
Quantum Computation∗

Norman Margolus
MIT Laboratory For Computer Science

Cambridge Massachusetts 02139

January 1986

Abstract

A computer is a physical system which has a very general ability
to simulate other physical systems (and in particular, other comput-
ers). In this paper we investigate the question of whether microscopic
quantum systems can be computers. Using a reversible cellular au-
tomaton model of computation we illustrate several approaches to
this question. We then attempt to extend Feynman’s construction of
a quantum computer in order to arrive at a quantum model of parallel
processing.

1 Introduction

When we describe the operation of a computer, we are of course describing
the dynamical evolution of a physical system. What distinguishes a com-
puter from other physical systems is its ability to simulate many aspects
of other physical processes (including, in particular, the logical operation of
any other computer, given enough time and memory[1]). It is interesting to
note that for several recent models of computation the mapping between the
computer and the underlying physics is quite direct. This leads us to ask the

∗This research was supported in part by the Defense Advanced Research Projects
Agency and was monitored by the Office of Naval Research under Contracts Nos. N00014-
75-C-0661 and N00014-83-K-0125, and in part by NSF Grant No. 8214312-IST.

1

question: “how similar can the models used to describe computers be made
to microscopic physics?”

This question is of some interest to the technologists, since it is closely
related to how efficiently and quickly physical degrees of freedom can be
made to perform a computation for us[2]. Models in which there is a very
direct mapping between the computational and physical degrees of freedom
can also act as bridges connecting concepts and techniques in physics and
computation[3].

A particularly simple classical-mechanical model of computation was found
by Fredkin[4]. He showed that a gas of hard spheres with exactly prescribed
initial conditions can be made to perform an arbitrary digital computa-
tion. This and other related logically reversible models of computation1

have played a critical theoretical role in establishing the possibility of micro-
scopic physical models of computation, and also in clarifying issues related
to fundamental thermodynamic constraints on the computational process[5,
6, 7, 4, 8, 9]. But of course the world is quantum-mechanical, and so what
we would really like is a quantum model of computation.

It may well be that to take best advantage of the computational capa-
bilities of QM systems we must reformulate our notion of a computation.
However, in this paper I will restrict my attention to the more straightfor-
ward problem of asking to what extent a microscopic QM system can simulate
an ordinary (classical) deterministic computation.2 I will describe some of

1Computers which operate invertibly at every step have been described[4, 6, 7, 3] which
are essentially not much more complex or difficult to use than conventional computers.
It was a significant and somewhat surprising discovery that general-purpose computation
can be carried out in a reasonable manner despite the severe constraints implied by in-
vertible operation. In a reversible computer, no information can be lost at any step of the
computation—you can’t simply erase unneeded partial results, or even the arguments to
an addition. One way of effectively ‘erasing’ partial results is to copy an answer once you
have it, and then do an inverse computation, so that all intermediate results go away and
only the initial inputs and a copy of the answer remain.

2We will not consider here the very interesting issue of a computer which is a Universal
Quantum Simulator [10]. Such a computer would be a QM system which, started from an
appropriate initial state corresponding to a state of any given QM system, would evolve
in time t proportional to that taken by the given system into a QM state corresponding to
the t-evolved state of the given system. Measurements performed on the simulator would
correctly reproduce the QM statistics one would have obtained by performing an experi-
ment on the original system. Such a simulator would provide an alternative to the present
computational methods used to predict the consequences of QM models. Deutsch[11] dis-

2

the work that has been done in this direction, and point out some difficulties
that remain. As a specific model for illustration, I use a reversible cellular
automaton model of computation that is closely related to the hard-sphere-
gas computer mentioned above, and address the issues of spacial locality,
cyclic operation and parallelism in quantum computation.

2 Approaches to Quantum Computation

I will discuss two approaches to the issue of Quantum Computation (QC).
Since the time-evolution operator in QM is always a unitary (and hence in-
vertible) operator, both approaches will be based on the notion of a reversible
computer. The two approaches will be distinguished by whether the time-
evolution operator or the hamiltonian operator is taken as the starting point
for the discussion.

2.1 Time-evolution operator approach

The first discussion indicating that QC was not necessarily inconsistent with
the formalism of QM was that of Paul Benioff [12]. It depends upon the
observation that the Schrödinger evolution of the wave function is perfectly
deterministic. If one associates a basis vector with each possible logical state
of a reversible computer, then the one-step time-evolution which carries each
state into the appropriate next state is a permutation on the set of basis
states, and so is given by a unitary operator. Formally, it is always possible
to write down an hermitian operator whose complex exponential equals this
unitary operator. Given an initial logical-basis state, the Schrödinger evolu-
tion generated by this hamiltonian will give the appropriate successor logical
states at consecutive integer times.3

For example, if we let the possible configurations of the three state “com-
puter” described in Figure [fig.qc1f] be represented by

cusses this problem, but doesn’t address the important issue of the spacial locality of the
hamiltonian.

3Although the Schrödinger equation is a linear differential equation, in QM we allow
a large enough set of basis vectors (one per configuration) so that a unitary operator can
take a computer through an arbitrary invertible sequence of configurations. In particular,
there is no difficulty in having the computer compute such “non-linear” functions as logical
and and or.

3

Figure 1: A simple three-state machine. If the “computer” is in state A, it
will go into state B. State B goes into A, and C does not change.

A =

1
0
0

 B =

0
1
0

 C =

0
0
1

then the time evolution given in Figure [fig.qc1f] can be represented by the
unitary single-time-step operator

U =

0 1 0
1 0 0
0 0 1

and from U we can find an hermitian matrix such that U = e−iH . In this
case,

H =

π
2

−π
2

0
−π

2
π
2

0
0 0 0

2.2 Hamiltonian operator approach

One would like the hamiltonian operator H to be given as a sum of pieces,
each of which only involves the interaction of a few parts of the computer
which are near to each other. The most direct way of ensuring that H is of
this form is to write H down ab initio, rather than derive it from U .

4

Richard Feynman was the first to discuss this approach[13]. He realized
that if the unitary operator F which describes one step of the desired forward
evolution can be written as a sum of local pieces, then if we let H = F + F †

be the hamiltonian operator, H will also be a sum of local (i.e., nearby-
neighbour) interactions. The time-evolution operator U(t) = e−iHt is then
a sum of powers of F and F †, taken with various weights. Thus if |n〉
corresponds to the logical state of a computer at step n (i.e., F |n〉 = |n +
1〉) then U(t) |n〉 is a superposition of configurations of the computer at
various steps in the original computation. This superposition contains no
configurations which aren’t legitimate logical successors or predecessors to
|n〉: if you make a measurement of the configuration of the computer, you will
find it at some step of the desired computation. If instead you simply measure
some piece of the configuration which tells you whether the computation is
done or not, then when you see that it is done, you can immediately look
elsewhere in the configuration to find the answer, and be assured that it is
correct. Alternatively, one may construct a superposition of configuration
states that acts as a sort of wave-packet state in which the computation
moves forward at a uniform rate.

In order to write F =
∑

Fi with F a unitary operator, Feynman described
a computer in which only one spot is active at a time. If instead of taking∑

Fi to be unitary we only require the Fi’s to be local, it turns out that we can
describe a computer where all sites are active at once, but there is no longer a
global time—synchronization becomes a matter of local intercommunication.

3 A reversible model of computation

We will illustrate the two approaches in terms of a two dimensional Cellular
Automaton (CA) model of computation. This model is very similar to a
lattice gas—in fact it is derived from the classical mechanical gas model of
computation called the Billiard Ball Model[4] and we will refer to it here
as the BBMCA[3]. At each point with integer coordinates on a cartesian
lattice, we associate a two-state variable (0 or 1, say). Given an initial
configuration of 0’s and 1’s, we partition the sites into blocks of four, with
the upper left site in each block having even coordinates. Then we apply the
rule of Figure [fig.qc2f] to each block of four: a lone 1 moves to the opposite
corner, exactly two 1’s on a diagonal switch to the other diagonal, all other

5

Figure 2: The BBMCA cellular automaton rule. For every 2 × 2 block, we
count the number of 1’s. If exactly one of the four cells contains a 1, we move
the 1 to the opposite corner. If exactly two cells contain 1’s, and they lie on
a diagonal, we move them to the opposite diagonal. Otherwise, we leave the
block unchanged.

cases remain unchanged. Now we change the grouping of sites so that the
upper left site in each block of four has odd coordinates, and we again apply
the BBMCA rule to all blocks. We iterate this proceedure to generate a
dynamical evolution.

The evolution generated by this rule is exactly invertible: this property is
inherited from the invertibility of the rule applied to each block. Furthermore,
it has been shown[3] that starting from a suitable initial state, this system
can do any computation that any general-purpose digital computer can do
(1’s move around on the lattice and act as signals, and interact with each
other to do digital logic, much like the logic that goes on in the circuitry of
any electronic digital computer).

This model is an obvious candidate for us to try to describe in terms of a
lattice of QM spins. Here QM may even be superior to classical mechanics,
since it is more natural to have identical two-state systems in QM (cf. [9, 2]).
In such a CA model, during one logical step information has only to be
communicated to nearby neighbouring spins—data-paths are very short and
so the impact of the finite light-speed restriction on computation speed is

6

minimized.4

4 Time-evolution operator approach

In order to implement the BBMCA rule as a QM model, we will consider
a two-dimensional lattice of spins, each of which is in a spin-component
eigenstate with respect to the z-direction, which is taken to be perpendicular
to the plane of the lattice. At each site, spin-up represents a logical 1, and
spin-down a logical 0.

At a given lattice site with coordinates (i, j), the projection operator
Pi j = (1 + σz

i j)/2 projects states which have a logical 1 at site (i, j), and

the operator P i j = (1 − σz
i j)/2 = 1 − Pi j projects states with 0 at (i, j).

The operator ai j = (σx
i j − iσy

i j)/2 lowers a 1 at (i, j) to a 0, while a†
i j =

(σx
i j + iσy

i j)/2 raises a 0 at (i, j) to a 1.
We can now construct a unitary operator which will implement the BBMCA

rule applied to a block of four sites, with upper-left-corner at position (i, j):

Ai j = (ai ja
†
i+1 j+1 + a†

i jai+1 j+1)P i+1 jP i j+1

+(ai+1 ja
†
i j+1 + a†

i+1 jai j+1)P i jP i+1 j+1

+(ai ja
†
i+1 ja

†
i j+1ai+1 j+1 + a†

i jai+1 jai j+1a
†
i+1 j+1)

+1− (P i jP i+1 j+1 + P i+1 jP i j+1 − 2P i jP i+1 jP i j+1P i+1 j+1)

If Ai j is applied to a configuration of 1’s and 0’s, all of the lattice sites
except those in the block at (i, j) will remain unchanged—this block will
change according to the BBMCA rule. If we let

U0 =
∏

i j even

Ai j , U1 =
∏

i j odd

Ai j

then U = U1 U0 is a unitary operator which exactly implements the BBMCA
rule.5 U(t) = U t/2 (t an even integer) will exactly correspond to a BBMCA
evolution at even integral times.

4For computations which can take advantage of this architecture. For example, many
problems that are usually described in terms of differential equations seem well suited to
a CA solution[14, 15].

5It has been suggested[12, 17] that in order to construct a time independent H for a U
such as this, it is necessary to know explicitly the configuration of 1’s and 0’s at each step
of every possible computation in advance.

7

Now we will try to write U(t) = e−iHt, with H a sum of local pieces. We
begin by noting that A2

i j = 1 (follows from the BBMCA rule). Therefore
((1 − Ai j)/2)

2 = (1 − Ai j)/2, and exp(−iπ
2
(1 − Ai j)) = Ai j (expand the

exponential). If we let Hi j =
π
2
(1− Ai j), then

U0 =
∏

ij even

Ai j = e−i
∑

ij even
Hi j , U1 = e−i

∑
ij odd

Hi j

and U(t) = e−iHt, where H =
∑

ij even Hi j when the integer part of t is even,
and H =

∑
ij odd Hi j at odd times.

This U will reproduce the BBMCA evolution at all integer times. Intu-
itively, the reason we had to introduce a time dependence into H is because
the Hi j’s at a single time step all refer to non-overlapping blocks of spins,
and so they all commute, allowing the product U0 or U1 of exponentials to
be turned into an exponential of a sum. The even-block and odd-block Hi j’s
don’t all commute—since the blocks overlap it makes a difference in which
order the Hi j ’s are applied.

5 Hamiltonian operator approach

5.1 Serial computer

We can use Feynman’s method to arrive at a time-independent version of the
BBMCA.

We will use a 6× 6 lattice (Figure [fig.qc3f]) to illustrate the technique.
The boundaries are periodic—we can imagine the lattice as being physically
wrapped around into a torus, so that opposite edges touch. Now we divide
a complete updating of the lattice into 18 independent steps, as shown in
Figure [fig.qc3f]. The step during which each 2 × 2 block is updated is
indicated near its center, and (ik, jk) are the coordinates of the upper-left-
hand corner of the kth block. We introduce an extra “clock” spin at the
center of each block, and let ck = σx

k − iσy
k be the lowering operator acting

on this clock spin.
We can now write the unitary operator F which in 18 steps accomplishes

one complete updating of all the even and then all of the odd blocks on the
lattice, as a sum of operators which each act on one block only:

8

Figure 3: A 6 × 6 lattice with periodic boundaries. All 2 × 2 blocks in the
solid partition are updated first and then all blocks in the dotted partition
are updated. Because of periodicity, numbers 9 through 17 mark the centers
of dotted blocks.

F =
17∑

k=0

Fk , where Fk = Aik jk
c†k+1 ck

and we start the lattice off with the clock-spin in block #0 up, and all of the
rest of the clock-spins down.

If |0〉 is the initial state, then F |0〉 = |1〉, the state where block
#0 has been updated, and block #1 is waiting to be updated, F |1〉 =
|2〉, . . . , F |17〉 = |18〉, the state where one complete updating of all the
blocks has been accomplished and the “up” clock-spin is in block #0, etc.

We have thus been able to write the forward time-step operator as a
sum of local pieces by serializing the computation—only one block of the
automaton is active during any given step.

Now we may write down a hamiltonian operator H = F + F † =
∑

k Hk

(where Hk = Fk + F †
k) which is a sum of local interactions. If |n〉 is evolved

for a time t, it becomes e−iHt |n〉 which is a superposition of configurations
of the serialized automaton which are legitimate successors and predecessors
of |n〉.

We would like to make our automaton evolve forwards at a uniform rate—
we can do this by constructing a wave-packet state. If we let N be the

9

step-number6 operator (N |n〉 = n |n〉) then
d

dt
〈N〉 =

〈
[N, H]

i

〉
= 〈V 〉 where

V =
[N, H]

i
=

F − F †

i
, [V, H] = 0

Thus the eigenstates of V have 〈N〉 which changes uniformly with time,
and they can be chosen to be simultaneous eigenstates of H also. This
allows us to make a superposition state from V ’s eigenstates which has a
fairly sharply-peaked step-number, and for which the computation proceeds
at a uniform rate.

This corresponds closely to Feynman’s original construction. Peres [17]
noticed that we have the freedom to introduce coefficients ωk multiplying each
Hk, and that with an appropriate choice (neglecting for a moment the Ai j’s)
H becomes essentially the angular momentum operator Jx. This technique
would allow us to start the system in state |0〉 and be assured of finding
the system in state |17〉 after some prescribed time T that sets the scale for
the ωk’s. However, the system would then undo its evolution, and be back in
state |0〉 at time 2T . Thus this technique is not useful for making our system
run through a repeating computation cycle. If we want V to commute with
H , then we are forced to set the ωk’s to a constant, as Feynman did.

This seems to be the best we can do with a serial computer that runs in a
cycle. A hamiltonian with a clock which gives exactly F when exponentiated
(which is what we would ideally want) is necessarily non-local[18].

5.2 Parallel computer

In order to be able to write F =
∑

Fi j with F a unitary operator, we
described a computer in which only one spot was active at a time. We will
now drop the restriction that

∑
Fi j be unitary.

Let H =
∑

Fi j + F †
i j. U(t) = e−iHt will now be a sum of terms involving

all possible combinations of powers of the various Fi j ’s and F †
i j ’s. If U(t) |0〉

is to be a superposition of configurations which correspond to legitimate

6 |0〉 is distinguished from |18〉 by looking at the computation part (as opposed to the
clock spins part) of the state.

10

classical evolutions from |0〉, then states where part of the automaton has
been updated, while other parts haven’t, must be allowed. This sort of
cellular automaton where there is no global clock (as there has been in all
of our preceeding discussion) is called an Asynchronous Cellular Automaton
(ACA).

An ACA can simulate an ordinary (synchronous) CA—all it needs is a
little extra state information, to force the places that get ahead to wait for
their neighbours to catch up[19]. The synchronous CA is like a line of people
marching in step: all cells take a step forward simultaneously. An ACA is
like a line of people walking forward hand-in-hand: cells that walk too fast
get held back by their neighbours. The state of each cell in the ACA will
correspond to the state of the same cell in the synchronous CA at some
particular moment of time. The ACA will have hills and valleys in time, but
with a limited slope and no breaks.

The most important constraint in the asynchronous implementation of
the BBMCA is that a block must not be updated unless all four cells of the
block contain data corresponding to the same moment of the synchronous
evolution (blocks can only step forwards if none of their cells are ahead or
behind the rest). To be able to tell whether or not this constraint is met,
we will add an extra “guard” bit associated with each cell in the original
BBMCA model. We will make a rule for changing the guard bits which
ensures that if all four guard bits in a 2 × 2 block of cells have the same
value, then the information in all four cells corresponds to the same moment
of synchronous evolution.

For the forward evolution, our rule for the guard bits will be that even-
blocks can be updated if all four guard bits are 0’s, odd-blocks if they are all
1’s. When a block is updated, its guard bits are all flipped (complemented).

To understand how the synchronization works, its enough to watch only
the guard bits, since the computation just rides on top without affecting the
guard bits.

One particular one-dimensional cross-sectional view of the guard bits’
evolution might look like Figure [fig.qc4f]. We start off with all guard bits
set to zero. By t = 6 the cell at x = 2 has moved three logical-steps forward.

If we imagine that the guard bits are spins in a lattice that sits directly
below our original BBMCA lattice, and let gi j be the lowering operator for a
spin at the site (i, j) on the guard-bit lattice, then our forward-step operator

11

Figure 4: Cross-sectional view of asynchronous automaton evolution. The
space is eight cells wide and we show the first seven time-steps. At t = 0, all
guard bits are set to zero. The shaded cells have guard-bits set to one. The
number inside each cell indicates the number of times that the cell contents
has been updated since time zero; this is also the equivalent synchronous
time at that cell.

12

for the site (i, j) is given by Fi j = Ai j g†
i j g†

i+1 j g†
i j+1 g†

i+1 j+1 for (i, j) even,
Fi j = Ai j gi j gi+1 j gi j+1 gi+1 j+1 for (i, j) odd, and F =

∑
Fi j acting on a

given configuration will produce a superposition of configurations, each of
which has advanced one step at some location.

F †
i j has the g’s and g†’s interchanged, relative to the definition of Fi j , and

so it implements a possible step backwards rather than forwards.
Hi j = Fi j + F †

i j = Ai j (g†
i j g†

i+1 j g†
i j+1 g†

i+1 j+1 + gi j gi+1 j gi j+1 gi+1 j+1)
for both even and odd blocks, and H =

∑
even or odd blocks Hi j

This model can be made to perform a computation by occasionally check-
ing for a “computation done” flag—some particular group of cells which the
computation will set to certain values when it is done. The appearance of
such a flag ensures that there is an unbroken chain of sites that connect the
flag to the place that signaled it to appear, none of which can correspond to
moments of time in the equivalent synchronous evolution that precede the
moment the signal passed that site. Thus if the flag signal was produced
by a process that first put the answer somewhere, the answer must still be
available there when the “done flag” is seen.

Of course what we would really like to do is to show that we can make this
sort of computer run at a uniform rate. The difficulty here is that if we let
N be an operator which, when applied to a configuration state, returns the
average synchronous-step in that configuration, and V = [N, H] /i, we find
that V doesn’t commute with H , and so the situation is more complicated
than it was in the serial-computer case.

I don’t know if this computer can be made to “run” in a reasonable fash-
ion. One approach to the question raised in the introduction of reformulating
computation to take better advantage of QM might be to see what the com-
puting power of this model (and related models[16]) is without the guard
bits. In this case, it seems easy to construct wave packets for the individual
ones (which are the moving particles of this model).

6 Conclusions

An ideal computation—the most efficient imaginable—would map as closely
as is possible onto all of the physical degrees of freedom of the computer. Such
models would be fundamental theoretical tools in the study of the ultimate
nature and limitations of the computational process, perhaps playing a role

13

analogous to that of the ideal engine of thermodynamics.
As it is quantum mechanics which today embodies our most fundamental

understanding of microscopic physical phenomena, we are naturally led to the
problem of describing computing mechanisms which operate in an essentially
quantum-mechanical manner.

In this paper I have attempted to extend Feynman’s construction of a
quantum computer in order to arrive at a more ideal model—one in which
the parallelism inherent in the operation of physical law simultaneously ev-
erywhere is put to use. Although this attempt has met with only limited
success, I judge this problem to be an important one, and worthy of fur-
ther study. If better models of quantum computation can be found, then
it may well be that quantum mechanics will provide the correct formalism
within which to formulate and discuss the quantities and issues relevant to
fundamental computer theory.

7 Acknowledgements

I would like to thank P. A. Benioff, C. H. Bennett, R. P. Feynman, E. Fredkin,
T. Toffoli, G. Y. Vichniac, and W. H. Zurek for useful discussions.

14

References

[1] M. Minsky, Computation: finite and infinite machines, Prentice-Hall
(1967).

[2] R. Landauer, “Computation and physics,” to appear in Foundations
of Physics (1986).

[3] N. Margolus, “Physics-like models of computation,” Physica 10D
(1984), 81.

[4] E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21
(1982), 219.

[5] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development 5 (1961) 183.

[6] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development 17 (1973), 525.

[7] T. Toffoli, “Computation and construction universality of reversible
cellular automata,” Journal of Computer Systems Science 15 (1977),
213.

[8] W. Porod, R. Grondin, D. Ferry, and G. Porod, “Dissipation in Compu-
tation,” Phys. Rev. Lett. 52 (1984), 232; comments by C. H. Bennett,
P. Benioff, T. Toffoli, and R. Landauer Phys. Rev. Lett. 53 1202.

[9] W. H. Zurek, “Reversibility and stability of information processing
systems,” Phys. Rev. Lett. 53 (1984) 391.

[10] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor.
Phys. 21 (1982), 467.

[11] D. Deutsch, “Quantum theory, the church-turing hypothesis, and uni-
versal quantum computers,” Proc. Roy. Soc. (1985).

[12] P. A. Benioff, J. Stat. Phys. 22 (1980) 563; 29 (1982) 515; Int. J.
Theor. Phys. 21 (1982) 177.

15

[13] R. P. Feynman, “Quantum mechanical computers,” Opt. News 11
(1985).

[14] T. Toffoli, “Cellular automata as an alternative to (rather than an
approximation of) differential equations in modeling physics,” Physica
10D (1984), 117.

[15] U. Frisch, B. Hasslacher, and Y. Pomeau, “A lattice gas automaton
for the Navier Stokes equation,” Preprint LA-UR-85-3503, Los Alamos
National Laboratory (1985).

[16] T. Toffoli, N. Margolus, Cellular automata machines: a new environ-
ment for modeling, to be published by MIT Press (1986).

[17] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A
(Dec. 1985).

[18] A. Peres, “Measurement of time by quantum clocks,” Am. J. Phys. 48
(1980) 552.

[19] T. Toffoli, “Integration of the phase-difference relations in asyn-
chronous sequential networks,” in G. Ausiello and C. Böhm (ed.), Au-
tomata, Languages, and Programming, Springer-Verlag (1978), 457-
463.

16

