) exceeds 0.8, the input block is classified as text. This way a
binary image is formed, with white pixels for text and black pixels for non-text areas.

In order to improve the segmentation accuracy, this image should be post-processed.

2.6 Postprocessing

The post-processing step is based on the following assumptions: 1) the input image
has more fal se negatives than false positives and 2) text areas are usually large and do
not contain non-text areas (holes). In the first step, all isolated white pixels (without
any white 8-neighbor) are removed, and then the morphological closing (dilation
followed by erosion) with a 3x3 rectangular structuring element is applied.

In order to show its capabilities, the proposed text segmentation and post-processing
algorithm is applied to the gray-scale image of Figure 2.4(a) which contains two texts
of different colors and other textures. The output of naive Bayes classification is given
in the image of Figure 2.4(b); each small square shows the probability that the
corresponding square in the input image is thought to be text. Thresholding this image
at 0.8 results in the binary image of Figure 2.4(c) having less false positives. The fina
text mask obtained by the post-processing step is given in the image of Figure 2.4(d).

The above experiment shows that the proposed method is not very sensitive to non-

uniform background and works well if the text is darker or lighter than the
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background. In contrast, many existing approaches assume that background is
uniform, showing poor performance when this assumption is not satisfied.

(a) input |mage

(c) image (b) thresholded at 0.8 (d) image (c) after post-processing
Figure 2.4. Applying the proposed text segmentation and postprocessing
algorithm to an image with complex background.

(b) text probabilities
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CHAPTER 3
BINARIZATION

3.1 Introduction

Since many vision agorithms and operators only handle two-level (binary) images,
binarization (thresholding) is a maor step in such algorithms to convert gray-scale
images into binary images. In binarization algorithms, a threshold or a threshold surface
is usually computed first and then if a pixel has a higher intensity than that threshold or
value of the threshold surface in that point, it is labeled as foreground (object); otherwise
it is labeled as background. Due to the fact that binarization is usually applied in primary
steps of a vision agorithm, say a recognition problem, and its result greatly influences the
performance of the whole system, from the early days of automatic image processing
much attention is devoted to this task. Binarization is challenging for gray-level images
with poor contrast, strong noise and variable modalities in histograms, and it is ill a
difficult problemin vision.

Thresholding methods are divided into two classes. global and local. In global methods
a single threshold is computed and applied to the whole image. Among many proposed
global thresholding algorithms, Otsu's statistical method (Otsu, 1979), Tsa's moment-
preserving method (Tsai, 1985) and Kapur et a.'s entropy method (Kapur et a., 1985) are
satisfactory, and since Otsu's method is fast and easy to implement, perhaps it is the most
widely used. Obvioudly global techniques can not produce satisfactory result when the
gray-scale input image has non-uniform shading or its histogram is multi modal. Local
(adaptive) thresholding agorithms, in contrast, use a separate threshold for each pixel or
a smal group of neighboring pixels based on the information contained in a
neighborhood. In comparison with global methods, local algorithms usually involve more

computation and so they are sower when running on a single-processor computer. A
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local algorithm is better suited for parallel processing and dealing with large and high
resolution images which can not be completely kept in memory; they are usually superior
in extracting characters with uneven gray-levels because of adaptation to local image
properties, but do not necessarily yield better recognition results because they often do
not preserve character stroke connectivity. Of the local agorithms, Niblack's method
(Niblack, 1989) is smple and very effective and according to one experiment (Trier and
Taxt, 1995) it isthe best operator when the goal is character recognition.

General purpose thresholding methods such as Otsu's and Niblack's are not aware of the
fact that the image being processed is a document image that has some special features,
and they can not use this valuable information. Therefore researchers have developed
algorithms specially designed for document image binarization. In (Liu and Srihari,
1997) a texture feature based thresholding algorithm is introduced to cope with images
with complex patterns; In (Wu and Matmatha, 1998) a simple and effective method is
proposed to separate text from textured, hatched or shaded background. A document
binarization method for low-quality camera images is proposed in (Seeger and Dance,
2001).

3.2 The Otsu's Method

This is one the most widely used global thresholding techniques in machine vision.
Although this method is not specially designed for document image binarization, for
clean document image with simple backgrounds, it produces satisfactory results. As
opposed to some agorithms which need a priori knowledge about the number of peaksin
histogram, Otsu's method is completely automatic and it does not need any user defined
parameter. It can also be used in more sophisticated binarization algorithms. This method
selects the threshold based on the minimization of the within-group variance of the two
groups of pixels separated as a result of a global threshold. In order to evaluate the
threshold, the probabilistic histogram of the image must be computed first. In the
probabilistic histogram P, the value of P(i) represents the probahility of i'th gray level in
that image. For ordinary 8-bit gray level images, obvioudy there are 256 levels, so the
values of P(0), P(2), ..., P(255) must be evaluated. This is performed using the following

formula:
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P(i) = (number of pixelswith gray level value of i) / (total number of pixels). (3.1

If the histogram is bimodal, the best threshold is the value that separates the two modes
of P from each other. If so, each threshold t determines a variance for the group of values
that are less that or equal to t and a variance for the group of values greater than t. Otsu
suggested that best threshold is that one which minimizes the weighted sum of within-
group variances. Variance is a measure of homogeneity. A group with high variance will
have low variance and a group of low homogeneity will have high variance. Therefore
the criterion suggested by Otsu emphasizes high group homogeneity. An equal criterion
is a dividing that maximizes the resulting squared differences between the group means
which is related to the between-group variances. Due to the fact that the sum of within-
group variances and between-group variances is a constant, both criteria cause the same

result.

Having evaluated P, the best threshold is obtained as follows. Let s 2, be the weighted
sum of group variances, that is, the within-group variance. Let s /(t) be the variance for
the group with values less than or equal to t, and s 7 (t) be the variance for the group with
values greater than t. Let ¢, (t) be the probability for the group with values less than or
equal to t and q,(t) be the probability for the group with values greater than t. Let

m (t) be the mean of first group and m,(t) be the mean of second group. The within-

group variance is defined by:

Sw(t) =0 (t)s (1) +a,(t)s 7 (1) (3.2)
Where
0.) =& P() 39
a,(t) = & P() (3.4)
m(t) =& i-P()/ () (35)
my(t) = & i.P()/ (1) (3.6)

i=t+1
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s 2(t) = a (i - M©)2PG)/ () (37)

s2)=a (- m(t)’Pi)/a, ) (3.8)

i=t+1
Now the best threshold can be determined by a smple sequential search through all
possible values of t to find the threshold that minimizess / (t) . From the statistical point
of view, however, in many cases it is not necessary to try al possible 256 values, and
computational time can be reduced. The interested reader can refer to the original paper
(Otsu, 1979).
In Figure 3.1 the Otsu's algorithm is applied to a bimodal gray-level image. The selected

threshold is 97 and the resultant binary image is useful since the original image has a
bimodal distribution.

Information

(a) Origina image (b) Binarized image
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(c) Histogram of original image
Figure 3.1. Applying the Otsu's algorithm to a bimodal image.
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3.3 The Niblack's M ethod

As mentioned before, global thresholding techniques are not sufficient for binarizing
document images with complex backgrounds; local methods in such cases are more
useful and of them Niblack's local average method is selected because it is frequently
cited to be promising. This method operates on the following threshold:

T(xy) =M (% y) +k V(X y) (3.9)

Where M(x,y) is the local mean and V(xy) is the local variance computed in a
movingw~ w window. As seen, Niblack's method, like other local methods, has some
user-defined parameters. w and k; which must be fine tuned by the user. The
recommended value for w is 15 and a typical value for k is -1. These parameters are
image-dependent; generally small values of w lead to noisy results and inconsistent stroke
width and large values cause some characters to merge or split.

In Figure 3.2 the Niblack's algorithm is applied to a 120 by 275 gray-level image; as
shown in Figure 3.2(b) the resultant binary image for default values of w and k is not
useful because of split characters. The method becomes considerably slower as the
window size becomes larger; in the experiments carried out in this work, for example, the
computation time of Figure 3.2(c) was five times as much as that of Figure 3.2(b). Also,
for large windows, it acts just like a global method.
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(a) Origina image (b) BmarlzedlmageW|th w=15 and k=-1
TR eEan il [ e A
lnformatlon lnformahon
) _ -.-4, . o WA
s o - ‘--I-. .\_..4 —n -__:. - . ".“'. _‘_-_ ‘“-v'l‘__ -_’- 1.___'.)
(c) Bmarlzed image With w=30 and k=-1 (d) Bmarlzed image with w=30 and k=-0.5

Figure 3.2. Applying the Niblack's algorithm to a bimodal image.
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3.4 The Wu and Manmatha's M ethod

This is a smple and global method to binarize complex documents with text over
textured/shaded backgrounds, poor contrast or considerable noise. The algorithm consists
of two basic steps. First, the input image is smoothed using a Gaussian low-pass filter,
causing text enhancement against background texture. Since many images do not have
well-separated foreground and background, this step is necessary. Because the text has
normally lower frequency than the shading, the smoothing operation affects the
background more than foreground, and actualy it tends to clean up the background.
Second, the threshold is selected from the intensity histogram of smoothed image. Since
the text is normally darker than other image objects, the threshold is set to the first valley
counted from the left side of the histogram. To extract text against darker background, the
last valley is selected instead. In both cases, the intensity histogram must be smoothed
before threshold selection since it usualy contains many local minima. This can be done
by convolving the histogram again with a Gaussian kernel. This method is aso effective
when the bimodal histogram assumption is not valid.

To compare this technique with the other implemented methods, it is applied to the
same bimodal image as shown in Figure 3.3. The smoothed image obtained by a5 by 5
Gaussian kernel with the variance of 1.44 is given in Figure 3.3(b). Figure 3.3(c) shows
the histogram of smoothed image and Figure 3.3(d) depicts the smoothed histogram
obtained by a Gaussian kernel of length 15. The selected threshold is 77 and the resultant
binary image shown in Figure 3.3(e) is useful. This method is faster than Niblack's, but
due to convolution which is a time consuming process, it is rather ower that Otsu's.

3.5 TheLiu and Srihari's Method

Like Wu and Manmathas agorithm, this method belongs to the global category and
specialy designed for document image binarization. This method uses two fundamental
features of document images to select a reasonable threshold. First, characters normally
occupy a separable gray-level range in the histogram. Second, text images contain highly
structured-stroke units. In this method the Otsu's algorithm is iteratively applied to the
image histogram to find a limited number of (usually two) candidate thresholds. For each
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threshold value, the input image is binarized accordingly and some texture features are
extracted from run-length histogram; the threshold for which these features have better
values is considered best and applied as the global threshold.

To select the candidate thresholds, the entire histogram of the gray-level input image is
first split using Otsu's algorithm, and in each subsequent iteration the part of the
histogram with lower mean is further divided. This is because of the assumption that the

(a) Origina image (b) Smoothed image with a
5 by 5 Gaussian kernel
(c) Histogram of smoothed image (d) Smoothed histogram of smoothed image

Information

(e) Binarized image

Figure 3.3. Applying the Wu and Manmatha's algorithm to a bimodal image.
text is usually darker than other image items, and hence occupies the lower part of the
histogram. This iterative strategy can handle an unknown number of histogram peaks.
According to experiments, however, it is sufficient that Otsu's agorithm is only applied
twice. Therefore the next step of the algorithm is to choose between just two candidate
thresholds T, and T,, (T,>T,).

Liu and Srihari concluded that the horizontal run-length histogram of a binarized image

contains the essential information for evaluating quality of document image binarization.
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The horizontal run-length histogram will then be denoted by R which is a one
dimensiona array R(i), 1£i £ L, where L is the longest horizontal run to be counted.
The maximum possible length of a horizontal run-length is equal to or less than the
number of columns of the binarized image C, so in implementation L is set to be C. In the
histogram, R(i) is the count of the horizonta run-lengths of length i. Having the
histogram, five texture features is extracted: Stroke Width (SW), Stroke-Like Pattern
Noise (SPN), Unit-Run Noise (URN), Long-Run Noise (LRN) and Broken Character
(BC). A detailed description about these features is found in the original paper, but for
completeness, the definitions are given here (based on the assumption that in the input
image the text is darker than other image items):

SW =arg max R(i) (3.10)
_maxR.() R, (sw,)

SN e R,() T R.(SW,) (.40

_ RQM _ RQ

URN = mex R() " R(SW) (3.12)
“a_ RO _4_ RO

LRN = o R() = TREW) (3.13)

min R(i) min R(i)
- 1L ESW _ 1L £SW (314)

max R(i)  max(R(1), R(SW))

where R, is the histogram obtained with T, and R, is the histogram obtained with T,;
M isaconstant that in this implementation was set to 3.

To select the best threshold from T, and T,, the following scheme is applied. Let B, is
the binarized image obtained with T,, and B, is the binarized image obtained with T,.
First, the SW feature is checked, and the threshold with larger SW is selected. This is
usually T,, and the associated binarized image is the same as Otsu's. Hence, the next step
is applied to verify and correct this selected threshold. In the second step the SPN, URN
and LRN features are checked. If selected threshold (from the previous step) is T, and

SPN is low (less than 2.25 in this implementation) and URN and LRN features of B, are
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less than URN and LRN features of B,, the overal quality of B, is better than B,and the
selected threshold is T,. Otherwise, if the BC feature of B, islow (less than 0.8 in this
implementation) the selected threshold will be T, ; otherwise, neither T, nor T, leadsto an
acceptable binary image, and the selected threshold is set to the average of T,and T, .

The second step of this implementation is a little different from the original decision
procedure (Liu and Srihari, 1997). By the following decison method, only three pre-
specified values for M, low SPN and acceptable BC range are required; automatic tuning
of these parameters seems difficult because of the lack of ground truth data, so the
agorithm must be calibrated using a limited number of experiments and visual
judgments. In this study, a set of ten images was used to determine them experimentally,
and now they seem to be adequate for a broad range of images. The flowchart of the
implemented method is presented in Figure 3.4.

Although this method is able to deal with images with complex backgrounds, for
comparison, it is applied to the same bimodal image of Figure 3.1. The first selected
threshold is 97 (Otsu's threshold) and the second is 64. For 97 the SW feature is 7, and
for 64 it is 5; and since other features associated with 97 have acceptable values, it is
selected as the final threshold, and the output binarized image is the same as Otsu's result.
Liu and Srihari's method is about two times slower that Otsu's but faster than Wu and
Manmathas. All of these global techniques, however, are fast enough so that can be used
in any real-time application.

In order to show the superiority of Liu and Srihari's algorithm over others, it is applied
to the rather complex image of Figure 3.5(a). The histogram of this image is presented in
Figure 3.5(b), and as shown in Figure 3.5(c), Otsu's method fails to find the true
threshold. But Liu and Srihrari's method successfully binarize the image; in this case, T
= 153 (which results in binary image of Figure 3.5(c)) and T, = 97. For T1, SW; = 2,
URN; = 0.05, LRN; = 0.26 and BC; = 0.05, and for T,, SW, = 4, URN, = 0.08, LRN; =
1.32 and BC; = 0.009; since SW; is larger SW; and BC; is smaller than 0.8, the algorithm
rgects T, in the favor of T, and the associated binary image is depicted in Figure 3.5(d)
in which the small dots are due to the input image noise, and can be removed by a post-

processing step.
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Figure 3.4. The flowchart of Liu and Srihari's method.
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The Wu and Manmatha's method for the same image selects the threshold of 78 which
yields the nicely binarized image of Figure 3.5(e). By inspection of Figure 3.5(f) in can
be seen that the outcome of Niblack's adaptive method is useless because the background
is left and there are broken characters; for both images of Figures (d) and (€), in contrast,
stroke connectivity is maintained.

In further experiments, images with various size characters and images containing both
machine-printed and handwritten text were processed; in each case, the overall quality of

the Liu and Srihari's returned image was quite acceptable.
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Figure 3.5. Applying the four binarization methods to a non bimodal image.

3.6 Preprocessing

The outcome of hinarization algorithms for low-resolution images sometimes can be
enhanced by a preprocessing step termed "super-resolution” (Taylor and Dance, 1998);
which is trading of gray-scale intensity resolution for spatial resolution. The block
diagram of a binarization algorithm equipped with super-resolution is presented in Figure
3.6. In the first step, the input image is sharpened. There are severa ways for this purpose
(Jain, 1989), the simplest one, however, is to convolve the image with the negative of a
Laplacian kernel. Next, this image upsampled (usually by a factor of 3), and then the
binarization algorithm is applied as usual. Finally, the binarized image is downsampled to
have the same size as input.

—Input—» Linsharg Masking » K| T » Binarizatian » K| l F——COutput—p

Figure 3.6 The block diagram of a binarization algorithm equipped with super-resolution.

Sometimes, this preprocessing step can be effective as shown in Figure 3.7.
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(a) Low-quality input image (b) Binarized image without preprocessing

Information

(¢) Unsharpened version of (a) (d) Binarized image with preprocessing
Figure 3.7. Preprocessing can enhance the binarized output of low-quality images.

3.7 Postprocessing

The binarized output of a binarization agorithm often needs a postprocessing step
particularly when the input image is noisy, and so causing noisy output. This was already
shown in Figure 3.5(d). Usually binarized image contains some extra connected-
components which are due to sudden intensity changes of in noisy regions of the input. A
simple median filtering is not sufficient to remove this type of noise; since an extra
component can be larger than one pixel in size, and so not removed by one pass.
Moreover, the median filtering adversely affects other components by smoothing their
corners (Figure 3.8) which may lead to higher recognition errors.

One of the effective postprocessing techniques, which can be incorporated into any
thresholding algorithm, is surveyed in (Trier and Taxt, 1995) and its modified version is

given below:

1. Smooth the original image by a 3 by 3 mean filter to reduce noise.

2. Calculate the gradient magnitude image G of the smoothed image using , e.g.,
Sobel's edge detector (Shapiro and Stockman, 2001).

3. Remove al isolated pixels (connected-components of size 1) of the binarized

image.
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4. For each remaining connected-component C; of the binarized image, calculate
the average gradient magnitude of its border pixels, using corresponding
pixelsin G, and call it M;.

5. Compute the average of M; 's and call it T, it is a criterion for the average
strength of the connected-components.

6. Remove al connected-components of the binarized image having an average
border pixels gradient below KT, where k is an image-dependent parameter;
the value of 0.9 is a good choice for low amount of noise, but it must be
increased for the input images containing more noise.

Figure 3.9 illustrates quality improvement gained by this postprocessing step. From
Figure 3.9(c), it is clear that the median filter has caused broken characters, and thereby
can not be used as a postprocessor. In contrast, Figure 3.9(d) shows that the mentioned
postprocessing method has improved the quality of the noisy binarized image.

ek .
EEEEEH

(a) A binary image containing noise and a shape (b) The image after applying a 3 by 3 median filter
Figure 3.8. A median filter can not remove all noise, and adversely affects corners of
shapes.

(a) Noisy input image (b) .Binari'ze-d irﬁége befdre postpr ng

Information Information

(c) Image (b) after median filtering (d) Image (b) after postprocessing
Figure 3.9. Quality improvement of a binarized image by postprocessing.



CHAPTER 4
SKEW CORRECTION

4.1 Introduction

Document skew is a distortion that is often introduced during scanning or copying of a
document and it is unavoidable. The skew angle is the angle that text lines deviate from
the x-axis. Since page decomposition techniques require properly aligned images as
input, document skew must be corrected in advance; otherwise, serious performance
degradations will result.

In general there can be three types of skew within a page (Okun et al., 1999): 1) a global
skew, when all text lines have the same orientation; 2) multiple skews, when some text
lines have a different orientation than the others; and 3) non-uniform skew, when the
orientation fluctuates within a text line. It must be noticed that a handwritten document
image is usually expected to have multi-skew or even worse, non-uniform skew. A
number of methods have been proposed for global skew detection. Nevertheless, it is
assumed that even if there are multiple skews, they belong to a limited range, and hence
we find the dominant global skew. Once the global orientation is detected, the document
skew can be corrected by a rotation at this angle. In other words, "skew correction" is
applied after "skew detection". Global skew detection algorithms can be divided into
seven categories based on the underlying techniques: 1) projection profile (Shridhar and
Kimura, 1995; Postl, 1986); 2) Hough transform (Jiang et al., 1997); 3) Fourier transform
(Postl, 1986); 4) nearest-neighbor clustering (Yue Lu and Chew Lim Tan, 2003); 5)
correlation (Avanindra and Subhasis Chaudhuri, 1997); 6) mathematical morphology
(Najman, 2004); and 7) Artificial Neural Networks (Rondel and Burel, 1995). Some of
these algorithms can detect a limited range of skew angles (usually varying from 35 to

+45), while others are able to find and correct any skew angle (Okun et al., 1999). Some
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methods are designed for specific image formats, low-resolution or compressed images
(Spitz, 1998). Some are designed to work with machine-printed documents (Changming
Sun and Deyi Si, 1997), such methods can not deal with documents containing
handwritten or non-Latin scripts. Most methods assume that text has already separated
from graphics; otherwise it is often required that text is predominant in the image to have
accurate estimates.

In projection profile based methods, histograms of foreground pixels or other features of
connected-components (such as center of mass) are computed for a number of
orientations close to the expected skew angle, and for each histogram a variation measure

,for example mean square deviation, is evaluated. The histogram that maximizes the

variation corresponds to the global skew angle. The histogram at 0°is called horizontal
projection profile; for a document without skew, the horizontal projection profile must
have the maximum variation, and for skewed documents the histogram at skew angle has
the maximum variation. The histogram with maximum variation has peaks whose widths
are approximately equal to the average character height, and its valleys have minimum
heights in comparison with other histograms. These methods are simple, robust and easy
to implement; they can also work with gray-scale documents, tolerate noise and do not
require predominant text area in the input image, but since the computation of histograms
at different angles needs many image rotations which is a time-consuming operation, the
range and resolution of detectable angles are restricted. Moreover, a projection profile
based method may not find a good estimate in a multi-column document.

The Hough transform has been widely used for skew detection. This transformation
maps each point in the original (x,y) plane to all points in the (6, p) parameter plane that
is the Hough space of lines through (x,y) with slope € and distance p from the origin. A
line in the original image forms a cluster in the parameter plane. Once the locations of the
clusters are determined, the skew of each line and the average skew are easily evaluated
by searching for a peak in the transformation space. The Hough transformation is useful
not only in the detection of solid lines but also broken lines and even text lines. The high
computational complexity of the Hough transform confines the detectable skew range. In
order to reduce processing time, instead of applying the transform to entire the

foreground pixels, it can be applied to other representative points such as edge points or
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center of mass of connected-components. The Hough transform is computed in O(n?)
time; also it needs a 2D accumulator. Therefore, methods based on this transform are
usually slower than others. Another drawback is that when the text becomes sparse
choosing a peak in the transform space is difficult, i.e., it can not be done by searching
for the maximum value; because it is possible that the angle giving maximum value does
not correspond to the skew angle. But as an advantage, it must be cited that the presence
of graphics in the input image does not drastically degrade the accuracy. Just as the
projection profile based methods can operate faster when the detectable skew range is
limited, so the Hough transform based algorithms will benefit when the input document
image is known to have a limited skew.

The basic idea of the methods based on nearest-neighbor clustering (NNC) is that the
points belonging to the same line can not significantly deviate from that line. Generally,
an algorithm based on this idea has the following steps. First, connected-components of
the binarized input image are obtained. Then, the direction vector of all k-nearest-
neighbors of connected-components are computed and accumulated in a histogram, and
finally, the angle corresponding to the peak of histogram is returned as the document
skew angle. It must be noticed that the presence of ascenders, descenders (i.e., upper and
lower parts of characters) or dots cause connections that are not parallel to the text lines,
thus reducing the accuracy. To remedy this problem, in some algorithms (Yue Lu and
Chew Lim Tan, 2003; Okun, 1999) only connected-components satisfying certain size
and/or positional conditions are taken into account, thereby, these algorithms must be
tuned for their parameters. The main advantage of a method utilizing NNC is that it does
not limit the detectable skew range; also it does not require predominant text area in the
input image and can also deal with multi-column document images and even multiple
skews. But, an algorithm of this type can only work with clean binarized images, and as
mentioned before needs fine tuning. An accurate NNC based algorithm is presented in
(Yue Lu and Chew Lim Tan, 2003); in this work connected-component chains with the
largest possible number of nearest neighbor pairs are selected, and their slopes are
computed to give the global skew angle.

The correlation function has also been used in skew estimation (Avanindra and Subhasis

Chaudhuri, 1997). The basic idea is that the correlation between two columns (vertical
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lines) of the document image is maximized when one column is shifted relatively to the
other such that character levels are aligned. The correlation based methods require
predominant text area in the input image; otherwise, a prior text/graphics separation is
necessary to have good estimates. But the major limitation is that such a method gives a
true estimate only when the skew range is limited (usually from —10° to 10°), and fails
to detect a high amount of skew angle, but it does not mean that correlation methods are
not practical; because for ordinary scanned document the actual skew angle is quite
small. These methods can deal with handwritten and non-Latin scripts as well, but text
lines of different sizes degrade the accuracy, and as a further disadvantage, any
correlation based algorithm use some parameters (usually two) which must be set for
different types of documents beforehand. A fast correlation based method is presented in
(Avanindra and Subhasis Chaudhuri, 1997), in which instead of finding the correlation
for the entire image, it is calculated over randomly selected small windows to increase
speed, and since these windows can be processed independently, as a further advantage,
the algorithm can be implemented on a parallel hardware. It is a Monte Carlo
probabilistic algorithm that needs at least half the input image area is occupied by text to
ensure that the probability of a randomly selected window is higher than 0.5.

In the methods based on the Fourier transform (Postl, 1986) the direction having
maximum density in transform space is regarded as the skew angle. These methods are
not implemented in this study, but it is clear that a vertical line in the input image will
have the maximum density direction. Thus, generally, finding the true skew angle in the
transform space is not easy and straightforward. Also, it is often said that the Fourier
transform is computationally expensive for large methods (Changming Sun and Deyi Si,
1997). The Fast Fourier Transform (FFT) was first used in (Postl, 1986); in this method
The coefficients of the power spectrum are calculated and stored in a buffer. Then,
directional criteria for a number of angles are calculated. Last, the angle that maximizes
the directional criterion is taken as the document skew angle.

Artificial Neural Networks (ANN) have been widely used for document analysis and
recognition, but not much work is dedicated to the problem of skew detection. In (Rondel
and Burel, 1995) two neural networks are used to detect the global skew; the first one

gives a rough estimate which is used to initialize the weights of the second network.
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Then, the second network outputs the document skew angle. No ANN based method is
implemented in this study, but due to numerous advantages of ANNs, they are worthy of
study for the skew detection problem.

A typical method based on mathematical morphology iteratively applies special
morphological operators (modified versions of opening and closing) to the input image to
form one connected-component (blob) from each text line. Then, a line is fitted to each
blob and its slope is accumulated in an angle histogram; finally, the angle corresponding
to the histogram peak is returned as the skew angle. It must be mentioned that there are
fast implementations for the two basic morphological operators (i.e., erosion and
dilation), for example, the Fourier transform can be used for this purpose. Advanced
operators can be derived by the combination of erosion and dilation, and used in skew
estimation. All morphological operators are applicable to both binary and gray-scale
images, but there exist faster implementations for binary images (Nadadur and Haralick,
2000).

In the rest of this chapter, the Hough transform is surveyed and its basic algorithm for
skew detection is given, and due to the importance of this transform and lack of visual
examples in the literature, a number of examples are presented to illustrate how this
transform can be useful in skew detection. Then, the basic idea of the projection profile
technique is clarified, and finally, a simple skew detection procedure, satisfying script-
independency, is proposed in detail, and it will be shown that this projection profile based

procedure is robust enough to be used in a real recognition system.

4.2 The Hough Transform for Skew Detection

Hough transform is a general method for detecting arbitrary curves (lines, ellipses, etc.)
in gray-scale images. Hough Line Transform (HLT), as it is clear from the name, aims to
detect straight lines and is a popular method for skew detection. In HLT, conceptually, all
possible lines (at all orientations and positions) are placed into the image and the number
of pixels on each line are counted and stored in the corresponding position of the Hough
space.

The simple version of HLT for skew detection is given in Algorithm 4.1. It must be

mentioned that since the ordinary line equation y = mx + b does not work for vertical
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lines, d = c.cos(0) — r.sin(0) is used as an alternative, where d is the perpendicular
distance from the origin of the image (upper left corner) to the line, and 0 is the angle this
perpendicular makes with horizontal (column) axis. In order to compute gradient
magnitude and direction of the input image, any edge detector can be used. The constant
gradient_threshold in the algorithm is used to only take strong enough edge points, and it
is reasonable to set its value to the average gradient magnitude of the input image. An
alternative approach is to use the binary edge map By instead of M, with 1's representing
strong edge points and 0's representing background, and now the if command must be

changed accordingly:

if Byl[r,c] > O
{

d = round(absolute(cxcos(D[r,c]) - rxsin(D[r,cl))):

A(d,D[r,c]) = A(d,D[r,c]) + 1;
}
Once the execution have been completed and the accumulator array has been filled, the

angles corresponding to the local peaks of the Hough space (accumulator array) represent
the dominant skew angles of the input document image. So theoretically, a Hough
transform based method is also able to detect multiple skews. The accumulator array does
tell us about where the line segments begin and end, and in the skew detection there is no

need for this information.

Let I[r,c] be the input gray-scale image having R rows and C columns.
Let M[r,c] be the gradient magnitude of I[r,c].
Let D[r,c] be the gradient direction of I[r,c].
Let A[p,6] be the accumulator array (the Hough space).
A = 0; // initialize the accumulator to zero.
for r = 0 to R-1
{
for ¢ = 0 to C-1
{
if M[r,c] > gradient threshold
{
d = round(absolute (cxcos (D[r,c]) - rxsin(D[r,cl)));
A(d,D[r,c]) = A(d,D[r,c]) + M[r,c];

}
}

}

Algorithm 4.1 HLT for skew detection
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Figure 4.1. Applying HLT to simple binary images.

In Figure 4.1, HLT is applied to twelve images, containing one to four rectangles of
different sizes and at various directions and positions; for each case the Hough space is

depicted; it is clear that the relative position of the objects does not change the angles

41



corresponding to the Hough space peaks, and as mentioned before, the objects at different
directions will form different clusters in the Hough space, so HLT may be used to correct
multiple skews.

Figure 4.2 shows the Hough space of two handwritten document images. Figure 4.2(b)
has no peak corresponding to the document skew angle, and for this non-Latin document
image the HLT technique fails. By further experiments, we found out that the method

also fails for low resolution images.
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Figure 4.2. Applying HLT to handwritten document images.

4.3 The Projection Profile Method for Skew Detection

It is expected that the projection profile at the global skew angle of the document has
narrow peaks and deep valleys, depending on weather the projection passes through a text
line or between text lines. Figure 4.3, for example, shows a document image at two
different directions and the associative horizontal projection profiles. Obviously, at this
point we need a criterion to select the better projection profile. Let f be a function
returning its maximum value for the horizontal projection profile at the global skew
angles, then the global skew angle of the gray-scale image I is:

global skew angle = arg max f'(horizontal projection_profile(rotate(1,0))) 4.1)

Hmin S6£9max
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It may seem, at first sight, that variance or autocorrelation are good choices for f; but as
noted by Bloomberg (Bloomberg et al., 1995) neither can be a good measure. The
variance function usually results in a broad peak, being difficult to choose the global
skew from; the autocorrelation function is more computationally demanding, and giving a
large oscillating signal for the projection at the global skew angle. In that reference the
goodness measure is taken as the sum of the squares of the successive differences of the

projection profile (histogram). Formally, if the histogram is denoted by h, SD is given by:
SD =" (h(i)— h(i —1))* (4.2)

This function has a very sharp peak a;t the global skew angle, leading to very accurate
results, but on the other hand, such a narrow peak restricts the use of the binary search to

find the maximizing angle. There are three modifications which can speed up the basic

method.
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(c) The same document with more skew (d) horizontal histogram of (c)
Figure 4.3. The projection profile technique for skew detection.

First, for computing the projection profile at a certain angle, it is not necessary to rotate
the image by the angle, and then compute the horizontal projection profile. One
possibility is to shear the image in vertical direction which is faster than rotation, and as

proved in (Slavik and Govindaraju, 2001): "correcting first for skew by rotation and then
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for slant by a shear transformation in the horizontal direction is equivalent to first
correcting for slant by a shear transformation in the horizontal direction and then for
skew by a shear transformation in vertical direction". The other possibility is to compute

the sum of pixels along parallel lines at an angle; Algorithm 4.2 is for this purpose.
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(a) variance is used as the goodness measure (b) SD is used as the goodness measure

Figure 4.4. Plotting goodness measure of projection profiles of Figure 4.3(c) against
angles -45° to 45°.

Second, if in (4.1) f'has only one maximum, it can be found by a binary (Algorithm 4.3)

rather than the exhaustive search in the range [6 . ,6_ 1], thus reducing the runtime.

Bloomberg has suggested performing the binary search on the variance of the projection
values, which has a sufficiently wide peak, but it may also fail because as you see in
Figure 4.4(a) the function has local maxima. But, it seems that when the skew range is
limited (e.g., -5° to 5°) the function has only one maximum, and so the binary search is
possible.

Third, another advantage of projection profile based methods is that they actually don’t
need high resolution input images. Obviously, any image operation such as rotation or
shear transformation is done faster for smaller images. Therefore, reducing the size of
input image, as much as structure of text lines is preserved, leads to faster processing.
This can be done by a MIN or MAX downsampling technique depending on whether the
background is lighter than text or darker. These two techniques are faster than the
ordinary downsampling methods, because the latter usually perform interpolation and
smoothing to achieve better visual quality, which is not necessary for skew detection. In
the MIN downsampling technique, the minimum of each M x N rectangle (when non-
overlapping rectangles are considered) of the original gray-scale image is chosen as the

value of output image in that location; as opposed to the MAX technique in which
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"maximum" performs the same job. For a binary image, MIN and MAX correspond to
logical AND and OR, thus even a faster processing will result.

Figure 4.5 shows the downsampled versions of the 260 x 580 gray-scale image of
Figure 4.3(c). It is clear that for ordinary document images with lighter background, the
MIN method must be used; and as shown in Figure 4.5(a), a rough estimate of the skew
angle can be made in the low-resolution image as well. Having a coarse estimate, the

angle range [ € ] can be restricted, because the actual skew angle is somewhere

around it, and a more accurate result can be found in a higher resolution. This is a coarse-
to-fine search strategy in which the approximate location of a solution is found quickly in
a large and low-resolution space. Then, this estimate is refined successively in smaller

spaces with higher resolutions.
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(c) MIN downsampled by factor 3 x 3 (d) MAX downsampled by factor 3 x 3
Figure 4.5. Image downsampling using MIN and MAX techniques.

Let I[r,c] be the input gray-scale image having R rows and C columns.

projection profile = 0; // initialize all elements to zero.
for ri = 0 to R-1
{
for ¢, = 0 to C-1
{
r, = r;.cos(®) + c;.sin(6); // new row after rotation
projection profile[r,] = projection profile[r,] + I[r;,ci];
}
}

Algorithm 4.2 Computing the projection profile at angle 0

As mentioned before, any projection profile based method tends to fail with unaligned
text lines in multiple columns, however, according to experiments carried out in this

work, for any other type of document image, whether machine-printed or handwritten, of
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any size and script, the method is able to correct the global skew angle. Figure 4.6 show
that the method works well in the presence of considerable amount of noise. It seems that
no other algorithm is so robust to noise. For such a noisy image with many broken

characters, it is not surprising that any method, relying on structural information, fails.

Let f be the function, assumed to have only one maximum in the range [Xyin,
Xmax]-

X1 = Xnpins

X3 = Xpaxs

X, = (%1 + x3) / 2;

while [x,-x;| > error

{

X1, = (%1 + %) / 2;
Xp3 = (X3 + %3) / 2;
maximizer = arg max (f(x1), £(x12), £(xy), f£(x,3), f£(x3));
if maximizer == x;
{
X3 = X127
X, = (%1 + x3) / 25
}
else if maximizer == x,
{
X3 = X7
X2 T X127
}
else if maximizer == x,
{
X1 = X127
X3 = X237
}
else if maximizer == Xj3
{
X1 = X257
X2 = X237
}
else
{
X1 = X237
X, = (%1 + x3) / 2;

return arg max (f(x;), £(x2), f£(x3));

Algorithm 4.3 Binary search for finding the maximizer of a function
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Figure 4.6. A noisy image before (a) and after (b) skew correction using the projection
profile based method.

4.4 Dealing with Multiple Skews

It is often expected that handwritten text lines slightly deviate from the global skew
angle. In such cases, global skew correction followed by page segmentation result in a
number of line (or word) images to be processed. Therefore, it is useful to perform a local
skew correction in each line (or word) image.

A simple method for local skew detection is to fit a line to all text pixels in the line (or
word) image. Due to its wide range of applications, line fitting a well-studied problem in
statistics. The basic least square method for 2D space, which assumes y as the dependant
variable, is not appropriate for vision tasks, partly because the mathematical definition of
error as a difference along y-axis is not a true geometrical distance (Shapiro and
Stockman, 2001); the disadvantage is more pronounced when the points are arranged in a
near vertical direction. As mentioned in (Yuan and Tan, 2000), a better approximation is
acquired by treating x and y not as statistical variables but as locations of points, and in
this case, the error is defined as the sum of distances perpendicular to the orientation of
the fitted line. Algorithm 4.4, based on evaluation of eigenvalues, is for this purpose, and

skew correction by line fitting is illustrated by Figure 4.7.
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(a) a binarized line image before skew correction
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(b) and after skew correction
Figure 4.7. Skew correction by line fitting.
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It is clear that, by fitting a line to text pixels (black pixels for ordinary document images)
using Algorithm 4.4, tan™ (m) gives the skew angle.

This method is very fast, but as mentioned before, it can not be applied to the whole
document. For example, it fails when the image has more columns than rows; even if it
does not fail, its estimate is not as accurate as other skew detection methods.
Nevertheless, this method can be applied to the whole document image to find an
estimate 6y of the actual skew angle 6, and reducing the search space from [Omin, Omax] to
[6r - E, Og + E], where E must be selected so that 64 falls within [0z - E, 6 + E].

According to our experiments, £ = 3°is a reasonable choice.

Let {(Xj,Yi)} be the set of points to be fitted by mx+ty,

-1 _ 1
X =NZX[ ' y=NZyl.; // averages of x and y coordinates

)ACi =X, —-X, )A/i =y, =y // standardize data points
| <, o |«
a=—)Xx , b=—>xy,, c=—)> vy
N N N
(@+c)++(a—c)® +4b°
12 = ) ; // eigenvalues of the matrix [a b; b c]
ﬂ:min(ﬂ,,,ﬂz);
-b
m = ;
A—a
Yo=Yy —mx;

Algorithm 4.4 Line fitting by evaluation of eigenvalues
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CHAPTER 5
SLANT CORRECTION

5.1 Introduction

Slant is the deviation of average near-vertical strokes from the vertical direction.
Slant correction is an attempt to reduce the range of variations of handwritten and
machine-printed texts. In handwritten text, slant is due to the specific writing style,
and in machine-printed text it is an innate feature of certain fonts. It is clear that slant
is non-informative, but slanted words may considerably degrade the performance of
the whole system (Kavallieratou et al., 2000), so another normalization step which
must be performed before segmentation, feature extraction, training and recognition is
to remove or reduce the slant influence as much as possible.

The literature includes a number of methods for uniform slant correction (Shridhar
and Kimura, 1995; Changming Sun and Deyi Si, 1997; Kavallieratou et al., 2000) and
some of them are robust, script-independent and applicable to both handwritten and
machine-printed texts. The uniform slant correction techniques perform successfully
when all near-vertical strokes have the same slant angle, which is usually the case for
machine-printed words. So as far as the recognition of machine-printed text is
concerned, there is no room for further study about slant removal methods. On the
contrary, in handwritten text, the slant angle usually varies within each word (Figure
5.1), and hence a uniform slant correction is not optimum.

In all uniform slant correction techniques, the average slant angle is estimated first
and then a shear transformation in horizontal direction is applied to the word (or line)
image to correct its slant. The most effective methods are based on the analysis of
vertical projection profiles (histograms) at various angles (Shridhar and Kimura,
1995; Kavallieratou et al., 2000); actually these techniques are identical to the
projection profile based methods for skew correction, except that here the histograms
are computed in vertical rather than horizontal direction and shear transformation is

used instead of rotation.
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Some method use statistics of chain-coded stroke contours; for example in (Shridhar
and Kimura, 1995) the chain elements at 45°, 90° and 135° are counted, then a simple
formula is used to estimate the slant angle; according to our experiments, this method
does not produce accurate result for handwritten words. In (Changming Sun and Deyi
Si, 1997) two methods has proposed; the first one computes the histogram of gradient
orientation of the input word image and returns the histogram peak as the slant angle;
the second method fits a minimum bounding parallelogram to each connected-
component of the binarized image, such that top and bottom sides of each
parallelogram are parallel to x-axis, then the slant angle is chosen as the median value
of all parallelogram angles. In the handwritten recognition system described in
(Procter et al., 2000), two methods are used in combined, and the overall slant
estimate is taken as the mean of the two estimates.

To the best of our knowledge, the only survey on non-uniform slant correction is
presented in (Uchida et al., 2001), in which the problem is formulated as the optimal
estimation of local slant angles at all horizontal positions. The optimal local slant
angles which maximize a cost function, while satisfying several constraint for the
global and local validity, are efficiently searched for a by a dynamic programming
(DP) technique. Unfortunately, this method sometimes over-corrects slants of some
alphabets such as the Latin 'X' or Farsi/Arabic letter 'J' (Reh). So it can sometimes
degrade the performance of recognition system, and this non-uniform technique can

not be used.

w /
(a) Non-uniform slant (b) Uniform Slant
Figure 5.1. Examples of slanted handwritten words.

5.2 Horizontal Shear Transformation

In this linear transformation, each pixel (x,y) is transformed to new coordinate (Xs,Ys)
by Equation (5.1), where y, is the y-coordinate of the center and @ is the angle of

transformation; for slant correction, y, is set to half the number of image rows.
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{xs =x—(y, — y).tan(6)
~ (5.1)
ys _y

By this transformation, the height of the image is not changed, while the width of the
image will probably change. Figure 5.2 shows the results of shear transformation to a

word image at two different angles.

“gY U Ut
(a) original slanted word (b) transformed by 6 = -10° (¢) transformed by 6 = -25°
Figure 5.2. Shear transforming a word image at different angles.

5.3 Projection Profile Technique for Slant Detection

Like skew detection, here the basic idea is that the vertical histogram of a non-
slanted word has higher peaks, deeper valleys and more variations than any other
histogram. Figure 5.3 shows a handwritten word image at three different angles, the
image of Figure 5.3(b) has less slant and its histogram has more and higher peaks. All
we need is a criterion to judge between different histograms; in (Kavallieratou et al.,
2000) the Winger-Ville distribution (WVD) is employed for this purpose. But it was
found out that the same criterion utilized for skew detection can also work here.
Therefore, in the proposed system, the slant angle of the line (or word) image I is
estimated by the following formula:

slant _angk = argmax SD(vertical _projection_ profild horizontal shearn(1,0))) (5.2)

‘9min Sgsgmax

where SD is the sum of the squares of the successive differences of the projection
profile, and search range is adequate be [-45°, 45°].

This method works well for both handwritten and machine-printed text. By being
robust to noise and script independent, it is the optimal uniform slant estimator.
Again, it is emphasized that this method requires a single line or word image as input.
Obviously, vertical histograms of two or more text lines give no useful information
about the slant. It contrasts with some other methods (Shridhar and Kimura, 1995;
Changming Sun and Deyi Si, 1997) which employ structural information and can

estimate the slant angle from the whole input document.
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Figure 5.3. Vertical histograms of one image horizontally sheared at three different

angles.
Figure 5.4 shows that the SD measure gives a maximum for the vertical histogram of

horizontally sheared image at the slant angle, but the search space has local maxima

which make it impossible to use the binary search.
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Figure 5.4. Plotting the SD measure of vertical histograms of sheared images from -45°
to 45°. Each plot has a maximum corresponding to the slant angle.

Figure 5.5, shows that variance can not be used as the criterion, because it fails for

image of Figure 5.4(a).

-45 ] 45 -45 ] 45
(a) for image of Figure 5.4(a), the maximum does (b) for image of Figure 5.4(e), variance gives
not correspond to the slant angle. the same result as SD.

Figure 5.5. Plotting variance of vertical histograms of sheared images from -45° to
45°.
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Slant corrected words usually has jagged edges which may complicate the extraction
of structural features. In order to remedy this problem, the image is smoothed by the

rule set of Figure 5.6.

1111 1 1 110]0 1100
1/0]0 - 1 0 110 - 00
1111 11111 1100 1100
(a) rule 1; rotating this rule at 90°, 180° (b) rule 5; rotating this rule at 90°, 180°
and 270° gives rules 2, 3 and 4. and 270° gives rules 6, 7 and 8.
1111 1111 111 1111
101 - 1|11 110X - 111X
111 1111 1]1]1 1111
(c) rule 9; the complement of this rule, is (d) rule 11; rotating this rule at 45°, 90°,
rule 10. 135° 180°, 225°,270° , and 315° gives

rules 12 to 18.
Figure 5.6. The rule set for smoothing a slant corrected image, where 0 denotes
background, 1 represents text and X means don't care.

Each rule is applied to all image pixels simultaneously, and the rules are applied one
after another (i.e., rule n is applied to the image smoothed by rule n-1). These rules
preserve the image connectivity, i.e. no rule breaks or merges connected components.
Figure 5.7 demonstrates that the post-processing step can smooth jagged edges of a

slant corrected word.

(a) A part of a slanted word (b) image (a) after slant correction (c) image (b) after smoothing
Figure 5.7. Applying rule-based smoothing after slant correction.

5.4 Comparison with a Structural Method

In order to show the effectiveness of the proposed method, it is compared with a
structural slant correction technique (Shridhar and Kimura, 1995) which employs
statistics of chain-coded image this way: the chain code of entire border pixels of the

binarized image is extracted first, and then the slant is computed by:
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where n;, n, and n; denote the number of chain elements at angles 45, 90 and 135
respectively.

Both methods are applicable to Farsi and English words. Figure 5.8 illustrates that
for a handwritten word, chain-code based method is not as accurate as the proposed
histogram based method, but the latter is significantly slower, because shear
transformation at various angles is a time consuming operation. For slanted word of
Figure 5.8(a), n; = 200, n, = 59 and n; = 30; so 6 = 30° and the sheared image is
shown in Figure 5.8(b); while the histogram based method returns 6 = 45°, leading to
the less slanted word of Figure 5.8(c¢).

(a) A slanted word (b) Slant corrected word using  (c) Slant corrected word using
chain-code based method histogram based method

Figure 5.8. A comparison between two slant correction techniques for a handwritten
English word.

Figure 5.9 shows that the chain-code based method fails in the presence of high noise;
while the histogram based method still works properly.

(a) A noisy slanted word ‘ (b) Slant corrected word using (c) Slant correctéd using
chain-code based method histogram based method

Figure 5.9. Structural slant correction methods tend to fail in the presence of high
noise.
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CHAPTER 6
SKELETONIZATION

6.1 Introduction

Skeletonization or medial axis transform (MAT) of a shape has been one the most
surveyed problems in image processing and machine vision. A skeletonization
(thinning) algorithm transforms a shape into arcs and curves of thickness one which is
called skeleton. Ideally, the skeleton should retain basic structural properties of the
original shape; it should be well-centered, well-connected (preserve connectivity
information) and robust, and also allows a precise reconstruction (Ivanov et al., 2000).
Over years, it has been found to be so difficult to get an algorithm that satisfies all of
the requirements. There is no unique definition for skeleton, so different algorithms,
with different definitions, produce different skeletons for the same shape.

By diminishing variability and distortion of instances of one class and reducing the
amount of data to be handled, skeletonization simplifies classification. Skeletons have
been proved to be effective in pattern recognition problems such as character
recognition, fingerprint recognition, chromosome recognition and analyzing X-ray
images. Skeletons provide compact representations that allow structural analysis of
objects, and they have also applications in image compression.

The skeletonization techniques can be divided into two major categories (Ahmed,
1995): direct and indirect. The direct techniques produce skeletons by directly
removing pixels from the pattern. The direct methods can be further classified into
iterative and non-iterative. The iterative direct techniques compute skeletons by
iteratively deleting removable boundary pixel either sequentially (Naccache and
Shinghal, 1984) or parallel (Zhang and Suen, 1984) (Figure 6.1), until it causes no
further changes to the image. A pixel is tested and marked to be removed if its
neighbors (usually 8-neighbors) satisfy certain conditions. In sequential algorithms
pixels are tested in a fixed order in all iterations and removing a pixel in an iteration

depends on the resultant image of the previous iteration and the previous operations of
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this iteration. But, in parallel algorithms removing a pixel only depends on the result
of the previous iteration, so all pixels can be tested independently in each iteration.
The iterative methods yield thin and geometrically representative but not necessarily

well-centered skeletons.

Skeletonization
Algorithms

Direct Indirect

Itertive Non-Iterative

Sequential Parallel

Figure 6.1. The classification of skeletonization algorithms.

The non-iterative techniques produce skeletons by connecting pixels having special
properties. A pixel with special properties may be the middle pixel of a component of
a scan line, the parts of polygonal regions where a pattern is divided into a set of
regular or irregular polygons, etc. (Ahmed, 1995).

Indirect techniques are very similar to non-iterative techniques, and they are proved
to perform better than some widely used direct techniques (Ahmed, 1995). Indirect
techniques do not produce skeletons by removing or changing pixels, they rather
construct skeletons by computing appropriate logical properties such as distributions
of pattern pixels. In (Ahmed, 1995) an indirect technique is presented in which the
skeleton is constructed by dividing shape pixels into a set of adjacent clusters and then
connecting their centers. The cluster centers are computed by a modified version of
the self-organizing feature map (SOM) algorithm.

Conventional skeletonization techniques implicitly assume connectivity of pixels
inside image region, performing poorly on sparse (non-connective) shapes. The
sparseness within image regions may be due to aging, uneven lighting or thresholding,
and in document images, it may also occur because of poor ink quality. In (Singh et

al., 2000) an indirect method utilizing SOM for the skeletonization of sparse shapes is
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introduced. The method requires neither well-separated shapes from background nor
connectivity inside regions, so it can be used in developing robust vision systems.
Given the pixel distribution of a shape, a piecewise-linear approximation of the shape
skeleton is iteratively evolved by using a minimum spanning tree-based SOM. The
adjacency relationships between the shape regions are detected and used in the
evolution of the skeleton by constraining the SOM to lie on the edges of the Delaunay
triangulation of the shape distribution. The final skeleton is obtained when the SOM
converges. The method is invariant to Euclidean transformations and adaptive in
terms of the topology of the shape distribution and in the number of map units.

Skeletonization algorithms are notorious for being slow on ordinary serial
computers, and most of them suffer from irrational memory and CPU usage. These
disadvantages are more pronounced for large images. For example, a drawing of
standard A3 size, scanned at the typical resolution of 600 dpi, would be
approximately 7000 x 10000 pixels and require 8.3 Mb of memory if treated as a
binary image, which makes random access to different parts of the image very slow
(Ivanov et al., 2000). However, for a typical word image of size 200 x 200, neither
memory nor CPU inefficient usage is essential, and by using faster ubiquitous
hardware, almost all algorithms are practical for text recognition. In (Ivanov et al.,
2000) a fast and efficient skeletonization algorithm for large images is presented. Its
main idea is to generate a special polyline for each raster line considering them in top
to down direction, and then constructing the skeleton from points of these polylines.
The obtained skeletons are precisely reconstructable, and the amount of required
memory depends linearly on original image width, but not its area.

Ji and Piper (Ji and Piper, 1992) have developed a skeletonization algorithm by
finding the points whose removal do not alter homotopy of the input image. They
have proved that the Hilditch's condition is a sufficient condition for removing a
single point from a binary image without altering its homotopy. The mathematical
morphology operators erosion and dilation are used to construct skeletons. The
computational complexity of the algorithm is O(n®) and the memory requirement is
O(n), where n is the linear scale of the image. The method is fast and can produce
reconstructable and thin, but not necessarily of unitary thickness, skeletons.

There are hundreds of skeletonization algorithms in the literature. Of course it is not
possible to implement and experiment with all of them. For the skeletonization of the

Farsi script, five algorithms were implemented: two classical methods (SPTA
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(Naccache and Shinghal, 1984) and Zhang-Suen's (Zhang and Suen, 1984)), DTSA
(Sajjadi, 1996) designed for the Farsi scripts, one homotopy-preserving method (Ji
and Piper, 1992) and the fully parallel Huang et al.'s method (Huang et al., 2003). In
the rest of this chapter, we briefly describe each of these methods, showing that
Huang's is better than others for the purpose of this work. Finally, a simple and

effective skeleton post-processing procedure is described.

6.2 The SPTA
The Safe-Point Thinning Algorithm (SPTA) (Naccache and Shinghal, 1984) is a

sequential method and like other iterative algorithms consists of iteratively deleting
edge-points (points along the edges of a shape) while keeping end-points (points at
the ends of a stroke), and also the shape connectedness should not be broken and
excessive erosion (iteratively removing a stroke) should not be occurred.

Thinning is normally applied to binary images, and produces a binary image as
output. Hereafter, it is assumed that shape pixels are represented by black pixels and
background pixels are represented by white pixels. For a point p with the coordinate
(x,y), the set of points with coordinates (x+1,y), (x-1,y), (x,y-1) and (x,y+1) are called
its 4-neighbours, and its 8-neighbors are the set of points with coordinates (x+1,y),

(X+1ay_l)a (Xay_l)o (X'lay_l)a (X'19Y)7 (X'19y+1)5 (X7y+1) and (X+19y+1) (Figure 62)

N3 | N2 | M
Ng | P | No
Ns | Ne | N7
Figure 6.2. A point p and its 8-neighbors (ny to n7).

The points Ny, Ny, Ng and Ne are also referred to as 4-neighbors of p.

In the SPTA, an edge-point is defined as a black pixel with at least one white 4-
neighbor, an end-point is defined as a black point with at most one black 8-neighbor
and a break-point is defined as a point whose deletion would break the connectedness
of the pattern. The algorithm in each pass flags a point if it is an edge-point but not an
end-point, nor a break-point, and nor must its possible deletion cause excessive
erosion. All flagged points are removed at the end of a pass, and if there is no flagged
point the procedure stops. An edge-point can be of one or more of the following

types: 1) a left-edge point, having its left neighbor ns white; 2) a right-edge point,
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having its right neighbor ny white; 3) a top edge-point, having its top neighbor n;
white; and 4) a bottom edge-point having its bottom neighbor ng white.

By examining different combinations of the 8-neighbors of a left-edge point p the
authors have concluded that p can be safely removed (without breaking
connectedness, end-point deletion and excessive erosion) if the boolean expression Sy
is true:

S, =n,.(n, +n, +n, +n,).(n, +N,).(n, +Ny) (6.1)

A boolean variable has the true value if its corresponding point is black and
unflagged. Similarly, for a right-edge point, trueness of the expression Sy, for a top-
edge point, trueness of the expression S, and for a bottom-edge point, trueness of the

expression S¢ are sufficient conditions for safe deletion of the corresponding edge-

points.
S, =n,.(ny +n, +n, +ny).(ng +1N,).(n, +1,) (6.2)
S, =n,.(n, +n, +n, +ny).(n, +0,).(n, +1N;) (6.3)
S¢ =n,.(n; +n, +n, +n,).(n, +n;).(n, +1N,) (6.4)

Each pass in the SPTA involves two scans, where all black points (the shape points)
are examined in each scan. The scanning sequence can be either row-wise or column-
wise. The first scan of a pass, flags safely removable left-edge points and safely
removable right-edge points. In the second scan of the pass, safely removable top-
edge points and safely removable bottom-edge points are flagged. At the end of the

pass, all flagged points are removed (become white).

6.3 The Zhang-Suen's Algorithm

This algorithm has been used as basis of comparison for skeletonization algorithms
for many years. It is a fast and simple parallel iterative algorithm, meaning that the
new value for a pixel can be calculated using only the values from the previous
iteration.

Each pass in the algorithm involves two sub-iterations, where in a sub-iteration,
certain points are flagged, and at the end of the sub-iteration if there is no flagged
point the algorithm stops; otherwise the flagged points are removed and the next sub-
iteration starts. In the first sub-iteration, a pixel is flagged if it satisfies all of the

following four conditions:
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1. Its connectivity number is one. The connectivity number C, of a pixel p
can be defined as the number of transitions from black (foreground) to
white (background) within the pixel 8-neighbors. It has a value in the
range of zero to four.

2. It has at least two and at most six black neighbors.

3. At least one of ng, Ny and ng is white.

4. At least of ng, N, and ng is white.

Now if there is no flagged point the algorithm stops, otherwise all flagged point are
removed and the second sub-iteration starts where it is the same as the first sub-
iteration except for conditions 3 and 4:

3. At least one of ng, N, and n4 is white.

4. At least one of n,, N4 and ng is white.

As it will be shown later, the Zhang-Suen's algorithm sometimes removes the letter
dots, which carry the necessary information to distinguish certain Arabic/Farsi letters
from each other. Therefore, this skeletonization must not be used in the context of
Arabic/Farsi text recognition. Actually, it always removes 2x2 squares and sometime

cause excessive erosion.

6.4 The DTSA

To overcome the problems of the Zhan-Suen's algorithm for the Arabic/Farsi scripts,
Sajaddi proposed Decision Table Skeletonization Algorithm (DTSA). This parallel
iterative algorithm involves four sub-iterations in each pass, and all shape (black)
pixels are examined in each sub-iteration. Certain points are flagged within a sub-
iteration; at the end of the sub-iteration if there is no flagged point the algorithm
stops; otherwise the flagged points are removed and the next sub-iteration starts.

In the first sub-iteration, each left-edge point for which the boolean expression Dy is
true is flagged. In the second sub-iteration, each bottom-edge point for which the
boolean expression Dg is true is flagged. In the third sub-iteration, each right-edge
point for which the boolean expression Dy is true is flagged. In the forth (last) sub-
iteration, each top-edge point for which the boolean expression D; is true is flagged.
Where the definitions of left-edge point, right-edge point, top-edge point and bottom-
edge point are the same as those of the SPTA and:

D, =S,.(n, +n, +(n, +n, +n, ®n,).(n, +n, +1,.0)) (6.5)
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D, =S,.(n, +n; +(n, +n, +n, ®n,).(n; +n, +N,.N,)) (6.6)
D, =S,.(n;+n, +(n, +n, +n, &n)).(n, +n, +N,.N,)) (6.7)

D, =S,.(ny +n, +(n, +n, +n, @n;).(n, +n, +N,.N,)) (6.8)

6.5 The Huang et al.'s Algorithm

Huang et al. (Huang et al., 2003) have proposed a fully parallel thinning algorithm
which involves one iteration in each pass. It uses the information of 3x3 windows (i.e.
the state of 8-neighbors) like the previous iterative algorithms, but in order to preserve
connectivity, 3x4, 4x3 and 4x4 masks are also used. The algorithm is very efficient
and robust to noise of contour.

All the following rules are applied simultaneously to each pixel p to determine

whether it should be flagged or not:

If p has zero, one or eight black neighbors, it is not flagged.

If p has two black neighbors,
It is flagged if the two neighbors are consecutive, i.e. Ny and n; are
black, or n; and n, are black, or n, and n; are black, ..., or n; and ng are
black.

e If p has three black neighbors,

It is flagged if the three neighbors are consecutive, or if they match any

of the following templates:

0[1]/0] |0]1]0 1[1]0] |0]1]1
1{p[O] [O0]p]|1 0|p|l 1|{p|O
110/0] |0]O]1 0/]0]/0] [0]0O]O
Where 1 denotes a black and 0 denotes a white pixel.

e If p has four black neighbors,
It is flagged if the four neighbors are consecutive, or if they match any

of the following templates:

1]1]/0] [0]1]1
Olp|l]| [1|p]O
0]0]1 00

e Ifp has five black neighbors,
It is flagged if the five neighbors are consecutive.
e Ifp has six black neighbors,

It is flagged if the six neighbors are consecutive.
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e If p has seven black neighbors,
It is flagged if its white neighbor is a 4-neighbor.

These rules remove two-pixel-width rectangular patterns, resulting in loss of
information or pattern connectivity. To obviate this problem, the pixel p is preserved

(not flagged) if it matches any of the following templates:

0

X
1
1
X

OS|I—o O

M| [ [ ¢

ol (=)=} lan)

(=)l ol e

[} fell Fan ) Fan)

(=)l ol e

OS—|— |

[} fell Fan ) Fan)

SOOI~

0
1
X

SO~
SO |~ |o

b
S
S
K
[
[
e
S
(e
(e
b

o

—
(=)
()
=]
—
(e
()
—
(=)o)
()

At the end of a pass, if there is no flagged pixel the algorithm stops; otherwise the

flagged pixels are removed and the next pass starts.

6.6 Experimental Results

For evaluating the quality of the implemented skeletonization algorithms, the
following items are considered: the width and connectivity of skeleton, excessive
erosion and robustness to border noise. Rather than go into a long detailed
explanation, ineffectiveness of the homotopy-preserving and Zhang-Suen's algorithms
is simply shown by actual examples. In the first experiment, the algorithms are
applied to the image of Figure 6.3(a), which contains simple geometrical objects.
Figure 6.3(b) shows that the homotopy-preserving algorithm removes small objects,
and Figure 6.4(d) shows that the Zhang-Suen's algorithm removes the 2x2 square and
excessively erodes the two-pixel-width slanted line. The SPTA, DTSA and Huang et
al.'s algorithms provide acceptable outputs. The results of the SPTA and DTSA are
similar, but the former is more computationally expensive.

The algorithms are applied to the Farsi (Figure 6.4(a)) and English (Figure 6.5(a))
character set. As shown in Figure 6.4(b) and Figure 6.5(b), the homotopy-preserving
algorithm does not preserve connectivity. The Zhang-Suen's algorithm removes some
of the dots (Figure 6.4(d)), so some letters have the same skeleton, for example '’

and ', which leads to misidentification. Also notice the skeleton of 'K', in the image
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of Figure 6.5(d), which has been excessively eroded. Thus, the homotopy-preserving
and Zhang-Suen's algorithms are applicable neither for Arabic/Farsi nor for English.
The other three algorithms produce acceptable skeletons for both character sets.

To compare the five algorithms in the presence of border noise, the image of Figure
6.6(a) is presented to each of them. Figure 6.6(b) shows that the homotopy-preserving
algorithm is not robust to the border noise, and the skeleton is not of unitary

thickness.

nfl L " .

]

(a) The input image (b) The skeleton using the
homotopy-preserving algorithm

I - O-

2000 Al

(c) The skeleton using the SPTA (d) The skeleton using the
Zhang-Suen's algorithm

Inll _.:ln'

7zl 1|

(e) The skeleton using the DTSA (f) The skeleton using the
Huang et al.'s algorithm

Figure 6.3. Applying the implemented skeletonization algorithm to an image
containing simple geometrical patterns.
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The Zhang-Suen's algorithm produce no spurious branch, meaning its robustness to

the border noise, but as illustrated before, it has serious drawbacks that prevent its

applicability. Among the other three algorithms, Huang et al.'s is more robust to

noise; the resultant skeleton has only one spurious branch. Figure 6.6(e) shows that

the DTSA is very sensitive to the border noise.
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(a) The input image

(b) The skeleton using the
homotopy-preserving algorithm
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(c) The skeleton using the SPTA

(d) The skeleton using the Zhang-Suen's
algorithm
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(e) The skeleton using the DTSA

(f) The skeleton using the Huang et al.'s
algorithm

Figure 6.4. Applying the implemented skeletonization algorithm to the Farsi character

set.
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abcdefghij
kimnhopqgrst
UVWXYZ
ABCDEFG
HIJKLMNO

PQRSTUYV
WXYZ

abcdcfghi]
KIlmnopagrst
LV W XY 2
ABCDEFG
HIJKLMNO

PAQRSTUV
W XY Z

(a) The input image

(b) The skeleton using the
homotopy-preserving algorithm

apbcdefgni] abcdefghij
Klmnopdrest kimnopaqgrst
UVWXY 2 UV W XY Z
ABCDEFG ABCDEFG
AlJKLMNO HIJKLMNO
PQRSTUV PQRSTUV
W OXLY Z W XY Z

(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's

algorithm

apcdefghi]
Kilmnopgrst

abcdefgni]
Kimnopagrest

UV WXYZ UVWXY 2
ABCDEFRFG ABCDEFRFG
HlJKLMNO HIJKLMNO
PAQRSTUYV PAQRSTUV
W XY Z W XY/

(e) The skeleton using the DTSA (f) The skeleton using the Huang et al.'s

algorithm

Figure 6.5. Applying the implemented skeletonization algorithm to the English

character set.
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. ’ C : } C
/.:/ _
(a) The input image (b) The skeleton using the
homotopy-preserving algorithm

/} C //J C

(c) The skeleton using the SPTA (d) The skeleton using the Zhang-Suen's
algorithm

s 2

(e) The skeleton using the DTSA (f) The skeleton using the Huang et al.'s
algorithm

Figure 6.6. Applying the implemented skeletonization algorithm to a Farsi word
image with noisy border.

Overall, these experiments show the superiority of the Huang et al.'s algorithm over

others, as verified by many other experiments.

6.7 Postprocessing

A skeletonization algorithm usually produces a distorted skeleton with some
spurious branches which need a postprocessing step to be removed. The technique
described here uses the maximum circle idea. Since the local features of the pattern
are affected by the algorithm, the original pattern is also used to modify the skeleton.

Definition 6.1. A feature-point is a black pixel in the skeleton having a connectivity

number other than two; i.e. p is a feature-point if and only if C,(p) # 2.
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Definition 6.2. An end-point is a feature-point having a connectivity number of one;
i.e. p is an end-point if and only if C,(p) = 1. An end-point can be deleted without

affecting the pattern connectivity.

The algorithm is as follows: first, for each end-point ep, the radius Rep of the largest
circle of black pixels within the original image that is centered at ep is evaluated
(Algorithm 6.1). Then, the nearest non end-point nep to ep is found, and the link
between ep and nep is removed if dist(ep,nep) < Rep + Rnep. Where Rpep 1s the radius of
the largest circle of black pixels within the original image that is centered at nep.

Figure 6.7 shows the advantage gained by the postprocessing step.

Let I[r,c] be the binary input imge having R rows and C colums, and the
background is represented by zeros.
Let Center(r.,c.) be the center of the largest circle of black pixels.

maxRadi us = min(mn(r,, R—r. - 1), mn(c, C—-c. — 1));

if I[re,c] == 0

{
return 0;
}
for r = 1 to maxRadi us
{
for ro =rc—-rtore+r
{
for c; =cc —r toce +r
{
if Ji-r)?+(c,—c)’<r AND I[ry,¢c;] ==0
{
retrun r;
}
}
}
}
return r;

Algorithm 6.1 Evaluating the radius of largest circle of black pixels at a point

‘. “ N ey ’ e,
L - —_ : -_— :

(a) The input image (b) The skeleton using the (¢) The skeleton after
Huang et al.'s algorithm postprocessing

Figure 6.7. Postprocessing after skeletonization.
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CHAPTER 7
STRUCTURAL FEATURES OF

ARABIC/FARSI WORDS

7.1 Introduction

A method to extract structural features from Arabic/Fars word images is presented
in this chapter. Structural features are capable of tolerating many variations, but they
are not robust to noise, and hard to extract. Since the recognition is based on 1D
HMMs, the features must preserve the sequential characteristics of words, meaning
that a 2D word image must be converted to a 1D signal so that the relative ordering of
the characters is retained. The basic idea of the proposed method is based on the
techniques described in (Khorsheed, 2000; Almuallim and Yamaguchi, 1987). The
skeleton of a word image is decomposed into a number of links in a certain order.
Then, each set of links that from a loop (cycle) is replaced with a specia link
representing the loop. Each link is then represented by a 10D feature vector. The
features are the curvature of the link, its length relative to the word height, the
position of the its two ends relative to the first row of the image, the connection type
and four curved features. The features are irrespective of the baseline location, so the
difficult and crucia problem of baseline detection is avoided

7.2 Preprocessing

The preprocessing step has two duties: 1) normalization for word height; 2) skeleton
modification. Before skeletonization the input word is resized to have a height of 128
pixels. This is done by detecting the word area that is the minimum rectangle
containing the word in the input image. In order to be robust to noise, the upper side
of the rectangle is set to be the first row having a horizontal white run-length with a

length of higher than 2, and the lower side of the rectangle is set to be the last row
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having a horizontal white run-length with a length of higher than 2. The left side of
the rectangle is set to be the first column having a vertical white run-length with a
length of higher than 2, and similarly the right side of the rectangle is set to be the last
column having a vertica white run-length with a length of higher than 2.

Before link extraction, the skeleton is modified to have as smal pixels as possble. A
pixel p is removed if matches any of the following templates or their rotations at
angles 90°, 180° and 270°:

0|1]|x X|1]|X
1/p|0 lip|1l
Xx|0]|0 X|0| X

These rules actually remove 4-connectivity of the pattern, and they must be applied
sequentialy in order to preserve 8-connectivity. Figure 7.1 illustrates how these rules

modify a skeleton by removing some pixels.
EEEEEEE [ EEEEEE

[TT1 [TTT1 [T1 [TT1
(a) Theinput skeleton

Figure 7.1. Skeleton modification by removing pixels that match the templates.

7.3 Link Extraction

In speech recognition and online handwritten recognition, the input signal is one-
dimensiond itself, but here the 2D word image must be converted to a 1D observation
sequence. Thisis done by tracing the skeleton of the word image to extract its links. A
link is a set of neighboring pixels between two feature-points. So alink is extracted by
starting from a feature-point and then moving from the current pixel to its adjacent
until reaching another feature-point. The process is started from the right-most end-
point. In order to extract the links in a canonica order, the following two rules are
applied: 1) if fp; and fp, are two feature-points such that fp; is located to the right of
fp2, then all links branching from fp; must be extracted before any of the branching
links from fp,; 2) the first link that must be visited, from the links branching from a
feature-point fp, is the one that makes the minimum angle with the current link

(ending at fp) and the other branching links must be visited in a clockwise order.
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Figure 7.2 shows two examples of visiting links in the canonical order. Different
types of feature-points are also shown in the Figure.

Definition 7.1. A dot is a feature-point having a connectivity number of zero; i.e. p
isadot if and only if Cy(p) = O.

Definition 7.2. A branch-point is a feature-point having a connectivity number of
three; i.e. p isabranch-point if and only if Cy(p) = 3.

Definition 7.3. A cross-point is afeature-point having a connectivity number of four;

i.e. pisacross-point if and only if Cy(p) = 4.

Kenze-ar [y

@ (b)
Figure 7.2. Two examples of visiting links in the canonical order. Lower-numbered
links are visited before higher-numbered ones.

7.4 Loop Extraction

Loop extraction makes the number of strokes smaller, thus leading to lower
computational cost and easier modeling. Loops are important distinctive features as a
number of letters have loops inside. A loop can be of any of the following types: 1)
simple-loop, which is a single link beginning from a feature-point and returning to the
same point again; 2) multi-link-loop, which is a loop consisting of two or more links
forming a closed path; 3) double-loop, which is aloop that contains one or more other

loops (Figure 7.3). Simple-loop can be seen in letters '—=', 'u=', ', o', b, ) e

link-loop can be seen in letters =, 'ua’, 'wa, ‘o, L', Rt B R et Tl TR
LGl A E W s ' and sometimes ', = e ', =, =, A and w=
Double-loop can be seen in letters ‘&' and '«'. Simple-loops are straightforward to
detect; Algorithm 7.1 is to find multi-link-loops and double-loops in a graph with
vertices corresponding to feature-points of a word skeleton and edges corresponding
to the links between the feature-points. We use the edge-list representation to describe
aword graph.
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O - O

doukle-lonp doukle-lonp doubla-lcop multi-link-laop multi-link-laop simple-lacop

Figure 7.3. Examples of different types of loops.

Let V,E) be the graph with the set of vertices V, and the set of edges E.
Let L be a list for DFS, where L[0] denotes the first elenent.

for each vertex v in V

L. push_front (v);
while L is not enpty

—~

u=Lfront(); // = L[L.size()-1].
Let e(u,t) be an unvisited nei ghboring edge of u.
if no such edge exists

L.pop_front(); // renove u fromthe list.

el se

Mark e as visited.
if there is an unvisited edge d between t and L[i], a vertex in L

{
Mark d as visited.
Now, {(L[i],L[i+1]), (L[i+1],L[i+2]), ...,
(L[L.size()-2],L.front()), (L. front(),t), (t,L[i])} is a cycle.
Repl ace the cycle with a special cyclic edge ¢ (an edge that
represents the cycle).
if the cycle has already contained a cyclic edge
{
c is nmarked as a doubl e-cyclic edge (or a doubl e-1oo0p).
}
}
L. push_front(t);
}

}
}

Algorithm 7.1. A DFS algorithm for detecting multi-link-loops and double-loopsin a
word graph.

7.5 Structural Features
After forming the word graph, each edge, corresponding to a link or a loop of the
origina word, is transformed into a 10D feature vector. The features have the
following descriptions:
Normalized length feature (f;): The length of an edge (the number of its
pixels) divided by the height of the word image (128). This feature is
defined to be 2 for loops, and O for dots. f; is invariance against trandation,

rotation and scaling.
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Curvature feature (f2): The curvature of an edge, defined as the proportion
of the Euclidean distance between the two vertices of the edge by its actua
length. Thus, the curvature becomes zero for a smple loop, and one for a
draight line. This feature is defined to be 2 for multi-link-loops, 3 for
double-loops, and 4 for dots. f, is invariance against translation, rotation
and scaling.

Slope feature (f3): The slope of the line between the two vertices of an
edge partitioned into 8 equd interval, labeled 1, 2, ..., 8. This feature is
defined to be O for loops and dots. f3 is invariance against trandation and
scaling.

Connection type feature (f4): The (connection) type of the two endpoints of

an edge (to the previous and next edges). It has one of the following

values:
Vaue | Type of beginning vertex | Type of ending vertex

0 end-point end-point
1 end-point branch-point
2 end-point Cross-point
3 branch-point end-point
4 branch-point branch-point
5 branch-point Cross-point
6 Cross-point end-point
7 Cross-point branch-point
8 Cross-point Cross-point
9 when the edge is a dot
10 when the edge is aloop

f4 isinvariance against trandation, rotation and scaling.

Endpoint distance feature (fs): The normalized distance from the more
distance vertex of an edge, from to the middle row of the word image, to
the first row. This feature is defined to be O for loops, and helps
determining whether a dot is above or below a character. fs is invariance
against horizonta trandation and scaling.

Number of segments feature (fs): The number of segments of the polyline
fitted to an edge (Algorithm 7.2). fs is invariance against trandation,
rotation and scaling.

Curved features (f7-f10): Percentage of pixels above the top feature-point,
below the bottom feature-point, left of the left feature point, and right of
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the right feature point respectively. These features are invariance against

trandlation and scaling.

Let p be the set of vertices to be fitted by a polyline, where p[0] denotes
the first el ement.

first =0; // index of the first point of the current |ine segnent
last = 0; // index of the last point of the current |ine segnent

for current =1 to size(p)

{
d = “&" per pendi cul ar distance between p[i] and the straight connecting
a
i=first
p[first] and p[current]);
if d>(current - first + 1) * ERROR
p[first], p[first+l], ..., p[last] is a |line segnent.
first = last;
last = current;
}
p[first], p[first+l], ..., p[last] is the last |ine segnent.

Algorithm 7.2. Fitting a polyline to a set of points.
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CHAPTER 8
HIDDEN MARKOV MODELS FOR

HANDWRITTEN WORD
RECOGNITION

8.1 Introduction

The output of areal-world process may be observed in the form of a continuous or
discrete signal. A primary problem of interest is to build models for such real-world
signals. A modd for a signal is accompanied by severa advantages. First, it provides
the basis for a theoretical description of a signal processing system which can be used
to process the signal to have a desired output. Second, a model can provide valuable
information about the signal source without having to have the source available.
Finally and most importantly, models actually work well and enable us to redize
important practical systems (Rabiner, 1989).

There are severd ways to model a signal depending on its type and properties.
Generdly, a signal model can be deterministic or stochastic (statistical). The
deterministic models use some known properties of the signal and estimate parameter
values of the model. On the other hand, in the satistica models, a parametric random
process characterizes the signal. For applications such as speech recognition and
handwritten recognition that are accompanied by uncertainty, stochastic models
achieve better performance. The Hidden Markov Model (HMM), also referred to as
Markov sources or probabilistic functions of Markov chains in the communication
literature, isawidely used statistical model.

In this chapter, first we review the basic theory of Markov models, and then
explaining HMMs. Findly, the theory is extended to continuous HMMs. All
mathematical formulations needed to be implemented and some implementation

issues are discussed.
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8.2 Markov Models

An important class of stochastic processes is Markov processes, which has some
special properties making them mathematically manageable. It is often desirable to
analyze a sequence of random variables that are not independent, but rather the value
of each variable depends on previous elements in the sequence. In a Markov process,
the value of the current random variable is adequate to predict the value of future
random variables i.e. future behavior of the process. In other words, future e ements
of the sequence are conditionally independent of past elements, given the present
element. Let X = (Xy, ..., X1) be a sequence of random variable taking values in the
finite state space S={ sy, ..., S\}. The Markov properties are:

P(Xiy =S | X1, X5, X)) = P(X iy =S | X)) (8.1)

P(Xu=s | X)) =P(X, =5, | X)) (8.2

The second property is caled time invariance. If the sequence X has both Markov
properties, it is said to be a Markov chain.

A Markov chain can be completely descried by the stochagtic initial state vector []

and the stochastic transition matrix A:

p; =P(X,=s) (8.3)
a;j=PXu1=5|X%X=15) (8.4)
Where p, 3 0," i, and éilpi =1,and a2 0,"i,j,and éjN:laij =1"i.

To illustrate the ideas, consider an example about wesather prediction which is about
trying to guess what the weather will be tomorrow based on a history of weather
observations in the past. For simplicity, assume that there are three types of weather:
Sunny, Cloudy and Rainy, and the weather lasts al day, i.e. it doesn't change from one
state to another in the middle of the day. If we make the Markov assumption (which is
not valid in real world), then the 3-state finite state machine of Figure 8.1 with
arbitrary state transition probabilities represents a Markov chain. Note that the sum of
probabilities of outgoing arcs from each state is 1. From Figure 8.1 it is clear that a
Markov model can be taught of as a nondeterministic finite state machine with
probabilities attached to arcs.
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Figure8.1. A Markov mode for the weather prediction example.

Let s1 = Sunny, s, = Cloudy and s = Rainy, and the wesather on the first day be
Sunny. Then:
[1=(1.0,0.0,0.0)
€08 01 0.1u
A= 202 0.6 o.2g
g€.3 0.3 0.4y
The probability of a sequence of states X, ..., Xk is eadly calculated for a Markov
chain:
P(X1, ..., Xk) = P(X1) P(Xz | X1) P(Xs | X1, X2) ... P(Xk | X1, .., Xk1)
= P(X1) P(X2 | X1) P(X3 | X2) ... P(Xk | Xk-1)

Kol
=Py, @) AY, X, (8.5)
t=1

So in the above example, the probability that the weather for the next seven days will
be Sunny, Sunny, Rainy, Rainy, Sunny, Cloudy, Sunny, or more formaly the
probability of the observation sequence O = sy, S, S, Ss, S1, S, S1, €an be calculated
as.

P(O|Model ) = p,P(s1 | s1) P(s1 | s1) P(ss | s1) P(Ss | s3) P(st | ss) P(s2 | s1) P(st | <)
= P a11 ai1 13 Azz Az1 A1z A1
=1.0(0.8) (0.8) (0.1) (0.4) (0.3) (0.1) (0.2
=1.536 x 10™ (8.6)

Generally, when we talk about Markov models, we mean first-order Markov models
in which a history of size one is used to predict future behavior. But, sometimes the

future states require a larger history in order to be predicted. In an n™ order Markov
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model, n previous states are used to predict the next state. In general, by elaborating
the state space as a cross-product of the finite previous states, every n'™ order Markov
model can be encoded in afirst-order Markov model. So theoretically, the first-order

Markov assumption is not restrictive.

8.3 Hidden Markov Models

HMMs are powerful tools in the field of signal processing. Despite their limitations,
variants of HMMs are still the most widely used technique in modern speech
recognition systems. The similarity between speech and handwritten text, which both
are made up of symbols with ambiguous boundaries and variations in appearance, has
suggested extending the application of the HMMs to handwritten text recognition.
The HMM does not model the whole pattern as a single feature vector; rather, it
explores the relationship between consecutive segments of a pattern, since each
segment isrelatively smaller and easier to be characterized (He and Kundu, 1991).

A HMM can be considered as a nondeterministic finite state machine where each
state is associated with a random function. Within a discrete period of time t, the
model is assumed to be in some state and generates an observation by a random
function of the state. Based on the transition probability of the current state, the
underlying Markov chain changes to another state at time t+1. The state sequence that
the model passes through is unknown, only some probabilistic function of the state
sequence that is the observations produced by the random function of each state can
be seen. A HMM can also be considered as a double stochastic process or a partially

observed stochastic process. A HMM is characterized by the following elements:

N: The number of states of the model (8.7)
S={s, &, ..., \}: The set of states (8.8)
[1={p,=P(s att=1)}: Theinitial state probabilities (8.9)
A={a;=P(sat+l|s att)}: The state transition probabilities (8.10)
M: The number of observation symbols (8.11)
V ={v1, Vz, ..., v} : The set of possible observation symbols (8.12)

B ={bi(w) = P(wat t|s at t}: The symbol emission probabilities (8.13)
O:: The observed symbol at time t (8.14)
T: The length of observation sequence (8.15)
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A= (A, B, []): The compact notation to denote the HMM. (8.16)

N

N
Obvioudly, there are the following three constraints: é p, =1, a;=1"i ad
i=1 j=1

abw)=1"i.

§
k=1

The structure of the state transition matrix A determines the topology of the HMM. If
a; * 0"i,j meaning that each state in the model is reachable from any state within

one trangition, the model is called fully-connected or Ergodic. The widely used
topology in speech/text recognition is the so caled Left-to-Right (LR) or Bakis model
in which lower numbered states account for observations occurring prior to higher
numbered states. The tempora order in LR-HMMs is imposed by introducing
structura zeros to the model in the form of the constraint [] = {1, O, ..., 0} and
a; =0, i >] meaning that the model begins at the first (i.e. left most) state and at

each time instant it can only proceed to the same or a higher numbered state. As a
further constraint, in LR-HMM the number of forward jumps at each state is often

limited in order to restrict large state changes, i.e. a; =0, j >i+D for some fixed A

(Figure8.2).

(b) A 5-state Left-to-Right HMM with maximum rel ative forward jump of 2
Figure 8.2. Left-to-Right HMMs.

The following example helps understand the application of HMMs. Suppose you
were locked in a room for several days, and you were asked about the weather
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outside. The only available piece of information is whether the person who comesinto
the room giving your daily meal is carrying an umbrella or not, so V = { True, False}
for the observation of carrying umbrella. Let's assume P(Umbrella | Sunny ) = 0.1,
P(Umbrella | Cloudy ) = 0.3 and P(Umbrella | Rainy ) = 0.7. We want to draw
conclusion form our observations (carrying an umbrella or not) about the weather
outside as it is hidden from us. Let w be the weather condition on day i, and the
boolean value of u; mean whether you see an umbrella on the same day. Using Bayes
rule:

P(u,,..u, |W,,...,w. )P(w,,..w,) (8.17)

P(w,,...w, |u,,..u,) = P(UL..U)
e U

The probability P(wi, ...,w,) is the same as the Markov model of the previous
example, and P(us, ...,un) is the apriori probability of seeing a particular sequence of
umbrella events. The probability P(us,...,un | wi,...,W,) can be calculated as
O, P(u, |w,)if we assume, for all i, given w, u; isindependent of all u; and w; for all
j#I.

For the weather prediction, we can therefore omit the apriori probability P(uy, ...,un)
as it is independent of the weather. Based on the first-order Markov assumption, the
likelihood L, a measure proportional to the probability, can be computed as:

P(Wa,..., Wq | Ug, ..., Up) 1
L(Wi,...; Wi | U, ..., Un) = P(U1,...,Un | WA,..., Wn) P(Wy, ..., Wh)

= Oin=1 P(u, |\Ni)oin=l P(w, |w_,) (8.18)

Suppose the day you were locked in was sunny. The next day, the person carried an
umbrellainto the room, and you would like to predict the weather on the next day.
First we calculate the likelihood assuming the next day to be sunny:
L(w, = Sunny | wy = Sunny, U, = True) = P(uz = True | w, = Sunny) .
P(w, = Sunny | wy = Sunny) = 0.1 (0.8) = 0.08 (8.19)

Then we calculate the likelihood assuming the next day to be cloudy:
L(w, = Cloudy | wi = Sunny, u, = True) = P(uz = True | w, = Cloudy) .
P(w, = Cloudy | wi = Sunny) = 0.3 (0.1) = 0.03 (8.20)

Findly for the next day to be rainy:
L(w, = Rainy | wy = Sunny, u, = True) = P(uz = True | w, = Rainy) .
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P(w. = Rainy | wi = Sunny) = 0.7 (0.1) = 0.07 (8.21)

Thus, it is more likely that the next day was sunny.

8.4 The Three Fundamental Problems for HMMs

Most applications of HMMs need to solve the following problems:

Problem 1. Givenamode A= (A, B, []), how do we efficiently compute P(O | 2), the
probability of occurrence of the observation sequence O = O,, O, ..., Or.

Problem 2. Given the observation sequence O and a mode A, how do we choose a
state sequence S=5, S, ..., St 0 that P (O, S| A), the joint probability of the
observation sequence O = Oy, Oy, ..., Or and the state sequence given the model, is
maximized. In other words, we want to find a state sequence that best explains the
observation.

Problem 3. Given the observation sequence O, how do we adjust the model
parameters A= (A, B, []) sothat P (O|A) or P (O, S| 4) is maximized. In other words,
we want to find amodel that best explains the observed data.

8.4.1 Solution to Problem 1

It deals with computing the probability that the model A produces the observation
sequence O. The most straightforward way to compute P (O | 4) istofind P (O | S 2
for a fixed state S, multiply it by P (S| 4), and then sum up over al possible state
sequences of length T :

PO|l)=84 P©O]|S,!).P(S]|I) (8.22)

Since  P(S|l)=p,a a, .ad PO|S,)=b, (O)b, (O,).-b, (O),

%Szaszss"' Sr.a1St
Equation (8.22) can be rewritten as:
POl )=ap,b, (0)a,b, (0,)..a, . b, (O;) (8.23)

Computing the probability b)S/ Equation (8.23) is not practical since there are N state
sequences, requiring (2T-1)N' multiplications and N'™-1 additions. Thus, an efficient
procedure should be used instead. There are two alternatives: the forward procedure
and the backward procedure.

The forward procedure calculates the forward variable a(s) for each state s defined
as.
ot(S) = P(O1, Oy, ..., O, 5 =5 A (8.24)
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That is the probability of the partial observation sequence up to timet and the state s,
given the model 4. The following three-step procedure computes a.(s) for all instances
of time:

1. Initialization:

a,(s)=pb,(0), 1ESEN (8.25)
2. Induction:

a,,(r) :[é"\ll a,(s)a,lb, (0,,), LErENJIELET-1 (8.26)

s=1

This calculates the forward probability of state r at time t+1 based on the joint
probability of the previous forward variables from all states at timet and the transition
probabilities from each of those states to stater. It is due to the fact that state r can be
reached (with probability ag) independently from any of the N states at timet.

3. Termination:
POI1) =4 2,09 627)

Calculating the forward variables over all stf;ites at al instances of time requires N(N-
1)(T-1)+(N-1) additions and N + N(N+1)(T-1) multiplications, i.e. of the order of N*T
as compared to 2TN' required for the direct method.

The backward procedure follows the same approach but in the opposite direction by
caculating the backward variable f(s) for each state s defined as:

B(S) = P(Ot+1, Oz, ..., O1|S=54) (8.28)

That is the probability of the observation sequence from t+1 to T given the state s at
time t and the model 2. Like ot(S), f(S) can be computed by the following three-step
procedure for al instances of time:

1. Initialization:

b;(s)=1 1£sS£N (8.29)
2. Induction:
N
bt (S) = a as,rbr (Ot+1)bt+1(r)’ 1£ S£ N’t :T - :LT - 2’""1 (830)
r=1
3. Termination:
N
P(O]1) =8 p.b,(0,)b,(s) (8.31)
s=1

Computing P(O | ) using the backward variables aso involves of the order of N°T

caculations.
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8.4.2 Solution to Problem 2

Here we have to find the most likely state sequence (the hidden part of the model)
associated with an observation sequence. The famous Viterbi algorithm is a dynamic
programming approach to find the optimal path. It intermediately keeps the best
possible state sequence at each instance of time for each of the N gates, and finaly it
gives the best path for each of the N dates as the last state for the observation
sequence, from which the one with highest probability is selected.

The four-step Viterbi algorithm follows the same strategy as the forward procedure
but it replaces summation with maximization (or minimization, depending on the
optimality criterion). For a given the observation sequence O = Oy, Oy, ..., Ot and the
mode 4, the algorithm involves the following steps:

1. Initialization:
dy(s) =p b, (O)) (8.32)
y.(s)=0,1£s£N (8.33)

Where &(s) denotes the accumulated weight when we are in state s at time t, and
vi(S) represents the state at time t-1 which has the lowest cost (maximum probability)
corresponding to the state transition to state s at time't.

2. Induction:
d,(s) = max(d,, (r)a.]b,(O,) (8.34)
y () =argmax(d, ,(r)a], 1ESEN,2EtET (8.35)
1£rEN
3. Termination:
= 8.36
P = max[d, (s)] (8.36)
o =argmax(d, (s)] (8:37)
1£sEN
4. Path Backtracking:
G =Y a(Gr ), t=T-1T- 2,1 (8.39)

Now, Q = {a:, 02, ..., qr} is the optimal state sequence, and P’ is the joint
probability of the observation sequence O and the optimal state sequence Q.

Like the forward and backward procedures, the complexity of the Viterbi agorithm
is of the order of N°T,

A direct implementation of the above algorithm does not take care about underflow.
It is clear that the probabilities we are caculating involve multiplying together very

small numbers, which will rapidly underflow the range of floating point numbers on a
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computer. To remedy this problem, the Viterbi agorithm is changed to work with
logarithms. This not only solves the underflow problem, but aso speeds up the
computation, since addition is much faster than multiplication. A quick
implementation of the Viterbi algorithm is highly desirable because it is a runtime
algorithm, and not a training algorithm which can usually proceed offline. The
efficient and practical verson of the Viterbi algorithm is given below:

0. Preprocessing:

p, =log(p.), LESEN (8.39)
a. =log(a,), 1£r,sEN (8.40)
b, (0,) =log(b,(0,)), 1ESEN,IEtET (8.41)
1. Initialization:
dy(s) =P +b,(0)) (8.42)
y,(5)=0,1£ES£EN (8.43)
2. Induction:
d,(s) = maxd,.,(r) +&,] +b,(0,) (844)
y (s)=argmax{d_,(r)+3_], 1ESEN,2EtET (8.45)
1£rEN
3. Termination:
. 8.46
P’ = max(d, (s)] (8.46)
g, =argmax(d, (s)] (8.47)
1£sEN
4. Path Backtracking:
O =Y (G ), t=T-1T-2...1 (8.48)

Now, Q ={qi, Oz, ..., Gr } is the optimal state sequence, and exp(P) is the joint
probability of the observation sequence O and the optimal state sequence Q .

You may notice that the Viterbi algorithm only involves multiplications, but the
forward/backward agorithm involves additions too. Logarithms can still be used to
prevent floating point underflow, here we need to calculate log(x+y) which can be

achieved by the following technique (Manning and Schuitze, 1999):

if y-x>1log big
return vy;

else if x -y >1log big
return x;

el se
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return mn(x,y) + log(exp(x - mn(x,y)) + exp(y - mn(x,y)));

Where big is suitable large constant like 10%°.

8.4.3 Solution to Problem 3

There are two general approaches for estimating the model parameters (training)
depending on the probability that is chosen for maximization. The segmental k-means
(Juang and Rabiner, 1990) algorithm adjusts the parameters so that P (O, Q| 4) is
maximized, where Q  is the optimal state sequence corresponding to the observation
sequence O. The Baum-Welch algorithm (Rabiner, 1989) adjust the parameters to
increase P (O | A) until a maximum value is reached, here P (O | 4) involves summing
up P (O, S| 2) over al possible state sequences S, meaning that the algorithm does not
focus on a particular state sequence. The segmental k-means agorithm is often
preferred, because it requires much less computation as compared to the Baum-Welch
algorithm, and aso in text recognition applications, both modeling and decoding must
be performed on the observation datasets and the criterion P (O, Q'| A) seems quite
natural for both these tasks.

8.4.4 The Segmental K-Means Algorithm

The segmental k-means algorithm requires a number of observation (training)
sequences. Let there are w number of such sequences. Each sequence
O:Ol,OZ,...,OTi consists of T; observation vectors, so we havegvl'l'i observation

i=1

vectors. Instead of w number of such sequences, if one long sequence is given, it can
be segmented into an arbitrary number of short sequences. Each observation symbol
O is assumed to be a vector of dimension of one or higher; and all observation
vectors must be of equal dimension. The algorithm consists of the following steps:

1. Randomly choose N observation vectors Ci,C,,...,Cn, and assign each of the
remaining observation vectors to one of these N vectors from which its Euclidean
distance is minimum. Therefore N clusters, each called a state, numbered from 1 to N

are formed. The notationO, T smeans that the t" observation symbol O: of an

observation sequence is assigned to state s. This initid choice of clustering does not
influence the finak HMM, but it can decide the number of iterations for training. To
make the initial choice of clusters as widely distributed as possible a good strategy
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when w> N is to choose C; as the first observation vector of the first sequence, C; as
the second observation vector of the second sequence and so on (Dugad and Desai,
1996). This step provides a good initialization for the complete training procedure.

2. Calculate the initial and the transitions probabilities:

. _ number of occurrencesof {O,1 s}
°  total number of occurrencesof O,

. _ numberof occurrencesof {O, T randO,,,1 g
* total numberof occurrencesof {O, T r}

, 1£r,S£ N, 1£t£TI-1 (850)

3. Calculate the mean and covariance matrix for each sate;

X 1o
=—-q0,1£sEN
m N(fi. o 1ES (8.51)
~ 1 o o \T X
Vs _Egs(ot -m) (G, -m), 1£s£N (8.52)

4. Calculate the probability distribution for each observation vector for each state:

63 )= %EXP(‘ ;(Ot - ﬁ]s)\73(0t - m)") (8.53)
(20) 2 |V, |

N

It has been proved that the agorithm converges to the state-optimized likelihood
function for a wide range of density functions including Gaussian. Here, the Gaussian
density is optionally chosen.

5. Use the Viterbi algorithm with the new probabilities to find the optimal state
sequence Q for each training sequence. An observation vector is reassigned a state if
its original assignment is different from the corresponding estimated optimal state, i.e.
assign O tosif g =s.

6. If any vector is reassigned a new state in Step 5, then use the new state assignment
and repeat Step 2 to Step 6; otherwise, stop.

8.4.5 The Baum-Welch Algorithm

The Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm. The
EM algorithm is a widely used approach to learning in the presence of unobserved
(hidden) variables. It searches for a maximum likelihood hypothesis by iteratively re-

estimating the expected values of the hidden variables given its current hypothesis,
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then recalculating the maximum likelihood hypothesis using these expected values for
the hidden variables. In other words, the current hypothesis is used to estimate the
unobserved variables, and then the expected values of these variables are used to
caculate an improved hypothess. It can be proved that the algorithm converges to a
local maximum hypothesis (Mitchell, 1997).

An initial hypothesis (HMM) can be constructed in any way, but a reasonable initial
estimate is obtained by using the first four steps of the segmental k-means agorithm.
First, we should introduce some concepts and formulas that will be used in the final
formulas. Consder %(s) = P(s = s| O, 4) that is the probability of being in state s at
time t given the observation sequence O and the modd A. Using the Bayes law we
have:

_P(s=s0]l) _a,(s)b,(s)

t) = = ,1Es£N

%0="p01 po|I) ' (8.54)
Where o4(s) and f(s) are the forward and backward variables.

We also define &(r,s) = P(s =1, s+1 =S| O, A) that is the probability of being in state
r at time t and making a transition to state s at time t+1. Using the Bayes law and the
causality property of Markov chain, it can be shown that:

a,(r)a.b;(0,,)b,.,(s)
POII)

X, (r,s) = ,1£r,sE£N (8.55)

If #(s) issummed up fromt = 1to T, the expected number of times state sis visited
is obtained, and if it is summed up only to T-1, the expected number of trangtions out

of state sis obtained. Similarly, if &(r,s) issummed up fromt = 1 to T-1, the expected

number of transitions from stater to sis obtained:

—

-1

Qo

0,(s) = expected number of trangitions from state s, 1<s<N (8.56)

-
1

1

—

Q)o"

1
X, (r,s) = expected number of trangtions from stater to state s, 1<r,s<N (8.57)

-
1

1

%(r) and &(r,s) can be related by summing up &(r,s) over s

g(N=ax(.9, 1Er£N (858)

s=1

The Baum-Welch re-estimation formulas are now defined as follows:
Pp=0,(s), 1£EsEN (8.59)
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T-1 T-1
érszéxt(r,s)/égt(r), 1£r,sEN (8.60)
t=1 t=1

~ a a
b (v,) = agt(S)/a 9.(s), 1EsEN (8.61)
t=1,0,=v, t=1

The re-estimation formula for p . is smple the probability of being in state s at time

1. The formula for a;s is the ratio of expected number of transitions from state r to
state s to the expected number of times making a transition out of stater. The formula
for by(v) isthe ratio of the expected number of times of being in state s and observing
symbol v to the expected number of times of being in state s.

8.5 Continuous Hidden Markov Models

Thus far, HMMs have been applied for process with discrete observation sequences,
i.e. all observation vectors belong to a finite alphabet V = {vi, Vs, ..., w}. In such a
case, the model is a Discrete Hidden Markov Model (DHMM). The discrete
observations can be the indices of codebook obtained by Vector Quantization (VQ)
which is a clustering technique for producing an approximation of distribution of a
multi-dimensional signal in a codebook. VQ is responsble for loosing some
information from the signal. The loss is due to the quantization error (distortion) that
can be reduced but not be eliminated by increasing the codebook size (number of
clusters).

A Continuous Hidden Markov Modd (CHMM) is an extenson of DHMM to
overcome the distortion problem. CHMM has more parameters than DHMM, thus
requiring more memory and more deliberate techniques to initidlize the model as it
may easily diverge with randomly selected initial parameters.

In CHMM the parameter B is represented differently as here there is not a finite set
of observation symbols V. The probability density function of an observation vector oy
in each state is considered to be a multivariate Gaussian mixture (other distributions
are aso valid, but the multivariate Gaussian mixture is general and proved to be

promising):
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M
b| (ot) = é. CimN(ot;mm’é‘im
m=1

M
o)

=8 S e to-maio - m))
@) 1A, 2 (862)

where:
¢m The m™ mixture gain coefficient in state | (8.63)
tim: The mean of the m™ mixture in statei (8.64)
Yim The covariance of the m™ mixture in state (8.65)
M: The number of mixtures used (8.66)
K: The dimensionality of the observation space (8.67)

The following constraints have to be satisfied to ensure the consistency of the model:
g/| ¥

Cn30 "im, ac,=1"iad p(o)do =1 "i
m=1 v

The covariance matrix Y. can be simplified by usng a diagonal matrix with e ements
representing the variance of each mixture. This approximation reduces the
computational cost to a great extent, but the number of mixtures should be increased
to make the model work better.

In the case of multi-mixture CHMMs, the re-estimation formulas have to be
modified. Let %(i,m) be the probability of being in the m" mixture of statei at timet:

at(l)bt(l) CimN(ot;mm’é‘im

g.(i,m) = 5 m
aa (s)b(s) a ciN(o;m,.a,) (8.68)
s=1 k=1

It should be clear that %(i,m) = %(i) when M=1.

The re-estimation formulas for Gim, timand Y im are now defined as follows:

2 _ expected number of timesof beingin the m"mixture of statei
" expected number of timesof beingin statei

g
ag.(.m
“TE
aaogm (8.69)
t=1 m=1
g
a g.(i,mo,
My = 7”7
ag.(i,m (8.70)

-
I

1
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) a 9.0,m(o, - m,)(o, - my)"
; & a.0.m) &7

t=1

-

8.6 Training and Recognition

The recognition system is trained and evaluated on a dataset of 100 city names of
Iran. Thus a pattern recognition problem with 100 classesis considered. Most samples
in the dataset were automatically generated by a Java program drawing input string
with different fonts, sizes and orientations on output image. The dataset contains 150
samples for each word. The complete list of words and a few sample images
generated by the program are shown in Appendix A.

Since the lexicon size is limited (100), a holistic approach based on model
discriminant CHMM is chosen as the recognition engine, i.e. each word in the lexicon
is modeled by a separate CHMM (Figure 8.3). The main advantage of the model
discriminant scheme is that if a new word is added, the recognition system can ssimply
be updated by adding the new word moded to the system knowledgebase. But it has
the major drawback of using a predefined lexicon which limits the recognition outputs
to the lexicon words. Although a large lexicon of Sze ten thousands covers almost all
words in a language, but such a large lexicon requires much memory and causes a
severe delay in producing the ranked word list as the Viterbi algorithm has to be
executed for each word model 4. To overcome the memory and speed problems, an
alternative is to build a single HMM for al words, where each character is modeled
by a small group of the HMM states, and a word is represented by a path through the
model. This approach is caled path discriminant HMM as a pattern is classified to the
word which has the maximum path probability over all possible paths. Previous
researches (Khorsheed, 2000) prove that a path discriminant (single-HMM) scheme
achieves less accuracy than a model discriminant (multi-HMM) scheme for a same
lexicon.

The number of states of aword model is set to be the size of the shortest observation
sequence of the training instances of the word. A Bakis structure is selected for all
HMMs, with minimum relative forward jump of O (loop to current state) and

maximum relative forward jump of 2. The maximum alowed number of densitiesin
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each state is set to 10. No limit isimposed on the number of training iterations, i.e. the

training procedure continues until convergence.
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[H et [
Input Word Imagsa HeLrnes
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Normalization Extraction )
Rankad
Wilard List

Fealalehe el o o Beaasxeatsr / il |j 1
SO s By ey et alger s vn 2cans e e

ol madzis

Figure 8.3. The block diagram of the handwritten recognition system.

Figure 8.4 shows an overview of the complete segmentation-recognition system.

Input Image
L} Text Segmentation Global S.kew Line Extraction Local Skew —h
Correction Correction
. I Denoising and Word
—» Slant Correction Binarization Smoothing Segmentation -
Height - . Multi-CHMM
— Normalization Skeletonization Feature Extraction Recognition —l

Output Text

Figure 8.4. An overview of the complete segmentation-recognition system.

8.7 Experimental Results

Here some experimental results for the isolated word recognition system are
presented. The multi-HMM recognition system can provide an N-best list of
hypotheses rather than a single hypothesis. The N-best list is generated by sorting the
entire probabilities P(O | A;). Given an N-best list of possible hypotheses, a system
may use other knowledge to find the correct hypothesis. It is said that a word image is
N-best recognized when the N-best list includes the correct word hypothess for the
minimum value of N. Obvioudy the N-best recognition rate increases with N, and
reaching 100% when N equals to the lexicon size in worst case. Some of the words in
the following figures have overlapped and connected characters, contaminated with

noise. It is observed that some characters are broken into parts. Sometime loops are
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not present in such characters as '»' and 's' that normally have loops, but loops are
formed in characters that should not have them. All of these artifacts decrease the
recognition rate, as the proposed system use structural features.

_:) . -~
Do QL2

() 5-best recognized (b) 2-best recogni zed (c) 4-best recognized
t ’r)‘? 2 )J , /J .
) / e ] - ﬂ.iy .
£ p——
(d) not recognized for N < 20 (e) 1-best recognized (f) 1-best recognized
Iy > YL
Yy, s, ~
]
(g) 1-best recognized (h) 1-best recogni zed (i) not recognized for N < 20
="' | /4 2
[ ] e
(j) 7-best recognized (K) 1-best recogni zed (1) 1-best recognized
1
‘ S ( :5’ 2 ’ M/
F
(m) 1-best recognized (n) 15-best recognized (0) 4-best recognized
LY e 22
-
(p) 4-best recognized (9) 1-best recognized (r) not recognized for N <20
y ¥ ’ /‘ 1
Cr y )U\./ / J}J
/3; S r —
(s) 1-best recognized (t) 1-best recognized (u) 1-best recognized

Figure 8.5. Examples of handwritten words used to evaluate the system performance.
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' il p——— &
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L] / . }
*
(m) 1-best recognized (n) 1-best recognized (0) 8-best recognized
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2 ' ~
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Figure 8.6. Examples of handwritten words used to evaluate the system performance.
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Figure 8.7. Examples of handwritten words used to evaluate the system performance.
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Figure 8.8. Examples of handwritten words used to evaluate the system performance.



Conclusion

A complete offline recognition system for Farsi handwritten words was presented.
To the best of our knowledge, this work was the first to use continuous hidden
Markov models with structural features to recognize Fars handwritten words. In
addition to feature extraction and recognition, other parts of a complete recognition
system, including text segmentation, binarization, skew correction, slant correction
and skel etonization were addressed.

A new machine learning approach based on the naive Bayes classifier, which is fast
both in training and application phase, was developed for text segmentation. It was
shown that excellent results could be obtained by this simple classifier. Lack of large
amount of proper training data usually restricts practicality of the modern Al methods.
To overcome this problem, a simple procedure for generating the required training
data from a set of 8 hand-segmented images was presented.

Four different algorithms for document image binarization were compared and
contrasted: the Otsu's global method, the Niblack's loca method, the Wu and
Manmatha's method and the Liu and Srihari's method. The last two methods are
designed specially for document image binarization, and performing better than the
first two general-purpose methods, particularly in the presence of textured, shaded or
noisy backgrounds. Excluding Niblack's, the other methods are quite fast, and even
suitable for real-time applications.

Different skew and dlant correction algorithms were surveyed for handwritten
documents, and the problem of multiple skews was dealt with in a two-stage process.
The first stage correct the global skew, and after extracting text lines, in the second
stage, the skew of each line is corrected locally. It was shown that the projection
profile based method for correcting global skew was robust and practical to be used in
real systems, and since this method was rather slow, some techniques were proposed
to speed it up. It was shown that the same technique utilized for skew correction could
be applied to remove the slant of handwritten words.

Five different skeletonization algorithms were compared and contrasted: the SPTA,
the Zhang-Suen's algorithm, the DTSA, the Ji and Piper's homotopy-preserving
algorithm, and the Huang et a.'s algorithm. The main focus was on preserving text
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characteristics, such as not removing dots, obtaining well-connected skeletons of
unitary thickness, and robustness with respect to border noise. It was shown that the
Zhang-Suen's and the homotopy-preserving agorithms are not suitable for
recognition. Among the other three algorithms, Huang et a.'s is the most robust, as it
produces skeletons with the smallest number of spurious branches. It is also quite fast
and practical. All of the surveyed skeletonization algorithms were iterative; however,
it is worthy to survey non-iterative and indirect methods in the context of text
recognition. A ssimple and effective skeleton post-processing technique was also
described.

There exist two main types of features: statistical and structural. Structural features
are capable of tolerating many variations, but not robust to noise, and hard to extract.
On the other hand, statistical features are robust to noise, and easy to extract, but with
the disadvantage of requiring a large set of training instances to attain well-trained
classifiers. Structural features were used in this study since they have been less
studied for offline handwritten recognition. The features were extracted from the
graph representing the skeleton of an input word image. The loops and edges of the
graph were visited in a canonical order, and then each one was represented by a 10D
feature vector. So, each input word image was represented by a 1D observation
sequence, being appropriate for 1D HMM-based classifier. The 10 features used to
describe the edges or loops were independent of the baseline location, so the difficult
and crucial problem of baseline detection was avoided.

The recognition was based on continuous hidden Markov models (CHMMSs). Unlike
discrete hidden Markov models (DHMMs), CHMMs do not quantize observation
vectors, so they don't involve the distortion problem of DHMMs. Since the lexicon on
which the system was intended to be trained was limited, a few hundred words, a
model discriminant recognition scheme was chosen, i.e. each word in the lexicon was
modeled by a separate CHMM. This scheme has two main advantages: 1) if a new
word is added, the recognition system can simply be updated by adding the new word
model to the system knowledgebase. When a neural network is used, for example,
once a new class is added, the whole network must be retrained, which is a time-
consuming procedure; and 2) the recognition can take advantage of being executed on
aparallel computer, so the recognition delay can be kept constant with increasing the

number of classes (the lexicon size).
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There is no publicly available dataset for Farsi handwritten word images, and it is
not wise to compare different systems evaluated on different datasets. The executable
version of training, recognition and evaluation modules of the proposed system is
provided on the thesis webpage: http://pasargad.cse.shirazu.ac.ir/~mhgji/handrec. So
it can be trained and evaluated on different datasets, and simply compared with
others. The proposed method achieved a maximum recognition rate of about 82% on
a small lexicon, containing word images of 100 cities of Iran. The striking aspect of
the recognition system is its excellent generalization performance, as seen in our
experiments, when multi-font machine-printed word images were used for training,
the recognition ability could be generalized to handwriting.

To improve the recognition rate and dealing with large lexica, further research could
be carried out in the following areas. 1) comparing and combining different
classifiers; 2) combining statistical and structural features, 3) using more advanced
HMMs; and 4) using lexicon pruning techniques to limit candidate words. The
problem of recognizing handwritten text, with a performance comparable to human's,
seems so difficult that it will remain unsolved, unless much more elaborate techniques

are devel oped.
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Appendix A

100 cities of Iran for which the training images were generated:
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Figure A.1 Some training images of the word 'Shiraz' from the underlying dataset
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Figure A.2 Some training images of the word '"Tehran' from the underlying dataset
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