
A 2048 COMPLEX POINT FFT PROCESSOR
USING A NOVEL DATA SCALING APPROACH

Thomas Lenart and Viktor b a l l

CCCD, Department of Electroscience, Lund University
Box 118, SE-221 00 Lund, Sweden

Phone: +46 (0)46 222 91 05
Email: {thomas.lenart, viktor.owal1) @es.lth.se

ABSTRACT
In this paper, a novel data scaling method for pipelined FFT
processors is proposed. By using data scaling, the' FFT processor
can operate on a wide range of input signals without performance
loss. Compared to existing block scaling methods, like
implementations of Convergent Block Floating Point (CBFP), the
memory requirements can be reduced while preserving the SNR.
The FFT processor has been synthesized and sent for fabrication
in a 0.35pm standard CMOS technology. In netlist simulations,
the FFT processor is capable of calculating a 2048 complex point
FFT or IFFT in 27ps with a maximum clock frequency of
76MHz.

1. INTRODUCTION

The Fast Fourier Transform (FFT) has a wide range of
applications in digital signal processing [I]. For instance, FFT's
are used in communication systems like DAB, DVB and IEEE
802.1 la. The FFT is also used for analysing sound, images and
video when removing undesired or perceptual irrelevant
information, in radar applications as well as in different
instrumentations. The N-point Discrete Fourier Transform (DFT)
is defined as

X (n) = C x (k) w ; n =0,1 ..., N-1
k=O

where WN=ey(zlr/N. The direct implementation of the DFT have a
complexity of O(N2). Using the FFT, the complexity can be
reduced to O(N.log2(N)). The FFT is also more suitable for
hardware implementation due to the physical regularity of the
algorithm, but requires memory buffers to store parts of the
sequence during calculation. The memory requirements are a
crucial parameter since memories are rather expensive in both
terms of area and power consumption. Reducing the memory
requirement will therefore significantly affect the total size of the
design. In this paper, the implementation of a high performance
pipelined FFT processor with low memory requirements using a
novel scaling approach is presented.

2. FFT ARCHITECTURES

There are many different ways to implement an FFT processor.
The computations can be done in a number of iterations by time
multiplexing a single memory and arithmetic unit, Fig. 1 .a, or by
using a pipelined architecture, Fig. 1.b. A pipelined radix-2
architecture requires 10g2(N) arithmetic units, one for each
butterfly stage, and is therefore more area expensive than using
one single radix-2 unit. In return, the calculations will be 10g2(N)
times faster when using pipelining.

0-7803-7761-3/03/$17.00 82003 IEEE

w,W W, (4 W,(n)

Fig. 1. a) Time multiplexed FFT processor using a single memory and
butterfly unit. b) Pipelined FFT processor.

The problem with a fixed point FFT is to maintain the accuracy
and preserve the dynamic range at the same time. One way to
achieve a high signal-to-noise ratio is to increase the internal
wordlength for every stage in the pipelined FFT (variable
datapath), i.e. the wordlength will be wider at the output than at
the input. Another way to improve the signal-to-noise ratio
without increasing the internal wordlength is to use data scaling.
One example of data scaling is block floating point that uses
exponents, or scaling factors, for intemal representation to
improve the SNR. The exponents are usually shared between the
real and imaginary part of a complex value, or even shared
among a set of complex values [2-41, unlike normal floating
point representation. Fig. 2 shows the almost constant internal
wordlength when using data scaling and also the increasing
internal wordlength when using a variable datapath. The width of
the internal scale factor representation can be optimised for each
stage. In this paper, focus will be on different scaling approaches.

Fig. 2. Internal butterfly wordlength for a 10-bit 2048 complex point FFT
processor using a) data scaling and b) variable datapath.

N-45

2.1 Block floating point
Time multiplexed FFT processors can use a data scaling method
called Block Floating Point (BFP). After calculating all outputs
from stage N, the largest output value can be detected and the
intermediate result is scaled to improve the precision. When
using BFP, all values share one single scale factor. BFP requires
that the scale factor for stage N can be determined before starting
the calculations of stage N+l . This approach cannot be applied to
pipelined architectures due to the continuous dataflow.

2.2 Convergent block floating point
When a pipelined architecture is used, it is not efficient to wait
until stage N has finished to determine the scaling factor. Instead
a method called Convergent Block Floating Point (CBFP) has
been proposed [2-41 as shown in Fig. 3. The basic idea is that the
output from a radix-4 stage is a set of 4 independent groups that
can use different scale factors. After the first stage there will be 4
groups, after the second stage 16 groups and so on. This will
converge towards one exponent for each output sample from the
FFT. The same scheme can be applied for a radix-2 stage,
generating 2 independent groups at each stage. If the initial
butterfly is of radix-2 type, most implementations omit the CBFP
logic in the first stage due to the large memory overhead.

Fig. 3. A pipelined 2048-points FFT using CBFP.

The drawback with CBFP is that it requires a lot of memory. For
the 2048 point pipelined FFT in Fig. 3, the input values are split
into 2 groups of size 1024 in the initial radix-2 stage. The second
stage produces 4 new groups containing 256 values each. These
256 values from the complex multiplier have to be stored in a
buffer, as illustrated in Fig. 4, before the scaling factor for the
group can be determined. Furthermore, it has to be saved in full
precision because normalization cannot be done until the scaling
factor is known. The length of the delay buffer after stage k is

Another drawback is that the latency will increase, caused by the
delay in the intermediate buffer.

w(") ~ - - - - - - _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ I

Fig. 4. CBFP logic between the consecutive stages.

2.3 Presented approach

Current CBFP techniques require a buffer to store N/4 outputs
from a radix-4 stage with N inputs. The proposed method in this
paper is to remove this buffer and rescale the data on the fly.
After the complex multiplier, the result is normalized without
delay and sent to the next butterfly stage. Therefore, each
butterfly must be able to rescale one of the input values, if they

are represented with different exponents. Starting from the
second stage, the wordlength in the delay feedback has to be
widened to hold both the complex value and the scale factor. This
approach towards a hybrid floating-point processor still has much
in common with the block scaling technique since only negative
scale factors are allowed, leading to a reduced exponent
representation and simple scaling logic. Furthermore, there is no
input exponent, which reduces the memory overhead in the first
(and largest) memory stage.
For futther memory reduction, recall that each block in CBFP is
represented with the same exponent. Accordingly, if the exponent
in a block is only allowed to increase, the number of possible
changes is limited. This will lead to minor performance
degradation, but it will be shown that this limited number of
changes can be stored in a special way to lower the memory
requirements.

3. IMPLEMENTATION

The presented FFT processor is based on the radix-2'
decimation-in-frequency algorithm [5]. The r a d i ~ - 2 ~ algorithm is
well suited for the presented approach because of the simple
singlepath delay feedback structure. Fig. 5 shows the modified
FFT radix-2' processor, based on three different kinds of building
blocks. The IBF unit is a normal butterfly that is only used in the
first stage. The MUL unit contains a complex multiplier and a
normalizing unit with proper rounding. The output value, z(x),
from a MUL block is represented by a complex value, a(x)+jb(x),
and a positive scale factor s(x) as

z (x) = 2-"'"'(a(x) + j b (x)) (3)
The MBF unit is a radix-22 butterfly with a wider delay feedback
to hold scale factors. To avoid problems with data alignment,
equalizing units are used in conjunction with the butterfly units.
Unlike CBFP, the large intermediate buffers between the FFT
stages are not needed and replaced with the extra logic required
to implement the equalizing units.

Fig. 5 . The 2048 complex point FFT mainly consists of three different
kinds of building blocks.

Compared to a floating-point implementation, no changes to the
butterfly and complex multiplier units are required. The equalizer
aligns the information to the butterfly, while the input to the
complex multiplier is aligned by default.

3.1 Butterfly and complex multiplier

There are two butterfly stages in each radix-2* stage, calculating
the sum and the difference between the input values and the
output from the single-path delay feedback. When scale factors
are used, it must be possible to align the inputs if they do not
share the same exponent. An equalizer unit, only activated when

IV-46

the butterfly is not filling or draining the delay feedback,
performs the alignment of input values to the butterfly stage. The
equalizer compares the exponents of the two inputs to detect if
the values are aligned or not. If there is a difference, the smallest
input value is right shifted with the same number of bits as the
difference between the two exponents. The aligned values are
propagated to the butterfly unit. The output from the complex
multipliers is normalized and sent to the next FFT stage. The
normalizing unit is based on a number of compare and shift units
connected in series. At the same time as the value is shifted by
the normalizing unit, the exponent is incremented accordingly.

3.2 Delay feedback
The reordering method in a radix-2’ FFT is the single-path delay
feedback [5]. For shorter delays, several flip-flops can be
connected in series. However, when the length of the FIFO
increases, this approach is no longer area efficient. The large flip-
flop cells can then be replaced with a single or dual port memory
together with logic for control and address generation. Three
different approaches to memory-based delays has been
synthesized to a 0.35pm cell library for the Alcatel
Microelectronics CMOS process and compared. The most
straightforward approach is to use a dual port memory connected
to an address generator. This allows simultaneous reads and
writes to any memory location. One drawback with dual port
memories is the required area, which is considerably larger than
for single port memories. It is also possible that dual port
memories are not always available, which makes the
implementation process dependent.

b) :__.... .._....-.. .. ._._.-.

Fig. 6. a) Two single port memories. b) Single port memory with double
wordlength.

One solution is to use two single port memories, altemating
between reading and writing every clock cycle, Fig. 6.a. The
drawback is the duplication of the address logic when using two
memories instead of one. A third approach uses only one single
port memory but with double wordlength, Fig. 6.b. This is
possible, due to the consecutive addressing scheme used in the
delay feedback. In addition to removing the duplicated address
logic, the total number of memories for placement will be
reduced. An area comparison of four different ways of building a
delay feedback, or FIFO, is presented in Fig. 7.

memory elements

Fig. 7. Area requirements for different FIFO implementations.

Considerations have been taken to compare the actual size on the
chip by adding an additional 50pm space for the power ring
around the memories. When less than approximately 250 bits are
required, flip-flops is the preferred method. In the presented
design, single port memories with double wordlength have been
used for the largest delay feedbacks. Flip-flops have only been
used for the four shortest delays.
In order to remove the intermediate buffers between the stages,
the exponents have to be saved in the delay feedback. When
using floating point, two separate exponents are required for the
real and imaginary parts. However, both CBFP and the presented
approach represent a complex value with one shared exponent.
Allocating space for only one exponent for each complex value
reduces the memory requirements for the delay feedbacks.

3.3 Further memory reductions
The memory requirements can be reduced even further, by
analysing the characteristics of block scaling. In the CBFP
approach, the output from a radix-4 stage is a set of 4
independent groups, where each group share a single scale factor.
The same principle can be applied to the current approach by
introducing a Restricted Delay Line (RDL).

I _ _ _ _ _ _ _ 2
RDL

Fig. 8. a) FIFO with shared exponent. b) FIFO using RDL.

The basic idea is to only update the RDL with important scale
factors, with a small performance penalty, instead of storing all
scale factors in the delay feedback. A scale factor can be
considered important if the current value is larger than the
previous value and thus has to be stored, otherwise data is shifted
corresponding to the scale factor most recently saved in the RDL.
The maximum number of changes for a delay feedback of size N
using a scale factor representation of K bits is 2K, which is the
minimal length of the RDL. The RDL is restarted periodically,
initialised by storing the current scale factor. The stored value
appears on the output after N cycles and is used for consecutive
output values until a new scale factor is present. In addition to the
performance penalty, the drawback with using a RDL is the
additional logic required. Therefore it is only useful when
building large sized FFT’s. The RDL will however affect the size
in a greater extent if the FFT processor is implemented so that it
supports a scale factor input. In this case, the largest delay
feedback can take advantage of the RDL, instead of storing scale
factors the traditional way. For the current implementation, the
largest delay feedback could be reduced by 15%, assuming a 4-
bit input scale factor.

4. COMPLEXITY ANALYSIS
In this section, the presented approach will be compared with
other implementations in terms of memory requirements, chip
area and accuracy. An early version of the design has been
presented at NORCHIP [6], and sent for fabrication in a standard
0.35pm CMOS process. The presented FFT processor is capable
of performing , a 2048 complex point FFT or IFFT in
approximately 27ps, running at a maximum clock frequency of
76MHz. The FFT sent for fabrication is limited to 5OMHz.

Iv-47

4.1 Memory and area requirements

For a 2048 complex point FFT processor, the memory occupies
approximately 55% of the chip area, as can be seen in Diagram 1.
Reducing the memory requirement will therefore significantly
affect the total size of the design. A comparison between an FFT
using variable data path, CBFP and the presented approach, all
with I O bit inputs has been made. Fig. 9 shows the number of
memory elements required and it can be seen that the CBFP
implementation requires substantially more memory than the
other two, despite that CBFP logic has not been used in the initial
stage. Fig. 10 shows the size of the total design, which follows
the same trend. According to Diagram 1, the logic overhead in
the presented approach, i.e. the equalizing units, does not have a
large impact on the total chip area. Consequently, the area
expensive intermediate buffers that are used in CBFP can be
replaced with logic that requires less space.

I
512 1024 2018 4m

complex points

Fig. 9. Total number of memory elements required in the delay feedbacks
for the different implementations.

complex points

Fig. 10. Total chip size for the different implementations.

I

Diagram 1. Allocation of hardware resources.

4.2 Precision
When data scaling is used, the FFT processor can operate on a
wide range of input signals. Even when the input signal has low
amplitude, the signal will be scaled to full amplitude in the first
stage, preserving the accuracy. The architectures described in
section 4.1 have been simulated with various input signals

including random noise, sine waves, OFDM and step response,
all resulting in a higher SNR than for the CBFP. Fig. 11 shows
the SNR for input signals starting with full dynamic range and
then with down scaled input signal. The FFT with variable
datapath produces a higher SNR when utilizing the full dynamic
range. However, for arbitrary input signals, scaling is preferred.

f

T
‘1 ~n 114 i m 1118 in2 im

input amplitude

Fig. 1 I . Signal to noise ratio versus the amplitude of the input signal for
dilrerent FFT implementations, all using 1 0-bit input wordlength.

As expected, the presented approach can maintain a high SNR
even for down scaled input values. One of the reasons that CBFP
is not capable of keeping a constant SNR is that there is usually
no CBFP logic in the first radix-2 stage as shown in Fig. 3. The
cost of adding CBFP logic to the first radix-2 stage is very high
due to the large amount of intermediate buffer memory required.
In the presented approach, the scaling part takes place in the
subsequent pipeline stage. Hence, scaling is applied in all stages.
If CBFP logic were added to the first stage, the corresponding
SNR curve in Fig. 11 would remain constant as in our approach,
but the memory requirements will be even higher than what is
shown in Fig. 9.

5. CONCLUSION
An FFT processor using a novel data scaling approach that can
operate on a wide range of input signals, keeping the SNR at a
constant level, has been presented. Compared to block scaling
approaches, such as CBFP, the proposed design requires
significantly smaller chip area due to the reduced memory
requirements. At the same time it is capable of producing a
higher SNR since scaling is applied in all pipeline stages. The
FFT processor has been sent for fabrication in a 0.35pm CMOS
process.

6. REFERENCES
[I] E. Oran Brigham, The fast Fourier transform and its

upplicutions, Prentice-Hall, 1988.
[2] Se Ho Park et.ul. ”A 2048 complex point FFT architecture

for digital audio broadcasting system”, In Proc. ISCAS 2000.
[3] Se Ho Park e t d . “Sequential design of a 8192 complex

point FFT in OFDM receiver”, In Pvoc. AP-ASIC, 1999.
[4] E. Bidet, D. Castelain, C. Joanblanq and P. Senn, “A Fast

Single-Chip Implementation of 8 192 Complex Point FFT”,
IEEE J. of Solid-Stute Circuits, Vol. 30, NO. 3, 1995.

[SI Shousheng He, Concurrent VLSI Architectures for DFT
Computing und Algorithms for Multi-output Logic
Decomposition, PhD Thesis, Lund University, 1995.

[6] Thomas Lenart and Viktor Owall, “A Pipelined FFT
Processor using Data Scaling with Reduced Memory
Requirements”, In Proc. NORCHIP, 2002.

IV-48

