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$ Finite-precision Problems

= Quantizers are nonlinear devices

= Characteristics may be significantly
different from the ideal linear filter

= Overflow
= Coefficient quantization
= Limit-Cycle Oscillations




§ Quantizers

= Nonlinear effects make it extremely
difficult to precisely analyze the filter’s
performance.

= How do we model a fixed-point filter
then?

= Adopt a statistical model of the
quantization effects

= Results in a linear model for the filter

Statistical Characterization

v(n) = Q[av(n-1)]+x(n)

x(n)

Q[av(n-1)] = av(n-1)+e(n)
v(n) = av(n-1)+x(n)+e(n)

= We can now view the
response of the filter as
coming from two inputs.




§ Basic Assumptions

= The noise source is stationary white
noise.

= The sequence e(n) is uncorrelated with the
sequence e(m) for nzm.

= Sequence is mean ergodic and correlation
ergodic.

= The error sequence e(n) is uncorrelated
with the input sequence x(n).

i Mean

= The mean of the output generated by
the filter with impulse response h(n)
when excited by e(n) is

m,=m, h(n)

N=—o0

equivalently put
m, =m,H(0)




$ Autocorrelation

The autocorrelation is computed to be

oo oo

Vg (M) = h(kY(1)Y, (k=1 +n)

fr=—oc0 |=—c0

This reduces to

o,=0, (k)
o O'2 z 2
By Parseval’s theorem 0, = 7 _H(w) dw

$ Types of Quantization

b fractional bits

. 2—2b

= Rounding m, =0 o= >

. 27}’ 2 272})

= Truncation m=="- 0.=",
2

= Magnitude Truncation m, =0 o’ =




$ Section Ordering is Important

= Example
H(z)=H,(2)H,(2)
Where
Hy(z)=— Hy(2)=—
: _1—%2_l ? _1—%2_l

and their corresponding impulse responses
are given by h(n), h;(n) and h,(n)

$ Realization 1

x(n) ® v(n)

e,(n) e,(n)

With rounding

ﬁ;ai R+ R
= =0

n=0 n=

~2.900"




§ Realization 2

x(n) ._:/ (n)

e;(n) &,(n)
With rounding

022=65{ h (n)+ hlz(n)—|z3.16of

q
n=0 n=0

$ Section Ordering Comparison

= The overall noises were found to be

0. =2.900; )
—12 ~1.09
o), =3.160; Oy

= Thus, the second realization leads to
9% more noise power than the first.




$ Overflow

= Wrap Around
= Ex.
7 (0111) + 1 (0001) =
-8 (1000)

= Saturation
= EX.
5(0101) + 4 (0100) =
7 (0111)

$ Scaling to Prevent Overflow

= Pessimistic Scaling

= Narrowband Scaling

0<w<27




Practical Round-Off Effects on
§ Digital Filters

= Coefficient Quantization

» Frequency Response Characteristics

= Internal Wordlength Quantization
= Dynamic Range
» Signal-to-Noise Ratio
» Limit Cycles

i Coefficient Quantization

. Coefficient quantization alters the values of
the coefficients => changes your
frequency response

. A filter designed in floating point arithmetic
to meet certain specs may not meet those
specifications after coefficient quantization




Coefficient Quantization
Example

. We used the Parks-McClellan optimal FIR filter
algorithm to design a 21-tap filter
. Designed the filter in floating point format
. Took each of the coefficients and rounded to
the nearest 8-bit two’s complement number
. Ex:
0.2011929 => .2031250
(00011010 two's complement)

. Lesson: Over-design the filter and/or use an
optimization algorithm to meet the spec

Frequency Response

Floating Point Fixed Point

-Passband Ripple: .003 dB -Passband Ripple: .14 dB

-Stopband Attenuation: 48 dB -Stopband Attenuation: 36 dB
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Coefficient Quantization => Frequency Response Degradation




Internal Wordlength
§ Quantization

= Quantization of internal wordlength
leads to finite-wordlength effects

x(n)— 24zt 1 2t 1) Dynamic Range
} 2) Signal-to-Noise Ratio

Q|Q Q| Q 3) Limit Cycles

internal wordlength b

Dynamic Range Constraints

= Dynamic Range is defined as:

20 Ioglo | range of representable numbers |
| smallest non-zero representable number |

= The larger the dynamic range specification,
the larger internal wordlength b required
= Ex. b-bit number (X;. X; X5 X3 X4-...Xp.1)
= DR: 20 log |2 — 2-0D)| / | 2:bD) |
=201log (2t -1)
~ 6 dB / bit
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$ Dynamic Range (cont'd)

= b=8=>DR~48dB
= b=12=>DR~72dB
= b=16=>DR ~ 96 dB

Nowadays, most hi-fi audio systems have a DR
in the range of 80-100 dB

i Signal-to-Noise Ratio

= The signal-to-noise ratio is defined as:
SNR = 10 log,, signal power / noise power
= 10 log,;, 6,2/ ©2
= For our system (wordlength b):

SNR =10 log,, 6,2/ (2:-1)/12)
=10 log,, 6,2+ 6.02b + 4.77

m EX. x(n) = .75 sin (on) => SNR = 6.02b - .739
b =8 =>SNR = 47 dB
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§ Signal-to-Noise Ratio (cont'd)

= Thus, SNR increases by ~ 6 dB / bit

= To maximize SNR, you want to scale the
signal x(n) as large as possible (to increase
0, )

= However, there is a tradeoff—you need to
keep all internal signals small enough to
prevent overflow / saturation (use
normalization and scaling techniques)

i Limit Cycles

= Limit cycles occur when the output of a
digital filter does not decay to zero when
the input goes to zero

= Limit cycles occur only in IIR filters and
never occur in FIR filters

= They are caused by quantizing the data
after a feedback multiplier in a recursive
loop
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$ Limit-Cycle Example

X7 D > y(n)
7-1
Q } M
b 2b

e let M = -.96, y(-1) = 14, x(n)

= 0 and rounding to the
nearest integer
n -.96 * y(n)
y(n-1)
0 -13.44 -13
1 12.48 12
2 -11.52 -12
3 11.52 12

=> Limit cycle puts energy at Fs/2 which is detrimental

$ Limit Cycles in Matlab
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§ Eliminating Limit Cycles

= Use magnitude truncation (which
always decreases the energy of the
signal)

= Use a filter for which a Lyapunov
function exists

= Use controlled rounding

= Use novel filter structures designed to
eliminate limit cycles
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