
Efficiency of state assignment methods for
PLA-based sequential circuits

- - - - - - - - -

Professor J.L. Huertas
J.M. Quintana

- - - - - - - - -

Indexing terms: Digital control, Integrated circuits

register

Abstract: The implementation of finite sequential
machines by using a programmable array logic to
synthesise their combinational part is considered.
A critical view of the efficiency of existing methods
to carry out the state assignment of these
machines is given, and it is shown that we can
derive a bound on the number of state variables
beyond which even an arbitrary coding usually
leads to better results in terms of area occupation.
It is suggested in the paper that this bound can
still be found when more refined area estimates
are used.

register

1 Introduction

Inputs

Computer-aided synthesis of sequential circuits is an area
of active research [1 4] because of the important role
they play in the design of complex digital systems. To be
efficient, a design procedure for such circuits must resort
to regular structures; in particular, the programmable
logic array (PLA) is considered a natural candidate for a
design methodology coping with design complexity.

A PLA implementation of a finite state machine
(FSM) is shown in Fig. 1, where the PLA size depends on

0 ut p u ts

both the number of required state variables ns and the
number of product terms t p of the next-state equations
describing the FSM.

Classically, the synthesis of a sequential circuit must
be partitioned into several tasks. Here we will consider

Paper 6695E (CI, C2), first received 5th April 1988 and in revised form
27th January 1989
Professor Huertas and Dr. Quintana are at the Departamento de Elec-
tronica y Electrornagnetisrno, Facultad de Fisica, Universidad de
Sevilla, Avda. Reina Mercedes s/n, Sevilla, 4101 2-Sevilla, Spain

IEE PROCEEDINGS, Vol. 136, Pt. E , N o . 4, J U L Y 1989

the optimal state assignment problem, which is probably
the step that most critically influences the final cost of the
circuit. Methods to deal with this problem have been
reported in the past that are specifically said to be tail-
ored to PLA-based implementations [S-lo]. All of these
approaches rely on strategies that are focussed on obtain-
ing assignments with either a minimum or a quasi-
minimum number of product terms. The price to be paid
is that they require a number of state variables
(equivalently a register length) which is higher than the
minimum. Although all of those methods produce very
nice results when applied to FSM with a few states, we
have realised that for large machines they lead to assign-
ments far away from an optimum. In general, all of them
lead to area wasting when the number of involved vari-
ables increases.

The objective of this paper is twofold. First of all, we
will use a conventional figure to estimate the silicon area
occupation for a given FSM. Then, based on such an
estimation, we will show the inefficiency of the known
methods, and we will conclude that the usual strategy of
minimising the next-state function cardinality (i.e. the
number of product terms) leads to worse assignments
than minimising the number of state variables in many
cases. As a consequence, an a priori estimation of the
final area occupation will be proven to be of interest.
Finally, a discussion on more-accurate area estimates is
included. Although the occupied area is more-precisely
evaluated, all of those estimates allow us to arrive at the
same conclusions as the originally used area-occupation
figure.

2 Background

2.1 Basic cost criterion
When designing an FSM by using a PLA to implement
its combinational component the main concerns for effi-
ciency are the area occupation and the final operating
speed. Since the latter is strongly influenced by the length
of the input-output paths, a compact implementation
occupying as small an area as possible usually allows us
to fulfill both basic requirements. Concerning the silicon
area, it depends on the relative positioning of the differ-
ent PLA elements. For the sake of simplicity, we will con-
sider here the arrangement shown in Fig. 2. There the
array length is proportional to nl , the number of inputs
to the AND array of the PLA, and to no, the number of
outputs to the OR array, its depth being proportional to
the cardinality of the combinational function to be rea-
lised, i.e. to the number of product terms t p in the AND
array. We will consider initially a dynamic system, this
fact affecting only the physical dimensions of the register
bank. Since our results can be extended to other cases

247

[17], we will restrict ourselves to consider the case where
the state variables are the output variables of the FSM.
With this in mind, the area can be expressed as [19]

A = k, tp[k,(ni + ns) + k, ns] (1)

--
n o

Fig. 2 Topological representation of PLA

where ni is the number of the FSM inputs, ns is the
number of state variables, k , is a constant that depends
on the technology, and k , and k, are constants that
depend on the detailed design of the input decoders and
the output buffers, respectively. Because of the tech-
nology we are currently using in our laboratory we will
take k , = 2k, and k, = k,, to simplify the maths. Then

A = k,tp[2ni + 3nsl (2)

2.2 Existing assignment strategies
Coding methods for PLA-based FSMs fall into one of
two categories. The approach from De Micheli et al.
(henceforth referred to as DM) [7, 9-12] uses a symbolic
minimisation of the FSM combinational part, followed
by the solution of a constrained encoding problem. Sym-
bolic minimisation is carried out by multiple-valued
minimisation and gives a minimal representation of the
next-state function of the FSM which does not depend
on the particular state assignment to be chosen. This
technique reduces the number of product terms imple-
menting the FSM combinational component.

The second approach is represented by the work of
Papachristou and Sharma (P-S) [6] and Acha and Calvo
(A-C) [SI. Both methods try to find an efficient state
coding resulting in a reduced (ideally minimal) number of
product terms, by decomposing the state table into state
block partitions according to some heuristics rules [131.
The method in Reference 6 is a Liu procedure [14, 151
with a particular set lumping strategy. On the other
hand, the method in Reference 8 is a generalised Liu pro-
cedure that through the solution of a covering problem
determines a minimal set of maximal compatibles [16].
The former method does not give all the minimum Liu
assignments and even might fail in obtaining one,
although it generally leads to near-minimal results
without high computational overheads. On the contrary,
the latter method allows the designer to get all the
minimum Liu codings. However, there is a big difference
in terms of CPU time, the P-S approach being usually
much faster than the A-C approach.

248

All of these methods [&9] try to find a minimal
cardinality implementation of the FSM next-state func-
tion, i.e. an implementation with the minimum number of
product terms. Of course, the price to be paid is that the
number of state variables (in other words, the register
length) is not the minimum, and is usually far away from
such a minimum.

It was shown in Reference 16 that given the state table
describing a FSM, the minimum number of product
terms for its next-state function can be easily calculated.
We will call henceforth the Liu number t p , of a machine
to this minimum. Hence, we can predict a priori the
minimal cardinality of the combinational part which
might be attainable during the assignment process. We
will show in the next Section how this number can be
used (in conjunction with the minimum number of state
variables) to determine a lower bound to the usefulness of
any of the methods revised in the present Section.

3 Formal comparison of algorithms

3.1 Previous example
Let us begin by considering a few examples as a motiva-
tion for our work. Tables 1 and 2 show the state table for

Table 1 : State table of FSMl

Present Input state
state

I1 12 13 14 15

sl s3 s2 s2 s7 s3
s2 s5 s2 sl s7 s3
s3 s5 s4 s3 s6 s4
s4 s6 s5 s4 s2 s4
s5 s7 s5 s4 sl s6
s6 SI s6 s4 sl s6
s7 sl s2 s3 s3 s6

Table 2: State table of FSM2

Present Input state
state

I1 12 13 14 15 16

sl sl sl s4 sl s2 s3
s2 s3 s3 s4 sl s4 s3
s3 s4 sl sl sl s2 s5
s4 s2 SI s4 s2 s6 s3
s5 s5 s3 sl s2 s2 s7
s6 SA SA SB SE s6 s3
s7 s8 SC sl SE s2 s7
s8 SA s9 s9 SE SA s4
s9 SC s9 s8 SE SA s4
SA sC sB SA sD sB s3
sB SD SC SB s9 sB s7
SC SE SC SB s8 sD s3
sD s8 SD SB s8 sD s7
SE s8 s9 SA SA sD s8

Table 3: Area assignments using different algorithms

FSM Dimension Area

I S A-C P-S DM Random

FSMl 5 7 306 306 306 330
FSM2 6 14 Not Practical 1404 1296 91 8
FSM3 15 80 Not Practical 86275 Not Practical 29464

I applies for the number of input columns
S applies for the number of states

two FSMs of different sizes. Table 1 has been selected
from the literature [6] and Table 2 has been randomly
generated. A third Table from elsewhere [17] has been
considered too, this one corresponding to a randomly

IEE PROCEEDINGS, Vol. 136, Pt. E , N o . 4, JULY 1989

generated FSM with 80 states and 15 input columns.
Because of its size, we refer the interested reader to [17]
for the details of this state table. We have applied to
these machines the three state-assignment methods refer-
enced above, as well as a random search. The values for
the occupied area appear in Table 3, this estimation cor-
responding to an n-MOS technology we have available,
with k , = 1. Although these figures will vary when
moving from one technology to another, they are illustra-
tive enough for showing the relative value of the different
algorithms. The inefficiency of the methods should be
clear when dealing with those three examples. With the
exception of the smallest machine, an arbitrary assign-
ment is always better than the assignments generated by
the algorithms. Entries of 'Not Practical' apply for a
method in Table 3 when the CPU time was found to be
at least two orders of magnitude higher than a random
search.

3.2 Bounds on usefulness of a coding algorithm
Let us consider a sequential machine whose internal
states can be coded using as many as ns,, state variables.
Let us call tpmin the minimum number of product terms
for realising the combinational part of that FSM; in
general, when using tp, , , , the required number of state
variables will be higher than nsmi,. Taking into account
the area occupation formulae derived above, we should
try to evaluate whether or not a given assignment is
better than other in terms of silicon area. In particular we
will compare an assignment using the minimum number
of state variables with an assignment with the minimal
cardinality. Let us call A to a state assignment of the
former class and B to an assignment of the latter. To be
precise

a class A assignment has t p = tpmin, and ns 2 ns,,

a class B assignment has t p 2 tpmin, and ns = ns,,,

To be considered advantageous, assignment A must
occupy less area than assignment B. As we have pointed
out before, we can estimate a lower bound for t p . Hence,
presuming this bound is always attainable (i.e. tpmin =
tp,), we can say that for any class A assignment to be
'better' than any other using a minimum number of state
variables (class B assignments) the following inequality
must be fulfilled:

(2ni + 3ns)tpL < (2ni + 3nsmi,)tp (3)
We can represent eqn. 3 in a design space, whose coordi-
nates are nslns,,, and t p / t p L . The region of this space
where class A assignments are advantageous corresponds
to

2ni + 3ns - t p 2
t p , 2ni + 3nsmi, (4)

The design space is also bounded by other two consider-
ations: first, no solution to the coding problem can be
found requiring less than ns,,,; secondly, we can define a
maximum value for t p , tp,,,. A rough evaluation for
such a maximum could be

(5) tp,,, = (no. of statesxno. of inputs)

A better estimate can be derived by using any randomly
generated assignment whose cardinality will be a more
accurate bound. Anyhow, only the shadowed triangle in
Fig. 3 gives rise to minimal-cardinality assignments with
a lower cost than an assignment with the minimum
number of state variables.

From Fig. 3, the maximum value of the number for
state variables ns,,, can be calculated.

(6)
(2ni + 3nsmin)tpmax - 2nitp,

"Srnax =
3tPL

I

1 nsl nsmln

Design spacefor PLA-based F S M

I

Fig. 3

Note that this bound is rather optimistic for the minimal
cardinality assignment, especially if we use the value of
tp,,, in eqn. 5 .

To understand more clearly the practical consequence
of eqn. 6 we can rewrite eqn. 2 using

t p = tpL + A t p

ns = ns,, + Ans

which gives a figure for the influence of A t p and Ans on
the silicon area.

A A l = ki(2ni + 3ns)Atp (7)

A A 2 = 3 k t t p A n s (8)
Since 3 t p is usually much greater than (2ni + 3ns), eqns. 7
and 8 mean that increasing the number of state variables
is usually much more dramatic than increasing the
number of product terms. This is especially true for FSM
of medium and bigger sizes.

With this result in mind, it is worth considering the
problem of predicting whether or not a given method
could give a good result prior to performing the coding
process. Note that for a large FSM this is very interesting
because of the high computation times required to carry
out the state assignment.

Turning back to eqn. 3, and after some manipulations,
we can write

(9)
ns,,, 2ni + 3nsmi, tpltp,,, 2ni q = - =
nsrnin 3nsmin tPJtPrnax 3nsmin

Given the state table of a FSM, we can represent eqn. 9
in the plane of Fig. 4 using an auxiliary parameter, o =
tp/tp, , , . On this Figure we can explain the basis for an
evaluation procedure. For any machine, we will deter-
mine the value of t p , . Then, using a plot like the one in
Fig. 4, we will estimate the maximum number of state
variables to be allowed so that a minimal cardinality
assignment could be area-efficient. Of course this
maximum value for ns will depend on the value of CT we
consider, but since the curves tend to be flat above
tp,/tp,,, = 0.3, the influence of o can be disregarded in
many practical situations and hence we can incorporate
into any coding algorithm a stopping mechanism when
nsmax is surpassed.

249 I E E PROCEEDINGS, Vol. 136, Pt. E , No. 4 , JULY 1989

Two additional considerations are necessary. First, the
usual value of (T could be expected to lie between 0.6 and
0.9, thus reducing the curves in Fig. 4 to be taken into

tP L 'tPrnCiX

Fig. 4
n i = 1 5 , n s = 8 0

Maximum value of ns as function of a

account. Secondly, most FSMs have a Liu number 5 =
tpL/ tpmnx, between 0.4 and 0.8, which means an addi-
tional restriction of the interesting region in Fig. 4.

As an illustration, Table 4 shows the Liu number for
the three FSMs in Tables 1 and 2, and the state table of
Reference 17 as well as the value of (T obtained by a ran-
domly generated coding of cardinality t p , . In Table 4,
nsstOp represents the maximum value of ns still giving a
better area occupation than that corresponding to nsmi, ,
and nsaCtual corresponds to the value of ns obtained when
the P-S method is employed. It should be clear that a
search for a minimal cardinality state coding could be
stopped largely before the encoding algorithm is com-
pleted. Also, Fig. 5 illustrates our assertion about the
'typical' value for 5. This parameter has been represented

E O 6
E
2 0 4

2 0 2

. -

0
machine number

Fig. 5 tpd tp , , for 100 FSMs of medium size

have to be avoided, since in some cases they can lead to
good solutions. For example, in machines admitting a
small value of t p L , these methods could give a better per-

Table 5: Parameters of 30 FSMs of medium sire

KISS [91 P-S [6]

tps nb Area Time tps nb Area Time, s

FSMl
FSM2
FSM3
FSM4
FSM5
FSM6
FSM7
FSM8
FSM9
FSMlO
F S M l l
FSMl2
FSMl3
FSM14
FSM15
FSMl6
FSMl7
FSM18
FSM19
FSM2O
FSM21
FSM22
FSM23
FSM24
FSM25
FSM26
FSM27
FSM28
FSM29
FSM3O

46 9 1518 260.9 46 9 1518 11.2
47 8 1410 233.5 47 10 1692 13.1
50 9 1650 284.9 50 9 1650 11.1
51 8 1530 244.9 51 8 1530 11.4
51 8 1530 216.2 51 9 1683 10.3
43 11 1677 518.8 43 11 1677 10.5
50 9 1650 263.3 50 9 1650 10.4
44 9 1452 251.3 44 10 1584 9.9
42 8 1260 242.5 42 10 1512 10.1
45 8 1350 234.1 45 10 1620 10.5
50 7 1350 218.4 50 9 1650 9.9
50 6 1200 204.1 50 9 1650 10.4
46 10 1656 371.5 46 9 1518 9.9
48 11 1872 347.9 48 10 1728 10.4
47 10 1692 289.8 47 8 1410 9.9
48 11 1872 362.9 48 9 1584 10.2
49 10 1764 266.1 49 10 1764 10.5
45 9 1485 297.5 45 10 1620 10.3
57 6 1368 208.7 57 8 1710 10.2
51 7 1377 215.7 51 11 1989 10.3
53 7 1431 224.5 53 9 1749 10.1
43 13 1935 103.3 43 8 1290 10.0
45 11 1755 484.8 45 10 1620 10.2
48 6 1152 203.1 48 9 1584 10.1
53 6 1272 210.7 53 8 1590 10.2
48 10 1728 320.4 48 8 1440 10.2
51 6 1224 204.0 51 10 1836 10.2
43 11 1677 429.8 43 9 1419 10.1
47 9 1551 224.3 47 9 1551 10.1
45 9 1485 261.2 45 7 1215 9.9

formance. See, for instance, the FSM described by Table
6 [l8]. That machine has a very low value ot t p L , thus
allowing us to explore for a good coding. Table 6 also

Table 6: Example of FSM with low 5 (5 = 0.25)

Present
state

s l
s2
s3
s4
s5
s6
s7

Input state

I1 12 I3 14

s2 s3 s4 s l
s5 s6 s7 s7
s5 s6 s2 s7
s2 s3 s4 s l
s7 s3 s7 s l
s5 s6 s4 s7
s5 s6 s2 s7

Assignment

s l+1100
s2 + 001 0
s3 + 0000
s4 + 11 00
s5 --t 101 0
s6+0100
s7 + 0001

Table 4: Design parameters for FSM1, FSM2 and FSMB

FSM ~ P L t ~ , t ~ r n a x f = f P d P m a x u=tPrItPrnax nsrn,n nsstop "Saccuai

FSMl 17 22 35 0.48 0.63 3 4 4
6 11 FSM2 36 51 84 0.40 0.61 4

FSMB 725 1016 1200 0.60 0.85 7 10 37

in Fig. 5 for one hundred FSMs of medium size. ~ l l of gives a coding obtained by the P-S method, which has
those machines in Fig. 5 have a value of tpJtp,,, around minimal cardinality (7 in this case). Unfortunately,
0.6. Also, Table 5 represents in more detail the value of machines with such a low value for tpJtp, , , are rarely
the different parameters for these FSMs. To Save space found. Moreover, even in this case, an assignment can be
only 30 are shown in this Table. The CPU time is explic- derived using the minimum number of state variables (3)
itly indicated and corresponds to a VAX 11/750 under and a higher cardinality (8 product terms), this coding
ULTRIX-32*. occupying slightly less silicon area.

Nevertheless, our results must not be misunderstood. In summary, using any minimal cardinality state
We cannot conclude that minimal cardinality methods encoding technique must be ineficient and it is worth

including an evaluation mechanism to show whether or
* VAX and ULTRIX are trademarks of DEC. not such a technique has to be disregarded in favour of a

250 IEE PROCEEDINGS, Vol. 136, Pt . E, No. 4 , JULY 1989

method based on a minimum number of state variables.
This evaluation mechanism can be incorporated as an
stopping routine into any coding computer program or
can simply give an idea of how large is the probability of
obtaining a good solution before going into any coding
process. For instance, in the third example of Table 4, it
should be clear using Fig. 4 (see point Q in this Figure)
that we are very unlikely to find a good solution by
employing any minimal cardinality algorithm because the
bound for ns,, is 10, which is rather lower than expected
to be attained by any of the referred-to methods. In fact,
Table 4 shows that the number of state variables
obtained is very much higher (37 variables).

I)

4 More-accurate area estimates

The conclusions we have drawn above, seem to be based
on the area estimation we have taken from the literature
[I 191. Unfortunately, although eqn. 1 has been typically
used for comparing different implementations of a
sequential machine using a PLA [17], this expression is a
partial figure of merit, which may be misleading when
referred to an integrated realisation. Hence, since much
more meaningful expressions can be derived instead of
eqn. 1 , there remains the question of whether or not our
results in Section 3 are still valid when we perform a
more careful evaluation of the area occupation for a
given state assignment. In this Section, we will derive
more-precise expressions for the area and we will manip-
ulate them at the same way we have done with eqn. 1 in
the previous discussion. To carry out such a derivation,
we will consider separately the case for static and
dynamic flip-flops. These new figures can be used at the
same way we have used eqn. 1 in the previous discussion.

It is useful to mention the effects of topological optim-
isation on our considerations, specifically PLA folding. In
the case of combinational circuits, PLA folding has been
successfully applied [20, 213 ; however, where sequential
circuits are concerned, the existence of feedback paths
severely reduces the probability of finding practical solu-
tions. For that reason, we have not considered the inci-
dence of folding on our conclusions.

4.1 Figure of merit for internal area occupation
Let us consider the symbolic layout of a FSM shown in
Fig. 2. It should be clear that there exists an area
occupation that is not taken into account for the conven-
tional cost criterion in Section. 2.1. The terms not con-
sidered in eqn. 1 are detailed in Fig. 6. The length of the
array is increased by a constant term k , due to the
pull-up devices, and its depth is augmented by a term
k , ns, which is due to the wiring that feeds back the state
variables to the PLA input and by a constant term k ,
due to the output buffer. The resulting cost expression for
the FSM in Fig. 6 will be

A , = [(k l (n i + ns) + k 2 n s + k ,)

x (k , tp + k , HS + k4)] (10)
A similar expression can be derived when the FSM is
implemented by using static flip-flops (Fig. 7). If this is
the case we will find

A , = [(k , (n i + ns) + k 2 n s + k ,)

x (k , t~ + k4)] + K C + K R (1 1)
where K C and K R correspond to the channel and regis-
ter areas, respectively.

I E E PROCEEDINGS, Vol. 136, Pt. E, No. 4 , JULY 1989

4.2 External area occupation
An even more-accurate estimate must consider the area
due to the inclusion of the FSM into a chip, where it has

k 2

Fig. 6
used

Topological representation of FSM when dynarnicJip-pops are

I
KC

channel

Fig. 7 Detail of PLA-based FSM using static register

to communicate with other subcircuits. Making such an
estimation is impossible in a quite general way, since it
will depend strongly on the freedom of the designer to
select an arbitrary encoding for all the subsystems.

Because of the difficulty of defining a general cost cri-
terion, we will assume several simplifications here. Thus,
the influence of a given assignment of a FSM on its
on-chip environment will be represented by a bus of
depth proportional to its number of state variables and
of length equal to the internal PLA length plus the inter-
nal PLA depth (see Fig. 8). Hence, this area evaluation
includes the surroundings of the FSM, giving a value of

A , = [(k , (ni + ns) + k , ns + k , ns + k ,)

x (k , t p + k , ns + k,)] (12)
for the dynamic case, and

A , = [(kl(ni + ns) + k , ns + k 3 ns + k ,)

x (k , t p + k4)] + K C + K R (13)
for the case of using a static register.

251

4.3 Comparing the area occupation figures
The different area evaluations considered above can be
applied to determine the cost of a given FSM. Of course,

k 3 n s -

I P L A

Fig. 8

they are orientative and we will use them here to show
that the conclusions we reached when eqn. 1 is employed
are confirmed even for more-precise area evaluations.
For any FSM, we can plot all of those estimates as we
have done in Fig. 9. The value of the occupied area can

PLA area including surroundings of FSM

20 40 60 80
ns

Fig. 9
ni = 15, ns = 80, U = 0.6

Eqn. I
Eqn. 10
Eqn. I 1
Eqn. 12
Eqn. 13

Area occupation for every case considered in text

~~

~~~~ 

. . . . . . . 

be seen to increase monotonically with ns and remain in 
the same relative position for the five different expres- 
sions we have derived. As a consequence, a procedure 
similar to that applied in Section 3 can be followed, 
hence attaining a maximum value for ns beyond which 
any minimal cardinality coding is not area-efficient. The 
actual maximum will depend on the expression we con- 
sider to be more accurate for evaluating the silicon area 
occupation. 

However, concerning the value of ns,,,/ns,, , (i.e. the 
maximum number of state variables a minimal cardi- 
nality assignment can have for being efficient), the more 
restrictive estimate does not always correspond to the 
same expression. This can be illustrated by Fig. 10 where 
three of those area measures have been plotted. In the 

252 

Figure, it should be clear that the higher value for 
ns,,,/ns,, sometimes corresponds to eqn. 1 and some- 
times to eqn. 10. In the particular example of Fig. 10 

2ol 15 

0 2  0 4  0 6  0 8  1 0  1 2  

t PL’t Pm,, 

Fig. 10 
ni = IS, ns = 80 
- Eqn. I 

Evolution of ns,Jns,, for minimal cardinality assignment 

Eqn. 10 
Eqn. 1 1  

_ _ _ _  

there is not a big difference, but it suggests care if an 
accurate evaluation of ns,, is required. 

Nevertheless, what is shown in Fig. 10 is very repre- 
sentative of the behaviour we have observed for the dif- 
ferent area estimations. Only for low values of tpJtp, , , ,  
is there significance in the particular model we use for 
representing the area. This is especially true when a static 
register bank is employed, since in this case the value for 
nsmaX can be further reduced. 

5 Conclusions 

In this paper we have given a critical view of the reported 
methods for performing the state assignment process in a 
FSM to be implemented by using a PLA. Generally 
speaking, we have shown the need for carrying out an 
evaluation of the maximum number of state variables 
required for any coding procedure using a minimal cardi- 
nality (or quasiminimal) assignment. Such an evaluation 
has to be performed before the coding since it might 
reduce the CPU time to be spent in the process. A 
method has been given to check whether a minimal car- 
dinality assignment is cost-effective or not. Also we have 
proposed a few alternative expressions for evaluating the 
silicon area occupation for PLA-based sequential 
machines. It has been proved that our checking method 
can be applied independently of the area estimate to be 
used. 

6 References 

1 SOBOL, R.: ‘The universal synchronous machine’. VLSI Design, pp. 
-66, Nov. 1983 

2 AGRAWAL, P., and MEYER, M.J.: ‘Automation in the design of 
finite state machines’. VLSI Design, pp. 7 4 8 4 ,  Sept. 1984 

3 BROWN, D.W.: ‘A state-machine synthesis-SMS’. Proc. 18th 
Design Automation Conference, Nashville, TN, 198 1 ,  pp. 301-305 

4 MEYER, M.J., AGRAWAL, P., and PFISTER, R.G.: ‘A VLSI FSM 
design system’. Proc. 21st Design Automation Conference, Albu- 
querque, NM 

5 KANG, S.: ‘Automated synthesis of PLA based systems’. PhD dis- 
sertation, Stanford University, 1981 

6 PAPACHRISTOU, C.A., and SARMA, D.:  ‘An approach to 
sequential circuit construction in LSI programmable logic arrays’, 
I E E  Proc. E, Comput. & Digital Tech., 1983, 130, ( 5 )  

7 D E  MICHELI, G.:  ‘Computer-aided synthesis of PLA-based 
systems’. PhD dissertation, Berkeley University, 1984 

IEE PROCEEDINGS, Vol. 136, Pi.  E, No. 4 ,  J U L Y  1989 



8 ACHA, J.I., and CALVO, J.: ‘On the implementation of sequential 
circuits with PLA modules’, IEE Proc. E, Cornput. & Digital Tech., 
1985, 132, (9, pp. 518-522 

9 DE MICHELI, G., BRAYTON, R.K., and SANGIOVANNI- 
VINCENTELLI, A.: ‘Optimal state assignment for finite state 
machines’, IEEE Trans. Cornput.-Aided Des., 1985, CAD-4, pp. 

10 DE MICHELI, G.: ‘Symbolic design of combinational and sequen- 
tial logic circuits implemented by two-level logic macros’, IEEE 
Trans., Cornput.-Aided Des., 1986, CAD-5, (4), pp. 597-615 

11 DE MICHELI, G., SANGIOVANNI-VINCENTELLI, A., and 
VILLA, T.: ‘Computer-aided synthesis of PLA-based finite state 
machines’. Proc. 1983 Int. Conf. on CAD, pp. 154-157 

12 DE MICHELI, G., BRAYTON, R.K., and SANGIOVANNI- 
VINCENTELLI, A.: ‘KISS: A program for optimal state assign- 
ment of finite state machines’. Proc. 1984 Int. Conf. on CAD, pp. 
209-2 1 1 

13 ARMSTRONG, D.B.: ‘A programmed algorithm for assigning 
internal codes to sequential machines’, IRE Trans. Elect. Cornput., 
1962, EC-11, pp. 611-622 

269-284 

14 LIU, C.N.: ‘A state variable assignment method for asynchronous 
sequential machines’, J. A C M ,  1963, 10, pp. 209-216 

15 TAN, C.J.: ‘State assignments for asynchronous sequential 
machines’, IEEE Trans. Cornput., 1971, C-20, (4), pp. 382-391 

16 UNGER, S.H.: ‘Theory of asynchronous sequential machines’ 
(McGraw-Hill Book Company Inc., New York 1969) 

17 QUINTANA-TOLEDO, J.M.: ‘Una contribucion al disefio auto- 
matico de circuitos digitales usando PLAs’. PhD dissertation, 
Sevilla University, 1987 (in Spanish) 

18 CURTISS, H.A.: ‘Tan-like state assignments for synchronous 
sequential machines’, IEEE Trans. Cornput., 1973, C-22, pp. 181-187 

19 KAMBAYASI, Y.: ‘Logic design of programmable logic arrays’, 
IEEE Trans. Cornput., 1979, C-28, (9), pp. 609-617 

20 HACHTEL, G.D., NEWTON, A.R., and SANGIOVANNI- 
VINCENTELLI, A.L.: ‘An algorithm for optimal PLA folding’, 
IEEE Trans. Cornput.-Aided Des., 1982, CAD-1, (2). pp. 63-76 

21 DE MICHELI, G., and SANGIOVANNI-VINCENTELLI, A.L.: 
‘Multiple constrained folding of programmable logic arrays: theory 
and applications’, IEEE Trans. Cornput.-Aided Des., 1982, CAD-2, 
(3), pp. 151-167 

IEE PROCEEDINGS, Vol. 136, Pt.  E, No. 4 ,  JULY 1989 253 



Efficient realisation of discrete Fourier transforms 
using the recursive discrete Hartley transform 

W.C. Siu 
K.L. Wong 

nuexiny ierms: niyoriinms, aiynui processmy 

Abstract: In the paper, we present the results of 
our study using a recursive discrete Hartley trans- 
form technique to compute discrete Fourier trans- 
forms. We also introduce an improved in-place 
and in-order prime-factor mapping to effectively 
realise composite-length DFTs. In using these new 
techniques, the speed of computation is compara- 
ble to that of the Winograd Fourier transform 
algorithm (WFTA), whereas the program size of 
the present approach is much smaller than that of 
the WFTA. This approach is most suitable for the 
cases where there are restrictions on program 
lengths. 

1 Introduction 

The discrete Fourier transform (DFT) is one of the most 
important tools in modern digital signal processing. 
Much research effort has been dedicated to its efficient 
realisations. The fast Fourier transform (FFT) [ 11 pro- 
posed by Cooley and Tukey reduces the number of multi- 
plications from N 2  to (N/2)(log2 N ) ,  where N is the 
transform length. Good [2]  showed that a single dimen- 
sion DFT can be converted to a multidimensional form if 
the transform length is composed of relatively prime 
factors. Winograd [3]  and Kolba and Parks [4]  made 
use of Rader's theorem [ 5 ]  to construct efficient algo- 
rithms of this class. Compared with FFT, these latter 
approaches further reduce the number of multiplications 
by one-half to two-thirds. Siu and Constantinides [ S I ,  
made use of Rader's algorithm to propose the very fast 
discrete Fourier transform (VFDFT) based on the 
number theoretic transform (NTT) which achieved 
having only one multiplication per point. 

Recently, Siu [7]  proposed a nesting algorithm for the 
VFDFT which recursively ' decomposed the discrete 
Fourier transform into short modules that just required 
two very efficient primary DFT modules of length 2 and 
4. This paper extends this work by developing another 
efficient algorithm making use of the discrete Hartley 
transform (DHT) [8]. The present work solves the 
problem of a prime-factor mapping for DHT which is an 
essential step for the recursive decomposition. Sorensen 
et al. [9]  proposed a modified prime-factor mapping 
technique based upon Good's algorithm [2] to construct 

Paper 6710E (Cl, C2), first received 26th July 1988 and in revised form 
6th February 1989 
The authors are with the Department of Electronic Engineering, Hong 
Kong Polytechnic, Hung Hom, Kowloon, Hong Kong 

254 

composite-length DHT using prime-length modules. The 
control structure of this approach is complicated since 
data from different short transforms within the same 
stage are coupled by some extra additions. In this paper, 
we use a simpler but more general approach in which a 
recursive DHT technique is used to formulate a fast algo- 
rithm for the computation of DFT. An improved in-place 
in-order prime-factor mapping is also developed for the 
construction of long composite length transforms. 

2 Recursive discrete Hartley transform 

The discrete Hartley transform of a real data sequence 
{ r (n) :  n = 0, 1, . . . , N - l} is defined as 

N - 1  

Q(k) = - .x-r(n) n = O  cas (2nnklN) 

where cas p = cos p + sin 8. 
Note that the DHT is structurally very similar to the 

DFT. Most importantly, it retains the cyclic property 
which was made used by Rader [SI and Siu and Con- 
stantinides [6] to convert prime-length DFTs into cyclic 
correlation and cyclic convolution forms, respectively. 
This enables the same conversion to be made on the 
DHT. More precisely, if N = P ,  where P is a prime 
number with a primitive root equal to g, eqn. 1 can be 
written as 

and 

where 

A,  = cas ( 2 ~ ( g " - ~ ) ~ / P )  (6) 
r, = r ( (g- ("+' ) ) , )  

f o r k , n = O , l ,  ..., P - 2  (7)  

The expression ( C ) ,  means the residue of the number C 
modulo P. Eqn. 5 is a length-(P - 1) cyclic convolution. 
A previous effort [7]  made use of a slightly different per- 
mutation to convert a prime-length DFT into this form 
and evaluated the convolution based on length-(P - 1) 
DFTs. As the DHT also possesses convolution properties 
[SI, eqn. 5 can be realised using length-(P - 1) DHTs. 

IEE PROCEEDINGS, Vol. 136, Pi .  E, N o .  4 ,  JULY 1989 


