100 IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, VOL. XX, NO. Y, MONTH 1999

Designing Genetic Algorithms for the State
Assignment Problem

José Nelson Amaral, Kagan Tumer and Joydeep Ghosh

Abstract— Finding the best state assignment for imple-
menting a synchronous sequential circuit is important for
reducing silicon area or chip count in many digital designs.
This State Assignment Problem (SAP) belongs to a broader
class of combinatorial optimization problems than the well
studied traveling salesman problem, which can be formu-
lated as a special case of SAP. The search for a good solution
is considerably involved for the SAP due to a large number
of equivalent solutions, and no effective heuristic has been
found so far to cater to all types of circuits.

In this paper, a matrix representation is used as the geno-
type for a Genetic Algorithm (GA) approach to this prob-
lem. A novel selection mechanism is introduced, and suit-
able genetic operators for crossover and mutation, are con-
structed. The properties of each of these elements of the GA
are discussed and an analysis of parameters that influence
the algorithm is given. A canonical form for a solution is
defined to significantly reduce the search space and number
of local minima. Experiments with several examples show
that the GA approach yields results that are often compa-
rable to, or better than those obtained using established
heuristics that embody extensive domain knowledge.

Keywords— Genetic Algorithms, State
Heuristic Search, Multi-Cost Functions.

Assignment,

I. INTRODUCTION

This study investigates the suitability of genetic algo-
rithms for finding good solutions for Combinatorial Opti-
mization Problems (COPs) [8], selecting the state assign-
ment problem (SAP) as a case study. The SAP entails the
codification of states in a Finite State Machine (FSM), and
is a well studied NP-complete problem. Moreover, several
well-known COPs such as the traveling salesman problem,
can be formulated as special cases of the SAP. For these
reasons, we use SAP in this paper as a testbed to investi-
gate the optimization capabilities of Genetic Algorithms.

A wide variety of heuristics are available for the SAP. For
example, KISS (Keep Internal State Simple) works with
symbolic minimization and multivalued logic [4]. Varma
and Trachterberg [14] use partition theory and spectral
translation techniques to search for a good state assign-
ment. Amaral and Cunha developed an algorithm that
uses a weighted graph to sort a set of heuristic rules [1].
Villa and Sangiovanni-Vincentelli created algorithms for
state assignment based on the solution of face hypercube
and ordered face hypercube embedding [16]. Devadas and
Newton introduce an “exact” algorithm for encoding prob-

Manuscript received August XX, 1993.

The authors are with the Department of Electrical and Computer
Engineering at the University of Texas, Austin, TX 78712.

This research is supported in part by Conselho Nacional de
Pesquisa Cientifica e Tecnologica (CNPq), and Pontificia Universi-
dade Catolica do Rio Grande do Sul (PUCRS) - Brazil, by an NSF
Initiation grant MIP 9011-787, and by a Faculty Development Award
from TRW Foundation.

lems that obtains minimum number of product terms in
an optimized PLA implementation [7]. Several related re-
search in the areas of multilevel implementations, testable
machines, FSM decomposition, FSM verification, use of
signal transition graph for asynchronous circuit synthesis,
and logic minimization have been published recently [5],
[11], [12].

In this paper, we present the state assignment problem,
and through an example show the importance of proper
codification. A GA approach is then proposed along with
a set of operators needed for its implementation. The se-
lection of these operators is crucial for the efficiency of the
algorithm. Finally, we present the results obtained by the
GA and compare them with established methods.

II. STATE ASSIGNMENT PROBLEM

The behavior of a Synchronous Sequential Circuit (SSC)
can be represented by an FSM. In this representation, each
state is identified by a symbol, i.e., a string of characters.
In the actual implementation of an SSC, the states are
represented by bit strings. In the process of realizing an
SSC from its FSM specification, it i1s necessary to assign
a bit string to each state. The cost of the SSC realization
depends heavily on this assignment. The problem of finding
the association between states and bit strings that results
in minimal cost is called the State Assignment Problem

(SAP).

A. A Motivating Frample

We begin by presenting an example that illustrates
how the state assignment can influence the cost of an
SSC. This example will also be used later on to illus-
trate the genetic algorithm operators. An FSM with five
states (S1,.52,.53,54,55), one input (Iy), and two outputs
(Zo, Z1), is given in Table I.

TABLE 1
STATE TABLE WITH STATE ASSIGNMENTS.

Present Next State Output Asgn | Asgn
State IO =0 IO =1 ZO Z1 # 1 # 2
So Si S 0 0 000 000
S1 Sy Ss 1 1 100 100
S Sy Ss 1 0 011 110
Sa Sy Sy 0 1 010 011
S So So 0 0 111 010

Definition 1: A literal is a boolean variable or its com-
plement.

AMARAL, TUMER AND GHOSH: DESIGNING GENETIC ALGORITHMS FOR THE STATE ASSIGNMENT PROBLEM 101

The cost of a boolean equation B; represented in sum of
product form, is given by equation 1.

ol

" P(B:) + O(By), 1)

C(Bi) =

where k is the number of product terms in the equation,
and with m > 1:

if the j* term of B; has m literals
if the j* term of B; has 1 literal,

m 1f B; has m terms
if B; has 1 term.

Given a set of boolean equations S = {Bq, B1, ..., Bn_1},
its cost is computed by equation 2.
n—1 k,—1
CS)=>_[cB) - > Ri(B) |, (2)
=0 j=0

where C(B;) is the cost of equation B;, k; is the number
of product terms in equation B;, and with ({ <):

Rj(B;) = {OPJ(BZ)

if the j** term of B; is in B;
otherwise.

Definition 2: The cost of an SSC is equal to the cost of
the set of boolean equations formed by the equations that
generate the next state plus the equations that generate
the output value in the current state.

In the example presented, for the two different state as-
signments proposed in Table I, Assignment 1 has a cost of
31, whereas Assignment 2 has a cost of 13. This example
illustrates that choosing an appropriate state assignment
greatly reduces the cost of implementation.

B. Heuristic Rules

Given an FSM specification, determining the state as-
signments leading to an SSC implementation with mini-
mum cost is a non-trivial problem. A set of heuristic rules
compiled along the years, have been proven to lead to good
SSC implementations for many designs [2], [3]. Before pre-
senting these rules, some definitions are necessary:

Definition 3: The bit string assigned to state S; is called
the attribution of state S; and is denoted by A(S;). In
an FSM with p input signals, there are ¢ = 2P input con-
ditions. An input condition I, is a binary representation
formed by p bits. Each bit indicates the state of one of the
input signals.

Definition 4: A state S; 1s called a successor of a state
S if there is a transition from state Sy to state S;. The
set of all successors of a state Sy, is denoted by Suc(Sg). A
state S; is called a predecessor of a state Sy if there is a
transition from state S; to state Sy for any input condition
Is. The set of all predecessors of a state S; with a given
input condition I,, is denoted by Pred(S;, I,). Each out-
put of an FSM is said to partition the states of the FSM

into two subsets. The set of partitions of an output 7 1s
denoted by O(Z;). For Moore machines an output is de-
noted by Z;(S;), in a Mealy machine the output is denoted
by Z1(S;, I.)'. States S; and S; are said to be associated
with each other if both of them are a successor of a given
state Sk, if both of them are in the set of predecessors of a
state S; with a given input condition I, or if both of them
are in the same partition of an output Z,,.

Definition 5: The distance between two states S; and
Sy is defined as the Hamming distance between A(S;) and
A(Sy), and is denoted by D(S;, Sg).

The heuristic rules used in this research state that the
cost of the SSC is reduced when the state assignment is

done in a way that minimizes the distance between states
that:

i. are in the same set of successors of a given
state;

ii. are in the same set of predecessors of a given
state with a given input condition; or

iii. are in the same partition for a given output.

Returning to the FSM used in the last section, we have:

Sue(So) := {51, Sa}; Sue(Sy) := {Ss, Sa};

Sue(Sa) := {Ss, Sa}; Sue(S3) := {Sa}; Suc(Ss) := {So};
PT’@CI(S4, IO = 0) = {51, 52, 53};

PT’ed(Sg,IQ = 1) = {51,52};

O(ZO) = {(Sl, 52); (50,53, 54)};

O(Zl) = {(Sl, 53); (SQ,SQ, 54)}

Observe that the pairs of states (S1,S2), (Ss,S54) and
(So, S4) are associated with each other more frequently
than other pairs. Therefore, in a good state assignment for
the FSM in Table I, the Hamming distance between these
states should be small. Indeed the Assignment # 1 of Ta-
ble I has D(Sl, Sg) = 3, D(Sg, 54) = 2, and D(So, 54) = 3,
while Assignment #2 has D(S1,5:) = 1, D(S3,54) = 1,
and D(Sp,S4) = 1. Clearly Assignment 2 achieves this
task while Assignment 1 does not, explaining the signifi-
cant difference in the respective SSC costs.

C. Desired Adjacency Graph

Based on a paper by Armstrong [2], Amaral introduced
the Desired Adjacency Graph (DAG) as a tool for apply-
ing heuristic rules to any given FSM [1]. The DAG is an
undirected, weighted, fully connected graph that has as its
nodes the states of the FSM. The weight on an arc con-
necting two nodes of the DAG represents the strength of
that connection, and indicates the “desirability” of having
these states “close” to each other in the SSC implementa-
tion. To have a low cost SSC, it is necessary to minimize
the distance between states that are strongly connected in
the DAG. The connection between state ¢z and state j in
the DAG is given by the multi-objective function expressed

1In a machine type Moore the output is a function of the state,
while in a machine type Mealy the output is also dependent on the
values of the input.

102 IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, VOL. XX, NO. Y, MONTH 1999

in equation 3.

s—1
DAG” = DAGJZ = R1 Z ay; agj 62']'
=0

c—1s—1
+ Ro Y BiiaBijabij
a=0 =0
v—1
+ RsM Z Yijb bij
b=0
c—lov—1
+ R3(1- M)ZZ Gijab 0]
a=0 bp=0
+ Ry (aij + Ozi]')(si]', (3)

where ¢ is the number of input conditions, v is the number
of output variables, s is the number of states, and

_ 1 if Sy, € Sue(Sr)
m = 0 otherwise
3 _ 1 if Sy, € Pred(Sy, 1,)
fma = 0 otherwise
o 1 if Zy(S;) = Zu(S))
Tijp = 0 otherwise
s Lt
N 0 ifi=j
i . 1 if Zb(SZ',IG) = Zb(Sj,Ia)
ijab = 0 otherwise
T 1 for Moore machines
a 0 for Mealy machines

The first term of equation 3 refers to pairs of states that are
common successors to a given state (rule i). For example,
in Table I states S3 and S, are successors of state Sy, there-
fore we have to add Ry to DAG34. The second term refers
to pairs of states that have a common predecessor with a
given input condition (rule ii). In table I, states Sy and Ss
are predecessors of state S, with the input condition Iy = 0,
therefore R, needs to be added to DAG53. The third and
fourth terms refer to pairs of states that are in the same
output partition for a given output (rule iii). The machine
in table I is a Moore machine, therefore the outputs are in-
dependent of the input conditions. For example, state Sy
and S3 are in the same partition for output 7; = 1, there-
fore we should add R3 to DAG+3. The last term indicates
transitions between two states, and is used as a tie breaker
when the previous terms fail to indicate the relative posi-
tion of each state. There are transitions between Sy and S,
in table I, therefore R4 should be added to DAGq4. Since
the DAG is an undirected and fully connected graph, the
values of 1ts connections can be represented by a symmet-
ric square matrix. The coefficients R; are constants which
are set according to the importance of each individual rule.
In this study Ry = 3, Rs = 4, Rz = 2, and R4 = 1 were
used. Table IT shows the matrix representation of the con-
nections in the DAG obtained for the FSM of Table I, using
equation 3.

For example, we obtain DAG15 = Ri + Rs + Ry + R3 =
34+4+441 = 13. The factor R; is produced because states
S1 and Sy are common successors of state Sy (first line on
table T). The two factors R2 appear because S; and Ss
are common predecessors of state S4 under input condition
Ip = 0, and are common predecessors of state Sz under
input condition Iy = 1. The factor Rz reflects the fact that
Z0(S1) = Zo(S2). There is no factor R4 because there is
no transition between S; and S, that is a9 = as; = 0.

TABLE II
MATRIX OF DAG CONNECTIONS.

SO 51 52 53 54
So | O 1 3 2)
S| 1 131 7 1
Se | 3130) 3
Sz | 2 7) 0 9
Se | B 1 3 9 0

The SSC cost is lowered when two states with strong
connections in the DAG are close to each other. Thus,
if DAG;; is large, D(S;, Si) should be small. Given an
FSM specification and a state assignment, it is possible
to quantify the “fitness” of this specific assignment. The
fitness function which achieves this is given by:

s—1s—1

SN (k+1 - D(S;,S;)) DAGy; (4)

i=0 j=0

Fitness =

where k 1s the number of bits used for the state codification.
Equation 4 can be expressed as

s—1s—1 s—1s—1
Fitness = Y (k+1) DAG;; =Y > D(S;,S;) DAG;
i=0 j=0 i=0 j=0

Since DAG;; is fixed for a given FSM formulation and £
is a positive constant, the first sum results in a constant
term. Therefore F'itness is maximum when the sum over
i and j of the product D(S;, S;) DAG;; is minimum. The
sum ij_ol Zj;é D(S;, S;) DAG;; is lower when pairs of
state with large DAG;; have a smaller distance D(S;, S;).
Therefore a state assignment with maximum fitness abides
by the heuristic rules of section II-B. The goal of this
research is to find a state assignment with maximum fitness
that, according to the heuristic rules, results in an SSC with
low cost. From now on we shall assume that the DAG is
given and our task is to find an assignment that maximizes
the fitness.

IT1I. GENETIC ALGORITHMS

Algorithmic approaches to COPs can have a constructive
approach, an improvement approach, or a combination of
both. A Genetic Algorithm (GA) can be classified as an
improvement type algorithm. It starts with a population of
randomly generated individuals (solutions to the problem),
from which individuals are selected for the application of a

AMARAL, TUMER AND GHOSH: DESIGNING GENETIC ALGORITHMS FOR THE STATE ASSIGNMENT PROBLEM

crossover operator. Given two parents (selected individu-
als), a crossover generates an offspring. A mutate operator
introduces some random information in the offspring which
is then inserted back into the population. When the popu-
lation reaches a given size, usually twice that of the initial
one, one generation is completed. A selection procedure 1s
then used to reduce the size of the population, typically
to its original size, and a new generation starts. All the
selections are done in a probabilistic fashion and according
to the fitness of each individual. A good introduction to
GAs and their applications is provided in [9]. Some con-
siderations made by Whitley for the Traveling Salesman
Problem (TSP) are also valid for the SAP [17].

A. Genetic Algorithm applied to SAP

This section describes the representation of an individ-
ual, the fitness function, the mutate operator, the crossover
operator, and the selection procedure, when GA is applied

to SAP.

A.1 Genotype

The “genotype” of a problem is the representation of an
individual in the GA. The standard technique is to rep-
resent each individual by a single bit string encoding a
solution. However, for certain problems, a matrix repre-
sentation is more suitable than a bit-string representation
in terms of both naturalness and quality of results [15].
For the SAP, if the individual representation contains the
underlined structure of a solution, i.e. represents clearly
each state attribution and the distance among them, it is
easier to define genetic operators and compute the fitness
function. In this sense, a binary matrix is a very natural
and suitable mapping for an individual in the SAP. In this
study an individual will be represented by a binary ma-
trix with s rows and k columns, where s is the number of
states in the FSM and k is the number of bits used in the
SSC, thus k > [logas]. Assignments in Table T constitute
representations of individuals.

A.2 Crossover

As pointed out in section III, an important characteristic
of a crossover operator is that it should preserve as much
information as possible from the parents while creating an
offspring. Whitley et al. devised a crossover operator for
the TSP that generates only legal tours, and preserves con-
nections among cities [17]. Defining edges as the connec-
tions between the cities, Whitley argues that operators that
break fewer edges are more successful in finding good so-
lutions. To design an operator for the SAP, it is necessary
to find a parameter that influences the fitness value and
can be manipulated easily. Examining equation 4, one can
notice that the fitness depends on the Hamming distance
between the state attributions, and the DAG. The DAG
is equivalent to the distance map in the TSP, and is fixed
for a given FSM. Therefore the fitness of a particular indi-
vidual will be determined by D(S;, S;), the Hamming dis-
tances among states. The Hamming distance between two
bit strings is the sum of the Hamming distances between

103

individual bits that form the string. With the genotype
defined in section III-A.1, each column j of the binary ma-
trix contributes to the value of the fitness function with
Z::_ol D(S;,Sj) DAG;;. This enable us to think of the fit-
ness function as being formed by the sum of individual
contributions of each binary matrix column. Therefore, if
bit columns from the parents are preserved, the information
relevant to the fitness is preserved.

The crossover operator suitable for the SAP consists of
randomly selecting columns from the parents in order to
create an offspring. This selection is done by independent
flippings of a fair coin wherein a column is selected from
the first parent if the outcome is head and from the second
parent otherwise. The result might be an invalid solution
in case of conflicts among states. These conflicts consist of
two or more states with the same attribution. In this case
the offspring generated is converted into a valid solution by
modifying the conflicting assignments preserving informa-
tion that came from the parent with better fitness. Usually
these conflicts can be eliminated with few changes in the
offspring.

In the example presented in Table III, the first two
columns of the transition are taken from parent #1 and
the third column is taken from parent #2. This yields a
transition solution which is invalid because states Sy and
S3 have the same attribution. To resolve the conflict, the
attribution of state S3 is changed in such a way that pre-
serves the first two columns, taken from parent #1. Parent
#1 was assumed to have a better fitness in this example.

TABLE III
CROSSOVER EXAMPLE.

Parent # 1 | Parent # 2 | Transition | Offspring
So 000 001 001 001
S1 100 011 101 101
S 010 010 010 010
Ss 011 110 010 011
Sa 001 100 000 000
Ss 110 101 111 111

Since the correction is made by taking information from
one of the parents, new information is not introduced by
the crossover operator. Also, it is always possible to resolve
collisions by deciding in favor of the parent with better
fitness. This i1s because if [columns are taken from the
parent with better fitness, at most 2°~! assignments can be
identical in those I columns. To eliminate the conflict, 1t is
enough to find at most 2~! different combinations for the
k—1 remaining columns, which is obviously possible. In the
example of Table IT1, there are at most 2 assignments which
share the same combination in the first two columns, and
we can obtain two different combinations (namely 1 and
0) for the third column. A final consideration about this
crossover operator i1s that by preserving the information
from the strongest parent, it benefits the survivability of
better characteristics in the population.

104

A.3 Mutation

Since the crossover operator preserves information exist-
ing in the parents, if it is used all by itself, it will hinder
the emergence of new traits and the diversity of the pop-
ulation will vanish. Only patterns present in the current
population will be passed on to the next generation and
the GA will be heavily biased by the initial population.
The search will not encompass the entire solution space
and the probability of finding a good solution will be lim-
ited. It is therefore necessary to introduce some random
information in the offsprings generated by crossover. This
random information is introduced by a mutation operator.
Two properties are desirable in this operator:

o Given any individual, it must be possible to obtain
any other individual within the solution space by a
finite number of successive applications of the mutate
operator.

o There must be a way of controlling the amount of ran-
dom information introduced by the mutation operator.

These properties guarantee that with a minimum
amount of random information, 1t is possible to reach all
the states in the solution space.

For the sake of the mutation operator, every pattern P;
formed by k bits is assigned to a given state. If the FSM
has s < 2* states, then 2¥ — s dummy states are assigned
to the patterns not utilized by the real states of the FSM.
Given two patterns of bits P; and P,,, and two states S;
and S;, such that A(S;) = P; and A(S;) = Pp,, a swapping
operation between P; and P, results in A(S;) = P, and
A(S;) = P2

The mutate operator created for the SAP works by ap-
plying a sequence of swapping operations to the state as-
signment. The mutation rate controls the number of oper-
ations to be applied and in this way controls the amount
of random information introduced into an individual.

TABLE 1V
MUTATION EXAMPLE.

Before mutation | After mutation
So 001 001
S1 110 010
So 010 110
Sy 011 111
Sy 000 000
Sy 111 011

In the example of Table IV two swapping operations are
performed during mutation. The first one swaps the states
with assignments 110 and 010, changing assignments of
states S; and S3. The second swapping is between the
patterns 011 and 111, changing the assignments of states
53 and 55.

2In the case that either Sj or S; is a dummy state, the swapping
is reduced to a change in the assignment of a single state. If both
states S; and S; are dummy states, the swapping has no effect on the
assignment.

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, VOL. XX, NO. Y, MONTH 1999

The mutation operator defined above fulfills the two
properties stated earlier. It works by “breaking edges”
in a well-controlled fashion in the individuals obtained by
crossover. All solutions are reachable by this operator be-
cause given an assignment, a finite number of single swap-
ping operations can transform it to any other assignment
in the solution space. Finally, the result of the application
of this operator is always a valid assignment.

A .4 Selection

A selection mechanism is necessary to select the indi-
viduals that will generate offsprings, and also to select the
individuals that will survive to the next generation. In
this study the roulette wheel method was chosen. In the
method presented in [9], the probability of selecting a given
individual is given by its fitness divided by the “length” of
the roulette wheel—the length of the wheel is the sum of
the fitnesses of all individuals. However, for some problems,
the fitness varies in a narrow interval whose offset is large.
Therefore, if the very same method is used, the selective-
ness of the roulette wheel becomes very poor. For instance,
an FSM used in our tests has individual fitnesses within the
interval [47694,53346]. Using the simple roulette wheel
selection, the probability of selecting the best individual
would be just 1.12 times the probability of selecting the
worst one. To get around this problem, the actual value
used in building the roulette wheel is given by:

Roul Wheel_Fitness(Iy) = Fitness(Iy)

(¢+ 1) Fitness(Min)
+ q Fitness(Maz) (5)

where Roul W heel_Fitness(I;) is the fitness used in the
roulette wheel for the individual Iy, Fitness(I) is the
actual fitness of the individual Ty, Fitness(Min) is the
fitness of the worst individual in the population, and
Fitness(Max) is the fitness of the best individual in the
population. The constant ¢ is arbitrary, and is used to
define the selectiveness of the roulette. The relationship
between the probability of choosing the best individual
P(best) and the probability of chosing the worst individual
P(worst) is given by:
q

P(worst) = oY 1P(best). (6)
If ¢ is zero, the probability of selecting the worst individ-
ual is reduced to zero. This is not recommended in terms
of genetic procedures, where the probability of selecting
any individual should be strictly positive. In this study,
g = 0.01 is used, which makes the best individual two or-
ders of magnitude more likely to be selected then the worst
one. A final observation in this modification to the roulette
wheel procedure is that the distribution of the individuals
in the roulette 1s still proportional to their fitness, and the
selectiveness of the roulette is independent of the partic-
ular population. However, this procedure does not work

properly in a completely homogeneous population because
this causes Roul W heel_Fitness(I) = 0 for all Tj.

AMARAL, TUMER AND GHOSH: DESIGNING GENETIC ALGORITHMS FOR THE STATE ASSIGNMENT PROBLEM 105

B. Reducing the solution space

Two state assignments for an FSM are said to be equiv-
alent if one can be obtained from the other by a finite
sequence of column complement and column permutation
operations [10]. Due to the symmetry of the fitness func-
tion, given an FSM, for each state assignment, there are
2% k! equivalent assignments, where k is the number of bits
used in the SSC3.

Reducing the solution space improves the probability of
getting a good solution in a smaller number of generations.
This reduction of space is accomplished in the SAP by ex-
pressing each individual in a canonical form. This proce-
dure is applied to the individuals generated randomly for
the first generation, as well as to those obtained through
crossover and mutation in the subsequent generations.

To specify the canonical form, a weight function is de-
fined for each column of the binary matrix that represents
an individual. Let B;; be the bit value of A(S;) in column
C;. Then, we define

s—1
Weight(C;) = ZBUT (7
=0

The canonical form is defined by having A(Sp) = 0

TABLE V
REDUCTION IN SOLUTION SPACE.

Original After After
Individual | Complement | Permutation

So 001 000 000

S1 010 011 110

S 110 111 111

Ss 111 110 101

Sy 000 001 010

Ss 011 010 100

and all columns Cj; fully ordered in descending order of
Weight(C;). Any arbitrary solution can be reduced to the
canonical form by complementing and permuting columns.
The complement operations reduce the solution space by a
factor of 2%, and the permutations reduce it by a factor of
s!. An example of these operations is presented in Table V.
Assuming the columns of the binary matrix are numbered
as Cy, C1, and C5 from left to right, the column Cs5 is com-
plemented to enforce that A(Sg) = 0. After this operation,
Weight(Cy) = 12, Weight(Cy) = 46, Weight(C2) = 22.
To enforce descending order Cy is permuted with C7, and
subsequently C is permuted with C5.

Two distinct solutions in canonical form are nonequiva-
lent and cannot be reduced to each other while preserving
distances among their states. The solution space reduced in
this way contains at least one solution with the same fitness
as any other solution in the actual state space. Therefore
the reduced space contains the absolute optimum solution.

3 Actually, the column complement operation affects the cost of the
SSC. However the Fitness function defined by equation 4 is insensitive
to this effect. For more details on equivalent assignments see [10].

IV. EXPERIMENTAL RESULTS

Two separate sets of experiments were conducted during
the testing of the GA. Firstly, characteristics of the GA
were explored in depth using structured FSMs. Secondly,
the performance of the GA was compared to those of lead-
ing algorithms on previously published FSMs.

A. Characteristics of GA for SAP

To test the GA characteristics we used FSMs with 32, 33
and 64 states, with different degrees of connectivity among
states and developed regular structures to enable the pre-
diction of an assignment close to the best one. In order to
assess the solution quality, we solved the same FSMs us-
ing a heuristic algorithm previously developed by Amaral
[1], and considered the fitness of that solution to be unity.
Amaral’s algorithm invariably finds a close-to-optimal solu-
tion for structured machines with a small number of states.
The optimal solution for such machines is known through
exhaustive search. To allow comparisons between different
machines and obtain a relative measure, the fitness com-
puted by the GA was normalized using equation 8. MIN is
the worst solution ever obtained by random search. MAX
is the solution obtained by the heuristic algorithm men-
tioned above.

Fitness — MIN

Norm_Fitness = . 8
MAX — MIN ()
Fitness
Random
00 = L
p=10
0.95 — | epap_:io_ .
0.90 — — "Pop=20~
—o
Pmom = TN Pop=100
0.85 — / . — —
080 — x e -X v —o
/ s T N
0.75 — /)(9"‘9"-9"(3\&*’2\7
’ ’ Mo o7 S
070 4 B S S % |
PR Sl W BB
065 | —4 . = i
g
0.60 =" —
055 — —
0.50
L1 | L] Mut. Rate
0.00 5.00 10.00
Fig. 1. Effect of the population size on solution quality

(40 generations) - ¢32.

The results obtained with the GA for varying popula-
tion sizes, number of generations and mutation rates are
presented in Figures 1-4*. The curve labeled “random”
represents the best fitness obtained after 100 individuals
were randomly selected. These tests were done with a

4Since GA is non-deterministic, each data point in these figures is
based on the average of twenty independent runs. Therefore slight
variations may be observed among curves representing runs with sim-
ilar parameters.

106 IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, VOL. XX, NO. Y, MONTH 1999

Fitness
Random
100 L] Beoeenaees
Pop=10
095 |— om0 —o o
090 [~ ¢ - TN TN Pop=a0
/ o T p--6. ~ No —
>, ~ = Pop=1G0
085 — | s e’ \\G- N T
oso — !\, e TR
1o & R N
075 1 F =e--g |
1 .
1 S
070 4,/ 7 _
L]
06s | 2 _
)
060 |-/ —
055 |- .
o
0.50
‘[‘ T Mut. Rate
0.00 5.00 10.00

Fig. 2. Effect of the population size on solution quality
(100 generations) - c32.

32 state FSM, called “c32”, using five bits to code each
state. The values used for MIN and MAX to compute the
Norm_Fitness were MIN = 14382, and M AX = 17146.
Figures 1-2 show the effect of varying the population
As expected, GAs with large populations produce
better results. The influence of the population size in the
results is smaller if the GA runs for more generations. The
effect of the mutation rate is significant. In the absence
of mutation, GA produces results that are only marginally
better than the ones obtained by random selection®. On
the other hand, large mutation rate has a negative effect on
the performance. A GA with high mutation rate introduces
an excessive amount of new information in the generation
of offsprings and does not preserve good characteristics in
the population. A small mutation rate introduces sufficient
new information to allow the search of the entire solution
space without excessively disturbing the population. It is
encouraging to observe from Figure 2 (also see Figure 4)
that the fitness is relatively insensitive to mutation rate
between 2 and 8. This suggests that fine-tuning of the rate
is not needed so long as it is in the appropriate ranges.
Figures 3-4 show the effect of the number of generations
on the solution quality. Without mutation, the population
size dictates the solution quality without much influence
from the number of generations. Except for this difference,
these curves are strikingly similar to the previous ones, sug-
gesting that the determining factor for solution quality is
the product of the population size and the number of gen-
erations. The population size is limited by storage space,
while the number of generations is limited by processing

size.

5Since the random measure reflects the best of 100 random solu-
tions, a GA with a population of 10 and without mutation can provide
a worse solution since it draws from a smaller pool of solutions

Fitness
Random
100 L] Beeemmeens
Gen=20
0.95 — Gen=40
0.90 |— —s— I &~ — "Gen=60
- 3 — — —
0.85 — /}// o — X~ ~= 5 O 2:] | Gen=80
¢ o o e o\ | Gen=100
080 — o, oS SN
P ~e” AN
075 — fI & EENIPE N
/ ! /, .F“‘ \\
N
7 R * P T ISY A Sel e
065 41,/ 28 e ° —
0.60 j —
055 — —
0.50
‘[‘ T Mut. Rate
0.00 5.00 10.00

Fig. 3. Effect of the number of generations on solution
quality (Population = 40) - ¢32.

time. Therefore, there is a time/space trade-off. As long
as both numbers are large enough, similar results can be
achieved by either running the GA for a large number of
generations with a modest population size, or by running
the GA for a moderate number of generations with a large
population size.

One important conclusion from these experiments is that
if either the population size or the number of generations
is too small the GA cannot search the entire solution space
well. Moreover, a large mutation rate prevents the infor-
mation transfer from one generation to the next, seriously
inhibiting the solution improvement process. Therefore the
best GA results are obtained for a small amount of muta-
tion rate and a large product of number of generations and
population size, as long as neither of these two factors is
too small.

When working with 33 and 64 state machines we ob-
served that the quality of the solutions deteriorates with
the number of bits used to code the states. This 1s mainly
due to the fact that the number of bits determines the size
of the search space. Variations in the number of states
have no big impact on the results as long as the number
of bits needed for codification remains constant. The mu-
tation rate producing the best results seems not to change
significantly with the definition of the FSM or its number
of states. This is a salient feature since it removes the need
for tuning the algorithm for each new FSM design.

B. Comparative results.

The second set of experiments consisted of comparing the
GA results on different machines with some established,
specialized algorithms for SAP. These comparisons were
based on the number of literals for the sum-of-product

AMARAL, TUMER AND GHOSH: DESIGNING GENETIC ALGORITHMS FOR THE STATE ASSIGNMENT PROBLEM

Fitness
100 |1 | [] Random
i—ﬁ —8 —B — Gen=40
e o =g —a— N PN
0.95 — Foe B3 AR T g8 | Beioo
090 [— ¥ ‘o - e -a X Ben=200
s - LW Yo oo — =
085 | 7 “u —| Sen=400
B I,’l ",' = L Gen=800
080 —j o - -~ -E
!
075 4/ —
070 |4 —
0.65 — —
0.60 — —
055 — —
0.50
‘[‘ T Mut. Rate
0.00 5.00 10.00

Fig. 4. Effect of the number of generations on solution
quality (Population = 100) - ¢32.

form—Ilit(sop)—and for the factored form—Ilit(fac). For
NOVA and GA the cost was computed using the system
“sis” distributed by the Dept. of EECS, UC Berkeley [13].
For verification purposes, the actual assignments (i.e. the
solutions obtained) that resulted in the number of literals
shown on tables VI® 7 and VII(a) are presented in Table
VIII®. The GA solutions were obtained with eight hundred
generations and a population of two hundred individuals.

We used benchmarks presented in [6] and [16] to compare
the performance of the GA with those of the competing
algorithms. Comparative results are presented in Tables
VI and VII(a). Results for MUSTANG-P, MUSTANG-N,
and KISS were obtained from [6]°. The size of the examples
are given in Table VII(b).

Algorithms for SAP are based on heuristics, and the ex-
perimental results reflect this fact. For each of the six al-
gorithms compared above, there is at least one circuit for
which it gives the best result and another for which it yields
the worst! Even for a small set of examples, no algorithm
can be singled out as providing the best solutions. General
trends from Table VI shows that the GA compares favor-
ably to any other algorithm, and for one example —lion9—
outperforms all of them. This is remarkable since NOVA,
KISS and MUSTANG are very sophisticated and incorpo-

6NOVA_1 is NOVA executed with the default option -e ig, that
causes NOVA to be driven by input constraints.

"NOVA_2 is NOVA executed with options -e ioh -r, that causes
NOVA to be driven by input and output constraints, and all possible
rotations of the codes are tried.

8Each assignment is presented as a table of decimal numbers that
represent the binary code of the states of the FSM in crescent numer-
ical order.

9We always report the best result between the two logic optimiza-
tions reported in that paper — #lit1 and #lit2.

107

rate a lot of domain knowledge as compared to the GA.
Table VII(a) shows the cost as computed using the sum-
of-products form'®. GA results are as good as, or better
than the best NOVA result in 5 of the 9 machines, but fall
short on 2 machines.

The results obtained by the GA are encouraging and
the unpredictability of the results emphasize the need for
diverse methods, since the best for any given machine can’t
be known in advance.

V. CONCLUSIONS

This paper explored the use of Genetic Algorithms for
the solution of Combinatorial Optimization Problems. The
research highlights the importance of having good insights
into a problem before defining an adequate genotype, and
designing the operators necessary to apply a GA. By using
a natural matrix representation and state space reduction
techniques, the GA proposed in this paper captured the in-
herent properties of the search space and led to satisfactory
solutions for the state assignment problem.

The experiments with FSMs of various sizes show that
the optimum parameters do not change significantly from
one machine to the next. The GA also shows some robust-
ness to the mutation rate as long as one stays away from
extreme values.

For most of the examples considered, the GA compared
favorably to leading specialized algorithms for SAP that
incorporate extensive domain knowledge about the prob-
lem. An added advantage of the GA is that it can also be
used to improve solutions obtained with other algorithms.
For example, the initial population can consist of solutions
obtained with other algorithms, guiding the GA to the area
of the search space where the optimum solution is expected
to lie.

REFERENCES

[1] J.N. Amaral and W. C. Cunha. State assignment algorithm for
incompletely specified finite state machines. In Fifth Congress
of the Brazilian Society of Microelectronics, pages 174183, July
1990.

[2] D.B. Armstrong. A programmed algorithm for assigning inter-
nal codes to sequential machines. TRE Transactions on FElec-
trontc Computers, pages 466—472, August 1962.

[3] D. J. Comer. Digital Logic and State Machine Design.
College Publishing, New York, 1984.

[4] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Optimal state assignment for finite state machines. IEEFE Trans.
Comp.-Aided Design, pages 269—284, July 1985.

[5] S. Devadas and K. Keutzer. A unified approach to the syn-
thesis of fully testable sequential machines. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
10:39-50, January 1991.

[6] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-
Vicentelli. Mustang: State assignment of finite state machines
for optimal multi-level logic implementations. In International
Conference on Computer Aided Design, pages 16—19, 1987.

[7] S. Devadas and A. R. Newton. Exact algorithms for output
encoding, state assignment, and four-level boolean minimiza-
tion. ITEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 10:13-27, January 1991.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to NP-completeness. W. H. Freeman, San Francisco,
1979.

CBS

10This cost was not available for MUSTANG and KISS.

108

(9]

10]

(11]

(12]

(13]

(14]

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, VOL. XX, NO. Y, MONTH 1999

TABLE VI
COMPARATIVE RESULTS — LIT(FAC) FORM.

Example || GA | NOVA_1 | NOVA_2 | KISS | MUSTANG-P | MUSTANG-N
shiftreg 10 9 3 8 16 8
trainll 47 64 49 - - -
lion9 21 40 32 67 73 38
donfile 257 206 178 548 259 148
bbara 86 84 100 129 67 84
tav 26 29 29 21 21 21
bbsse 180 207 214 151 125 141
dk14x 159 165 178 132 123 112
c32 243 421 274 - - -
TABLE VII
(A) COMPARATIVE RESULTS — LIT(soP) FORM. (B) EXAMPLE SIZES.

Example || GA | NOVA_1 | NOVA_2 Example || inputs | outputs | states
shiftreg 10 9 3 shiftreg 1 1 8
trainll 53 79 48 trainll 2 1 11

lion9 22 51 39 lion9 2 1 9
donfile 408 321 280 donfile 2 1 24
bbara 130 134 154 bbara 4 2 10
tav 32 35 35 tav 4 4 4
bbsse 345 312 381 bbsse 7 7 16
dk14x 252 252 268 dk14x 3) 7
c32 401 768 450 c32 3 4 32
TABLE VIII
STATE ASSIGNMENTS.

Example GA NOVA_1 NOVA_2
shiftreg 0-2-5-7-4-6-1-3 0-4-2-6-3-7-1-5 0-2-4-6-1-3-5-7
trainll 0-8-2-9-13-12-4-7-5-3-1 0-8-2-9-1-10-4-6-5-3-7 0-13-11-5-4-7-6-10-14-15-12

lion9 0-4-12-13-15-1-3-7-15 2-0-4-6-7-5-3-1-11 0-4-12-14-6-11-15-13-7

donfile 0-12-9-1-6-7-2-14-11-17- | 12-14-13-5-23-7-15-31-10-8- 6-30-11-28-25-19-0-26-1-

-20-23-8-15-10-16-21-19- | -29-25-28-6-3-2-4-0-30-21- -2-14-10-31-24-27-15-12-

-4-5-22-18-13-3 -9-17-12-1 -8-29-23-13-9-7-3

bbara 0-6-2-14-4-5-13-7-3-1 4-0-2-3-1-13-12-7-6-5 9-0-2-13-3-8-15-5-4-1

tav 0-2-3-1 0-3-1-2 0-3-2-1

bbsse 0-4-10-5-12-13-11-14-15- 12-0-6-1-7-3-5-4-11-10- 2-3-6-15-1-13-7-8-12-4-
-8-9-2-6-7-3-1 2-13-9-8-15-14 -9-0-5-10-11-14

dkl4x 0-4-2-1-5-7-3 5-7-1-4-3-2-0 7-2-6-3-0-5-4

D. E. Goldberg.
tion and Machine Learning.
sachusetts, 1989.

M. A. Harrison. On equivalence of state assignments. IEEE
Transactions on Computers, C-17:55-57, January 1968.

S. H. Hwang and A. R. Newton. An efficient verifier for finite
state machines. IEEFE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 10:326-334, March 1991.

L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-
Vicentelli. Solving the state assignment problem for signal tran-
sition graph. In Proceedings of 29th ACM/IEEE Design Au-
tomation Conference, pages 568—572, June 1992.

E. M. Sentovich et. al. Sis: A system for sequential circuit syn-
thesis. Memorandum No. UCB/ERL M92/41, Dept. of EECS,
Univ. of Berkeley.

D. Varma and E. A. Trachtenberg. A fast algorithm for the opti-

Genetic Algorithms in Search, Optimiza-
Addison-Wesley, Reading, Mas-

15]

(16]

(17]

mal state assignment of large finite state machines. In Interna-
tional Conference on Computer-Aided Destgn, pages 152—-155,
1988.

G. A. Vignaux and Z. Michalewicz. A genetic algorithm for
the linear transportation problem. In IEEE Transactions on
Systems, Man, and Cybernetics, pages 445-452, Jan/Feb 1991.
T. Villa and A. Sangiovanni-Vincentelli. Nova: State assignment
of finite state machines for optimal two-level logic implementa-
tion. IEEE Transactions on Computer-Aided Design, 9:905-924,
September 1990.

D. Whitley, T. Starkweather, and D. Fuquay. Scheduling prob-
lems and traveling salesmen: The genetic edge recombination
operator. In Proceedings of the Third International Conference
on Genetic Algorithms, pages 133—-140, 1989.

