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ABSTRACT 
In this paper, a novel data scaling method for pipelined FFT 
processors is proposed. By using data scaling, the' FFT processor 
can operate on a wide range of input signals without performance 
loss. Compared to existing block scaling methods, like 
implementations of Convergent Block Floating Point (CBFP), the 
memory requirements can be reduced while preserving the SNR. 
The FFT processor has been synthesized and sent for fabrication 
in a 0.35pm standard CMOS technology. In netlist simulations, 
the FFT processor is capable of calculating a 2048 complex point 
FFT or IFFT in 27ps with a maximum clock frequency of 
76MHz. 

1. INTRODUCTION 

The Fast Fourier Transform (FFT) has a wide range of 
applications in digital signal processing [I]. For instance, FFT's 
are used in communication systems like DAB, DVB and IEEE 
802.1 la. The FFT is also used for analysing sound, images and 
video when removing undesired or perceptual irrelevant 
information, in radar applications as well as in different 
instrumentations. The N-point Discrete Fourier Transform (DFT) 
is defined as 

X ( n ) = C x ( k ) w ;  n =0,1 ..., N-1 
k=O 

where WN=ey(zlr/N. The direct implementation of the DFT have a 
complexity of O(N2). Using the FFT, the complexity can be 
reduced to O(N.log2(N)). The FFT is also more suitable for 
hardware implementation due to the physical regularity of the 
algorithm, but requires memory buffers to store parts of the 
sequence during calculation. The memory requirements are a 
crucial parameter since memories are rather expensive in both 
terms of area and power consumption. Reducing the memory 
requirement will therefore significantly affect the total size of the 
design. In this paper, the implementation of a high performance 
pipelined FFT processor with low memory requirements using a 
novel scaling approach is presented. 

2. FFT ARCHITECTURES 

There are many different ways to implement an FFT processor. 
The computations can be done in a number of iterations by time 
multiplexing a single memory and arithmetic unit, Fig. 1 .a, or by 
using a pipelined architecture, Fig. 1.b. A pipelined radix-2 
architecture requires 10g2(N) arithmetic units, one for each 
butterfly stage, and is therefore more area expensive than using 
one single radix-2 unit. In return, the calculations will be 10g2(N) 
times faster when using pipelining. 
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Fig. 1. a) Time multiplexed FFT processor using a single memory and 
butterfly unit. b) Pipelined FFT processor. 

The problem with a fixed point FFT is to maintain the accuracy 
and preserve the dynamic range at the same time. One way to 
achieve a high signal-to-noise ratio is to increase the internal 
wordlength for every stage in the pipelined FFT (variable 
datapath), i.e. the wordlength will be wider at the output than at 
the input. Another way to improve the signal-to-noise ratio 
without increasing the internal wordlength is to use data scaling. 
One example of data scaling is block floating point that uses 
exponents, or scaling factors, for intemal representation to 
improve the SNR. The exponents are usually shared between the 
real and imaginary part of a complex value, or even shared 
among a set of complex values [2-41, unlike normal floating 
point representation. Fig. 2 shows the almost constant internal 
wordlength when using data scaling and also the increasing 
internal wordlength when using a variable datapath. The width of 
the internal scale factor representation can be optimised for each 
stage. In this paper, focus will be on different scaling approaches. 

Fig. 2. Internal butterfly wordlength for a 10-bit 2048 complex point FFT 
processor using a) data scaling and b) variable datapath. 
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2.1 Block floating point 
Time multiplexed FFT processors can use a data scaling method 
called Block Floating Point (BFP). After calculating all outputs 
from stage N, the largest output value can be detected and the 
intermediate result is scaled to improve the precision. When 
using BFP, all values share one single scale factor. BFP requires 
that the scale factor for stage N can be determined before starting 
the calculations of stage N+l . This approach cannot be applied to 
pipelined architectures due to the continuous dataflow. 

2.2 Convergent block floating point 
When a pipelined architecture is used, it is not efficient to wait 
until stage N has finished to determine the scaling factor. Instead 
a method called Convergent Block Floating Point (CBFP) has 
been proposed [2-41 as shown in Fig. 3. The basic idea is that the 
output from a radix-4 stage is a set of 4 independent groups that 
can use different scale factors. After the first stage there will be 4 
groups, after the second stage 16 groups and so on. This will 
converge towards one exponent for each output sample from the 
FFT. The same scheme can be applied for a radix-2 stage, 
generating 2 independent groups at each stage. If the initial 
butterfly is of radix-2 type, most implementations omit the CBFP 
logic in the first stage due to the large memory overhead. 

Fig. 3. A pipelined 2048-points FFT using CBFP. 

The drawback with CBFP is that it requires a lot of memory. For 
the 2048 point pipelined FFT in Fig. 3, the input values are split 
into 2 groups of size 1024 in the initial radix-2 stage. The second 
stage produces 4 new groups containing 256 values each. These 
256 values from the complex multiplier have to be stored in a 
buffer, as illustrated in Fig. 4, before the scaling factor for the 
group can be determined. Furthermore, it has to be saved in full 
precision because normalization cannot be done until the scaling 
factor is known. The length of the delay buffer after stage k is 

Another drawback is that the latency will increase, caused by the 
delay in the intermediate buffer. 
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Fig. 4. CBFP logic between the consecutive stages. 

2.3 Presented approach 

Current CBFP techniques require a buffer to store N/4 outputs 
from a radix-4 stage with N inputs. The proposed method in this 
paper is to remove this buffer and rescale the data on the fly. 
After the complex multiplier, the result is normalized without 
delay and sent to the next butterfly stage. Therefore, each 
butterfly must be able to rescale one of the input values, if they 

are represented with different exponents. Starting from the 
second stage, the wordlength in the delay feedback has to be 
widened to hold both the complex value and the scale factor. This 
approach towards a hybrid floating-point processor still has much 
in common with the block scaling technique since only negative 
scale factors are allowed, leading to a reduced exponent 
representation and simple scaling logic. Furthermore, there is no 
input exponent, which reduces the memory overhead in the first 
(and largest) memory stage. 
For futther memory reduction, recall that each block in CBFP is 
represented with the same exponent. Accordingly, if the exponent 
in a block is only allowed to increase, the number of possible 
changes is limited. This will lead to minor performance 
degradation, but it will be shown that this limited number of 
changes can be stored in a special way to lower the memory 
requirements. 

3. IMPLEMENTATION 

The presented FFT processor is based on the radix-2' 
decimation-in-frequency algorithm [5]. The r a d i ~ - 2 ~  algorithm is 
well suited for the presented approach because of the simple 
singlepath delay feedback structure. Fig. 5 shows the modified 
FFT radix-2' processor, based on three different kinds of building 
blocks. The IBF unit is a normal butterfly that is only used in the 
first stage. The MUL unit contains a complex multiplier and a 
normalizing unit with proper rounding. The output value, z(x), 
from a MUL block is represented by a complex value, a(x)+jb(x), 
and a positive scale factor s(x) as 

z ( x )  = 2-"'"'(a(x) + j b ( x ) )  (3) 
The MBF unit is a radix-22 butterfly with a wider delay feedback 
to hold scale factors. To avoid problems with data alignment, 
equalizing units are used in conjunction with the butterfly units. 
Unlike CBFP, the large intermediate buffers between the FFT 
stages are not needed and replaced with the extra logic required 
to implement the equalizing units. 

Fig. 5 .  The 2048 complex point FFT mainly consists of three different 
kinds of building blocks. 

Compared to a floating-point implementation, no changes to the 
butterfly and complex multiplier units are required. The equalizer 
aligns the information to the butterfly, while the input to the 
complex multiplier is aligned by default. 

3.1 Butterfly and complex multiplier 

There are two butterfly stages in each radix-2* stage, calculating 
the sum and the difference between the input values and the 
output from the single-path delay feedback. When scale factors 
are used, it must be possible to align the inputs if they do not 
share the same exponent. An equalizer unit, only activated when 
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the butterfly is not filling or draining the delay feedback, 
performs the alignment of input values to the butterfly stage. The 
equalizer compares the exponents of the two inputs to detect if 
the values are aligned or not. If there is a difference, the smallest 
input value is right shifted with the same number of bits as the 
difference between the two exponents. The aligned values are 
propagated to the butterfly unit. The output from the complex 
multipliers is normalized and sent to the next FFT stage. The 
normalizing unit is based on a number of compare and shift units 
connected in series. At the same time as the value is shifted by 
the normalizing unit, the exponent is incremented accordingly. 

3.2 Delay feedback 
The reordering method in a radix-2’ FFT is the single-path delay 
feedback [5]. For shorter delays, several flip-flops can be 
connected in series. However, when the length of the FIFO 
increases, this approach is no longer area efficient. The large flip- 
flop cells can then be replaced with a single or dual port memory 
together with logic for control and address generation. Three 
different approaches to memory-based delays has been 
synthesized to a 0.35pm cell library for the Alcatel 
Microelectronics CMOS process and compared. The most 
straightforward approach is to use a dual port memory connected 
to an address generator. This allows simultaneous reads and 
writes to any memory location. One drawback with dual port 
memories is the required area, which is considerably larger than 
for single port memories. It is also possible that dual port 
memories are not always available, which makes the 
implementation process dependent. 

b) :__.... .._....-.. .. ._. .. ... .. ... .... ._.-. 

Fig. 6. a) Two single port memories. b) Single port memory with double 
wordlength. 

One solution is to use two single port memories, altemating 
between reading and writing every clock cycle, Fig. 6.a. The 
drawback is the duplication of the address logic when using two 
memories instead of one. A third approach uses only one single 
port memory but with double wordlength, Fig. 6.b. This is 
possible, due to the consecutive addressing scheme used in the 
delay feedback. In addition to removing the duplicated address 
logic, the total number of memories for placement will be 
reduced. An area comparison of four different ways of building a 
delay feedback, or FIFO, is presented in Fig. 7. 

memory elements 

Fig. 7. Area requirements for different FIFO implementations. 

Considerations have been taken to compare the actual size on the 
chip by adding an additional 50pm space for the power ring 
around the memories. When less than approximately 250 bits are 
required, flip-flops is the preferred method. In the presented 
design, single port memories with double wordlength have been 
used for the largest delay feedbacks. Flip-flops have only been 
used for the four shortest delays. 
In order to remove the intermediate buffers between the stages, 
the exponents have to be saved in the delay feedback. When 
using floating point, two separate exponents are required for the 
real and imaginary parts. However, both CBFP and the presented 
approach represent a complex value with one shared exponent. 
Allocating space for only one exponent for each complex value 
reduces the memory requirements for the delay feedbacks. 

3.3 Further memory reductions 
The memory requirements can be reduced even further, by 
analysing the characteristics of block scaling. In the CBFP 
approach, the output from a radix-4 stage is a set of 4 
independent groups, where each group share a single scale factor. 
The same principle can be applied to the current approach by 
introducing a Restricted Delay Line (RDL). 

I _ _ _ _ _ _ _  2 
RDL 

Fig. 8. a) FIFO with shared exponent. b) FIFO using RDL. 

The basic idea is to only update the RDL with important scale 
factors, with a small performance penalty, instead of storing all 
scale factors in the delay feedback. A scale factor can be 
considered important if the current value is larger than the 
previous value and thus has to be stored, otherwise data is shifted 
corresponding to the scale factor most recently saved in the RDL. 
The maximum number of changes for a delay feedback of size N 
using a scale factor representation of K bits is 2K, which is the 
minimal length of the RDL. The RDL is restarted periodically, 
initialised by storing the current scale factor. The stored value 
appears on the output after N cycles and is used for consecutive 
output values until a new scale factor is present. In addition to the 
performance penalty, the drawback with using a RDL is the 
additional logic required. Therefore it is only useful when 
building large sized FFT’s. The RDL will however affect the size 
in a greater extent if the FFT processor is implemented so that it 
supports a scale factor input. In this case, the largest delay 
feedback can take advantage of the RDL, instead of storing scale 
factors the traditional way. For the current implementation, the 
largest delay feedback could be reduced by 15%, assuming a 4- 
bit input scale factor. 

4. COMPLEXITY ANALYSIS 
In this section, the presented approach will be compared with 
other implementations in terms of memory requirements, chip 
area and accuracy. An early version of the design has been 
presented at NORCHIP [6], and sent for fabrication in a standard 
0.35pm CMOS process. The presented FFT processor is capable 
of performing , a  2048 complex point FFT or IFFT in 
approximately 27ps, running at a maximum clock frequency of 
76MHz. The FFT sent for fabrication is limited to 5OMHz. 
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4.1 Memory and area requirements 

For a 2048 complex point FFT processor, the memory occupies 
approximately 55% of the chip area, as can be seen in Diagram 1. 
Reducing the memory requirement will therefore significantly 
affect the total size of the design. A comparison between an FFT 
using variable data path, CBFP and the presented approach, all 
with I O  bit inputs has been made. Fig. 9 shows the number of 
memory elements required and it can be seen that the CBFP 
implementation requires substantially more memory than the 
other two, despite that CBFP logic has not been used in the initial 
stage. Fig. 10 shows the size of the total design, which follows 
the same trend. According to Diagram 1, the logic overhead in 
the presented approach, i.e. the equalizing units, does not have a 
large impact on the total chip area. Consequently, the area 
expensive intermediate buffers that are used in CBFP can be 
replaced with logic that requires less space. 

I 
512 1024 2018 4m 
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Fig. 9. Total number of memory elements required in the delay feedbacks 
for the different implementations. 

complex points 

Fig. 10. Total chip size for the different implementations. 

I 

Diagram 1. Allocation of hardware resources. 

4.2 Precision 
When data scaling is used, the FFT processor can operate on a 
wide range of input signals. Even when the input signal has low 
amplitude, the signal will be scaled to full amplitude in the first 
stage, preserving the accuracy. The architectures described in 
section 4.1 have been simulated with various input signals 

including random noise, sine waves, OFDM and step response, 
all resulting in a higher SNR than for the CBFP. Fig. 11 shows 
the SNR for input signals starting with full dynamic range and 
then with down scaled input signal. The FFT with variable 
datapath produces a higher SNR when utilizing the full dynamic 
range. However, for arbitrary input signals, scaling is preferred. 

f 
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Fig. 1 I .  Signal to noise ratio versus the amplitude of the input signal for 
dilrerent FFT implementations, all using 1 0-bit input wordlength. 

As expected, the presented approach can maintain a high SNR 
even for down scaled input values. One of the reasons that CBFP 
is not capable of keeping a constant SNR is that there is usually 
no CBFP logic in the first radix-2 stage as shown in Fig. 3. The 
cost of adding CBFP logic to the first radix-2 stage is very high 
due to the large amount of intermediate buffer memory required. 
In the presented approach, the scaling part takes place in the 
subsequent pipeline stage. Hence, scaling is applied in all stages. 
If CBFP logic were added to the first stage, the corresponding 
SNR curve in Fig. 11 would remain constant as in our approach, 
but the memory requirements will be even higher than what is 
shown in Fig. 9. 

5. CONCLUSION 
An FFT processor using a novel data scaling approach that can 
operate on a wide range of input signals, keeping the SNR at a 
constant level, has been presented. Compared to block scaling 
approaches, such as CBFP, the proposed design requires 
significantly smaller chip area due to the reduced memory 
requirements. At the same time it is capable of producing a 
higher SNR since scaling is applied in all pipeline stages. The 
FFT processor has been sent for fabrication in a 0.35pm CMOS 
process. 
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