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Abstract

Deutsch, Feynman, and Manin viewed quantum computing as a kind of universal physical simulation
procedure. Much of the writing about quantum Turing machines has shown how these machines can
simulate an arbitrary unitary transformation on a finite number of qubits. This interesting problem has
been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani. Quantum
Turing machines form a class closely related to deterministic and probabilistic Turing machines and one
might hope to find a universal machine in this class. A universal machine is the basis of a notion of
programmability. The extent to which universality has in fact been established by the pioneers in the
field is examined and a key notion in theoretical computer science (universality) is scrutinised. In a
forthcoming paper, the authors will also consider universality in the quantum gate model.

1 Introduction

In 1936 Alan Turing described an abstract device, now called a Turing machine, which follows a simple,
finite set of rules in a predictable fashion to transform finite strings (input) into finite strings (output, where
defined). The Turing machine (TM) can be imagined to be a small device running on a two-way infinite
tape with discrete cells, each cell containing only the symbol 0 or 1 or a blank. It has a finite set of possible
internal states and a head that can read the contents of the cell of the tape immediately under it. The head
may also, at each step, write a symbol to the cell over which it finds itself. There are two special internal
states: an initial state q0 and a halting state qH . A TM has a finite list of instructions, or transition rules,
describing its operation. There is at most one transition rule for each combination of cell content (under
the head) and internal state. If the internal state is qi and the head is over a cell with content Sj then the
machine looks for a rule corresponding to (qi, Sj). If no rule is found, the machine enters the halting state
immediately. If a rule corresponding to (qi, Sj) is found, it will tell the machine what to write to the cell
under the head, whether to move left or right and which internal state to enter. There is no transition rule
corresponding to the halting state. Sometimes we refer to the entire collection of individual rules for all the
different (qi, Sj) as the transition rule of the machine. A computation consists of starting the TM with the
head over the first non-blank cell from the left of the tape (it is assumed that there is nothing but some
finite input on the tape) and the machine in internal state q0. Now the transition rules are simply applied
until the machine enters the halting state qH , at which point the content of the tape will be the output of
the computation. It is clear how every TM defines a (possibly, partial) function f : N0 → N0 from the set of
counting numbers to itself.

Turing machines are the canonical models of computing devices. No deterministic device, operating by
finite (but possibly unbounded) means has been shown to be able to compute functions not computable by
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a Turing machine. A probabilistic Turing machine (PTM) is identical to an ordinary Turing machine except
for the fact that at each machine configuration (qi, Sj) there is a finite set of transition rules (each with an
associated probability) that apply and that a random choice determines which rule to apply. We fix some
threshold probability greater than even odds (say, 75%) and say that a specific PTM computes f(x) on input
x if and only if it halts with f(x) as output with probability greater than 75%.

2 Quantum Turing Machines (QTMs)

A natural model for quantum computation is based on the classical Turing machine. The quantum Tur-
ing machine (QTM) was first described by David Deutsch [2]. The basic idea is quite simple, a QTM
being roughly a probabilistic Turing machine (PTM) with complex transition amplitudes instead of real
probabilities.

2.1 Operation of a QTM

The QTM is related to the classical deterministic TM in much the same way as the PTM is. In the following
the classical machine is a machine with a two-way infinite tape, starting over position 0 on the tape as
described above. A corresponding quantum Turing machine (QTM) might work as follows (based on the
Deutsch description [2], Ozawa [3], Bernstein and Vazirani [1]).

1. The quantum state space of the machine is spanned by a basis consisting of states

|h〉|qC〉|xC〉|TC〉

where h ∈ {0, 1} and (qC , xC , TC) is a configuration of the corresponding classical machine, where xC

denotes the position of the head, qC the internal state of the machine and TC the non-blank content
of the tape. TC should include an indication of the absolute position of the content on the tape.

2. Special initial and terminal internal states have been identified.

3. The single transition rule is now a unitary operator which, in each step, maps each basic |h〉|q〉|x〉|T 〉
to a superposition of finitely many |h′〉|q′〉|x′〉|T ′〉, where

(a) T ′ and T differ at most in position x;

(b) |x′ − x| ≤ 1;

(c) h′ = 1 whenever q′ is the halting state of the classical machine; and

(d) T ′ = T , q′ = q and h′ = h whenever h = 1.

Note that the transitional rule (“program”) will have a finite specification only if the transition ampli-
tudes in the superposition of the |h′〉|q′〉|x′〉|T ′〉 are all computable complex numbers, which we will of
course assume to be the case throughout. The transition rule can also, obviously, be extended (linearly)
to finite superpositions of |h〉|q〉|x〉|T 〉.

4. The machine is started with a finite superposition of inputs in the initial state. Because of the form
that the transition rule is allowed to take the machine will be in the superposition of only finitely many
basic states |h〉|q〉|x〉|T 〉 at any step during the entire run of the computation.

Without loss of generality everything can be assumed to be coded in binary so that each position on the
tape will correspond to a single qubit (quantum bit). A unit of quantum information, the qubit is a two
level quantum mechanical system, whose state is described by a linear superposition of two basis quantum
states, often labelled |0〉 and |1〉. The actual (quantum) state space of the machine will be a direct sum
of n-qubit spaces (where n is an indication of how much tape has been used, each n-qubit space being the
n-fold tensor of the single qubit space).
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2.2 Time evolution of the QTM and halting

If U is the operator that describes one application of the transition rule (i.e. one step in the operation) of
the machine, then the evolution of an unobserved machine (where not even the halt bit is measured) for n

steps is simply described by V = Un. If the first measurement occurs after n1 steps, and the measurement
is described by an operator J1 then the evolution of the machine for the first n1 + j steps is described
by U jJ1U

n1 , which is in general no longer unitary since the operator J1 is a measurement (always in the
computational basis). It is important to note that the machine evolves unitarily only when no measurement
takes place at all.

The output of the machine is on the tape as a superposition of basis states and should be read off
after having measured the content of the halt bit and finding it in the state 1. The operator may at any
time measure the halt bit1 in order to decide whether to read the tape content (and collapse the state of
the machine to one of the basis states). The halt bit is intended to give the operator of the machine an
indication of when an output may be read off from the tape (and by observation collapsing the system to an
eigenstate) without interfering excessively with the computation. It seems that Deutsch’s original idea was
that there would be no entanglement at all between the halt bit and the rest of the machine, but this cannot
be guaranteed. The output of a QTM for some specific input x (which may be a superposition of classical
inputs) is a probability distribution Px over all possible contents of the tape at the time of observing the
halt bit to have been activated.

3 Universality and programmability in the machine model

The notion of a universal computing device in a specific class is crucial for the development of a complexity
theory and—more basically—establishes the notion of programmability.

3.1 Classical universality and programmability

Consider a general countable class of machines, say Manchester machines (MMs), that compute partial
functions, i.e. functions that are not necessarily defined for all inputs (since the machine might not halt, for
example, as in the case of a Turing machine). Since there are only countably many machine descriptions,
let us assume that each Manchester2 machine is fully described by a natural number. It should be possible
to recover the full description of the machine’s functioning from the natural number in an effective way, so
it should not simply be any enumeration of the countable set. Let Φn denote the partial function computed
by machine n and fix an MM-computable bijective function h : N0 × N0 → N0, assuming such a function
exists3.

Definition 1 If there exists a number N such that

ΦN (h(n, m)) = Φn(m)

which means that the functions are either equal and both defined or both undefined, for all n and m, then the
machine described by N is called a Universal Manchester Machine (UMM).

Programmability is firmly linked to the concept of universality and is, of course, a necessary condition for
universality. Is it a sufficient condition? A particular Turing machine is usually thought of as dedicated to a
particular task, defined by a set of quintuples describing the operations to be carried out in sequence. Every
Turing machine has thus a finite description (of internal states, tape entries and operation rules—which
are unbounded but finitely many) which could be used as input to another Turing machine. A universal
Turing machine, (of which there are infinitely many), can simulate all the Turing machines, and is thus

1 The halt qubit, of course, until we measure it.
2Alan Turing worked on building and programming one of the first electronic computers in the city of Manchester after the

Second World War.
3h : (x, y) 7→ 2x3y would suffice, for example.
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programmable for the entire class of Turing machines. If a machine is programmable for any device in its
class, then it is universal. Not all programmable computer devices are universal in any sense. In fact, one
could use the term programmable to describe any device taking input of the form 〈p, x〉 where p is the
“program” and x the “data” and where the action of the machine on x depends on p. Such machines are
universal (for their class) only if they can—through the suitable choice of p—mimic the operation of any
other machine in the class.

3.2 Probabilistic Turing machine universality

Since halting is a probabilistic notion for a QTM, the notion of universality for quantum devices should be
akin to that for probabilistic machines. For probabilistic machines, however, Definition 1 does not directly
apply and it is necessary to generalise it as follows.

Definition 2 If there exists a number N such that

ΦN (h(n, m)) = Φn(m)

which means that the functions are either equal and both defined or both undefined (if deterministic) and
if not deterministic then the values have the same distribution, for all n and m, then the machine
described by N is called a Universal Manchester Machine (UMM).

In the case, for example, of deterministic Turing machines (which are a strict subset of the probabilistic
machines) the two notions of universality coincide, of course. The main aim of this section is to discuss this
(second) notion of universality for quantum Turing machines (QTMs). One can easily show, incidentally,
that every function f which can be computed in this sense by a PTM, is also computable by some ordinary
TM in the usual sense. Nevertheless PTMs have always been of interest because probabilistic algorithms can
often be found that are quite fast by comparison to the best known classical procedure. The class of PTMs
is often defined by restricting the probabilities to 1

2
or 1 only. In this case the class can also be obtained by

taking the ordinary TMs and adding a special write instruction to write one random bit to the tape.
Now, which PTMs should our UPTM be able to simulate exactly? Well, since each PTM should have a

finite description, the UPTM need only be able to simulate a countable collection of PTMs. Let us restrict
the set of PTMs to those with computable transition probabilities. Each such machine is fully described
by the finite set of transition rules and programs for computing each of the associated probabilities. This
description is finite—thanks to the restriction of the probabilities to computable numbers. Since there is no
reasonable way of giving a finite description of PTMs with non-computable transition probabilities, apart
from the usual paradoxical definitions of the type “one more than the largest number which can be described
in thirteen words”, this concludes the discussion for PTMs. Introducing arbitrary real transition probabilities
makes no sense as it would immediately make any subset of the natural numbers decidable by a probabilistic
machine.

3.3 A universal QTM?

Deutsch introduced a “universal quantum computer” (uQC, where u has not been capitalised in order to
emphasise the difference between this universality concept and the preceding) in [2]. The Deutsch uQC is
in effect a QTM as in Section 2, based on a classical UTM with some additional (8 in [2]) operations that
allow any unitary transformation on one qubit to be approximated arbitrarily closely. Deutsch showed in the
paper that for any given L, ε > 0 and quantum device U operating on L qubits, there exists a program pL

for the uQC that (with input pL followed by any finite superposition of L-qubit basic states) approximates
the operation of U on the finite superposition of L-qubit basic states with accuracy at least ε (in the inner-
product norm). This is not the same kind of universality that we have for probabilistic and for deterministic
Turing machines and even the concatenation scheme used by Deutsch has been questioned (for example, by
Shi [4]).
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Now, if we consider the earlier (second) definition of universality, then there can be no universal machine
for the simple reason that in Deutsch’s scheme there are uncountably many (transition rules for) QTMs. For
broadly the same reasons as outlined above for PTMs, we shall restrict ourselves henceforth to QTMs with
computable transition amplitudes, i.e. transition amplitudes for which both the real and imaginary parts
are computable numbers. We now fix a scheme for encoding the QTMs and associate any machine M with
the smallest natural number that encodes it. Note that we say that a QTM outputs y with probability p if
the probability of ever observing the machine to be in the halt state with the tape in state |y〉 is p. Does a
universal machine for the (restricted) class of QTMs in the sense of Definition 2 exist?

Deutsch provided the rather incomplete solution mentioned above. Bernstein and Vazirani [1] have given
another partial solution. They showed that there exists a quantum Turing machine U (they actually wrote
M) such that

“for any well-formed4 QTM M , any ε > 0, and any T , U can simulate M with accuracy ε for T

steps with slowdown polynomial in T and 1

ε
.”

The slowdown and the program for U both depend here on the length of the input. The full Bernstein-Vazirani
result could be summarised by the statement that

there exists a QTM U such that for each QTM M with finite description M̄ , n, ε and T there
is a program P(M̄, n, ε, T ) and a function fM̄ (T, n, 1

ε
) (both recursive in their inputs) such that

running U on input |P(M̄, n, ε, T )〉 ⊗ |x〉 where |x| = n for fM̄ (T, n, 1

ε
) steps results—within

accuracy ε—in the same distribution over observable states as running M on input |x〉 for T

steps.

The simulation is clearly only approximate. What Bernstein and Vazirani mean “with accuracy ε” is that if
P is the probability distribution over all observable states of U after fM̄ (T, n, 1

ε
) steps with the given input

and Q is the corresponding probability distribution of M after T steps then

1

2

∑

x

|P (x) − Q(x)| ≤ ε

where the summation is over all possible observable states x. Again, approximate simulation is quite different
from the universality concept for ordinary and for probabilistic Turing machines (with computable probabil-
ities) as in the latter cases the universal machine’s simulation was exact. Running U for exactly fM̄ (T, n, 1

ε
)

steps on any input |P(M̄, n, ε, T )〉 ⊗ |x〉 will have simulated the running of M on |x〉 for T steps. We may
not let U run for any more steps as the state of the machine might then drift away from the to-be-simulated
state of M after T steps. This behaviour is rather different from that of the UTM or UPTM—where there
is no need to restrict the number of steps executed!

Now, the Bernstein-Vazirani machine U immediately suggests the following semi-universal hybrid device
(SUHD). The device takes the description M̄ of a QTM M as well as x and ε (which may be taken to be
rational) as input. The machine operates as follows.

T:= 1;

n:= |x|;

do

compute P := P(M̄, n, ε
T

, T );
compute S := fM̄ (T, n, T

ε
);

run U on |P 〉 ⊗ |x〉 for S steps;

signal that quantum part of device may be observed;

wait a little;

reset quantum part of device;

T:=T+1;

while true;

4Meaning that the time evolution operator is unitary.
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Note that by replacing ε by ε
T

we have ensured that by simply letting the SUHD run, we will not only be
able to observe the simulated behaviour of M for ever longer times, but also with ever-increasing accuracy.
However, the SUHD is still not universal for the class of QTMs in the sense of Definition 1 or Definition 2.
This is true not only for the very obvious reason that its simulation is only approximate, but for the much
more fundamental reason that we do not know whether it is a QTM itself!

The SUHD is a real hybrid device which consists of a classical Turing-type machine and a quantum part.
The SUHD is—in a sense—a robot capable of operating a quantum device (which forms part of itself) and
there is no reason to think that such a robot cannot be built. The problem lies therein that the robot only
gives a signal when we might observe the quantum part of the device. It cannot know whether we have
observed the quantum part or not—otherwise the observer would become part of the device...

Now, any quantum device operates reversibly. In the case of the SUHD the step “reset quantum part of
device” is the part which can be problematic in this regard. If the quantum part was not observed during
the step “wait a little” then the inverse of the evolution operator of U can be used to effect such a reset. But,
what if the observer(s) did make an observation of the quantum part during “wait a little”? Now, the inverse
of the evolution operator of U will not “reset quantum part of device”. This is really a serious problem. In
an ordinary QTM the evolution of the machine continues even when the halt bit has been observed, but for
the SUHD even the observation of the halt bit (which may be in a superposed state, although not necessarily
entangled with the rest of the machine) renders the operation of the device non-reversible. For the hybrid
device the resetting step requires an undisturbed quantum part. If the quantum part has been disturbed at
T = k, the operation described above will not be able to correctly reset the quantum part of the device and
will not execute the loop faithfully for T = k +1. Pure quantum computing devices are prevented by the No
Cloning Theorem from copying initial configurations of substems, which precludes the realisation of such a
näıve hybrid operation by a quantum device.

Conjecture 1 The SUHD derived from Bernstein and Vazirani’s U cannot be made to operate reversibly
and is therefore not a QTM.

The immediate consequence of the conjecture is that (as yet) no universal machine has been shown to exist
in quantum computing and that the notion of universal programmability has not really been established for
quantum computing in the QTM model.

4 Conclusion

Research into quantum computation over the past 20 years has been very successful in stimulating the devel-
opment of quantum cryptography (already in industrial application), the study of quantum information and
the discovery of novel algorithms for traditionally hard and interesting problems such as prime factorisation.
One would be wise, however, to heed the words of Andrew Steane [5]:

“The title quantum computer will remain a misnomer for any experimental device realised in
the next twenty years. It is an abuse of language to call even a pocket calculator a computer,
because the word has come to be reserved for general-purpose machines which more or less realise
Turing’s concept of the universal machine. The same ought to be true for QCs if we do not want
to mislead people.”

This paper has attempted to explain why certain (strong and interesting) results in quantum computation
still fall short of establishing universality (and programmability) for quantum Turing machines. At the very
least, researchers in the field should attempt to explain how the results of Deutsch, Bernstein and Vazirani,
and others can be used or expanded to construct a fully programmable universal quantum Turing machine.
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