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What is the power of quantum computers!?

Quantum mechanical computers can efficiently solve problems that
classical computers (apparently) cannot.

® Manin/Feynman, early 1980s: Simulating quantum systems

® Deutsch 1985, Deutsch-Jozsa 1992, Bernstein-Vazirani 1993, Simon 1994: Black box problems
* Shor 1994: Factoring, discrete logarithm

® Many authors, late 1990s—Present: Some nonabelian hidden subgroup problems

* Freedman-Kitaev-Larsen 2000: Approximating Jones polynomial

* Hallgren 2002: Pell’s equation

e van Dam-Hallgren-Ip 2002: Some hidden shift problems (e.g., shifted Legendre symbol)
* van Dam-Seroussi 2002: Estimating Gauss/Jacobi sums

e Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 2003: Black box graph traversal

e van Dam 2004, Kedlaya 2004: Approximately counting solutions of polynomial equations
* Hallgren 2005, Schmidt-Vollmer 2005: Finding unit/class groups of number fields
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Questions:
* What is the computational power of quantum mechanics?

* |s public-key cryptography possible in a quantum world?
Shor’s algorithm breaks RSA, elliptic curve cryptosystems, Diffie-
Hellman key exchange, etc.
What about, e.g,, lattice cryptosystems!?



Generalized hidden shift problem

Given: f(b,x):{0,1,.... M — 1} xZy — S
Satisfying: f(0, x) injective

f(b+1,z+s)= f(b,x)
Find: s (the hidden shift)

M =2 (hardest), ... , N (easiest)

Example. N=7,M=3,s5s=2
=0 1 2 3 4 5 6

b=0

1

2
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make exponentially many queries (in log V) to /.

Proof idea:

* Since the function values are arbitrary, they are not
informative until we find two inputs that give the same
output.

* The probability of seeing such a collision is very small unless
4 queries > V' N (birthday problem). Hence Q(V'N)
queries are needed.

Note: This holds independent of how big M is.
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Quantum query complexity

Query f in superposition: m

Measure function value: obtain (with equal probability)

or or --- Or
|| ||

The quantum states for different values of s are far apart, so
they can be distinguished using only a few copies
(k < poly(log N), again independent of M).

Main question: Can we do it in poly(log N) time?
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Easiest hidden shift problem:

This is an instance of the hidden subgroup problem in the abelian

group G = Zyn X Zn. Shor’s algorithm (“Fourier transform and
measure”) finds s efficiently.

The same approach works for any M > N/poly(log N), but not
smaller!
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M=2: The dihedral hidden subgroup problem
Hardest hidden shift problem:

Tl W

This is also a hidden subgroup problem, but now in a nonabelian
group, the dihedral group G = Zo X Z.

Regev 2002: Solution to the DHSP can be used to find short
vectors in lattices (v/n-unique-SVP), which would break, e.g., the
Ajtai-Dwork cryptosystem.

Kuperberg 2003: Algorithm with run time 20(VI°g V),

Regev’s reduction also works for larger M. Is this any easier?
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Main result

Theorem. Let M = N° for any fixed € > 0. Then there is an
efficient (i.e., run time poly(log N)) quantum algorithm for the
generalized hidden shift problem, using entangled measurements
on k = max{3,log <} registers.

Note: Unfortunately, this is not good enough to get better-than-
classical algorithms for lattice problems. (That seems to require

M = poly(log N).)

Tools:

* “Pretty good measurement’” on hidden shift states, a la
Bacon, Childs, van Dam 2005.

* Integer programming in constant dimensions (Lenstra 1983).
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Pretty good measurement

PGM: A particularly nice, and often optimal, measurement for
distinguishing members of an ensemble of quantum states.

For certain semidirect HSPs (BCD 05) and hidden shift

problems (this talk):

4 ) 4 )
state
distinsuishabil PGM average case
SHNSUISNABIILY - < algebraic problem
problem
- J - J
measurement < typical instances
succeeds have solutions

implementing the ~ _

measurement

solving typical
Instances

(“‘quantum sampling”)
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Given: random z € Z%
random w € Zy

Find: b€ {0,1,...,M —1}"
such that b -z = w mod N

Key observation: This is a k-dimensional integer program.
* Solutions of b - = w over Z form a shifted integer lattice

* “mod N’ can be enforced by adding a component
* 0 <b; <M —1 isa pair of linear constraints

Lenstra 1983: 2°%") time algorithm for integer programming in
k dimensions (using LLL lattice basis reduction)
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Questions

* |s the quantum solvability of the generalized hidden shift
problem with M = Q(N°) useful for any problems going
beyond factoring/discrete log!?

e Can we solve the problem efficiently for smaller M?
Can we at least interpolate with Kuperberg’s algorithm?

* What if we replace Z by a nonabelian group!?
(Then even M =2 is not a hidden subgroup problem.)
Can we solve this even for very large M?



