INSTITUTE OF PHYSICS PUBLISHING

NANOTECHNOLOGY

Nanotechnology 14 (2003) 469-485

PII: S0957-4484(03)39229-3

Laying out circuits on asynchronous
cellular arrays: a step towards feasible

nanocomputers?

Ferdinand Peper, Jia Lee, Susumu Adachi and Shinro Mashiko

Communications Research Laboratory, Nanotechnology Group, 588-2 Iwaoka, Iwaoka-cho,

Nishi-ku, Kobe, 651-2492, Japan

Received 8 July 2002, in final form 1 January 2003
Published 20 March 2003
Online at stacks.iop.org/Nano/14/469

Abstract

Opinions differ widely as to the type of architecture most suitable for
achieving the tremendous performance gains expected with computers built
by nanotechnology. In this context little research effort has gone into
asynchronous cellular arrays, an architecture that is promising for
nanocomputers due to (1) its regular structure of locally interconnected cells,
and (2) its asynchronous mode of timing. The first facilitates bottom-up
manufacturing techniques like directed self-assembly. The second allows
the cells’ operations to be timed randomly and independently of each other,
mitigating the problems accompanying a central clock, like high power
consumption and heat dissipation. The advantages of asynchronous timing
notwithstanding, it makes computation less straightforward. Attempts to
compute on asynchronous cellular arrays have therefore focused on
simulating synchronous operation on them, at the price of more complex
cells. Here we advance a more effective approach based on the configuration
on an asynchronous cellular array of delay-insensitive circuits, a type of
asynchronous circuit that is robust to arbitrary delays in signals. Our results
may be a step towards future nanocomputers with a huge number of
autonomously operating cells organized in homogeneous arrays that can be
programmed by configuring them as delay-insensitive circuits.

This article features online multimedia enhancements

1. Introduction

Though the recent progress in the development of logic gates
and simple circuits on molecular scales [1-13] (for a short
review see [14]) brings nanocomputers a step closer to reality,
itis still an open question as to what computer architectures are
most suitable for them [15-24]. The prevailing von Neumann
architecture, characterized by the separation of memory and
processing resources, poses challenges in particular when
superimposed onto nanotechnology [15, 19, 22, 23]. Apart
from its irregular structure, which complicates cost-effective
manufacturing on molecular scales, it also faces problems
with its global connectivity: at higher integration densities,
computers based on the von Neumann architecture are not gate
limited but rather interconnection limited [22].

Suffering less from such problems are architectures for
nanocomputers based on cellular arrays. Locally connected

0957-4484/03/040469+17$30.00 © 2003 IOP Publishing Ltd Printed in the UK

in homogeneous patterns, such arrays contain vast numbers
of identical simple cells. The regular structure of an array
of cells not only reduces design efforts to a few parts that
can be reused many times in a design, it also opens up the
possibility of bottom-up molecular manufacturing techniques.
Though it is far from trivial to bulk manufacture cellular
arrays on nanometre scales, the task is considerably easier
than manufacturing the irregular structures found in von
Neumann computers. By employing chemical techniques
to produce components in large quantities and piece them
together in arrays by directed self-assembly, it may be possible
to construct computers with up to the order of Avogadro’s
number of simple identical cells. Cellular arrays range
from coarse-grained systems, like the propagated instruction
processor (PIP) [25] and the reconfigurable architecture
workstation (RAW) architecture [26], to fine-grained systems,

469

http://stacks.iop.org/Nano/14/469

F Peper et al

like systolic arrays [27], field programmable gate array (FPGA)
based systems [22] and cellular automata, the last model of this
list being focused upon in this paper.

A cellular automaton [28-30] is an array of cells, each
of which is a finite automaton [31]. The cells interact
locally in accordance with a set of rules that are designed
such as to produce certain global behaviour, like general-
purpose computation [28]. We will denote this model by the
more general term ‘cellular arrays’, as the term emphasizes
the model’s regular structure and it is often used in an
implementation-oriented context. A cellular array designed
with the specific aim of nanometre-scale computation in mind
is Biafore’s cellular array [17]. Itimplements Fredkin’s billiard
ball model [32], which conducts reversible general-purpose
computation by the ballistic interactions of idealized billiard
balls with each other. The cells consist of quantum-dot devices,
organized such that electrical charge is transferred under
the control of optical clock signals of different wavelengths
supplied in a specific order. Another cellular array architecture
aiming for efficient implementations by nanotechnology is the
cell matrix [19]. In this model each cell, containing a memory
of less than 100 bytes, can be programmed to calculate a
specific function, like a NAND, an XOR, a one-bit full adder,
a wire etc.

The above cellular arrays are timed synchronously,
requiring the delivery of a central clock signal to each cell.
A synchronous mode of timing gives rise to a wide array of
problems, like high power consumption and, associated with
it, heat dissipation (more details in section 3). These problems
tend to get worse at increased integration densities.

It thus makes sense to consider asynchronous cellular
arrays [33], a computation model that pairs a homogeneous
structure with a mode of operation in which all cells conduct
simple operations timed randomly and independently of each
other. Though attractive for attaining efficient physical
realizations, this asynchronous mode of operation brings up
the question of how to actually compute on such cellular
arrays. The few attempts to do so [33-37] have focused on
simulating a timing mechanism on an asynchronous cellular
array to force the cells into synchronicity, and then utilizing
well-established methods to compute synchronously. This
is inefficient, not only because the simulation of the timing
mechanism requires increased complexities of the cells, but
also because the computing methods used are sequential to
begin with, and thus fail to exploit the massive parallelism of
cellular arrays (more on the disadvantages of this method in
section 7).

Here we show a more elegant approach based on
an asynchronous cellular array that conducts asynchronous
computations directly without resorting to synchronous
methods. Requiring just four bits of memory to store its state,
each cell in the cellular array needs access to only its own four
bits and one bit of each of its four neighbouring cells. To enable
the cellular array to conduct the same class of computations as
that possible on conventional computers, it requires as few as
nine rules describing interactions between its cells.

Our approach exploits the properties of so-called delay-
insensitive circuits, a type of circuit that allows arbitrary
delays in signals without this being an obstacle to its correct
operation. Delay-insensitive circuits not only offer many

470

advantages in themselves over synchronous circuits [38—42],
they also combine well with asynchronous cellular arrays.
Their robustness to signal delays creates substantial freedom
in laying them out on asynchronous cellular arrays, since the
requirement no longer holds that signals must arrive at certain
places at times dictated by a central clock, as in synchronous
circuits. This takes away concerns about variations in the
operational speed of cells and considerably simplifies the
design of configurations representing circuit elements laid out
on asynchronous cellular arrays.

Computers based on asynchronous cellular arrays may
lead to tremendously increased performance, a computational
potential especially useful in applications requiring massive
parallelism, like simulations of particle systems in physics,
simulations of networks of neural cells, genetic algorithms and
artificial intelligence.

Section 2 of this paper defines the (two-dimensional)
asynchronous cellular array model used. We also show how
signals are transmitted over the cells. Section 3 starts with
an overview of asynchronous circuits, and in particular delay-
insensitive circuits. We then describe how they operate and
show an implementation on the asynchronous cellular array
of a set of circuit primitives from which arbitrary delay-
insensitive circuits can be constructed. Section 4 deals with
the interactions between the cells. Interactionrules are defined,
and it is shown how they can be used to drive the primitives
in section 3 when implemented on the cellular array. We then
construct a configuration of cells by which signals can be made
to cross on the cellular array, this guaranteeing that arbitrary
circuits can be laid out on the cellular array. This section
finishes with the construction of a one-bit memory on the
cellular array. Section 5 aims to close the gap between cells and
circuits on one hand and higher-order program structures on the
other hand. To this end, a for-loop is constructed using the one-
bit memory. Section 6 discusses implementation details and
section 7 finishes this paper with conclusions and a discussion.

2. Asynchronous cellular arrays

A cellular array is a d-dimensional array of identical cells
(this paper assumes d = 2), each of which can be in
one of a finite number of states, denoted as the integers
0,1,...,n — 1, where n is the number of states. Each
cell can read the states of itself and of its neighbouring
cells, and change its own state in accordance with these
states. Such a state change is called a transition, and
an expression describing an allowable transition is called a
transition rule. The set of cells whose state can be accessed
by a cell is called the neighbourhood of the cell. A frequently
used neighbourhood is the von Neumann neighbourhood: it
consists of a cell’s nearest orthogonal neighbours. Another
type of neighbourhood sometimes encountered is the Moore
neighbourhood, which consists of all nearest cells adjacent to
a cell including the diagonal cells. A Moore neighbourhood
is usually employed on totalistic cellular arrays, i.e., models
in which the number of neighbouring cells in certain states,
rather than the states themselves, form the basis of transitions.
Certain desired behaviour is imposed on a cellular array by
setting its cells in proper states and defining transition rules
that lead to state changes corresponding to this behaviour.

Laying out circuits on asynchronous cellular arrays

o

0/0°0/c°0|0 0|0 0l dlo
o "o "e "0 "0
o

o

O[O
.. .OO OOOO

o

0,

o
dololeolc a0 0le clo
o"o"1"0 "0 "0

ololo]|O|O
0, 0
OOOO..
[SI el BN Nel o)

Jo®olcCele®ele /o clo
o "o "0 "0 "0

OO @00
B S e S e

olo

Figure 1. Cellular array consisting of cells, each with 16 states that
are encoded by four bits. A filled (black) circle indicates a bit with
the value 1 and an open (white) circle indicates a 0-bit.

® &)
® ©®)
OO0 OB —> @O OO
@
©) ®

Figure 2. Transition rule. The variables in the circles denote states
of the corresponding bits, which may be O or 1. The left-hand side
of the rule (the part left of the arrow) gives the states of a cell’s bits
before a transition, and the right-hand side gives the states after the
transition.

For example, one may design a cellular array that can
conduct the same class of computations as those possible
on a conventional computer [28], or conduct operations by
which configurations of cells in certain states are copied to
other parts of the cellular space (self-reproduction) [43—45],
or both [28, 29, 46, 47]. Cellular arrays in which all cells
undergo transitions at the same time are called synchronous.
They are the most widely studied type of cellular array.
When transitions of the cells occur at random times,
independent from each other, we obtain asynchronous
cellular arrays. This paper employs a recently proposed
asynchronous cellular array called a self-timed cellular
automaton (STCA) [35]. An STCA is a two-dimensional
asynchronous cellular array of identical cells, each of which
can be in one of 16 states. The state of a cell is encoded by
four bits that are positioned along the cell’s sides, where a filled
(black) circle indicates a bit valued 1 and an open (white) circle
a bit valued 0. Figure 1 depicts part of an array of such cells.
Each cell can undergo transitions, which take place in
accordance with transition rules that operate on the four bits
of the cell and the nearest bit of each of its four neighbours.
Assuming that the bit states are denoted by u, u/, r, v/, d,
d, LU, n,n, e ¢e,s, s, w w € {01}, a transition
rule f(u,r,d,l,n,e,s,w) = @, r,d,l',n, e, s w)
can be depicted as in figure 2, where the condition
(u,r,d,lin,e,s,w) # @, r,d U, n, e, s, w)holds.
When the bit pattern of a cell matches the left-hand side
of a transition rule (the part left of the arrow in figure 2), the
cell will undergo a transition, but the timing of the transition
is random. If there is no transition rule whose left-hand side
matches the cell’s bit pattern, the cell remains inactive. Though
transitions of cells are timed randomly and independently
of each other, they are subject to the condition that two
neighbouring cells never undergo transitions simultaneously.
This ensures that two neighbouring cells will not attempt to set
the two bits common to them to different values at the same
time. Figure 3(a) gives an example of a transition rule that,
operating on a pattern of one 1-bit and seven 0-bits, moves

o
O
o
[¢)
o
O
o
[¢)
o
o
o
[¢)

o o o]
OOOOO OOOOO O0.00
o O o o]
o) g 5 ° 5
ojoole —» olocole ologole |:> ologolo |:> ologole
L [0}) () (¢
)
€]

[e)[e}

0|0

(a) (b)

Figure 3. (a) Transition rule, and (b) its application to a
configuration of cells, giving rise to a signal successively moving
two cells towards the north. A filled (black) circle indicates a
1-value and an open (white) circle a 0-value. The transition rule
operates on eight bits: on the four bits of a cell itself, as well as on
the nearest bit of each of its four neighbours.

the 1-bit one cell to the north. The rule is only applied to
cells of which the four bits and the four neighbouring bits
exactly match the pattern of eight bits on the left-hand side
of the rule in figure 3(a). Applied twice, the transition rule
in figure 3(a) gives rise to the sequence of configurations in
figure 3(b) in which a 1-bit moves into the northern direction
along an uninterrupted area of cells. The rotation-symmetric
and reflection-symmetric equivalents of transition rules may
also serve as transition rules. This allows the above transition
rule to be used for transmitting signals in directions towards
the south, east, or west as well. Section 6 gives a more
detailed description of the algorithms in accordance with which
transitions take place on an STCA.

Having defined the transmission of signals, we describe
in the next sections how they can be operated upon by
delay-insensitive circuits laid out on an STCA. This way
of computing may be characterized as collision based
computing [48], a paradigm in which compact patterns, our
signals, wander around in a structureless space and smash into
other compact patterns, which in our case are the elements of
delay-insensitive circuits.

3. Delay-insensitive circuits

A delay-insensitive circuit is a circuit whose correctness of
operation is unaffected by arbitrary delays of its signals in the
circuit elements and the interconnection wires. Operations in
delay-insensitive circuits are driven by signals: each circuit
element is inactive unless it receives an appropriate set of
input signals, after which it processes the signals, outputs
appropriate signals and becomes inactive again. Since delay-
insensitive circuits do not require a central clock signal, they
belong to the larger class of asynchronous circuits, which have
several advantages over synchronous circuits [38, 39, 41, 42]
(see also [49] for an informal discussion):

(1) Circuitry for distributing the clock signal not required.
The area required for circuitry to distribute the clock signal
increases with the number of components in the circuit,
and this area may become very high for molecular-scale
integration densities. Apart from significantly saving on
circuit area, the absence of circuitry to distribute the clock
signal also improves the homogeneity of the system—a
great advantage for nanometre-scale fabrication.

(2) Less energy consumption and heat dissipation. Only
those parts of an asynchronous circuit that are active
draw power, whereas in synchronous circuits all elements

471

F Peper et al

have to switch with the clock. Coming for free in
asynchronous circuits, this automatic power saving feature
would require special circuitry to be implemented in
synchronous circuits, circuitry that in its turn consumes
the power and chip area.

(3) Problems with the timing of signals disappear. Clock-
skew, the time differences at which different parts of a
circuit receive the clock signal, and race conditions, the
failure of signals to reach their destinations within a clock
cycle, are especially serious at higher integration densities
and high clock frequencies; there are techniques to deal
with them, but these tend to consume much circuit area
and power. As wire delays have improved by only 20%
in each new integrated circuit process generation [50]—
much less than the 150% improvement in gate delays each
generation—it was only a matter of time before it became
impossible to reach an entire die within a single clock
cycle. At this rate, less than 10% of die area will be
reachable once feature sizes reach 60 nm [50].

(4) Less noise and electromagnetic interference. Unlike in
synchronous systems, there are no distinct peaks in the
RF spectrum, resulting in less interference and noise.

(5) Insensitivity to physical implementations and conditions.
The proper operation of an asynchronous circuit
is guaranteed under a wide variety of physical
implementations and physical conditions. Variations in
the timing of signals related to these factors do not
affect the correctness of a circuit’s operation, especially
if the circuit is delay insensitive. This also implies more
freedom in laying out circuits.

(6) Average rather than worst-case performance. An
asynchronous circuit operates as fast as switching times
of devices allow, rather than being limited by the slowest
parts of the circuit, which in synchronous systems limit
the global clock rate.

(7) Modularity. Asynchronous circuits can be subdivided
into modules that can be designed independently and
combined without considerations of timing restrictions.
The operational correctness of a module does not depend
on other modules, as long as basic design constraints are
obeyed. Modularity guarantees that circuit elements can
be rearranged easily into various circuits.

Since the above advantages are felt even more strongly
at higher integration densities, there is increasing interest in
asynchronous circuits, even though they have disadvantages
too, like the much less available design, testing and
manufacturing infrastructure and expertise as compared to
synchronous systems. Moreover, asynchronous circuits often
require additional hardware to avoid hazards, non-monotonic
changes in the value of signals, which may cause unexpected
circuit behaviour. As synchronous circuits allow signals
to arrive out of tone as long as they settle down within a
clock signal, they have been considered easier to design than
asynchronous circuits, whose signals must be correct the first
time they arrive at their destination. Hazards may be less of an
issue, however, for implementations of asynchronous circuits
in some technologies different from solid-state electronics, for
example, technology based on molecular mechanisms, such as
the molecular cascades [51] mentioned in section 7.

472

Another drawback of asynchronous circuits is the
overhead caused by their signalling protocol. The usual way
to initiate an action in an asynchronous circuit is to send a
request signal. The circuit then signals the completion of
the action by an acknowledge signal. This way of signalling,
called handshaking, requires many connections and feedback
connections to make circuit modules work together seamlessly.
As a result, extra time for operations and extra circuitry
is required, which diminishes the benefits of asynchronous
circuits in practice. The delay-insensitive circuits used in this
paper, however, require less feedback connections than usual,
since they allow multiple signals at a time in each of their
interconnection wires [52], implying that it is not necessary
for a circuit element to receive an acknowledge signal before
outputting signals to its output wires. Though such a signalling
method has never been considered before, as it is impractical
for solid state electronics-based systems, it is easily—and most
easily—implemented in cellular array-based systems.

Asynchronous circuits come in many flavours (see [38]
for an overview and [39] for an overview with a history of
asynchronous circuits). The most general class is formed by
asynchronous circuits that make use of timing assumptions
both within the circuit and in the interaction between circuit and
the environment, for example assumptions on the boundedness
of delays [53]. This class of signals is the least robust to
unexpected behaviours. The second class constitutes self-
timed circuits [54]. The elements of self-timed circuits
make no assumptions on the timing of communications
between them. This delay-insensitive mode of communication
contrasts with the mode of communication within the elements,
which are strictly regulated: for example, wires inside
elements may be required to have bounded or negligible delays.
In the third class, speed-independent circuits [55], operations
of circuit elements may be subject to unbounded delays, but
wires between elements have zero or negligible delays. These
circuits are in practice very similar [38] to circuits in the
fourth class, quasi-delay-insensitive circuits [56], which are
delay insensitive except that they require a so-called isochronic
Sfork [57, 58], a fan-out element of which all output branches
have the same delay. The fifth class constitutes the circuits with
which we started this section, delay-insensitive circuits. The
most robust of all asynchronous circuits due to their tolerance
to delays of both circuit elements and wires, delay-insensitive
circuits are very suitable for implementation on asynchronous
cellular arrays. This type of circuit has its roots in the work by
Clark and Molnar in the 1960s on macromodules [59, 60],
developed at Washington University in St Louis, a project
resulting in a set of easily interconnected hardware modules
from which computer systems can be readily assembled.
Those not initiated in the subtleties of electronics are able to
construct working computers from these modules—a powerful
demonstration of the composition benefits of delay-insensitive
circuits. Follow-up of this work is in [40, 41, 61-64] among
others. Also contained in this class are micropipelines [65],
which are designed to be an asynchronous alternative to
synchronous elastic pipelines—pipelines in which the number
of data can vary—but they also serve as a powerful method for
implementing general computations. As they use a bundled
data protocol—a bundle of bounded-delay data wires, each
transmitting 1 bit, combined with two delay-insensitive control

Laying out circuits on asynchronous cellular arrays

| i:?i L R L] |
S Path
Path Module Path
Path| Module o Module [Path.
Path
= Module Path Path
)

Figure 4. Modules connected by paths on a cellular array.

wires, one for requests and one for acknowledgements—
they are not delay insensitive in the strict sense, so they are
sometimes considered a class on their own [38].

Unlike in synchronous circuits that use binary valued
signals, information in delay-insensitive circuits is often
represented by the presence of signals on particular wires.
To transmit a binary value, for example, two wires are used:
a signal on one of the wires denotes the value 0, and a
signal on the other wire denotes the value 1. Called dual-
rail encoding [66], this way of encoding allows a signal
on only one of the two wires at a time. The absence of
signals on both wires indicates that no information is being
transmitted. Though dual-rail encoding requires more wires
than bundled data encoding, we use dual-rail encoding in
this paper, because a bundled data scheme demands that data
signals arrive earlier than control signals, which is hard to
guarantee in implementations on asynchronous cellular arrays.

Delay-insensitive circuits consist of modules, which are
elements with a finite number of input and output wires and a
finite number of states. When receiving certain signals from
the input wires, a module conducts an operation, as a result
of which it may change its state and output certain signals
on its output wires. Modules can be organized in a hierarchy,
ranging from a module constructed from networks of modules,
which may be as complex as a delay-insensitive computer, to
modules so simple that they cannot be subdivided any further,
so-called primitive modules. Realized in a cellular array by
configurations of cells in certain states, modules connect to
each other by paths (see figure 4), uninterrupted areas of cells
over which signals are transmitted from a source module to a
destination module.

A path of cells plays the same role in asynchronous cellular
arrays as a wire in solid-state circuits. We then define a signal
as the change of state or value of part of a path, directed from
one of its ends (the source) to the other end (the destination).
There can be more than one signal on each path, but signals
will never interfere with each other on a path, i.e., different
signals are not fused into a single signal and every single signal
does not spontaneously split into more than one signal. Once a
signal is transmitted from a source, it cannot be withdrawn, and
it will head for its destination. The presence of other signals
will never prevent it from reaching its destination, though they
may delay it by a finite amount of time.

Once an input signal reaches its destination module, it
is assimilated and the module conducts an operation, which
usually results in the output of signals on one or more of
its paths. The module may have to wait, though, for other
input signals to arrive from different paths if its operation
requires it. In this case, the input signal is called pending.

The transmission of signals over paths and their processing
by modules may undergo any finite time delay, without this
having any consequences for the correct operation of the
circuit. In other words, there are no time constraints on signals.
There are a few rules governing the assimilation of signals
by modules. Two successive input signals on one path to a
module are always interspersed in time by an output signal
produced by the module as a response to the first signal. This
effectively prevents the module from using successive input
signals from the same path for one operation. A different
situation occurs when a module is presented with two input
signals from different paths, and it can only process one at a
time. In this case the module may arbitrarily choose which
signal to process first. It is then said to arbitrate between its
input signals. Systematic overviews of the conditions under
which delay-insensitive circuits operate can be found in [40]
and [52].

As in synchronous systems, in which any arbitrary
Boolean circuit can be constructed from a primitive like
the NAND-gate, for delay-insensitive circuits too there is
a set of primitives from which any arbitrary circuit can be
constructed. Such a set is called universal. For practical
purposes, universality can be considered as the constructability
from the set of primitives, of circuits that can conduct the same
types of computation as possible on conventional computers
(see also discussion in [52]). Boolean gates are not universal
primitives for delay-insensitive circuits, because they lack the
functionality to deal with every possible temporal ordering
of events on their input wires [57, 67]. A set of primitives
for delay-insensitive circuits must provide both universal logic
functionality as well as timing functionality, the latter being
necessary to make up for the loss of the clock. Keller
proposed a set of delay-insensitive primitives and showed that,
given an arbitrary module’s specification in terms of its states’
changes and its output signals for every allowable combination
of input signals, the module can be constructed from the
set of primitives, which implies that the set of primitives is
universal [40]. Ebergen proposed an alternative set of delay-
insensitive primitives [63], and proved by using a formal
system called a trace language that the set is universal [68].
Patra [41] used Keller’'s work as the base for yet another
universal set of delay-insensitive primitives. An extensive
listing of primitives available in delay-insensitive systems is
given in [69]. Most relevant to the current paper is an overview
of the primitives of Keller [40] and Patra [41], and the proposal
of a novel universal set of primitives based on them, given by
Lee et al [52]. We use the set of primitives of Lee et al,
because it goes particularly well with asynchronous cellular
arrays. This setis listedin box 1 (left-hand side). Unlike delay-
insensitive primitives proposed in the past, these primitives
may have bi-directional interconnections, i.e., paths that can be
used for both input as well as for output, albeit not at the same
time. Moreover, a path may contain multiple signals at the
same time, provided they all move in the same direction. Under
these conditions at most three interconnections are required for
input and output to each of the primitives, as shown in [52],
which substantially simplifies the simulation of the primitives
on asynchronous cellular arrays.

The merge primitive (see box 1), proposed in [52], merges
two input streams into a single output stream. It differs from

473

F Peper et al

Merge: An operator with two input paths and one
output path that redirects signals arriving from the input
paths to the output path. The simultaneous arrival of one
signal at each of the two input paths gives rise to two
successive output signals.

Input/Output Multiplexer: An operator with one input
path, one output path, and one bi-directional path. An
input signal on the input path is output to the
bi-directional path and an

input signal on the

bi-directional path is output to the output path.

Symmetric Join: An operator with three bi-directional
paths, of which two act as input paths and one as output
path. An input signal at one of the paths keeps pending
until there is an input signal from one more path, after
which both signals are joined, resulting in a signal
output to the remaining path.

Fork: An operator with one input path and two output
paths. Upon assimilating a signal from its input path, it
produces one signal on each of its two output paths.

Arbitrating Test and Set:
bi-directional path, an input path, and an output path. It

An operator with a

has two states, 1, the initial state, and O, the state
reached when it assimilates an input signal from its
bi-directional path. Upon receiving a signal from its
input path, the operator outputs a signal to its output
path if in state 1, and it outputs a signal to its
bi-directional path if in state 0, immediately after which
it sets its state back to 1. If there are input signals at
both the input and the bi-directional path at the same
time, the operator processes one signal, then the other in
an arbitrary order.

Configuration

olo —»

o)

ool

olo!
=)

o

o)

— 0jo0[og0)

()

o «—

o
))
o|o 0|0 0o ol

(o)

lovol

OOOOOOOO (o](e)
299690

o

olo;

oo
olo
olo

ol

o
(o)

(et

(9
fe)

o

> 0

o,
0

e20|

o,

fe)

o—»

920|990
oo

o|

o,

lovol

o,

fe)

o

olo;
oloo|o 0lo;

—» 9

oo €

o ¢

o|o-olo 0|0

(o)
()
()
()
olog0logle

°
(9
()
0,
ologeo0le,
(9
(o)
©

olo;
olo;

o)

o

=) OOOOOOOO
0°1%° %

'

°
o OOO
o

oTorolo

Box 1. Primitive operators of delay insensitive circuits. The filled circles in the configurations indicate 1-values, and the open circles

indicate 0-values.

1. opgl —> opxp Rule for Signal Transmission (1), copied from figure 3(a)
L) [
(o] [o] (o] [o]
2. ofdde —> depp Rules for Merge (2, 3) 3. oosdle —> ooldle
S 3 Rules for Input / Output 0 3
4. s —> opp Multiplexer (4, 5) S
o] o] (] o
6. Pl —> ol Rules for Symmetric Join (6, 7) 7. oogole —> olegdlo
[[[[=
$ 3 Rules for Fork (8) and O 3
8. s —> o Arbitrating Test and Set (9) 9. sek —> e

Box 2. Transition rules for simulating delay insensitive circuits.

the merge primitive in literature (see for example [40, 60]) at a
crucial point: unlike the conventional merge, which demands
mutually exclusive inputs, our merge allows input signals that
arrive at its input paths simultaneously. It deals with such input
by forwarding one of the input signals first to the output path,
while keeping the input signal at the other input path pending

474

until it is ready to handle the signal. Since our model allows
multiple signals to be on a path at a time, it is not necessary to
check whether the output path already contains a signal before
a new signal can be output to it. Our merge has the advantage
over the conventional merge in that it can be used [52] to
construct a sequencer—a module for arbitrating the passage

Laying out circuits on asynchronous cellular arrays

Ii Io

vy
v

01 02

Figure 5. A sequencer module. An input signal on wire I,
(respectively I,) together with an input signal on wire ¢ but without
an input signal on wire I, (respectively I;) are assimilated, resulting
in an output signal on wire O; (respectively O,). If there are input
signals on both I; and I, at the same time as well as an input signal
on ¢, then only one of the signals on I; and I, (possibly chosen
arbitrarily) is assimilated together with the signal on ¢, resulting in
an output signal on the corresponding O, or O, wire. The remaining
input signal will be processed at a later time, when a new signal is
available on wire c.

c—Pp

of signals on two paths through it (see figure 5)—that runs in
without-busy-waiting mode—a mode that does not require a
signal to continuously idle around in the intra-modular circuit
checking for input. As sequencers in which only conventional
merge primitives are used cannot run in this mode [41], they
require the underlying hardware to continuously switch, a
potential source of heat dissipation.

The input/output multiplexer, proposed in [52], is used
to transform one input path and one output path into one
bi-directional path. It is a prerequisite for any scheme that
employs bi-directional paths.

The symmetric join primitive, proposed in [52], produces
an output signal upon receiving one input signal from each of
two different paths, and can be thought of as synchronizing
its two input signals. It differs from the join primitive in
the literature (see for example [40]) in that it has three bi-
directional paths, rather than the two input paths and one output
path of the conventional join. This equips it with a functionality
much richer than that of a conventional join: when an input
signal is pending on one of the paths of a symmetric join, it is
still undetermined at which of the remaining paths the output
will emerge since this depends on which of the remaining
paths the second input signal is received. The symmetric
join can be used to construct modules like a TRIA [41] and
a resettable join [69] (see figure 6), whereas a conventional
join is insufficient for this.

The fork primitive is a fan-out element commonly used
in delay-insensitive circuits [40, 60]. It produces one signal
at each of its output paths for every signal it receives from its
input path.

The arbitrating test and set is a primitive to test the
presence of an input signal on its bi-directional path. Triggered
by a signal to the input path, the module returns an output
signal to the bi-directional path if there was a signal input to
the bi-directional path, and it returns an output signal to the
output path otherwise. An important condition to be fulfilled
by the outside circuitry for the proper use of the arbitrating
test and set is that no two subsequent signals may be input to
the bi-directional path: they should always be interspersed by
one output signal from this path. Every signal input to the
bi-directional path thus gives rise to exactly one signal being

A& I A b
O2 I3 O1 k

(2) (b)

Figure 6. (a) A TRIA module constructed from one symmetric join
and three input/output multiplexers (adjusted from [52]). Upon
receiving an input signal from each of the two wires I; (i € {1, 2, 3})
andI; (j € {1,2,3}\ {i}), it outputs a signal to the wire Og_;_;.
Though the symbol for the TRIA is similar to that of the input/output
multiplexer, they can be easily distinguished between by the
positions, numbers and types of the wires. (b) A resettable join
module constructed from a TRIA and a merge. When receiving one
input signal each from wires a and b, the module outputs a signal to
wire c. An input signal pending on either a or b is redirected to
output wire k when an input signal is assimilated from reset wire r.

output to this path, triggered by an input signal to the input path.
Necessary for constructing a sequencer module (see figure 5),
this primitive is used for arbitration between processes that
want access to a shared resource, which is an important
functionality in a massively parallel model like cellular arrays.
Though the functionality of any arbitrary delay-insensitive
circuit can be realized without the use of an arbitrating test
and set primitive [40] or a sequencer module, only limited
efficiency can be achieved when access of shared resources
by parallel processes is required, since this can only be done
by alternately activating and deactivating the processes. For
the implementation of delay-insensitive circuits on our STCA,
arbitration is necessary to ensure that signals on crossing paths
can pass the crossing—a shared resource—without conflicts
(see also [70] and section 4). The absence of arbitration would
severely degrade the performance of circuits, up to the point
that in the worst case only a single signal at a time would be able
to run around in the whole circuit. The arbitrating test and set
primitive is basically the same as the arbitrating test and set of
Keller [40], except that it has one path less: one input path and
one output path of Keller’s arbitrating test and set is combined
into one bi-directional path, to keep the number of paths of
the primitive limited to three. Variations on this theme are
also possible, for example the corresponding primitive in [52],
called reflexive arbitrating test and set, combines the other
input path and output path too, giving rise to only two bi-
directional paths for the primitive. For the implementation on
the STCA in this paper, however, it is most convenient to use
three paths for the primitive.

4. Laying out delay-insensitive circuits on
asynchronous cellular arrays

Any arbitrary delay-insensitive circuit can be realized in an
STCA by using the cell configurations on the right of box 1
to represent the corresponding primitives on the left, and
connecting them to each other by paths of cells. To make

475

F Peper et al

Initial

o o O o] o o o o] o] o Q] (0] o] o

o O _| O O O o O O O O o O o J o

0P 90 0P 0P 1 0P 0P0PoP 1 005oP 9000 2 ologooP00 1 0P CPLP

OOOOOOOOOOO OOOOOOOOOO. OOOOOOO.OOO OOOOO.OOOOO OOOOOOOOOOO

{o N o) o"e”°0 o-"e"% 0”"e°PPo fo N O)

0l do®olo 0 00 oo o ool ®do’do o020l do oo 0o ®clo oo

[N OX o) fo X it i) fo X Ao i) fo X Ao i) 0%

6 o o 5 o o o o o 6 o o 6 0 o

(@)

Initial

[e] o [e] o Qo o o [oXe) o] o o o O

o o o o O O o O_| O O [J o o ® | O
O|o_0O[o_Olo_0lo) o (e © (o) (o) © © O|o_0O[0_Olo_0olo

o500 1,1,1,1 oo op o 3 0000 0P 1 000°50P 0 2 e o

0 | 0|0 [SRARSHNE) |:> [SAECARS) (SRS ol el o
OC_eo_O@_O0

S G X |:> *Ca°®, 0006000 |:> 000G 0P |:> 025010600

o) O o L) O o) o O CJ o o) o
)] O O

OOOOOOOOOOO] OO OO OO OOOOOOOOOOO OOOOOOOOOOO OOOOOOOOOOO

[} [} [} o o S [?) o O [} (o] [} [} o O

—~
o
=

Figure 7. Sequence of configurations in which a merge receives (a) one signal and (b) two simultaneous signals. All signals are redirected
towards the output path. The initial configuration without input signals is labelled as such. Each time a transition rule is used, its label in
box 2 appears above the corresponding arrow.

Initial

o o o (o] o o o (o] o o o o o (o] o

6 00 1 0100 1 5100 500 1 (SRR)
olo olo olo~olo olo 0|0 0| o ol [exe! o 2 ol 0|0 olo olo~olo-olo

o o () (e} (e} [] Q (o) (] Q] (] o [e] []

o | o-e o[of-® O o @ S 1o e S 1o e
olo_oo_e|e_o|o o|o_olo e o e o/ o e ® oo e 0 el® o0

o0 e ol"0""e o 0"e o "0 "e ol"o""e

olo e oo e ol e e oo e (ORI
0|0 0|0 _0O|O_O[0 O|c_o|o_O| ie} o|o_o|o_o|o o O|o_0O|o_o|o_o|o [e/]e) O_O|O_O|O

ool o ol ol o ool o ol o0 ool o

O [e] [e] o L] [=] [=] [=] [=] [=] [=] [=] [*] o O

(a)

Initial

0 0 o o o o o o o o 0o o o) o)

O 00 (SRR) 500 5100) ()
olo~ oo clo~olo 1 olo~o|o olo~olo 4 olo~o|o olo oo 5 olo~o|o~o|o “olo 1 olo 9 0~ 0|0
o |"e "o o|"e"|"0 o |"e’|"0 o’|"e"| "0 o) o)
o/ e[e%|o 0o /o /e[0o oo elo®0lo 0o olo e|ee[o 0o o/ e %o
o |"e’| 0 o |"e |0 o "e "0 o |"e"| 0 o) o)
0|c0lo®do 0lo 0lo%0|0®olo%0|o 0|o%0|0®0|o0lo 0[o%0|c®lo%0lo 0|2 200
foXl fo i iife) ol el ife) foi ifoXi iife) fo) e hife) fo) o)
60 O 6 0 © 6 0 © 60 © © e)

(b)

Figure 8. Sequence of configurations in which an input output/multiplexer operates (a) on a signal on its input path resulting in an output
signal on its bi-directional path, and (b) on a signal input to its bi-directional path resulting in a signal on its output path.

Initial
o o o o o o 0 0 o 0 0 o o o o
ooloooool 1,1,1 ocolloleol 1 ool o 6 oo 0o co 1 0020?00
o°c"0 [[o) o""o”"0 o"o”"o fo N)
5100 51010 61010 (SR J o) 510]0
®0_0[C_o|® o0 0[O _e|0_o|® o0 0|0~ 0|C_0|0 o0
5o o 5100 6lo]o o [0 .0 5100
0000000 lo°0lo ol oo o> 000l oo
oegoPo0P OLLOPOL0 0P,0P L0 0L0P%P9 oooP0e P
o e © o e o o e © o e O o e o
(a)
Initial
o o o o o o 0o o o 0o o o o o o
ool 0o 1,1,1 olo20fo0o20 1 000 0o ol 7 o020 0 ol 1 6P o
0"["o”"o T o""e”"o o"e” "o ol"o" "o fo X e i)
oo 0lo 200l ool o o o oo ole ol oo ol ol ol ol 0o oo ol
0°°e“P0 o""e”"0 o""e”% %" fo N)
oo 0l oo 0lo 002000 00 00 0oCoo’cloCdo 00 00 00 00 0% 0ol
fo 3 RN) (O M) 0”070 [N I I 0P
o e o o e 0 o e o o e O o e o

(b)

Figure 9. Sequence of configurations in which a symmetric join operates on two signals from (a) opposite paths, and (b) adjacent paths, in
both cases producing one output signal.

Initial

(o] o]
Q| Oo. 1 O Oo. OO.

o) o [0)
e OOO (] L] OOO OOO

[e) o [) o) (o)

O O J O O
[e[e){e [e){e [e)e](e] 0|0 O O _O|

(o) BeXi o) o o

O [¢] O O [9]

Figure 10. Sequence of configurations in which a fork receives one signal and outputs two signals.

these configurations behave like the primitives, we give a set as the transition rules fail to match them otherwise. The
of nine transition rules describing how cells interact with each configurations are thus stable in the absence of input signals.
other (see box 2). The merge primitive, represented by a configuration of two
Only when the configurations on the right of box 1 adjacent 1-bits, processes a single signal in accordance with
are presented with input signals do they undergo transitions, rule 2 in box 2, as in figure 7(a), and two simultaneous signals

476

Laying out circuits on asynchronous cellular arrays

Initial
0O O O O QO O O O O O 0 O O O O O 0O 0 O O
OOO. .O. .oO OOO o O OO..O. .oO OOOO O Oo. .O. .OO OOOO O OO. .O. .00000 OOO.oO OOO (o]
[e) ® | O [e) 1 1 o () [e) o 2 ol e [e) (e} 4 [e) [e) o [e) 5 [e) () (e} [e)
O | @] OO O @] OO O | @] OO O | ® OO0 O | @ OO
e O Olo_e®@ O[O0] O Of OO_@|®@ O[O O} (e 0|0 _®|®@ 00 e (o] o0 @@ 00 e o Olo_e|®@ OO
OO OO OO [e) OO OO OO Q OO OO OO o OO [e) OO) OO OO OO [e)

) O] O) o O) o ol e) O O O o O) O O)
Olo_ofo_00_o|o_olo O[0_e|0 _Ol0_0O[o_O0 ©Olo_oo_0[o_O|o_Oo 0|0 _op 0o _0/0_Oj 0|o_ofo_Olo 0|0 _O|o
Ole e | O ol e "e | O ol e e | O o|®e e | O Ole e | O
O ® [@ | O ol @ [® | O O ® [@ | O O_|.® [@ | O O ® @& | O
OOO..O..OOOOOO OOO..O..OOOOOO OOO'.O..OOOOOO OOO..O..OOOOO OOO..O..OOOOOO
o]ol ol o o] O] 0[O [CR KA RCANRe) O |0 [O] o0 oo o]0
OOOOOOOOOOOOOO OOOOOOOOOOOOOO OOOOOOOOOOOOOO OOOO OO OOOOO OOOOOOOOOOOOOO
[5) o O [5) o [5) [5) o o O [5) [s} [5) [5) o [5) [5) o [s} [5)
(@

o] Q (e} o] Q (e}] Q Q (e} o] Q (e}] Q (e} (o] o] o O
0| OO. .O. .OO OOO @) Q| Oo. .O. .OO OOOO O OO..O. .OO OOOO 0| OO..O. .OO OOOO O OO. .O. .OO OOOO
O e |00 O @@ |00 O |® |00 O/l ®| 00 5 1 O | ® [00
o) O, O 9 o) O O 1 1 2)) O, O 2 2 1 O)) O O) O_[O
OOOO OOO OO. .OO o 0| OOOOOOOO. .OO © 3Ly O OOOOOOOO. .OO o)&y OOOOOOO OO. .OO (] > OOOOOOO OO. .OO ()
o| OOO 000 OOO OOO o L Oa OOC)OOO 0000 0| OOOOOO 0.0 0000 OOOOOOO OOO 0000 OOOO OOO OOO 0000
O le|"® | O Oo O l"e | 0O oo "e | O ol e || O ol e e | O

O O O O OJ
OOo. ®_o ..O OOO o le Oo.. ...O OOOO O Oo'. ...O OOOO OOo'. L ..O OOOO OOo'. L] ..O OOOO
250 S) *0c®*%% 250 S) *00®%%° Lo o
o] OOO 0.0 OO OOO [o el OOO OOO OOO OOOO O OOOOOOOOO OOOO o] OOOOOOOOO OOOO O OOO OOO OO OOOO
[e) o [e) [e) o (o) [e) o [e) (o) [e) [e) (e} [e) o (e} (e} [) oo
0O O O © 0O O O O 0O O O O o0 O O O o0 O O O

Figure 11. A sequence of configurations in which an arbitrating test and set operates on (a) a signal from its input path, resulting in a signal
to the output path, and (b) an input signal from its bi-directional path (arriving first) followed by a signal from its input path, resulting in an

output signal on the bi-directional path.

0 0 0 0 00 oW o oo oo 0o
3 T8 T3 S S I A S S S s
y ofeCofololoColcCele O S e M e
22 2°1%P e S
P o o PP
[e]e) OOO.. Om .O [o OOOOOOOO
02 . 0%
< OOOOO [o_olo_ofo_olo
o P Po
000.. olo 00000
o 0%
OOO .000000000
o 2%
e 31813
ofo2olo lo%0[oC0loolo
4 CRES 381818
>
— Pl o2l ele
. 18 ST T
o S
> 7
kel ofoJolo. OC-e/® @@ OO0
L‘{J < 60Ce %%
PR AR REA N
R ARS
o olo?<lp? ool
(Y :4 3
ofotele et feZefeyolotoloolo
3 318
OOOOOO v.. olo_ojo
2% %1%
OOOOOOO 000000000000
2% 221%%%%
38 3888

Delay-insensitive circuit scheme for crossing signals without collisions (left), and its
implementation on the STCA (right). The small arrows in the cellular array denote paths via
which signals can travel between primitives, whereas the big arrows denote input and output
paths. Each of the two Symmetric Join primitives acts as a sluice to prevent a new input signal
from entering the circuit as long as the circuit is still processing the previous input signal at the
corresponding input path. A pending signal (denoted by a black blob at a Symmetric Join
primitive) indicates that the circuit is ready to receive new input from the corresponding path.
The circuit contains two Arbitrating Test and Set primitives that register the arrival of signals
from the two input paths. A signal running around in a loop (denoted by a black blob in the
circuit scheme) scans these primitives alternately and produces an output signal at the

corresponding path if the primitive is in a state denoting the arrival of an input signal.

Box 3. Crossing signals on the cellular array. (For supporting online material (movie) see [71].)

in accordance with rule 3, as in figure 7(b). This primitive can
also be used for right and left turns of signals.

The input/output multiplexer is represented by a
configuration of three pairs of 1-bits. For a signal from its
input path, as in figure 8(a), the configuration works as a
merge primitive, outputting the signal on the bi-directional
path towards the west, due to rule 2. If a signal is input to
its bi-directional path at the west, as in figure 8(b), it passes
right through the configuration, leaving it at its eastern side, in
accordance with rules 4 and 5.

The symmetric join primitive is represented by a
configuration of two 1-bits at the opposite exterior of a cell. If
only one signal is input to this primitive, it is kept pending until
asecond signal enters, after which both signals are assimilated,
producing one output signal. Rule 6 applies when the input

signals originate from opposite paths (see figure 9(a)), whereas
rule 7 applies when the input signals originate from adjacent
paths (see figure 9(b)).

The fork configuration uses rule 8 in combination with
rule 5 to process a signal from its input path. Passing through
the sequence of successive configurations in figure 10, it
produces one signal at the east and one at the north, though not
necessarily simultaneously due to the asynchronous operation
of the cellular array.

Finally, rule 9 is used for the arbitrating test and set
primitive, which is represented as a configuration built up
around a core—displayed as a shaded area in figure 11—that
is basically an input/output multiplexer, but with additional
functionality. In its normal state this core redirects signals
arriving from its input path towards its output path using rules

477

F Peper et al

2, 4 and 5. When a signal to the input path is preceded by a
signal to the bi-directional path, however, as in the leftmost
configuration in figure 11(b), the middle bit pair of the core is
first set to 0 in accordance with rule 9, after which the signal
from the input path follows a different route: due to rule 2 it is
redirected into the core, coming from the north, after which it
resets the middle bit pair of the core to 1 by rule 5 and leaves
the primitive at its bi-directional path.

When realizing a delay-insensitive circuit by laying out
primitives on the cellular array and connecting them to each
other by paths, special care is required for paths that cross
each other, since the cellular array lacks a third dimension via
which crossings can be made. The cells at the intersection of
a crossing are a shared resource, so arbitration is required to
distribute this resource amongst the paths. To this end, we
adapt the design of the busy-waiting sequencer in [41] to make
it suitable for signal crossings. The resulting circuit scheme is
given in box 3, together with its implementation on the cellular
array. This configuration guarantees collision-free crossings,
whatever the order in which signals arrive at the input paths.
A more complicated and efficient version of this circuit,
based on a without-busy-waiting sequencer [52], is given
in [70]. Simulations conducted on a computer confirm the
correct operation of the signal crossing (see online supporting
material [71]). The use of the crossing configuration allows
any particular delay-insensitive circuit to be implemented on
the cellular array with the configurations on the right of box 1
as the base. This includes memory registers, circuits to do
arithmetic and so on.

Finally, we construct a one-bit memory with the control
circuitry required for read/write operations. Such a one-bit
memory is proposed as a delay-insensitive primitive in [40]
(where it is called an S-module), but we design its circuit here
in terms of the lower-level primitives in box 1. The resulting
implementation on the cellular array is given in box 4. All
path crossings in this memory are collision free, and thus do
not require the crossing configuration in box 3. The circuit
design in box 4 can be carried over without problems to the
framework of conventional delay-insensitive circuits, as each
path in this circuit contains at most one signal at a time. A
more complicated circuit design for the one-bit memory is
in [41]. Simulations conducted on a computer confirm the
correct operation of the one-bit memory (see online supporting
material [72]).

5. Higher order program structures

An important issue for a nanocomputer will be—as for any
computer—whether it lends itself to easy programming, and
whether the huge amount of software available for current
computers can be easily translated to run on it. Examples
of software used to construct delay-insensitive hardware from
program descriptions are Philip’s Tangram compiler [73],
Martin’s Communicating Processes compiler [56] and
Ebergen’s system to translate specifications in trace language
into circuits [63]. The Tangram compiler has been used to
develop a pager with delay-insensitive logic, which not only
resulted in only half the power consumption of comparable
products, but also in substantially less RF interference. Martin
used his compiler to design a computer with quasi-delay-
insensitive logic. The above achievements indicate that

478

Writeo Ackno Ackn;
A A

Onred S

Wo Wi

Write:

Y

A

7

one-bit
memory

Ro Ri

Carry < I Count

v

Done

Figure 12. A one-bit counter constructed from a one-bit memory.
To initialize the counter’s memory, a signal is input to the Write, or
Write; wire, giving rise to an acknowledgement on the Ackny or
Ackn; wire, respectively. A signal input via the Count wire flips the
value of the counter’s memory: if the value changes to 1, a signal is
output to the Carry wire, otherwise it is output to the Done wire.
Both initialization as well as updating of the one-bit memory takes
place via the input wire W, or W, of the one-bit memory, so signals
for initialization and updating are merged before being input to W
or Wy, respectively. To split the output signals emerging from the A,
or A, wire, respectively, in accordance with whether they originate
from initialization or from updating, two TRIA modules are used.

delay-insensitive circuits can be generated from program
descriptions, but this work tends to be directed towards circuit
design rather than program design.

In this section we take a different approach and express
higher order programming structures directly in terms of the
delay-insensitive circuit primitives in box 1. Due to the
modularity of delay-insensitive circuits, such programming
structures can be easily combined in large programs. Our
starting point is the one-bit memory in the previous section.
Though Keller has used such a one-bit memory as a
primitive [40] in combination with his other primitives to
construct larger modules, his constructions are not intuitively
straightforward, and hardly serve as a model for building delay-
insensitive software. To stay a little closer to well known
programming concepts, we outline how a for-loop, which is
an important program structure, can be constructed from our
primitives. We first construct a one-bit counter from a one-
bit memory, then combine n one-bit counters into one n-bit
counter, and finally construct a for-loop, using the counter
for controlling the number of times the loop is run through.
Though an implementation of the loop structure on the STCA
is not given due to space considerations, the resulting cellular
array configuration can be easily obtained by piecing together
the configurations corresponding to the primitives and modules
used in the loop structure.

A one-bit counter (figure 12) flips the contents of its
bit each time it receives an input signal on the Count wire,
producing an output signal on the Carry wire if the flipping
operation changes the bit to 1, and on the Done wire otherwise.
Also contained in the module is circuitry to initialize the bit
toOor 1.

Laying out circuits on asynchronous cellular arrays

oog
oog

oo

(ollc)(e’e}

o)

o)
ooColo
o o

)

o)

9
o)
00"/
o
(s)
9

0ot olo;
oo} oo!
S,
o 00010
Pe o
o000 /0 0o
¢ oo

lo“olof oofofo.

9
o
o oo
e}
)
) 0
()
.
© o
o 0
0
ooa P gt 0
)
ool 0
o)
)
ool 0lo 0| o o
o)
o
o 0| olo 0| o 0
3
ool .0 0
o) 4)
(el 20|c olocolole o
te) () NN
(Colc afeNele om0 oo:oo'oo o: 0
(9 o ()
lo20lo%0]0 0o olofolcolc oe ool o
CARBRAR CRRIR AR
() oo 4P o0 0
o 5°Te® a8 0 a o 0)
o o e o o
ool 0% ele o0/o¥: ol o
o) o'e LG) fo) Ri
o Oclo®ele®|Cele®ele’: ol 0 -~
X ax ARx NI M HE s x MEC i
SCTEC) K2 ofo_ojololo oo
o0 o "8 ¢) o) o
0100 e ¢) ® 10 0
lo-0lo_of_olo_olo, oo 4o 00 00
o "0 "o "0 ["e () 0 o i bt}
01000 e © ® 0010
lo-0lo~0lo"olo-0|0"0|c-e|e_sle—aps olo] oo"o|o-olo~0lo "ol
oo [0l 00 oloTe olol00
0101000 oo 0000
lo-olo"ofo_oloo|o_o|o_olo"olo_ofo_olo] ojo_olo"olo_olo_olo
{0 o N o o N o i e i) fo i) o X o)
G 0 0 0 0 0 0 0 © 6 0 0 o

R R

Delay-insensitive circuit scheme of a 1-bit memory (left), and its implementation on the STCA
(right). The state of the memory is stored by two pending signals (indicated by black blobs in
the circuit scheme) on the left or right input paths to two Symmetric Join primitives. A signal
pending on the left input path denotes 0, the initial state, and a signal on the right denotes the
state 1. Writing a 0- or 1-bit into the memory is done by sending a signal to one of the input
paths W, or W, respectively. Due to this, the two pending signals storing the memory’s state
are removed, after which the actual write signal, which is temporarily kept in the remaining
Symmetric Join primitive at the top of the circuit, is loaded in each of the two Symmetric Join
primitives. This is accompanied by an output signal on either A, or A, depending on whether
the write signal was W, or Wy, respectively, to acknowledge that the memory is ready to
receive new input signals. Reading the memory is done by sending a signal to the input path
denoted by R, which, after reading out the lower Symmetric Join primitive, results in a signal

on either Ry or Ry, depending on the state of the memory.

Box 4. A one-bit memory with its control circuitry. (For supporting online material (movies) see [72].)

The next step is to combine n one-bit counters into an n-
bit counter (figure 13). The combined memories of the one-bit
counters form an n-bit register into which a value can be written
via the Write wires of the one-bit counters. Once the register
is initialized, say to the value k, the counter will be decreased
by 1 each time an input signal is received from the Count wire,
giving rise to one signal output to the Done wire the first k
times, and one signal output to the Carry wire the k + 1th time.
The Dummy wire has no particular function here, but can be
used to combine counters into bigger ones by connecting one
counter’s Dummy wire with another counter’s Done wire.

The construction of the for-loop is given in figure 14.
Writing k, the number of times the loop should be executed,
into the n-bit counter gives rise to one acknowledging signal
from each of the counter’s memory bits. The resulting n
acknowledging signals are joined into one signal that is used
to activate the initialization of the loop. A signal emerging
from the Done wire of the loop initialization signifies its end,
and this signal is used to start the counter, which subsequently
activates the body of the loop k times. Finally, a signal emerges
from the End wire, which, apart from denoting the end of the
loop’s execution, can also be used to start up the next process.

Program structures are static, and as such they can be
represented as delay-insensitive circuits. How about data?
Though data are more dynamic [16], their configuration
usually takes place in large blocks. Provided that the structure

of the data is known in advance, such blocks can be represented
as delay-insensitive circuits. An even more dynamic handling
of data can be achieved in implementations on asynchronous
cellular arrays, if delay-insensitive circuits can be configured
dynamically on the cellular arrays, for example by using
techniques resembling self-reproduction [28, 43—46] (see also
the discussion in section 7). We will not pursue this issue in
more detail here, as it is beyond the scope of this paper, but
only note that in principle no insurmountable obstacles need
to be expected.

6. Methods and implementation

Whereas there are well-established methods to design logic
circuits in synchronous systems and to minimize the numbers
of gates used, the design and optimization of delay-
insensitive circuits is less straightforward. The methods to
automatically generate delay-insensitive circuits from program
descriptions [56, 63, 73], mentioned in section 5, are aimed
at the use of primitives different from ours. We have no
description language and translation software available yet for
our set of primitives, so our design process is not guided by a
systematic method, but by hands-on reasoning, which proved
to be satisfactory for the design of the signal crossing circuit
and the one-bit memory.

The implementations on the STCA of the primitives and
sample circuits were verified to be correct by simulations on

479

F Peper et al

one-bit | oo
Carry counter
< «— -
Done
<SS — e -

Figure 13. An n-bit counter constructed from n one-bit counters.

a PC with an Intel Pentium 4 processor running under Linux.
The simulation program was written in the program language
Java, which proved to be sufficiently fast for our purposes. The
cellular array was updated in accordance with the following
algorithm.

e Determine a cell ¢ at random in accordance with a uniform
probability distribution.

e Check whether the values of the eight bits associated with
the cell (the cell’s own four bits and one bit of each of
its four neighbours) match the values of the bits on the
left-hand side of a transition rule.

o If there is a match, update the bits associated with cell ¢
in accordance with the matched transition rule; otherwise,
do nothing.

e Repeat the above procedure.

This algorithm ensures that on average each cell is
probed at the same rate. Simultaneous updating of two
neighbouring cells, which is forbidden, is automatically
excluded by this updating algorithm. Simultaneous updating
of two non-neighbouring cells, though not done explicitly
by the algorithm, is included in the set of behaviours it can
simulate. For, as two non-neighbouring cells have no shared
bits and thus can be updated independently, every scheme
of updating non-neighbouring cells simultaneously can be
expressed as a scheme of updating them sequentially. We
conclude that the algorithm covers every allowed updating
order of the cellular array, whether it be simultaneous updating
of non-neighbouring cells or not.

When implementing the STCA cellular array physically,
rather than simulating it as we did, a scheme will be required
according to which simultaneous updating of two neighbouring
cells is ruled out. To prove that such a scheme is possible in
principle, we give an algorithm for this task. We extend each
cell by a bit that can be written into by the cell itself and only
read out by the neighbours of the cell. This bit, called the a-bit,
indicates to neighbouring cells that the cell may become active
and undergo a transition, thus preventing them from doing the
same. The algorithm runs independently in each cell and is as
follows:

(1) Set own a-bit to 0

(2) If the a-bit of any neighbour cell is 1, then go to 2

(3) Set own a-bit to 1

(4) Wait a random time

(5) If the a-bit of any neighbour cell is 1, then go to 1

(6) If the status bits associated with the cell match a transition
rule’s left-hand side, do the corresponding transition

(7) Goto 1.

480

Y Y Y
- one-bit one-bit
counter counter Count
< <
Dummy
Write k

End « OD> o:> o‘> z <
g ; n-bit counter g g
— 4_)(
» Do Init loop Done
Body of loop
» Do Done

Interaction with data

Figure 14. Construction of a for-loop. After writing the number of
times (k) the loop should be executed in the n-bit counter, the loop
is initialized by the acknowledge signals emerging from the writing
operation. This is followed by the execution of the loop & times. A
signal emerging from the End wire signifies the end of the loop’s
execution.

Though the a-bits of two neighbouring cells may be
simultaneously 1 some of the time, at least one of the cells will
reset its a-bit to 0 and forego the right to undergo a transition,
due to line 5 of the algorithm. If both of two neighbouring cells
reset their a-bits to 0, neither of them undergoes a transition and
the whole procedure is repeated, until one of the cells passes
line 5. Line 4 is used to prevent two neighbouring cells from
getting phase locked to each other, i.e., prevent them from
having to flip their a-bits repeatedly to 0 and 1 with neither
of them getting beyond line 5. By using this algorithm, it
is not necessary to update the eight state bits associated with
a cell in synchrony during a transition, because the 1-state
of the cell’s a-bit blocks all transitions of the neighbouring
cells, thus preventing concurrent access to the state bits. Thus
as long as a cell’s a-bit is 1, the state bits of the cell may
be updated in any order. This algorithm may not result in
the most efficient implementations as it requires each cell to
continuously check the a-bits of its neighbours. An alternative
would be to implement a cell’s complete logic functionality—
including the above mutual exclusion algorithm—in terms of
a delay-insensitive circuit that runs in without-busy-waiting
mode. This would activate a cell only when strictly necessary.
Finally, the above algorithm is not necessary if the cellular
array can be reformulated such that two neighbouring cells are
allowed to undergo simultaneous transitions, as in [70]. This
would probably result in more cell states and transition rules,

Laying out circuits on asynchronous cellular arrays

however, if implemented on the STCA. It tends to be more
difficult to design such models and verify the correctness of
their operation.

7. Conclusions and discussion

Asynchronous cellular arrays offer many advantages over
synchronous computer architectures for implementations on
nanometre scales. Their regular structure holds the promise
for efficient manufacturing techniques based on directed
molecular self-assembly. Their asynchronous mode of timing
offers many advantages at high integration densities and is
more compatible with the asynchronous nature of phenomena
at nanometre scales. Consequently, physical implementations
of asynchronous cellular arrays may be more straightforward
than those of conventional computer architectures. Due to
the nondeterminism accompanying their asynchronous nature,
however, asynchronous cellular arrays are more difficult to
compute on than synchronous architectures. The method
developed in this paper makes this problem more manageable.
The first element of this method, laying out a delay-insensitive
circuit on an asynchronous cellular array, allows a cell to be
passive as long as no signal is available for it. The second
element of this method, partitioning the state of each cell into
bits that are shared with the cell’s neighbours, provides a strict
control of the order in which cells undergo their transitions
when they process a signal. Our method not only limits the
required number of cell states and transition rules, but also
allows the efficient exploitation of the cellular array’s massive
parallelism. Notwithstanding the model’s simplicity, it is able
to carry out the same class of computations as conventional
computers. This paper aims to convey three messages.

(1) Cellular array-based architectures may be a better
choice for nanocomputers than von Neumann computer
architectures.

(2) An asynchronous mode of timing has advantages over
a synchronous one for nanometre-scale implementations,
and it is also manageable from a computational point of
view.

(3) Rather than focusing on the realization of transistors on
nanometre scales, it may pay off to find out how to
implement and use operations that are typical for cellular
arrays or delay-insensitive circuits.

There is a large body of work in delay-insensitive circuits
that can be used with our approach. Previously proposed
delay-insensitive circuits assume that at most one signal at
a time can be on each wire, making them a special case of
our circuits. To implement such delay-insensitive circuits on
the asynchronous cellular array in this paper, we only need
to express them in terms of the primitives in box 1. As
pointed out in sections 3 and 5, systems as complicated as
computers have been realized with delay-insensitive circuits,
and much of this work, including design, implementation and
debugging methods, can be carried over to our framework, in
principle. The delay-insensitive circuits used in this paper,
however, offer better efficiency for cellular automation-based
implementations, though less experience is available with
them. Their ability to transmit multiple signals at a time on
each wire tends to decrease the need for feedback connections

to acknowledge the receipt of signals. It also opens the way
for the merge primitive used in this paper, which can accept
signals at its inputs simultaneously—a precondition for the
construction of without-busy-waiting sequencer modules from
arbitrating test and set primitives (see section 3 and [52]).

In any distributed system there is arisk of deadlock, a state
of a system in which different subparts are indefinitely waiting
for input from each other, and the asynchronous systems in this
paper are no exception to this. For example, two symmetric
join primitives may mutually wait for input from each other,
a situation that can never be resolved. Deadlock of this type
is hard to prevent because it is due to incorrect circuit design.
Provided circuits are correctly designed and laid out on the
asynchronous cellular array, however, deadlock will not occur,
because an undefined combination of state bits will never arise
in any cell of such a cellular array.

In the introduction we briefly mentioned an alternative
method to tame the asynchronicity of asynchronous cellular
arrays, that is, by simulating synchronous cellular arrays on
them [33, 35-37]. This approach requires more cell states and
transition rules than ours: simulating an n-state synchronous
cellular automaton requires a 3n2-state asynchronous cellular
automaton in [33, 36], an n? + 2n-state asynchronous cellular
automaton in [37], and an O(n./n)-state generalized STCA
in [35]. Worse yet, to synchronize different parts of
the asynchronous cellular array with each other—necessary,
because in the end it is a synchronous cellular array that is
being simulated—exchange of signals between these parts is
necessary. This exchange takes the form of waves—we call
them synchronization waves—that propagate along the cellular
space [36, 37]. Since all cells need to continuously change
their states to accommodate these waves, there are a lot of
dummy transitions, even in areas of the cellular array where no
signals or configurations are present. Implemented physically,
such an asynchronous cellular array needs to consume much
more power, and with it dissipate heat, than should be strictly
necessary to support its computation, which hardly makes it a
better candidate for implementations in nanotechnology than
synchronous cellular arrays.

The cells in a cellular array need to be as simple as
possible to allow efficient implementations and manufacturing
on nanometre scales. Assuming that the transition rules are
stored locally in each cell, we count the complexity of a cell
as the number of bits required to encode the cell’s state and
the table of transition rules. For the asynchronous cellular
automaton in this paper this comes to four bits for a cell’s state,
eight bits for the left-hand side of each of the nine transition
rules in box 2 and eight bits for the right-hand side, making a
total of 4 +9 x (8 + 8) = 148 bits. A reduction in the number
of bits is possible by reducing the number of transition rules,
and this may be accomplished if alternative delay-insensitive
primitives are found that are simpler and fewer in number, yet
form auniversal set. Anexample of such an approachisin[74],
in which the number of rules is reduced to four, resulting in only
68 bits per cell, but this is at the cost of efficiency. Though the
same class of computations can be conducted on this model as
on conventional computers, it is extremely limited in its ability:
only a single signal at a time is allowed to run around in a delay-
insensitive circuit mapped on this cellular array, hardly a model
for efficient parallel information processing.

481

F Peper et al

Our approach lends itself not only to the STCA cellular
array in this paper, but also to more conventional asynchronous
cellular arrays, i.e., models in which cells’ states are treated
as a whole, rather than being subdivided into substates (bits),
and in which each cell can only update its own state, and
not that of its neighbours. We have experimented with a
five-state asynchronous cellular array with a von Neumann
neighbourhood [70] and a six-state totalistic asynchronous
cellular array with a Moore neighbourhood [75]. These
cellular arrays require more transition rules, for example the
five-state model in [70] requires 58 rules and the six-state
model in [75] even more. For the model in [70], three
bits are required to represent its five states. Moreover, the
von Neumann neighbourhood requires each transition rule to
encode in its left-hand side the states of a cell itself and of the
four neighbour cells, and in its right-hand side the new state of
the cell. This gives atotal of 3+58 x 3 x (1+4+1) = 957 bits for
encoding a cell’s state and the table of transition rules. As this
is substantially more than the number of bits required by our
STCA model, this model may be more difficult to implement
on nanometre scales than our model.

Are there ways to reduce the complexities of cells other
than minimizing the number of transition rules and states? One
standard way is to store the transition rules in a central place
from which each cell can read them, but this does not work in
our case. Not only does this require a communication structure
for global access by all cells to the table of transition rules,
a possibility that we try to avoid by using cellular arrays in
the first place, it also requires each cell to continuously check
whether a transition rule applies to it, which will swamp the
central table by read requests from all cells and in the process
consume much energy to support each cell’s activities. The
encoding of the transition table in each individual cell, on the
other hand, allows implementations in which a cell becomes
only active if a transition rule applies to it—a data-driven mode
of operation that is intimately related to asynchronous systems.

Another strategy towards cells with low complexities is
by exploiting the physical interactions between molecules to
implement transition rules. The cascades of hopping CO
molecules on a Cu(111) surface at cryogenic temperatures,
recently presented by IBM researchers [51], are an example
of such an approach. These molecules are arranged in
configurations such that the motion of one molecule causes
the subsequent motion of another, and so on in a cascade of
motion similar to a row of toppling dominoes [51], which is a
typical delay-insensitive mode of operation. The interactions
of the CO molecules are used to realize the transmission
of a signal along a path, as well as the operation of delay-
insensitive primitives like a fork, a join and a merge, the
latter three denoted in [51] as fan-out, AND-gate and OR-
gate. A NOT-gate is implemented with dual-rail encoding by
simple crossing the O-wire and 1-wire. To implement a dual-
rail encoded AND-gate in this framework, a symmetric join
will be required [52], or a TRIA, or a resettable join. These
are harder to implement by molecular cascades than a join—
but probably not impossible. This scheme only provides one-
time computation, as the original positions of the molecules
are not recovered after an operation. To realize recoverable
computations, it may be necessary to use molecules that hop
between bi-stable states.

482

Quantum-dot cellular automata (QCAs) [21] is another
model that exploits physical interactions as a way to implement
transitions. This model comes usually in the form of a two-
dimensional array of cells, each containing four quantum dots
arranged near the corners of the cell, sometimes augmented
with a fifth dot in the centre. In the ideal case the dots in a cell
are occupied by two electrons, which will move to two dots in a
cell’s opposite corners due to electric (Coulomb) interactions,
but which will never move out of the cell. Magnetic QCAs have
also been proposed [76], and they seem to have great promise
for operation at room temperature. The two different ways in
which the electrons can settle in a cell are usually associated
with a 0 and a 1, respectively. Lining up the cells in certain
configurations gives rise to wires, fan-outs, AND-gates, NOT-
gates etc. As it is hard to guarantee the arrival of a signal in a
certain time interval in these models due to the complicated
dynamics involved in the system converging to its ground
state, a delay-insensitive mode of signalling seems suitable to
them, though, on the other hand, it may be incompatible with
the bounded decoherence times associated with QCA models.
Clocked versions of QCAs have also been proposed [77]. Asto
the implementability of delay-insensitive circuits on QCAs, it
is probably possible to implement a fork and a merge, because
they resemble a fan-out and an OR-gate, respectively. A join
may be more difficult, however, as it requires keeping an input
signal pending in the case where the join waits for a second
input signal to arrive.

Monomolecular arrays are promising for implementing
STCA on nanometre scales. In such arrays, each cell
consists of a single molecule that integrates the elementary
functions and interconnections required for executing the
cell’s transitions. Currently, basic functions of digital
electronics—rectification, amplification and storage—can be
realized in single molecules, but connecting those molecules
to one another poses difficulties, especially when it has
to be done cost-effectively on a mass scale at high
densities. Monomolecular electronics has the potential to
solve this problem by integrating whole circuits within single
molecules [78]. In recent years substantial progress has been
made in the synthesis of very long molecules, and eventually
it may be possible to realize a 15 x 15 nm? molecular circuit
with as many as 1000 intramolecular switches [79], not a very
large number to realize a computer, but sufficient to build
a single cell. For this approach to be successful, a deeper
understanding is required of the design of intramolecular
electronics, which does not obey the known Kirchhoff law
of electrical circuits [78, 79].

Is the asynchronous cellular array in this paper scalable?
Though in principle the array can be made as large as we
like, at certain sizes it will take a long time for a signal
to move from one side of the array to the other side. For
example, in a two-dimensional array of 10° x 10° cells each of
which is able to do a transition every nanosecond on average,
it takes a few seconds for a signal to traverse the array,
suggesting that a two-dimensional array bigger than this may
be impractical. The limits for three-dimensional arrays are
less strict, but eventually they are also bounded in size. The
issue of scalability is strongly connected to the organization
of software on the array. If software is organized with an
emphasis on locality, the need to traverse the array will be

Laying out circuits on asynchronous cellular arrays

infrequent, making the above limitation be felt less strongly.
Another factor that limits scalability is the input and output
bandwidth of the cellular array. If input to and output from the
array is conducted via the sides of the array, the upper bound on
the bandwidth grows as the square root of the total number of
cells in the case of a two-dimensional array and the cubic root
in the case of a three-dimensional array. It is probably hard to
circumvent this limitation other than organizing a system such
that input and output is minimized. One way to do this is to
use the array not only for computation, but also for permanent
storage of programs and data, as envisioned in [16].

Though this paper shows how to efficiently simulate delay-
insensitive circuits on asynchronous cellular arrays, it leaves
open the challenge of configuring the inherently homogeneous
cellular hardware into particular delay-insensitive circuits [19].
This problem boils down to moving a certain pattern of
information—a configuration of cells in appropriate states
representing a circuit layout—to a certain location in the
cellular array. Assuming that the information to configure
the cellular array originates from the sides of the cellular
array, we see two configuration methods, both using only local
interactions between cells. The first method employs cells
that have two modes: a computation mode and a configuration
mode. Used for example in the cell matrix [19], this method
requires cells, each with a memory sufficiently large to contain
a wide variety of transition rules and the capacity to write
a combinatorial function of the contents of its neighbouring
cells’ memories into its own memory. Configuration is then
achieved by rewriting the memories from cell to cell until
the destination cell is reached. The second method uses the
collective behaviour of the cells to copy information from one
part in the cellular array to the other. Conceptually close to
self-reproduction, this task has been successfully studied in
synchronous cellular arrays [28, 29, 43—46], and it appears
feasible as well in their asynchronous counterparts. To include
configuration functionality into a cellular array with either
method, however, the cells in the array will become somewhat
more complex, and further research will be necessary.

When manufacturing on molecular scales, it is inevitable
that some of the cells contain defects, and, even if cells work
properly, they will now and then err due to noise and quantum
effects. To cope with this, a cellular array needs to be defect
tolerant and fault tolerant. Defect tolerance, the ability of a
machine to work properly notwithstanding persistent defects,
is essential for creating working nanocomputers. A cellular
array would ideally detect its own defects and cope with them,
rather than leaving this to an outside computer [20], which
is likely to be a bottleneck. Fault tolerance, the ability to
correct nonpersistent errors, has been studied extensively in
conventional computers, and has also attracted attention in the
context of cellular arrays [34, 80, 81]. In principle defect
tolerance and fault tolerance are possible in asynchronous
cellular arrays, but further research is required to design models
implementing these concepts without the complexities of the
cells increasing too much.

Future research on nanocomputers based on asynchronous
cellular arrays needs to focus on the items mentioned in this
discussion, in particular on decreasing the complexity of cells,
physical implementations, configuration of asynchronous
cellular arrays and fault and defect tolerance. Another

topic of interest when building nanocomputers is reversible
computing [82], a way of computing that is backwards
deterministic. Every operation in a reversible computation
is governed by a one-to-one function, which implies that
information never gets destroyed. As with asynchronous
computing, reversibility tends to reduce power consumption
and heat dissipation: in principle, a reversible computation
can be conducted without consuming energy, whereas each
irreversible operation conducted at temperature 7 requires
energy of at least k7TIn2 J/bit [83]. Though studied
extensively in a great variety of synchronous computation
models, reversible computing is virtually unexplored in an
asynchronous framework. As most physical interactions
on the nanometre scale are asynchronous, it makes sense
to investigate whether a reversible mode of computation
can be included in an asynchronous framework. Some
preliminary results on the combination of reversibility and
delay insensitivity are in [84], which proposes delay-
insensitive circuits that, while not strictly reversible, have the
flavour of it. Lee et al [74] formulate a delay-insensitive
reversible implementation on an STCA cellular array, but the
resulting model is inefficient, since it only allows a single signal
to run around at a time in the whole cellular array.

Acknowledgments

We thank Kenichi Morita at Hiroshima University, Satoru
Miyauchi at the Communications Research Laboratory in
Kobe and Nobuyuki Matsui and Teijiro Isokawa at Himeji
Institute of Technology (all institutes in Japan) for their support
and discussions. We also thank the two anonymous reviewers
for their extensive and valuable comments and suggestions.

References

[1] Bachtold A, Hadley P, Nakanishi T and Dekker C 2001 Logic
circuits with carbon nanotube transistors Science 294
1317-20

[2] ChenJ, Reed M A, Rawlett A M and Tour] M 1999
Observations of a large on—off ratio and negative
differential resistance in an electronic molecular switch
Science 286 1550-2

[3] ChenJ et al 2000 Room-temperature negative differential
resistance in nanoscale molecular junctions Appl. Phys.
Lett. 77 12246

[4] Collier C P et al 1999 Electronically configurable
molecular-based logic gates Science 285 3914

[5] Cui Y and Lieber C 2001 Functional nanoscale electronic
devices assembled using silicon nanowire building blocks
Science 291 851-3

[6] Derycke V, Martel R, Appenzeller J and Avouris Ph 2001
Carbon nanotube inter- and intramolecular logic gates Nano
Lett. August

[7] EllenbogenJ C and Love J C 1999 Architectures for molecular
electronic computers: I. Logic structures and an adder built
from molecular electronic diodes MITRE Corporation
Reports available at
http://www.mitre.org/technology/nanotech

Ellenbogen J C 1999 Architectures for molecular electronic
computers: II. Logic structures using molecular electronic
FETs MITRE Corporation Reports available at
http://www.mitre.org/technology/nanotech

[8] Huang Y et al 2001 Logic gates and computation from
assembled nanowire building blocks Science 294 1313-17

483

F Peper et al

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

[22]

[23]

(24]

[25]

[26]
(27]
(28]

(29]
[30]

(31]

(32]

[33]

484

Postma H W Ch, Teepen T, Yao Z, Grifoni M and
Dekker C 2001 Carbon nanotube single-electron transistors
at room temperature Science 293 76-9

Reed M A, Chen J, Rawlett A M, Price D W and Tour J
M 2001 Molecular random access memory cell Appl. Phys.
Lett. 78 3735-7

Rueckes T et al 2000 Carbon nanotube-based nonvolatile
random access memory for molecular computing Science
289 94-7

Wada Y, Uda T, Lutwyche M, Kondo S and Heike S 1993 A
proposal of nano-scale devices based on atom/molecule
switching J. Appl. Phys. 74 7321-8

Wada Y 1996 Atom electronics Microelectron. Eng. 30
375-82

Porod W 2002 Nanoelectronic circuit architectures Handbook
of Nanoscience, Engineering, and Technology ed W
A Goddard III, D W Brenner, S E Lyshevski and G J Lafrate
(Boca Raton, FL: Chemical Rubber Company Press) ch 5

Compaid R (ed) 2001 Technology Roadmap for
Nanoelectronics (Luxembourg: Office for Official
Publications of the European Communities)

Beckett P and Jennings A 2002 Towards nanocomputer
architecture Proc. 7th Asia—Pacific Computer Systems
Architecture Conf., ACSAC’2002 (Conf. on Research and
Practice in Information Technology) vol 6, ed F Lai and
J Morris

Biafore M 1995 Cellular automata for nanometre-scale
computation Physica D 70 415-33

DeHon A 2002 Array-based architecture for molecular
electronics Proc. 1st Workshop on Non-Silicon
Computation, NSC-1

Durbeck L J K and Macias N J 2001 The cell matrix: an
architecture for nanocomputing Nanotechnology
12217-30

Heath J R, Kuekes P J, Snider G S and Williams R S 1998 A
defect-tolerant computer architecture: opportunities for
nanotechnology Science 280 1716-21

Lent C S and Tougaw P D 1997 A device architecture for
computing with quantum dots Proc. IEEE 85 541-57

Lyke J, Donohoe G and Karna S 2001 Reconfigurable cellular
array architectures for molecular electronics Air Force
Research Laboratory Report AFRL-VS-TR-2001-1039
available at http://www-2.cs.cmu.edu/~phoenix/internal/
papers_by_others/TR-2001-1039.PDF

Peper F 2000 Spatial computing on self-timed cellular
automata Proc. 2nd Conf. on Unconventional Models of
Computation, UMC’2K (Berlin: Springer) pp 202-14

Seminario J M and Tour J M 1998 Ab initio methods for the
study of molecular systems for nanometer technology:
towards the first principles of molecular computers
Molecular Electronics: Science and Technology (Ann. NY
Acad. Sci. vol 852) ed A Aviram and M Ratner pp 68-94

Fountain T J, Duff M J B, Crawley D G, Tomlinson C D and
Moffat C D 1998 The use of nanoelectronic devices in
highly parallel computing systems /EEE Trans. Very Large
Scale Integr. Syst. 6 31-8

Waingold E et al 1997 Baring it all to software: raw machines
IEEE Comput. 30 86-93

Kung S Y 1982 Why systolic architectures? Computer 15
37-46

Von Neumann J 1966 Theory of Self-Reproducing Automata ed
A W Burks (Champaign, IL: University of Illinois Press)

Codd E F 1968 Cellular Automata (New York: Academic)

Wolfram S 1994 Cellular Automata and Complexity (Reading,
MA: Addison-Wesley)

Hopcroft] E, Motwani R and Ullman J D 2001 Introduction to
Automata Theory, Languages, and Computation (Reading,
MA: Addison-Wesley)

Fredkin E and Toffoli T 1982 Conservative logic Int. J. Theor.
Phys. 21 129-253

Nakamura K 1974 Asynchronous cellular automata and their
computational ability Syst. Comput.—Controls S 58-66

[34]

(35]

(36]

[37]
[38]

(39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
(51]

(52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Wang W 1991 An asynchronous two-dimensional
self-correcting cellular automaton PhD Thesis Boston
University

Peper F, Isokawa T, Kouda N and Matsui N 2002 Self-timed
cellular automata and their computational ability Future
Gener. Comput. Syst. 18 893-904

Nehaniv C L 2002 Self-reproduction in asynchronous cellular
automata Proc. NASA/DoD Conf. on Evolvable Hardware,
EH’02 pp 201-9

Lee J, Adachi S, Peper F and Morita K 2003 Asynchronous
game of life, in preparation

Hauck S 1995 Asynchronous design methodologies: an
overview Proc. IEEE 83 69-93

Davis A and Nowick S M 1997 An introduction to
asynchronous circuit design Technical Report
UUCS-97-013 Computer Science Department, University
of Utah, Downloadable from
http://www.cs.columbia.edu/async/publications.html

Keller R M 1974 Towards a theory of universal
speed-independent modules /IEEE Trans. Comput. C-23
21-33

Patra P 1995 Approaches to design of circuits for low-power
computation PhD Thesis University of Texas at Austin

Myers C J 2001 Asynchronous Circuit Design (New York:
Wiley)

Langton C G 1984 Self-reproduction in cellular automata
Physica D 10 135-44

Reggial] A, Armentrout S L, Chou H-H and Peng Y 1993
Simple systems that exhibit self-directed replication Science
259 1282-7

Morita K and Imai K 1996 Self-reproduction in a reversible
cellular space Theor. Comput. Sci. 168 337-66

Serizawa T 1987 Three-state Neumann neighbour cellular
automata capable of constructing self-reproducing
machines Syst. Comput. Japan 18 33—40

Petraglio E, Tempesti G and Henry J-M 2002 Arithmetic
operations with self-replicating loops Collision-Based
Computing ed A Adamatzky (Berlin: Springer) pp 469-90

Adamatzky A (ed) 2002 Collision-Based Computing (Berlin:
Springer)

2001 It’s time for clockless chips Technol. Rev. Mag. 104
3641 available at:
http://www.cs.columbia.edu/~nowick/async-intro.html

Matzke D 1997 Will physical scalability sabotage performance
gains? IEEE Comput. 30 37-9

Heinrich A J, Lutz C P, Gupta J A and Eigler D M 2002
Molecular cascades Science 298 1381-7

Lee J, Peper F, Adachi S and Morita K 2002 Compact designs
of universal delay-insensitive circuits with bi-directional
and buffering lines in preparation

Unger S H 1969 Asynchronous Sequential Switching Circuits
(New York: Wiley)

Seitz C L 1980 System timing Introduction to VLSI Systems
ed C Mead and L Conway (Reading, MA: Addison-Wesley)
ch7

Muller D E and Bartky W S 1959 A theory of asynchronous
circuits Proc. Int. Symp. on the Theory of Switching
(Cambridge, MA: Harvard University Press) pp 20443

Martin A J 1990 Programming in VLSI: from communicating
processes to delay-insensitive circuits Developments in
Concurrency and Communication (UT Year of
Programming Institute on Concurrent Programming) ed
C A R Hoare (Reading, MA: Addison-Wesley) pp 1-64

Martin A J 1990 The limitations to delay-insensitivity in
asynchronous circuits Proc. 6th MIT Conf. on Advanced
Research in VLSI (Cambridge, MA: MIT Press) pp 263-78

van Berkel K 1992 Beware the isochronic fork Integr. VLSI J.
1310328

Clark W A 1967 Macromodular computer systems Proc. Conf.
Spring Joint Computer Conf. (AFIPS) pp 335-6

Laying out circuits on asynchronous cellular arrays

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

Ornstein S M, Stucki M J and Clark W A 1967 A functional
description of macromodules Proc. Conf. Spring Joint
Computer Conf. (AFIPS) pp 337-55

Molnar C E, Fang T-P and Rosenberger F U 1985 Synthesis of
delay-insensitive modules Chapel Hill Conf. on Very Large
Scale Integration ed H Fuchs (Rockville, MD: Computer
Science Press) pp 67-86

Rosenberger F U, Molnar C E, Chaney T J and Fang T-P 1988
Q-modules: internally clocked delay-insensitive modules
IEEE Trans. Comput. 37 1005-18

Ebergen J C 1991 A formal approach to designing
delay-insensitive circuits Distrib. Comput. 5 107-19

Unger S H 1993 A building block approach to unclocked
systems Proc. Hawaii Int. Conf. on System Sciences vol 1
(Los Alamitos, CA: IEEE Computer Society Press)
pp 33948

Sutherland I E 1989 Micropipelines Commun. ACM 32
720-38

Muller D E 1963 Asynchronous logics and application to
information processing Switching Theory in Space
Technology (Stanford, CA: Stanford University Press)

Brzozowski J A and Ebergen J C 1992 On the
delay-sensitivity of gate networks IEEE Trans. Comput.

41 1349-60

Ebergen J C 1987 Translating programs into delay-insensitive
circuits PhD Thesis Technical University Eindhoven

Encyclopedia of Delay-Insensitive Systems (EDIS)
http://edis.win.tue.nl/edis.html

Lee J, Adachi S, Peper F and Morita K 2002 Embedding
universal delay-insensitive circuits in asynchronous cellular
spaces, in preparation

Movie of signals crossing each other (referred to in Box 3) is
available at:
http://www.iop.org/EJ/S/2/IOPP/mmedia/0957-
4484/14/4/312

[72]

(73]

[74]

[75]
[76]

(771

(78]

[79]
[80]
[81]

[82]
[83]
[84]

Movie (referred to in Box 4) of writing value 0 in one-bit
memory, writing value 1 and reading out the value of the
memory, respectively, is available at:
http://www.iop.org/EJ/S/2/IOPP/mmedia/0957-
4484/14/4/312

van Berkel C H and Saeijs R W J J 1988 Compilation of
communicating processes into delay-insensitive circuits
Proc. IEEE Int. Conf. on Computer Design (Los Alamitos,
CA: IEEE Computer Society Press) pp 157-62

Lee J, Peper F, Adachi S, Morita K and Mashiko S 2002
Reversible computation in asynchronous cellular automata
Proc. 3rd Conf. on Unconventional Models of Computation,
UMC’02 (Berlin: Springer) pp 220-9

Adachi S, Peper F and Lee J 2002 Computation by
asynchronously updating cellular automata, in preparation

Cowburn R P and Welland M E 2000 Room temperature
magnetic quantum cellular automata Science 287 14668

Orlov A et al 2000 Experimental demonstration of clocked
single-electron switching in quantum-dot cellular automata
Appl. Phys. Lett. 77 295-7

Joachim C, Gimzewski J K and Aviram A 2000 Electronics
using hybrid-molecular and mono-molecular devices
Nature 408 541-8

Joachim C 2002 Bonding more atoms together for a single
molecule computer Nanotechnology 13 R1-7 (tutorial)

Giécs P 2001 Reliable cellular automata with self-organization
J. Stat. Phys. 103 45-267

Macias N J and Durbeck L J K 2002 Self-assembling circuits
with autonomous fault handling Proc. NASA/DoD Conf. on
Evolvable Hardware, EH’02 pp 46-55

Bennett C H 1988 Notes on the history of reversible
computation /BM J. Res. Dev. 32 16-23

Landauer R 1961 Irreversibility and heat generation in the
computing process IBM J. Res. Dev. § 183-91

Patra P and Fussell D S 1996 A framework for conservative
and delay-insensitive computing University of Texas at
Austin Technical Report TR-95-10

485

