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Abstract: The implementation of finite sequential 
machines by using a programmable array logic to 
synthesise their combinational part is considered. 
A critical view of the efficiency of existing methods 
to carry out the state assignment of these 
machines is given, and it is shown that we can 
derive a bound on the number of state variables 
beyond which even an arbitrary coding usually 
leads to better results in terms of area occupation. 
It is suggested in the paper that this bound can 
still be found when more refined area estimates 
are used. 

register 

1 Introduction 

Inputs 

Computer-aided synthesis of sequential circuits is an area 
of active research [ 1 4 ]  because of the important role 
they play in the design of complex digital systems. To be 
efficient, a design procedure for such circuits must resort 
to regular structures; in particular, the programmable 
logic array (PLA) is considered a natural candidate for a 
design methodology coping with design complexity. 

A PLA implementation of a finite state machine 
(FSM) is shown in Fig. 1, where the PLA size depends on 

0 ut p u  ts 

both the number of required state variables ns and the 
number of product terms t p  of the next-state equations 
describing the FSM. 

Classically, the synthesis of a sequential circuit must 
be partitioned into several tasks. Here we will consider 
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the optimal state assignment problem, which is probably 
the step that most critically influences the final cost of the 
circuit. Methods to deal with this problem have been 
reported in the past that are specifically said to be tail- 
ored to PLA-based implementations [S-lo]. All of these 
approaches rely on strategies that are focussed on obtain- 
ing assignments with either a minimum or a quasi- 
minimum number of product terms. The price to be paid 
is that they require a number of state variables 
(equivalently a register length) which is higher than the 
minimum. Although all of those methods produce very 
nice results when applied to FSM with a few states, we 
have realised that for large machines they lead to assign- 
ments far away from an optimum. In general, all of them 
lead to area wasting when the number of involved vari- 
ables increases. 

The objective of this paper is twofold. First of all, we 
will use a conventional figure to estimate the silicon area 
occupation for a given FSM. Then, based on such an 
estimation, we will show the inefficiency of the known 
methods, and we will conclude that the usual strategy of 
minimising the next-state function cardinality (i.e. the 
number of product terms) leads to worse assignments 
than minimising the number of state variables in many 
cases. As a consequence, an a priori estimation of the 
final area occupation will be proven to be of interest. 
Finally, a discussion on more-accurate area estimates is 
included. Although the occupied area is more-precisely 
evaluated, all of those estimates allow us to arrive at the 
same conclusions as the originally used area-occupation 
figure. 

2 Background 

2.1 Basic cost criterion 
When designing an FSM by using a PLA to implement 
its combinational component the main concerns for effi- 
ciency are the area occupation and the final operating 
speed. Since the latter is strongly influenced by the length 
of the input-output paths, a compact implementation 
occupying as small an area as possible usually allows us 
to fulfill both basic requirements. Concerning the silicon 
area, it depends on the relative positioning of the differ- 
ent PLA elements. For the sake of simplicity, we will con- 
sider here the arrangement shown in Fig. 2. There the 
array length is proportional to nl ,  the number of inputs 
to the AND array of the PLA, and to no, the number of 
outputs to the OR array, its depth being proportional to 
the cardinality of the combinational function to be rea- 
lised, i.e. to the number of product terms t p  in the AND 
array. We will consider initially a dynamic system, this 
fact affecting only the physical dimensions of the register 
bank. Since our results can be extended to other cases 
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[17], we will restrict ourselves to consider the case where 
the state variables are the output variables of the FSM. 
With this in mind, the area can be expressed as [19] 

A = k, tp[k,(ni + ns) + k, ns] (1) 

-- 
n o  

Fig. 2 Topological representation of PLA 

where ni is the number of the FSM inputs, ns is the 
number of state variables, k ,  is a constant that depends 
on the technology, and k ,  and k, are constants that 
depend on the detailed design of the input decoders and 
the output buffers, respectively. Because of the tech- 
nology we are currently using in our laboratory we will 
take k ,  = 2k, and k, = k,, to simplify the maths. Then 

A = k,tp[2ni + 3nsl (2) 

2.2 Existing assignment strategies 
Coding methods for PLA-based FSMs fall into one of 
two categories. The approach from De Micheli et al. 
(henceforth referred to as DM) [7, 9-12] uses a symbolic 
minimisation of the FSM combinational part, followed 
by the solution of a constrained encoding problem. Sym- 
bolic minimisation is carried out by multiple-valued 
minimisation and gives a minimal representation of the 
next-state function of the FSM which does not depend 
on the particular state assignment to be chosen. This 
technique reduces the number of product terms imple- 
menting the FSM combinational component. 

The second approach is represented by the work of 
Papachristou and Sharma (P-S) [6] and Acha and Calvo 
(A-C) [SI. Both methods try to find an efficient state 
coding resulting in a reduced (ideally minimal) number of 
product terms, by decomposing the state table into state 
block partitions according to some heuristics rules [ 131. 
The method in Reference 6 is a Liu procedure [14, 151 
with a particular set lumping strategy. On the other 
hand, the method in Reference 8 is a generalised Liu pro- 
cedure that through the solution of a covering problem 
determines a minimal set of maximal compatibles [16]. 
The former method does not give all the minimum Liu 
assignments and even might fail in obtaining one, 
although it generally leads to near-minimal results 
without high computational overheads. On the contrary, 
the latter method allows the designer to get all the 
minimum Liu codings. However, there is a big difference 
in terms of CPU time, the P-S approach being usually 
much faster than the A-C approach. 
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All of these methods [&9] try to find a minimal 
cardinality implementation of the FSM next-state func- 
tion, i.e. an implementation with the minimum number of 
product terms. Of course, the price to be paid is that the 
number of state variables (in other words, the register 
length) is not the minimum, and is usually far away from 
such a minimum. 

It was shown in Reference 16 that given the state table 
describing a FSM, the minimum number of product 
terms for its next-state function can be easily calculated. 
We will call henceforth the Liu number t p ,  of a machine 
to this minimum. Hence, we can predict a priori the 
minimal cardinality of the combinational part which 
might be attainable during the assignment process. We 
will show in the next Section how this number can be 
used (in conjunction with the minimum number of state 
variables) to determine a lower bound to the usefulness of 
any of the methods revised in the present Section. 

3 Formal comparison of algorithms 

3.1 Previous example 
Let us begin by considering a few examples as a motiva- 
tion for our work. Tables 1 and 2 show the state table for 

Table 1 : State table of FSMl 

Present Input state 
state 

I1 12 13 14 15 

sl s3 s2 s2 s7 s3 
s2 s5 s2 sl s7 s3 
s3 s5 s4 s3 s6 s4 
s4 s6 s5 s4 s2 s4 
s5 s7 s5 s4 sl s6 
s6 SI s6 s4 sl s6 
s7 sl s2 s3 s3 s6 

Table 2: State table of FSM2 

Present Input state 
state 

I1 12 13 14 15 16 

sl sl sl s4 sl s2 s3 
s2 s3 s3 s4 sl s4 s3 
s3 s4 sl sl sl s2 s5 
s4 s2 SI s4 s2 s6 s3 
s5 s5 s3 sl s2 s2 s7 
s6 SA SA SB SE s6 s3 
s7 s8 SC sl SE s2 s7 
s8 SA s9 s9 SE SA s4 
s9 SC s9 s8 SE SA s4 
SA sC sB SA sD sB s3 
sB SD SC SB s9 sB s7 
SC SE SC SB s8 sD s3 
sD s8 SD SB s8 sD s7 
SE s8 s9 SA SA sD s8 

Table 3: Area assignments using different algorithms 

FSM Dimension Area 

I S A-C P-S DM Random 

FSMl 5 7 306 306 306 330 
FSM2 6 14 Not Practical 1404 1296 91 8 
FSM3 15 80 Not Practical 86275 Not Practical 29464 

I applies for the number of input columns 
S applies for the number of states 

two FSMs of different sizes. Table 1 has been selected 
from the literature [6] and Table 2 has been randomly 
generated. A third Table from elsewhere [17] has been 
considered too, this one corresponding to a randomly 
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generated FSM with 80 states and 15 input columns. 
Because of its size, we refer the interested reader to [17] 
for the details of this state table. We have applied to 
these machines the three state-assignment methods refer- 
enced above, as well as a random search. The values for 
the occupied area appear in Table 3, this estimation cor- 
responding to an n-MOS technology we have available, 
with k ,  = 1. Although these figures will vary when 
moving from one technology to another, they are illustra- 
tive enough for showing the relative value of the different 
algorithms. The inefficiency of the methods should be 
clear when dealing with those three examples. With the 
exception of the smallest machine, an arbitrary assign- 
ment is always better than the assignments generated by 
the algorithms. Entries of 'Not Practical' apply for a 
method in Table 3 when the CPU time was found to be 
at least two orders of magnitude higher than a random 
search. 

3.2 Bounds on usefulness of a coding algorithm 
Let us consider a sequential machine whose internal 
states can be coded using as many as ns,, state variables. 
Let us call tpmin the minimum number of product terms 
for realising the combinational part of that FSM; in 
general, when using tp, , , ,  the required number of state 
variables will be higher than nsmi,. Taking into account 
the area occupation formulae derived above, we should 
try to evaluate whether or not a given assignment is 
better than other in terms of silicon area. In particular we 
will compare an assignment using the minimum number 
of state variables with an assignment with the minimal 
cardinality. Let us call A to a state assignment of the 
former class and B to an assignment of the latter. To be 
precise 

a class A assignment has t p  = tpmin,  and ns 2 ns,, 

a class B assignment has t p  2 tpmin,  and ns = ns,,, 

To be considered advantageous, assignment A must 
occupy less area than assignment B. As we have pointed 
out before, we can estimate a lower bound for t p .  Hence, 
presuming this bound is always attainable (i.e. tpmin = 
tp,), we can say that for any class A assignment to be 
'better' than any other using a minimum number of state 
variables (class B assignments) the following inequality 
must be fulfilled: 

(2ni + 3ns)tpL < (2ni + 3nsmi,)tp ( 3 )  
We can represent eqn. 3 in a design space, whose coordi- 
nates are nslns,,, and t p / t p L .  The region of this space 
where class A assignments are advantageous corresponds 
to 

2ni + 3ns - t p  2 
t p ,  2ni + 3nsmi, (4) 

The design space is also bounded by other two consider- 
ations: first, no solution to the coding problem can be 
found requiring less than ns,,,; secondly, we can define a 
maximum value for t p ,  tp,,,. A rough evaluation for 
such a maximum could be 

(5 )  tp,,, = (no. of statesxno. of inputs) 

A better estimate can be derived by using any randomly 
generated assignment whose cardinality will be a more 
accurate bound. Anyhow, only the shadowed triangle in 
Fig. 3 gives rise to minimal-cardinality assignments with 
a lower cost than an assignment with the minimum 
number of state variables. 

From Fig. 3, the maximum value of the number for 
state variables ns,,, can be calculated. 

(6) 
(2ni + 3nsmin)tpmax - 2nitp,  

"Srnax = 
3tPL 

I 

1 nsl nsmln 

Design spacefor PLA-based F S M  

I 

Fig. 3 

Note that this bound is rather optimistic for the minimal 
cardinality assignment, especially if we use the value of 
tp,,, in eqn. 5 .  

To understand more clearly the practical consequence 
of eqn. 6 we can rewrite eqn. 2 using 

t p  = tpL + A t p  

ns = ns,, + Ans 

which gives a figure for the influence of A t p  and Ans on 
the silicon area. 

A A l  = ki(2ni + 3ns)Atp  (7) 

A A 2  = 3 k t t p A n s  (8) 
Since 3 t p  is usually much greater than (2ni + 3ns), eqns. 7 
and 8 mean that increasing the number of state variables 
is usually much more dramatic than increasing the 
number of product terms. This is especially true for FSM 
of medium and bigger sizes. 

With this result in mind, it is worth considering the 
problem of predicting whether or not a given method 
could give a good result prior to performing the coding 
process. Note that for a large FSM this is very interesting 
because of the high computation times required to carry 
out the state assignment. 

Turning back to eqn. 3, and after some manipulations, 
we can write 

(9) 
ns,,, 2ni + 3nsmi, tpltp,,, 2ni q = - =  
nsrnin 3nsmin tPJtPrnax 3nsmin 

Given the state table of a FSM, we can represent eqn. 9 
in the plane of Fig. 4 using an auxiliary parameter, o = 
tp/tp, , , .  On this Figure we can explain the basis for an 
evaluation procedure. For any machine, we will deter- 
mine the value of t p , .  Then, using a plot like the one in 
Fig. 4, we will estimate the maximum number of state 
variables to be allowed so that a minimal cardinality 
assignment could be area-efficient. Of course this 
maximum value for ns will depend on the value of CT we 
consider, but since the curves tend to be flat above 
tp,/tp,,, = 0.3, the influence of o can be disregarded in 
many practical situations and hence we can incorporate 
into any coding algorithm a stopping mechanism when 
nsmax is surpassed. 
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Two additional considerations are necessary. First, the 
usual value of (T could be expected to lie between 0.6 and 
0.9, thus reducing the curves in Fig. 4 to be taken into 

tP  L 'tPrnCiX 

Fig. 4 
n i = 1 5 , n s = 8 0  

Maximum value of ns as function of a 

account. Secondly, most FSMs have a Liu number 5 = 
tpL/ tpmnx,  between 0.4 and 0.8, which means an addi- 
tional restriction of the interesting region in Fig. 4. 

As an illustration, Table 4 shows the Liu number for 
the three FSMs in Tables 1 and 2, and the state table of 
Reference 17 as well as the value of (T obtained by a ran- 
domly generated coding of cardinality t p , .  In Table 4, 
nsstOp represents the maximum value of ns still giving a 
better area occupation than that corresponding to nsmi, , 
and nsaCtual corresponds to the value of ns obtained when 
the P-S method is employed. It should be clear that a 
search for a minimal cardinality state coding could be 
stopped largely before the encoding algorithm is com- 
pleted. Also, Fig. 5 illustrates our assertion about the 
'typical' value for 5. This parameter has been represented 

E O  6 
E 
2 0 4  

2 0 2  

. - 

0 
machine number 

Fig. 5 tpd tp , ,  for 100 FSMs of medium size 

have to be avoided, since in some cases they can lead to 
good solutions. For example, in machines admitting a 
small value of t p L ,  these methods could give a better per- 

Table 5:  Parameters of 30 FSMs of medium sire 

KISS [91 P-S [6] 

tps nb Area Time tps nb Area Time, s 

FSMl 
FSM2 
FSM3 
FSM4 
FSM5 
FSM6 
FSM7 
FSM8 
FSM9 
FSMlO 
F S M l l  
FSMl2 
FSMl3 
FSM14 
FSM15 
FSMl6 
FSMl7 
FSM18 
FSM19 
FSM2O 
FSM21 
FSM22 
FSM23 
FSM24 
FSM25 
FSM26 
FSM27 
FSM28 
FSM29 
FSM3O 

46 9 1518 260.9 46 9 1518 11.2 
47 8 1410 233.5 47 10 1692 13.1 
50 9 1650 284.9 50 9 1650 11.1 
51 8 1530 244.9 51 8 1530 11.4 
51 8 1530 216.2 51 9 1683 10.3 
43 11 1677 518.8 43 11 1677 10.5 
50 9 1650 263.3 50 9 1650 10.4 
44 9 1452 251.3 44 10 1584 9.9 
42 8 1260 242.5 42 10 1512 10.1 
45 8 1350 234.1 45 10 1620 10.5 
50 7 1350 218.4 50 9 1650 9.9 
50 6 1200 204.1 50 9 1650 10.4 
46 10 1656 371.5 46 9 1518 9.9 
48 11 1872 347.9 48 10 1728 10.4 
47 10 1692 289.8 47 8 1410 9.9 
48 11 1872 362.9 48 9 1584 10.2 
49 10 1764 266.1 49 10 1764 10.5 
45 9 1485 297.5 45 10 1620 10.3 
57 6 1368 208.7 57 8 1710 10.2 
51 7 1377 215.7 51 11 1989 10.3 
53 7 1431 224.5 53 9 1749 10.1 
43 13 1935 103.3 43 8 1290 10.0 
45 11 1755 484.8 45 10 1620 10.2 
48 6 1152 203.1 48 9 1584 10.1 
53 6 1272 210.7 53 8 1590 10.2 
48 10 1728 320.4 48 8 1440 10.2 
51 6 1224 204.0 51 10 1836 10.2 
43 11 1677 429.8 43 9 1419 10.1 
47 9 1551 224.3 47 9 1551 10.1 
45 9 1485 261.2 45 7 1215 9.9 

formance. See, for instance, the FSM described by Table 
6 [l8]. That machine has a very low value ot t p L ,  thus 
allowing us to explore for a good coding. Table 6 also 

Table 6:  Example of FSM with low 5 ( 5  = 0.25) 

Present 
state 

s l  
s2 
s3 
s4 
s5 
s6 
s7 

Input state 

I1 12 I3 14 

s2 s3 s4 s l  
s5 s6 s7 s7 
s5 s6 s2 s7 
s2 s3 s4 s l  
s7 s3 s7 s l  
s5 s6 s4 s7 
s5 s6 s2 s7 

Assignment 

s l+1100 
s2 + 001 0 
s3 + 0000 
s4 + 11 00 
s5 --t 101 0 
s6+0100 
s7 + 0001 

Table 4: Design parameters for FSM1, FSM2 and FSMB 

FSM ~ P L  t ~ ,  t ~ r n a x  f = f P d P m a x  u=tPrItPrnax nsrn,n nsstop "Saccuai 

FSMl 17 22 35 0.48 0.63 3 4 4  
6 11 FSM2 36 51 84 0.40 0.61 4 

FSMB 725 1016 1200 0.60 0.85 7 10 37 

in Fig. 5 for one hundred FSMs of medium size. ~ l l  of gives a coding obtained by the P-S method, which has 
those machines in Fig. 5 have a value of tpJtp,,, around minimal cardinality (7 in this case). Unfortunately, 
0.6. Also, Table 5 represents in more detail the value of machines with such a low value for tpJtp, , ,  are rarely 
the different parameters for these FSMs. To Save space found. Moreover, even in this case, an assignment can be 
only 30 are shown in this Table. The CPU time is explic- derived using the minimum number of state variables (3) 
itly indicated and corresponds to a VAX 11/750 under and a higher cardinality (8 product terms), this coding 
ULTRIX-32*. occupying slightly less silicon area. 

Nevertheless, our results must not be misunderstood. In summary, using any minimal cardinality state 
We cannot conclude that minimal cardinality methods encoding technique must be ineficient and it is worth 

including an evaluation mechanism to show whether or 
* VAX and ULTRIX are trademarks of DEC. not such a technique has to be disregarded in favour of a 
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method based on a minimum number of state variables. 
This evaluation mechanism can be incorporated as an 
stopping routine into any coding computer program or 
can simply give an idea of how large is the probability of 
obtaining a good solution before going into any coding 
process. For instance, in the third example of Table 4, it 
should be clear using Fig. 4 (see point Q in this Figure) 
that we are very unlikely to find a good solution by 
employing any minimal cardinality algorithm because the 
bound for ns,, is 10, which is rather lower than expected 
to be attained by any of the referred-to methods. In fact, 
Table 4 shows that the number of state variables 
obtained is very much higher (37 variables). 

I) 

4 More-accurate area estimates 

The conclusions we have drawn above, seem to be based 
on the area estimation we have taken from the literature 
[I 191. Unfortunately, although eqn. 1 has been typically 
used for comparing different implementations of a 
sequential machine using a PLA [17], this expression is a 
partial figure of merit, which may be misleading when 
referred to an integrated realisation. Hence, since much 
more meaningful expressions can be derived instead of 
eqn. 1 ,  there remains the question of whether or not our 
results in Section 3 are still valid when we perform a 
more careful evaluation of the area occupation for a 
given state assignment. In this Section, we will derive 
more-precise expressions for the area and we will manip- 
ulate them at the same way we have done with eqn. 1 in 
the previous discussion. To carry out such a derivation, 
we will consider separately the case for static and 
dynamic flip-flops. These new figures can be used at  the 
same way we have used eqn. 1 in the previous discussion. 

It is useful to mention the effects of topological optim- 
isation on our considerations, specifically PLA folding. In 
the case of combinational circuits, PLA folding has been 
successfully applied [20, 213 ; however, where sequential 
circuits are concerned, the existence of feedback paths 
severely reduces the probability of finding practical solu- 
tions. For that reason, we have not considered the inci- 
dence of folding on our conclusions. 

4.1 Figure of merit for internal area occupation 
Let us consider the symbolic layout of a FSM shown in 
Fig. 2. It should be clear that there exists an area 
occupation that is not taken into account for the conven- 
tional cost criterion in Section. 2.1. The terms not con- 
sidered in eqn. 1 are detailed in Fig. 6. The length of the 
array is increased by a constant term k ,  due to the 
pull-up devices, and its depth is augmented by a term 
k ,  ns, which is due to the wiring that feeds back the state 
variables to the PLA input and by a constant term k ,  
due to the output buffer. The resulting cost expression for 
the FSM in Fig. 6 will be 

A ,  = [ ( k l ( n i  + ns)  + k 2 n s  + k , )  

x ( k ,  tp + k ,  HS + k4)] (10) 
A similar expression can be derived when the FSM is 
implemented by using static flip-flops (Fig. 7). If this is 
the case we will find 

A ,  = [ (k , (n i  + ns) + k 2 n s  + k , )  

x ( k ,  t~ + k4)] + K C  + K R  (1 1) 
where K C  and K R  correspond to the channel and regis- 
ter areas, respectively. 
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4.2 External area occupation 
An even more-accurate estimate must consider the area 
due to the inclusion of the FSM into a chip, where it has 

k 2  

Fig. 6 
used 

Topological representation of FSM when dynarnicJip-pops are 

I 
KC 

channel 

Fig. 7 Detail of PLA-based FSM using static register 

to communicate with other subcircuits. Making such an 
estimation is impossible in a quite general way, since it 
will depend strongly on the freedom of the designer to 
select an arbitrary encoding for all the subsystems. 

Because of the difficulty of defining a general cost cri- 
terion, we will assume several simplifications here. Thus, 
the influence of a given assignment of a FSM on its 
on-chip environment will be represented by a bus of 
depth proportional to its number of state variables and 
of length equal to the internal PLA length plus the inter- 
nal PLA depth (see Fig. 8). Hence, this area evaluation 
includes the surroundings of the FSM, giving a value of 

A ,  = [ (k , (ni  + ns) + k ,  ns + k ,  ns + k , )  

x (k ,  t p  + k ,  ns + k,)] (12) 
for the dynamic case, and 

A ,  = [(kl(ni + ns) + k ,  ns + k 3  ns + k , )  

x ( k , t p  + k4)]  + K C  + K R  (13) 
for the case of using a static register. 
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4.3 Comparing the area occupation figures 
The different area evaluations considered above can be 
applied to determine the cost of a given FSM. Of course, 

k 3 n s  - 

I P L A  

Fig. 8 

they are orientative and we will use them here to show 
that the conclusions we reached when eqn. 1 is employed 
are confirmed even for more-precise area evaluations. 
For any FSM, we can plot all of those estimates as we 
have done in Fig. 9. The value of the occupied area can 

PLA area including surroundings of FSM 

20 40 60 80 
ns 

Fig. 9 
ni = 15,  ns = 80, U = 0.6 

Eqn. I 
Eqn. 10 
Eqn. I 1  
Eqn. 12 
Eqn. 13 

Area occupation for every case considered in text 

~~ 

~~~~ 

. . . . . . . 

be seen to increase monotonically with ns and remain in 
the same relative position for the five different expres- 
sions we have derived. As a consequence, a procedure 
similar to that applied in Section 3 can be followed, 
hence attaining a maximum value for ns beyond which 
any minimal cardinality coding is not area-efficient. The 
actual maximum will depend on the expression we con- 
sider to be more accurate for evaluating the silicon area 
occupation. 

However, concerning the value of ns,,,/ns,, , (i.e. the 
maximum number of state variables a minimal cardi- 
nality assignment can have for being efficient), the more 
restrictive estimate does not always correspond to the 
same expression. This can be illustrated by Fig. 10 where 
three of those area measures have been plotted. In the 
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Figure, it should be clear that the higher value for 
ns,,,/ns,, sometimes corresponds to eqn. 1 and some- 
times to eqn. 10. In the particular example of Fig. 10 

2ol 15 

0 2  0 4  0 6  0 8  1 0  1 2  

t PL’t Pm,, 

Fig. 10 
ni = IS, ns = 80 
- Eqn. I 

Evolution of ns,Jns,, for minimal cardinality assignment 

Eqn. 10 
Eqn. 1 1  

_ _ _ _  

there is not a big difference, but it suggests care if an 
accurate evaluation of ns,, is required. 

Nevertheless, what is shown in Fig. 10 is very repre- 
sentative of the behaviour we have observed for the dif- 
ferent area estimations. Only for low values of tpJtp, , , ,  
is there significance in the particular model we use for 
representing the area. This is especially true when a static 
register bank is employed, since in this case the value for 
nsmaX can be further reduced. 

5 Conclusions 

In this paper we have given a critical view of the reported 
methods for performing the state assignment process in a 
FSM to be implemented by using a PLA. Generally 
speaking, we have shown the need for carrying out an 
evaluation of the maximum number of state variables 
required for any coding procedure using a minimal cardi- 
nality (or quasiminimal) assignment. Such an evaluation 
has to be performed before the coding since it might 
reduce the CPU time to be spent in the process. A 
method has been given to check whether a minimal car- 
dinality assignment is cost-effective or not. Also we have 
proposed a few alternative expressions for evaluating the 
silicon area occupation for PLA-based sequential 
machines. It has been proved that our checking method 
can be applied independently of the area estimate to be 
used. 
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Efficient realisation of discrete Fourier transforms 
using the recursive discrete Hartley transform 

W.C. Siu 
K.L. Wong 

nuexiny ierms: niyoriinms, aiynui processmy 

Abstract: In the paper, we present the results of 
our study using a recursive discrete Hartley trans- 
form technique to compute discrete Fourier trans- 
forms. We also introduce an improved in-place 
and in-order prime-factor mapping to effectively 
realise composite-length DFTs. In using these new 
techniques, the speed of computation is compara- 
ble to that of the Winograd Fourier transform 
algorithm (WFTA), whereas the program size of 
the present approach is much smaller than that of 
the WFTA. This approach is most suitable for the 
cases where there are restrictions on program 
lengths. 

1 Introduction 

The discrete Fourier transform (DFT) is one of the most 
important tools in modern digital signal processing. 
Much research effort has been dedicated to its efficient 
realisations. The fast Fourier transform (FFT) [ 11 pro- 
posed by Cooley and Tukey reduces the number of multi- 
plications from N 2  to (N/2)(log2 N ) ,  where N is the 
transform length. Good [2]  showed that a single dimen- 
sion DFT can be converted to a multidimensional form if 
the transform length is composed of relatively prime 
factors. Winograd [3]  and Kolba and Parks [4]  made 
use of Rader's theorem [ 5 ]  to construct efficient algo- 
rithms of this class. Compared with FFT, these latter 
approaches further reduce the number of multiplications 
by one-half to two-thirds. Siu and Constantinides [ S I ,  
made use of Rader's algorithm to propose the very fast 
discrete Fourier transform (VFDFT) based on the 
number theoretic transform (NTT) which achieved 
having only one multiplication per point. 

Recently, Siu [7]  proposed a nesting algorithm for the 
VFDFT which recursively ' decomposed the discrete 
Fourier transform into short modules that just required 
two very efficient primary DFT modules of length 2 and 
4. This paper extends this work by developing another 
efficient algorithm making use of the discrete Hartley 
transform (DHT) [8]. The present work solves the 
problem of a prime-factor mapping for DHT which is an 
essential step for the recursive decomposition. Sorensen 
et al. [9]  proposed a modified prime-factor mapping 
technique based upon Good's algorithm [2] to construct 
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composite-length DHT using prime-length modules. The 
control structure of this approach is complicated since 
data from different short transforms within the same 
stage are coupled by some extra additions. In this paper, 
we use a simpler but more general approach in which a 
recursive DHT technique is used to formulate a fast algo- 
rithm for the computation of DFT. An improved in-place 
in-order prime-factor mapping is also developed for the 
construction of long composite length transforms. 

2 Recursive discrete Hartley transform 

The discrete Hartley transform of a real data sequence 
{ r (n) :  n = 0, 1, . . . , N - l} is defined as 

N - 1  

Q(k) = - .x-r(n) n = O  cas (2nnklN) 

where cas p = cos p + sin 8. 
Note that the DHT is structurally very similar to the 

DFT. Most importantly, it retains the cyclic property 
which was made used by Rader [SI and Siu and Con- 
stantinides [6] to convert prime-length DFTs into cyclic 
correlation and cyclic convolution forms, respectively. 
This enables the same conversion to be made on the 
DHT. More precisely, if N = P ,  where P is a prime 
number with a primitive root equal to g, eqn. 1 can be 
written as 

and 

where 

A,  = cas ( 2 ~ ( g " - ~ ) ~ / P )  (6) 
r, = r ( (g- ("+' ) ) , )  

f o r k , n = O , l ,  ..., P - 2  (7)  

The expression ( C ) ,  means the residue of the number C 
modulo P. Eqn. 5 is a length-(P - 1) cyclic convolution. 
A previous effort [7]  made use of a slightly different per- 
mutation to convert a prime-length DFT into this form 
and evaluated the convolution based on length-(P - 1) 
DFTs. As the DHT also possesses convolution properties 
[SI, eqn. 5 can be realised using length-(P - 1) DHTs. 
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