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Motivation for Homing Sequences: Testing [13]

• Learning algorithms:

experiment with a given a black box automaton

until you learn the contents

• Protocol verification

• Hardware fault-detection



Motivation for Synchronizing

Sequences: Pushing Things [12]
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Mealy Machines [11]
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i Deterministic, total, finite state machine

i with outputs on transitions

i Inputs: I = {a, b}
i Outputs: O = {0, 1}
i States: S = {s, t, u, v}

 

PSfrag replacements

Mealy machine: M = 〈I,O, S, δ, λ〉
Inputs, I

Outputs, O
States, S

transition function (“arrows”), δ : S × I → S
output function, λ : S × I → O
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Synchronizing Sequences [12]

Intuitive Definition

1. Initial state is unknown.

2. Apply a sequence x ∈ I∗ of inputs,

3. afterwards only one final state is possible

If this is possible, x is a synchronizing sequence

Formal Definition

x ∈ I∗ is synchronizing iff |δ(S, x)| = 1
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Example: Getting Home by Subway in Uppsala [14]

Flogsta Ekeby

H̊aga Eriksberg K̊abo

• Initial position is unknown

• There are no signs that reveal the current station

• Find your way to Flogsta, switching red and blue line as needed

Solution: brrbrrbrrbrr
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Homing Sequences [13]

Intuitive Definition

1. Initial state is unknown.

2. Apply a sequence x ∈ I∗ of inputs,

3. observe outputs,

4. conclude what the final state is

If this is possible, x is a homing sequence

Formal Definition

x ∈ I∗ is homing iff

for all states s, t ∈ S, δ(s, x) 6= δ(t, x) =⇒ λ(s, x) 6= λ(t, x)
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Homing Sequences: Example

• Homing sequences care about the output

• E.g., in Uppsala the subway sometimes goes above ground.

• Using this information, we can more efficiently figure out the final state.

Flogsta Ekeby

Above
ground

H̊aga Eriksberg

Above
ground

K̊abo

Above
ground

Solution: e.g., brr
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Initial State Uncertainty [14]

• Data structure crucial in algorithms computing homing sequences

• The Initial State Uncertainty with respect to an input string

“indicates for each output string the set of possible initial states”

• Formally, for an input string x ∈ I∗ it is the partition of states

induced by the equivalence relation

s ≡ t ⇐⇒ λ(s, x) = λ(t, x)

(“x produces the same output from s as from t”)
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Initial State Uncertainty: Example
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Initial State Uncertainty: Example

input initial state
string uncertainty

ε {{s, t, u}}
a {{t}1, {s, u}0}
ab {{t}10, {s, u}00}
aba {{t}100, {s}000, {u}001}

(here, the output corresponding to a block is indicated in red)



13

Current State Uncertainty [15]

• Another data structure crucial in algorithms computing homing sequences

• The Current State Uncertainty with respect to an input string

“indicates for each output string the set of possible final states”

• Formally, for an input string x ∈ I∗ it is the set

σ(x)
def
= {δ(B, x) : B is a block of the initial state uncertainty w.r.t. x}.

• Important: x is homing iff σ(x) is a set of singletons
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Current State Uncertainty: Example
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Current State Uncertainty: Example

input initial state current state
string uncertainty uncertainty

ε {{s, t, u}} {{s, t, u}}
a {{t}1, {s, u}0} {{s}1, {s, u}0}
ab {{t}10, {s, u}00} {{u}10, {u, t}00}
aba {{t}100, {s}000, {u}001} {{u}100 or 000, {s}001}
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Computing Homing Sequences: Idea [16]

Assume machine is minimized.

• Concatenate strings iteratively,

• in each step improving the current state uncertainty.

(“
∑

B∈σ(x)

|B|−|σ(x)|” decreases)

• Each string should be separating for two states in the same block:

A separating sequence x ∈ I∗ for two states s, t ∈ S gives different outputs:

λ(s, x) 6= λ(t, x)

Since the machine is minimized, separating sequences always exist
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Computing Homing Sequences: Algorithm [17]

1 function Homing-For-Minimized(Minimized Mealy machine M)

2 x← ε

3 while there is a block X ∈ σ(x) with |X| > 1

4 take two different states s, t ∈ X
5 let y be a separating sequence for s and t

6 x← xy

7 return x
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Homing Sequences: Quality of Algorithm

(n = number of states, |I| = number of input symbols)

• Time: O(n3 + n2 · |I|)

• Space: O(n)

(not counting the space needed by the output)

• Sequence length: ≤ n(n− 1)/2

Some machines require ≥ n(n− 1)/2
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Computing Synchronizing Sequences: Idea [17]

Very similar to algorithm for homing sequences:

• Concatenate strings iteratively,

• in each step decrease |δ(S, x)|.

• Each string should be merging for two states in δ(S, x):

– A merging sequence y ∈ I∗ for two states s, t ∈ S takes them to the same

final state: δ(s, y) = δ(t, y)

– This guarantees that |δ(S, xy)| < |δ(S, x)|
– Merging sequences exist for all states

⇐⇒ there is a synchronizing sequence
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Computing Synchronizing Sequences: Algorithm

[18]

Very similar to algorithm for homing sequences:

1 function Synchronizing(Mealy machine M)

2 x← ε

3 while |δ(S, x)| > 1

4 take two different states s, t ∈ δ(S, x)

5 let y be a merging sequence for s and t

(if none exists, return Failure)

6 x← xy

7 return x
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Synchronizing Sequences: Quality of Algorithm

[19–20]

• Time: O(n3 + n2 · |I|)

• Space: O(n2 + n · |I|)
(not counting the space needed by the output)

• Sequence length: ≤ (n3 − n)/6

Černý’s conjecture: length ≤ (n− 1)2

(true in special cases, open in general)

Some machines require length ≥ (n− 1)2
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Homing Sequences for General Machines [20–21]

• We don’t need to assume the machine is minimized

• A different algorithm solves this more general problem,

but less efficiently

Combines ideas from algorithms for homing and synchronizing sequences

• Often possible to assume the machine is minimized
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Adaptive Homing Sequences [21–22]

• Apply the sequence as it is being computed,

• and let current input depend on previous outputs

• Can use modified version of the usual homing sequence algorithm

• May result in shorter sequence,

• but equally long in the worst case: (n− 1)2
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Finding the Shortest Sequence [24–26]

• It is important to minimize the length of sequences:

– recall pushing things

– in testing, a machine may be remote or very slow

• Exponential algorithms have been used

• Unfortunately, the problems are NP-complete

• Even impossible to approximate unless P=NP

(follows from NP-completeness proof)
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Related Problems are PSPACE-complete [26–28]

1. Nondeterministic transition system

(instead of deterministic)

2. The initial state is in a subset X ⊆ S
(instead of S)

3. The final state may be in a subset X ⊆ S
(instead of any single state in S)
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Parallel Algorithms [29]

Homing Sequences

• Randomized algorithm uses log2 n time, O(n7) processors.

Hence, the problem belongs to RNC.

• Deterministic algorithm uses O(
√
n log2 n) time

Impractical due to high communication cost

• There is also a practical randomized algorithm

Synchronizing Sequences

• No known parallel algorithm

• Except one for monotonic automata
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Conclusion

Homing sequences

• Problem is more or less solved (optimal and polynomial algorithm is known)

• Apparently more used for testing than synchronizing sequences

Synchronizing sequences

• Open question:

Narrow the gap between upper bound O(n3) and lower bound Ω(n2)

for the length of sequences

• Interesting algebraic properties and other applications,

but less used for testing


