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ABSTRACT 

In this paper, we propose a new CORDIC algorithm and 

architectures which can generate close-to-optimum rotation 

sequences easily with small lookup table sizes. This new 

design is particularly suitable for the applications of adjust-

able-length FFT. In all, the required number of shift-and-

add operations for micro-rotations and scale-factor compen-

sations is only n/2, where n is the output precision. For de-

sign verification, we synthesized both serial and pipelined 

architectures, by using Synopsys Design Complier based on 

UMC 0.18 m , 1P6M CMOS technology. The synthesized 

16-bit pipelined FFT PE runs at 222MHz, with a total gate 

count of 89263 and a low-power consumption of 26.75 mW. 

It meets the FFT speed requirements of most OFDM-based 

communication systems, including DAB, DVB, 802.16 and 

VDSL. Compared with a conventional multiplier-based FFT 

PE and the existing CORDIC-based FFT PE’s, the proposed 

designs has better performances in terms of area, speed and 

power consumption.  

1. INTRODUCTION 

DFT is one of most important computations in engineering 

applications. It is also a key component in OFDM commu-

nication systems. Cooley-Tukey FFT algorithms [1] are 

efficient realization techniques of DFT operations. They are 

composed of a sequence of unit butterfly operations. A but-

terfly operation involves addition operations and multiplica-

tion operation by twiddle factors k

NW , 12/,,2,1,0 Nk ,

where N is the FFT length. In the literature, a butterfly unit 

is generally realized by complex multipliers and adders, 

together with the stored required twiddle factors in memory. 

This approach has the advantages of design simplicity and 

high-speed operations. However, the required complex mul-

tipliers and the storage for twiddle factors incur high area 

overhead. In this work, in order to reduce these two over-

heads, we will propose a new CORDIC algorithm and its 

architectures specifically tailored for FFT computations. 

The proposed design will consume smaller areas than con-

ventional multiplier-based FFT units and those FFT proc-

essing elements based on general CORDIC algorithms.  

CORDIC algorithm [2] is a well-known and efficient 

algorithm for the computations of vector rotations, vector 

angles and magnitudes. Since CORDIC algorithm only 

needs a sequence of micro rotations based on simple shift-

and-add operations, it is efficient in hardware realization.  

Since a twiddle factor multiplication is equivalent to 

rotation of a 2-D vector by the twiddle factor’s phase, 

CORDIC algorithms are very suitable for twiddle factor 

multiplications. An additional significant benefit of apply-

ing CORDIC to FFT computations is that there is no need to 

store twiddle factors which are required in conventional 

multiplier-based FFT designs. In the literature, most of the 

CORDIC algorithms are directly applied to FFT computa-

tions without optimizations. As a result, they are not effi-

cient in terms of operations counts and area complexities.  

There are only a few optimized CORDIC-based FFT 

designs (that reduce redundant iterations as much as possi-

ble) [3-5]. However, some of the optimized designs require 

considerable memory overheads [4,5] to generate optimized 

rotation sequences for low iteration counts. Besides, those 

optimized rotation sequences introduce the serious problem 

of variable scale factors. There involves considerable over-

heads in generating on-line scale factors for those optimized 

rotation sequences. In previous works, we proposed an effi-

cient on-line generation and compensation scheme [3] for 

variable scale factor. In this work, we will alleviate the 

problem by applying the similar idea to the new designs.  

Besides, when apply CORDIC techniques to FFT com-

putations, we can take advantages of special properties of 

FFT operations, for more efficient design results. For 

example, for a radix-2 FFT algorithm, only N twiddle fac-

tors are requested for computations (in the order of 

,,, 210

NNN WWW  for the first stage). In our proposed design, 

we will utilize this property for efficient generations of rota-

tion sequences as will be discussed later. The result is that 

the proposed designs can generate close-to-optimum rota-

tion sequences, at the cost of little hardware overhead and 

very small table size.  
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2. THE NEW CORDIC ALGORITHM FOR FFT 

First, consider the basic CORDIC algorithm. Given a vector 

),(),( 00 yxyx  to be rotated by an (n+1)-bit angle 

]2/,0[ , and 
n210.. , then the rotated out-

put vector ),( '' yx

sincos' yxx ; sincos' xyy   (1) 

can be executed by the following CORDIC algorithm: 
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Notice that the whole computations are mapped into a 

sequence of shift-and-add operations. To reduce the itera-

tion counts and speed up the whole operations, in our previ-

ous works, we proposed high-radix CORDIC algorithms 

such as the radix-4 [6], radix-16 [7] algorithms. Although 

those designs are efficient, as usual they require hardware 

overhead for obtaining residue angles. Next, we will intro-

duce a new CORDIC design for FFT computations, by tak-

ing advantage of FFT properties. The required rotation se-

quences can be easily obtained by looking up a small table 

and performing some few simple operations in one shot, and 

there is no need to update the residue angles in each itera-

tion (as detailed below).  

2.1 The Basic Design Idea 

Our design is based on an idea of efficient angle decomposi-

tion. Since we focus on FFT computation, there are only N

twiddle factors (that correspond to only N rotation angles) 

involved in the CORDIC operations, we can decompose the 

rotation angle of a twiddle factor into a coarse angle com-

ponent and a fine angle component. The fine angle compo-

nent is small enough to satisfy the well-known linear map-

ping property ii 2)2(tan 1 , if 3/ni , while the coarse 

component is relatively large and does not satisfy the condi-

tion. For example, for any input angle )23/(2 n , then it 

is said to have a coarse angle component. As a result, for the 

fine angle component, its rotation sequence can be readily 

obtained by inspection, while its corresponding scale factor 

can be easily obtained (as will be detailed later). Further, for 

the coarse angle component, we can store its optimized rota-

tion sequences and scale factor sequences in a lookup table. 

Then, whenever we want to do a twiddle factor multiplica-

tion (i.e., a CORDIC rotation), we directly decompose the 

input angle into these two components, and at the same time 

obtain all the required optimized rotation sequences and 

scale factors. Doing so, we will have a very low shift-and-

add operation count, and we don’t need to compute residue 

angles iteratively. Hence, the normally required 
ii 2)2(tan 1  table can be saved.  

2.2 Generations of Twiddle Factor Angles 

The twiddle factors (and the corresponding rotation an-

gles) of a radix-2n FFT algorithm come in a particular order 

in accordance with the order of butterfly operations. For 

example, for radix-2 FFT algorithm, the twiddle factors can 

be requested in the order of l

N kW 12/
, 12/,,1,0 kNl ,

Nk 2log,,2,1 , where l is the index for the twiddle fac-

tors (and also the butterflies) and k is FFT stage number. As 

such, the corresponding twiddle factor angles ( )2//(2 1kNl ,

12/,,1,0 kNl ) come in successively and incrementally, 

which are l multiples of the “base rotation angle” 

)2//(2 1KN . Generations of those ordered twiddle factor 

angles therefore can be done by successively accumulating 

the base rotation angles. The base angles can be either a 

“base fine angle” or a “base coarse angle”. Hence, we need 

to store all the optimized rotation sequences and their corre-

sponding scale factors in a lookup table, for those base rota-

tions angles. This requires a small memory size of N2log

entries.  

2.2.1 Generation of fine rotation sequences 

As mentioned above, a radix-2 FFT performs twiddle factor 

multiplications by l

N kW 12/
successively, in the order of,

12/,,1,0 kNl , Nk 2log,,2,1 . As such, the base 

angle is )2//(2 1kN , which will be accumulated to 

generate all the other twiddle factor angles. If N/2  is 

small enough so that it and its initially accumulated angles 

are all fine angles. For those fine rotation angles, the corre-

sponding fine rotation sequences are exactly the same as 

their binary angle representations from the accumulator out-

put. In the proposed design, by using the contents of FFT 

stage counter and the butterfly counter as the address lines, 

we can lookup the base fine rotation sequence correspond-

ing to the base fine rotation angle from a table. Then the 

base fine rotation sequence is sent to an accumulator for the 

generation of other rotation sequences. Next, those se-

quences are converted to CSD (canonical signed digit) for-

mats which guarantee minimum numbers of micro-rotations. 

2.2.2 Generation of coarse rotation sequences 

Coarse angles can be generated owing to two different con-

ditions. The first one is that accumulations of a base fine 

rotation sequence may end up with output angles with 

coarse angle components. The second condition is that a 

base rotation angle is already contains a coarse angle com-
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ponent. As a result, all its subsequent accumulated values 

also contain coarse angle components. In those cases, we 

have to decompose those twiddle factor angles into coarse 

and fine angle components. Then the corresponding fine 

rotation sequences (in binary formats) can be easily ob-

tained. On the other hand, the optimized coarse rotation 

sequences (in CSD formats for their MSB parts and in bi-

nary formats for their LSB parts) and their corresponding 

scale-factor sequences can be obtained from a lookup table 

as discussed before.  

In fact, differentiation and decomposition of a twiddle 

factor angle into a coarse angle component and a fine angle 

component can be easily done from the contents of the stage 

and butterfly counters. 

2.2.3 Combined rotation sequences 

Since there are overlaps in the micro-rotation angles be-

tween the coarse and fine rotation sequences, we can com-

bine them altogether for further reduction of the numbers of 

shift-and-add operations. Specifically, one can combine the 

LSB portions of coarse rotation sequences with fine rotation 

sequences by simply adding them up, because both satisfy 

the property of ii 2)2(tan 1 . Then the combined rotation 

sequences are converted to CSD formats which correspond 

to the minimum numbers of shift-and-add operations. Fi-

nally, the CSD signals are sent to the rotator unit of a 

CORDIC-based FFT PE.  

2.2.4 Generations and compensations of scale factors  

In the proposed design, we skip many redundant micro-

rotations. Therefore, the scale factors will not be constant. 

Here, by taking into account of the pre-stored scale factor 

sequences (for coarse rotation angles), we modify our pre-

vious work [3] and propose a low-complexity generation 

and compensation scheme for variable scale factors as fol-

lows. Based on the following approximation of a basic scale 

factor:  

j
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i

j

O
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1
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12

1412

2  (6) 

where 142 iO  stands for the error term. 

we propose the following modified on-line scale factor 

compensation scheme: 

1. When 23/ni , the scale factor sequences can be re-

trieved from a lookup table (defined before) for later 

compensation operations. 

2. When 23/12/ nin , then 1221cos i

i
.

As such: 
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3. When 12/ni , then 1cos i
 and no compensation 

is required. 

2.2.5 Overall description of the new CORDIC algorithm 

The new CORDIC algorithm can be summarized in steps as 

follows. 

Step 0: Obtain the table index based on the contents of FFT 

butterfly counter and stage counter, then decide the numbers 

(LC, LS and LF) of iterations for coarse rotation, scale factor 

compensation, and fine rotation, respectively. 

Step 1: Obtain the coarse rotation sequence and scale factor 

compensation sequence from the sequence table using the 

table index from Step 0, and generate the fine rotation se-

quences by accumulating the base fine rotation sequence. 

Step 2: Add the LSB portion of coarse rotation sequence to 

the fine rotation sequence, and convert the combined se-

quence to CSD format. 

Step 3: For data rotation, we first perform the coarse rota-

tion according to the MSB portion of coarse rotation se-

quence for LC iterations. Next, we perform the scale factor 

compensation according to the scale factor compensation 

sequence for LS iterations. Finally, we perform the fine rota-

tion according to the combined rotation sequence for LF

iterations. 

From 16-bit simulation, the new CORDIC algorithm 

needs 5.03 shift-and-add operations in average for data rota-

tion which is very close to the optimum 4.14 iterations (due 

to computer full-search). 

3. REALIZATION OF THE NEW CORDIC-BASED 

FFT PROCESSING ELEMENT 

We apply the new CORDIC algorithm to the design of 

multi-standard, multi-mode FFT computations for several 

mainstream OFDM communication systems, including 

DAB, DVB, 802.16, ADSL and VDSL systems. Specifi-

cally, we design an adjustable-length FFT processing ele-

ment (PE) which can process FFT lengths up to 8192. Fig. 1 

shows the block diagram of the design 16-bit pipelined 

CORDIC-based FFT PE. The design meets the speed speci-

fication requirements of all those OFDM systems. 

We realize the pipeline architecture with two different 

unit rotator cells, i.e., the Rotator_4_2 cell and the Rota-

tor_2_1 cell. Rotator_4_2 cell can handle 4 rotation digits 

and process up to two micro-rotations at a time, while Rota-

tor_2_1 cell can only process 2 rotation digits and process 

up to one micro-rotation at a time. One can design a unit 

rotator cell adjusted for desired speed and area specifica-

tions. We also realize the new CORDIC algorithm based on 

a serial single-rotator architecture, for applications with 

lower data rates such as DAB and DVB. 

4. SIMULATIONS RESULTS AND COMPARISONS 

Table 1 shows the synthesized areas and power perform-

ances of the proposed designs and a general multiplier-

based processing element. They are synthesized with  
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Fig. 1. Block diagram of the proposed pipelined CORDIC 

architecture 

TABLE 1. Comparison of area and power performances. 

@125MH

z

Proposed 

pipelined PE 

(Rota-

tor_4_2) 

Proposed 

pipelined PE 

(Rotator_2_1)

Proposed

single-

rotator PE 

Multiplier-

based PE

Gate

count 
89263 104011 28129 92890 

Power 26.75mW 34.24mW 4.45mW 30.60mW

TABLE 2. Comparison of speed performances. 
Propose 

pipelined

architecture 

(Rota-

tor_4_2)

Proposed

pipelined

architecture 

(Rota-

tor_2_1)

Proposed

single-

rotator 

architec-

ture 

Multi-

plier-

based PE

Op. 

freq. 
200MHz 222MHz 182MHz 125MHz

TABLE 3. Table sizes comparison for twiddle factors.  

Proposed Multipier-based FFT PE 

,0 2/,0

Coeff. width 16 digits 12 bits 

Size
(No. of bit cells)

672 49152 24576 

Synopsys Design Complier using UMC 0.18 m 1P6M 

CMOS technology. We only extract the processing element 

here for comparison. 

Table 2 shows the maximum synthesized clock rates of 

the proposed architectures and multiplier-based design. Ta-

ble 3 shows the comparison of required table size for twid-

dle factor storage in conventional multiplier-base FFT archi-

tecture. The sequence table of our design is only about 1% 

of the size of twiddle factor ROM table. As shown, the pro-

posed FFT PE’s based on the pipelined Rotator_4_2 struc-

ture has better performance than the conventional multi-

plier-based PE. Table 4 compares the new design with some 

CORDIC-based FFT designs. Although the simulation is 

done assuming 16-bit case, we also conduct simulations 

with other word lengths. Simulations show that in average 

n/2 iterations are achieved with the new CORDIC algo-

rithms.  

TABLE 4. Comparison of CORDIC-based FFT designs 

Table size 

(no. of bit 

cells) 

No. of shift-&-

add operation for 

data rotations 

Total no. of 

shift-&-add 

operations 

Proposed 672 5.03 8.75 
/2 pre-

rotation
28675 4 8 Kuo 

et al. 

[5] 
/4 pre-

rotation
14336 4 8 

Hu [4] 32768 4.96 9.63 

Chen [3] 768 N/A 10.6 

5. CONCLUSION 

The CORDIC algorithms and architectures proposed in this 

work are specifically designed for FFT operations. They 

combine some FFT properties effectively and achieve close-

to-optimum iteration numbers of shift-and-add operations, 

with small lookup table and hardware complexity. The new 

designs are advantageous over the existing designs in terms 

of both speed and area. The designed pipelined multi-mode 

FFT PE can meet the speed specifications of most OFDM 

communication systems, including VDSL, 802.16, DAB 

and DVB.  
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