
Principles and Methods of Testing
Finite State Machines – A Survey*

Paper by David Lee and Mihalis Yannakakis
Presentation by Kuo-Wen Lo

*D. Lee, M. Yannakakis. Principles and Methods of Testing Finite State Machines – A
Survey. Proceedings of IEEE, vol. 84, no. 8, August 1996.

Introduction

Finite State Machines
– Demand for system reliability motivates research

into problems of testing finite state machines to
ensure their correct function, and discover aspects
of their behavior.

This is a survey that covers basic problems of
testing finite state machines and present the
general principles and methods.

Background

A FSM is defined as:
M = (I, O, S, δ, λ)
I = set of input symbols
O = set of output symbols
S = set of states
δ = state transition function
λ = output function

Number of state, input, out: n = |S|, p = |I|, q = |O|
Let x be equal to a sequence of inputs = a1, …, ak, then δ(S1, x) take the
machine from initial state of S1, and successively through δ(Si, ai) to a
state Sk+1.
Same for the output function λ .

Background

State uncertainty: Resulting set of states after partitioning base on the
input.

– Initial state uncertainty
– Current state uncertainty

Ex: In an FSM, we give an input B. If we see a one, the machine was
initially in s1 or s2, and current state is s2 or s3. Therefore, initial state
uncertainty of input B is {{s1, s2}, {s3}}, current state of uncertainty is {{s2,
s3}, {s1}}.

S2

S1

S3

B/1 B/0

B/1

Background

Successor Trees

S2

S1

S3

B/1 B/0

B/1

{S1, S2, S3}

{S1, S3}{S2} {S2,S3}{S1}

{S1, S3){S2} {S2}{S1}{S3} {S2}{S3}{S1} {S3}{S1}{S2}

A B

A B A B
A/1

A/0

A/0

0 1 1 0

0 1 1 10 1 101 00

Five fundamental Problems

Tests are done by applying a sequence of input symbols into the
machine, observe the output, and determine information
Determining the final state after the test
Identify the unknown initial state
The machine is suppose to be in some initial state. Verify that it is
indded in that state.
Given complete description of another machine A, determine
whether the current machine is equivalent to A.
Identify the unknown machine A.

We’re going to focus on the following two main questions:
- Existence – Is there a test sequence that solves the problem?
- If there is, how hard is it to determine whether a sequence exist?
How do you find/construct the sequence?

Problem #1: Determining the final
state after the test

Solution: homing/synchronizing sequence
– Homing sequence: An input sequence such that after it is entered, by

observing the output, we know what the final state of the machine is
in.

– Synchronization sequence: An input sequence such that after it is
entered, the machine is in a specific final state.

All reduce machine has a homing sequence
Not all machines has a synchronizing sequence
Ex: homing sequence,

– BA, 00 – S1, 11 – S2, 10 – S3
Ex: synchronizing sequence,

– ABA – S2 S2

S1

S3

B/1 B/0

B/1

A/1

A/0

A/0

Problem #1: Determining the final
state after the test

Existence: Knowing whether one exists
– Homing sequence - All deterministic finite state machines has

a homing sequence. Process of elimination. Start current
state uncertainty with one block with all the states. Let each
sequence partition the current state into two blocks, each of
which correspond with different output. Repeat ‘til one state is
reached.

– Synchronizing sequence – Draw an auxiliary graph GxG, a
node for every unordered pair. There is an edge from (si, sj) to
(sk, sm) if input a takes si to sk AND sj to sm. Check if there is
a state (si, si) that all states can reached.

Problem #1: Determining the final
state after the test

Auxiliary graph:

A/1

s2

s1

s3

B/1 B/0

B/1

A/0

A/0

s1s1

s1s2

s3s3

s2s2

s2s3 s1s3

B

B

B

B

B

B

A

A

A

{s1s2s3}, take (s2s3) starting, give input A.

Observe the δ(S, A) ={s1s2}.

Take (s1s2), give input BA.

Synchronizing sequence is ABA.

Problem #1: Determining the final
state after the test

Building and finding one:
– Homing sequence: Construct a homing sequence from the

successor tree by finding the node of least depth, the current
state uncertainty consists only of singletons (one element
only). Shortest homing sequence is an NP complete problem.

– Synchronizing sequence: After auxiliary graph is constructed,
use BFS to check reachability condition. If condition is true,
take two states where si != sj, find shortest path from a node to
the final node (sr,sr). Consider that input X1. Now δ(S, X1) =
set of S – si (or sj). Take result from transition, and repeat,
record the input, ‘til there is only the final state left. The
sequence is concatenation of X1X2X3….

Problem #2: Identify the unknown
initial state

Assume we know the complete state diagram of a machine M, but
we do not know its initial state. The problem is to find the initial
state. This is not always possible.
Solution: Distinguishing sequence

– An input sequence that solves this problem. Two types, preset
and adaptive distinguishing sequence. Some machine has no
distingushing sequence, some has only adaptive ones, others
has both adaptive and preset.

Existence, building and finding one:
– Preset distinguishing sequence: Examine successor tree,

annotate the node of the tree with its initial state uncertainty
instead. A distinguishing sequence only exist if one sequence
at the end has all blocks of its initial state uncertainty being
singletons.

Problem #2: Identify the unknown
initial state

s6 s5

s3

s4

s2

s1

B/0
A/1

A/0

B/0

A/1

A/0
B/0

B/0

A/1
B/0 B/0

A/0

a

b

a

a

a

a

a

b

b

b

s1 s3

s5

s6

s2 s4

0 1

0

1

0

0

0

0

0

0

0 1

1

1

1

Ex. An adaptive distinguishing sequence:

Problem #2: Identify the unknown
initial state

Existence: Adaptive distinguishing sequence.
Check if the input can generate different output. If so, partion the
block
If the input can cause a state to move to a different state that’s
not in the original block, partition.
Recursive check on the blocks.

– Ex. A on set {s1s2s3s4s5s6} =
{{s1s3s5}{s2s4s6}}
B->1st block, {{s1}{s3s5}{s2s4s6}}
A->3nd block, {{s1}{s3s5}{s2s4}{s6}}
A->2nd block, {{s1}{s3}{s5}{s2s4}{s6}}
B->4th block, {{s1}{s3}{s5}{s2}{s4}{s6}}

s6 s5

s3

s4

s2

s1

B/0
A/1

A/0

B/0

A/1

A/0
B/0

B/0

A/1
B/0 B/0

A/0

Problem #2: Identify the unknown
initial state

Building and finding an adaptive distinguishing sequence:
– Use a two part algorithm. First part generate a splitting tree, that

reflect the sequence of blocks splitting, and second part takes the
splitting tree and generate the adaptive distinguishing sequence.

– First part: A splitting tree is a tree where every node is a set of state.
The root contain the whole set of states. Each leaf is a singleton,
each node (nonleaf) is the union of its childrens. Also, every node is
associated with an input sequence, every edge is associated with an
output symbol. For every node/block, a valid input does the following:

Case I) States in the block produce different output
Case II) All state produce same output, but map to more than one
block from original.
Case III) All state produce same output and mapped into same
block.

In essence, same as the operation we did to prove its existence.

Problem #2: Identify the unknown
initial state

S
a

{s1s3s5}
ba

{s1} {s3s5}
aaba

{s2s4s6}
aba

{s2s4}
baaba

{s6}{s3} {s5} {s2}

{s4}

Ex. A on set {s1s2s3s4s5s6} =
{{s1s3s5}{s2s4s6}}

B->1st block, {{s1}{s3s5}{s2s4s6}}
A->3nd block,{{s1}{s3s5}{s2s4}{s6}}
A->2nd block, {{s1}{s3}{s5}{s2s4}{s6}}
B->4th block, {{s1}{s3}{s5}{s2}{s4}{s6}}

Note that the sequence attached to
each of the blocks is cumulative in
how the tree is constructed.

Problem #2: Identify the unknown
initial state

Part II: Have the set initial and current
states be available so you can match each
other. Find the lowest node who contains
the current set, apply the input sequence
associate with the set, observe output.
Repeat.
Ex. Input a. Output is 1, we know initial
uncertainty is {s1s3s5}, current uncertainty
is {s2s4s6}. Find node with {s2s4s6}, who
has a sequence of aba. Input aba.
Output is one. We know the only possible
current state from previous state is {s1s5}.
Look up {s1s5}, sequence of ba. Input ba.
Initial state located. s6 s5

s3

s4

s2

s1

B/0
A/1

A/0

B/0

A/1

A/0
B/0

B/0

A/1
B/0

B/0

A/0

Problem #3: State verification

Just to clarify the question, we want to verify that a given machine
M with a known state diagram is/was in a particular state.
Solution UIO sequence

– UIO sequence of a state S is an input sequence such that the
machine would produce a unique output sequence if and only
if the machine were in state S.

Example:
– B is UIO for s1
– s2 has no UIO
– A is UIO for s3

S2

S1

S3

A/0 B/0

B/1B/1

A/0

A/1

Problem #3: State verification

Existence: There is no efficient algorithm for
finding UIO sequence.
However, if an FSM has distinguish sequence,
that means every state has an UIO sequence.
Its UIO sequence is the input from the root of
the deicison tree to a leaf, which correspond to
the state.

Problem #3: State verification

Ex. S6: aba 100, S2: ababa,10101 s5: aaba 0100

s6 s5

s3

s4

s2

s1

B/0
A/1

A/0

B/0

A/1

A/0
B/0

B/0

A/1
B/0 B/0

A/0

a

b

a

a

a

a

a

b

b

b

s1 s3

s5

s6

s2 s4

0 1

0

1

0

0

0

0

0

0

0 1

1

1

1

Problem #4: Conformance Testing

Also known as fault detection. We have complete specification of
a machine A, including its state diagram. We are given a machine
B that is a “black box”, and we can only observe its I/O behavior.
Design a test to determine whether machine B is a proper
implementation of A.
Couple of assumptions we are making for test to be possible:

– A is strongly connected (you can get from one state in A to
another state thru some sequence)

– A is a reduce FSM
– Implementation of B does not change during the experiment

and has same input alphabet as A
– Machine B has no more state than A

Problem #4: Conformance Testing

Now we can start use all the tools we learned:
– First, apply a homing sequence that’s suppose to bring B to a known

state s1, the initial state of the test.
– Run checking experiment, verify B is equivalent to A. Check output.

If B isn’t isomorphic to A, then homing sequence may or may not
have bring B to s1. Either way the checking experiment will detect
faults.

Solution: A checking sequence is an input sequence such that it
distinguish A from all other machine with same number of states, starting
from initial state s1. All machine that are not isomorphic to A, on input x
produce a different output.
All checking experiment has same structure

– For every transition of A, from si to sj on input X, apply an input
sequence to get machine to state si, apply input A, verify end state is
sj.

Problem #4: Conformance Testing

There’s a lot that goes into comformance testing, but here’s a few
basic concepts:

– Separating family of sequence is a collection of sequence such that
for every pair of states si, sj, there is an input that separates them.

– Status message tells us the current state of the machine.
– Reset capability is taking an input symbol takes the machine from any

state back to initial state s1.
– Transfer sequence is a sequence take the machine from one state to

another, such a sequence always exist since the machine is strongly
connected.

– Identifying sequence is a sequence that identify a state in the middle
of execution.

Conclusion

pn3+min(p,n)n4log nCheckingConformance

ExponentialUIOState verification

n(n-1)/2Distinguish (adaptive)State ID

ExponentialDistinguish (preset)State ID

n(n2-1)/6SynchronizingFinal state

n(n-1)/2HomingFinal state

LengthSolutionProblem

