
Parallel Quantum Computation∗

Norman Margolus
MIT Laboratory For Computer Science

Cambridge Massachusetts 02139

June 1989

Abstract

Results of Feynman and others have shown that the quantum for-
malism permits a closed, microscopic, and locally interacting system
to perform deterministic serial computation. In this paper we show
that this formalism can also describe deterministic parallel computa-
tion. Achieving full parallelism in more than one dimension remains
an open problem.

1 Introduction

In order to address questions about quantum limits on computation, and
the possibility of interpreting microscopic physical processes in informational
terms, it would be useful to have a model which acts as a bridge between
microscopic physics and computer science.

Feynman and others[2, 6, 10] have provided models in which closed, lo-
cally interacting microscopic systems described in terms of the quantum for-
malism perform deterministic computations. Up until now, however, all such
models implemented deterministic serial computation, i.e., only one part of
the deterministic system is active at a time.

∗This research was supported by the Defense Advanced Research Projects Agency and
by the National Science Foundation.

1

We have the prejudice that things happen everywhere in the world at
once, and not sequentially like the raster scan which sweeps out a television
picture. It would be surprising, and perhaps a serious blow to attempts to
ascribe some deep significance to information in physics, if it were impossible
to describe parallel computations within the quantum formalism.

In this paper, we extend the discussion of a previous paper[10] to obtain
for the first time a satisfactory model of parallel “quantum” computation,
but only in one dimension. The two-dimensional system discussed in [10]
is also shown to be a satisfactory model, but the technique used here only
allows one dimension to operate in parallel: the more general problem of the
possibility of fully parallel two- or three-dimensional quantum computation
remains open.

2 Computation

The word computation is used in many contexts. Adding up a list of numbers
is a kind of computation, but this task requires only an adding machine, not
a general purpose computer. Similarly, we can compute the characteristics of
airflow past an aircraft’s wing by using a wind tunnel, but such a machine is
no good for adding up a list of numbers.

An adding machine and a wind tunnel are both examples of computing
machines: machines whose real purpose is not to move paper or air, but to
manipulate information in a controlled manner. It is the rules that trans-
form the information that are important: whether the adding machine uses
enormous gears and springs, or microscopic electronic circuits, as long as it
follows the addition algorithm correctly, it is acting as an adding machine.

A universal computer is the king of computing machines: it can simulate
the information transformation rules of any physical mechanism for which
these rules are known. In particular, it can simulate the operation of any
other universal computer—thus all universal computers are equivalent in
their simulation capabilities. It is an unproven, but thus far uncontradicted
contention of computer theory that no mechanism is any more universal
than a universal digital computer, i.e., one that manipulates information in
a discrete form.

Assuming a finite universe, no machine can have a truly unbounded mem-
ory; what we mean when we talk about a general purpose computer is a ma-

2

chine that, if it could be given an unbounded amount of memory, would be a
universal computer. (In common usage, the terms general purpose computer
and computer are synonymous.) Similarly, when we talk about a finite set of
logic elements as being universal, we mean that an unbounded collection of
such elements could constitute a universal computer.

An adding machine is not a general purpose computer: a certain min-
imum level of complexity is required before universal behavior is possible.
This complexity threshold is quite low: aside from memory, a few dozen
logical nand gates, suitably connected, can be a computer. On the other
hand, some modern computers contain millions of logic elements in their cen-
tral processors: this doesn’t let these computers solve any problems that the
humblest microcomputer couldn’t solve; it simply lets them run faster. Ex-
cept for speed and memory capacity, there is no difference in computational
capability between a Cray-XMP and an IBM-PC.

3 Quantum computation

Although all general purpose computers can perform the same computations,
some of them work faster, use less energy, weigh less, are quieter, etc., than
others. In general, some make better use of the computational opportunities
and resources offered by the laws of physics than do others. For example,
since signals travel so slowly (it takes about a nanosecond to go a foot, at the
speed of light), there is a tremendous speed advantage in building computers
which have short signal paths. Modern microprocessors have features that
are only a few hundred atoms across: such small components can be crowded
close together, allowing the processor to be small, light, and fast.

As we try to map our computations more and more efficiently onto the
laws and resources offered by nature, we are eventually confronted with the
question of whether or not we can arrange for extremely microscopic physical
systems to perform computations. What we ask here is in a sense the opposite
of the hidden variables question: we ask not whether a classical system can
simulate a quantum system in a microscopic and local manner, but rather,
whether a quantum system can simulate a classical system in such a manner.

All of our discussion of quantum computation will be based on autonomous
systems: we prepare the initial state, let the system undergo a Schrödinger
evolution as an isolated system, and after some amount of time we examine

3

the result.1 Since the Schrödinger evolution is unitary, and hence invertible,
we must base our computations on reversible logic[7].

4 Reversible computation

Until recently, it was thought that computation is necessarily irreversible: it
was hard, for instance, to imagine a useful computer in which one could not
simply erase the contents of a register. It was to most people a rather surpris-
ing result[3, 7, 8, 9, 13] that computers can be constructed completely out of
invertible logic elements, and that such machines can be about as easy to use
as conventional computers. This result has thermodynamic consequences,
since it turns out that a reversible computer is the most energy efficient
engine for transforming information from one form to another. This result
also means that computation is not necessarily a (statistically irreversible)
macroscopic process.

As an example of an invertible logic element, consider the Fredkin gate
of Figure 1. This gate is in fact its own inverse (two connected in series give
the identity function), and this gate is a universal logic element: you can
construct any invertible logic function out of Fredkin gates. A logic circuit
made out of Fredkin gates looks much like any conventional logic circuit,
except that special “mirror image circuit” techniques are used to avoid the
accumulation of undesired intermediate results that we aren’t allowed to
simply erase (see [7] for more details).

Feynman made a quantum system simulate a collection of invertible logic
gates connected together in a combinational circuit (i.e., one without any
feedback).2 In Feynman’s construction, only one logic element was active
(i.e., transforming its inputs into outputs) at any given time: the different
gates were activated one at a time as they were needed to act on the output
of gates that were active earlier. We can imagine a sort of “fuse” running
through our circuit: as the active part of the fuse passes each circuit element

1For some types of computations, we can’t set a very good limit on how long we should
let it run before looking. In such cases, we would simply start a new computation if we
look and find that we aren’t finished.

2Although combinational circuitry can perform any desired logical function, computers
are usually constructed to run in a cycle, reusing the same circuitry over and over again.
The parallel models discussed later in this paper run in a cycle.

4

Figure 1: Fredkin gate. The top control input goes through unchanged (A′ =
A), and the bottom inputs either go straight through also (if A = 1) or cross
(if A = 0 then B′ = C and C ′ = B).

in turn, it activates that element. Using a collection of two-state systems
(which he called atoms) to represent bits, Feynman made a “quantum” ver-
sion of this model. In what follows, we will think of our two-state systems
as spin-1

2
particles.

5 Feynman’s quantum computer

In 1985, Richard Feynman[6] presented a model of computation which was
quantum mechanically plausible: there seems to be no fundamental reason
why a system like the one he described couldn’t be built.3 In his idealization,
he managed to arrange for all of the quantum uncertainty in his computation
to be concentrated in the time taken for the computation to be completed,
rather than in the correctness of the answer. Thus if his system is examined
and a certain bit (state of a spin) indicates that the computation is done,
then the answer contained elsewhere in the system is always correct. What’s
more, he managed to make his computation run at a constant rate.

His system consists of two parts: a collection of reversible logic gates,

3Less physical models were proposed earlier by Benioff[1], who seems to have been the
first to raise the question of quantum computation in print.

5

each made up of several interacting spins, and a chain of “clock” spins which
passes next to each gate in turn. Note that we will think of each wire that
runs between two gates as being a very simple reversible gate: one that
exchanges the values of the spins at its two ends. In this way we are able
to write down a unitary operator Fk that describes the desired behavior of
the k-th gate: for a given invertible gate such as the Fredkin gate or a wire,
we can write this operator down explicitly in terms of raising and lowering
operators. For example, for a wire Fi joining spin a of gate m and spin b of
gate n, the rule is

Fi = amb†n + a†
mbn + ama†

mbnb†n + a†
mamb†nbn

where a and b are lowering operators at the two spins, and a† and b† are their
Hermitian adjoints, which are raising operators on the two spins.

Without any claim yet to a connection with quantum mechanics, we can
cast the overall logical function implemented by an N -gate invertible com-
binational logic function into the language of linear operators acting on a
tensor product space as follows:

F =
N∑

k=1

Fkckc
†
k+1 (1)

where ck is the lowering operator on the clock spin that passes next to the
k-th gate Fk. If we start all of the clock spins off in the down state except for
the spin next to the first gate, then if F acts on this system, only the term

F1c1c
†
2

will be nonvanishing. This term will cause the spins acted upon by the first
gate to be updated, the first clock spin will be turned down, and the second
clock spin will go up. Similarly, if F acts again, the second gate will update,
and the up spin will move to the third position. Clearly if the initial state
has only a single clock spin up, F will preserve that property. Using the
position of the up clock spin to label the state, then if |1〉 is the initial state,
F |1〉 = |2〉, and in general F |k〉 = |k+1〉. We have thus been able to write
the forward time-step operator as a sum of local pieces by serializing the
computation—only one gate in the circuit is active during any given step.

Notice that the operator F †
k is the inverse of Fk, since the role of raising

and lowering operators is interchanged. Similarly, F † is the inverse of F ,

6

since each term of the former undoes the action of the corresponding term of
the latter, including moving the clock spin back one position. Now if we add
together the forward and backward operators, we get an Hermitian operator
H = F + F † which is the sum of local pieces, each piece acting only on a
small collection of neighboring spins (a gate). At this point we make contact
with quantum mechanics, by seeing what happens if we use this H as the
Hamiltonian in a Schrödinger evolution.

If we expand the time evolution operator U(t) = e−iHt, we get

U(t) = 1− iHt − H2t2

2
+ · · · = 1− i(F + F †)t − (F + F †)2t2

2
+ · · ·

and so we get a sum of terms, each of which is proportional to F or F † to
some power. Thus if |k〉 is evolved for a time t, it becomes e−iHt |k〉 which
is a superposition of configurations of the serialized computation which are
legitimate successors and predecessors of |k〉: each term in the superposi-
tion has a single clock spin at some position, and the computation is in the
corresponding state.

Feynman now noted that the operators Fk don’t affect the dynamics of
the ck’s: we can consider F =

∑N
k=1 ckc

†
k+1 for the purposes of analyzing the

evolution of the clock spins. But then H = F + F † supports superpositions
of the one-spin-up states called spin waves, as is well known. When we add
back in the Fk’s, the computation simply rides along at a uniform rate on top
of the clock spin waves. This point will be discussed in more detail below,
when we extend this serial model to deal with parallel computation.

6 Parallel computation

Serial computers follow an algorithm step by step, completing one step be-
fore beginning the next; parallel computers make it possible to do several
parts of the problem at once in order to finish a computation sooner. Al-
though Feynman’s construction is based on a serial model, his idea of con-
centrating all of the quantum uncertainty into the time of completion, while
leaving none in the correctness of the computation, can be extended to par-
allel computations[10]. Maintaining correctness is again achieved simply by
construction of the Hamiltonian: states in the Hilbert space that correspond

7

to configurations on a given computational orbit form an invariant subspace
under the Schrödinger evolution. This property of the Hamiltonian does not,
in general, say anything about the rate at which we can compute. Here
we show that Feynman’s technique for making a serial model of quantum
computation run at a constant rate can, in fact, also be extended to apply
to a parallel system, in particular to the one-dimensional analogue of the
case considered in [10]. From this, we can derive a way of making the two-
dimensional system considered in [10] compute at a constant rate, but with
parallelism that extends over only one dimension.

For simplicity, our discussion of parallel computers will be confined to cel-
lular automata (CA): uniform arrays of computing elements, each connected
only to its neighbors. These systems can be universal in the strong sense that
a given universal cellular automaton (assuming it’s big enough) can simulate
any other computing structure of the same dimensionality at a rate that is
independent of the size of the structure.4 By showing that, given any de-
sired (synchronous) CA evolution, we can write down a Hamiltonian that
simulates it, we will have shown that the QM formalism is computationally
universal in this strong sense, at least for one-dimensional rules.

Feynman’s model involved only states in which a single site was active at
a time. In order to accommodate both neighbor interactions and parallelism
in quantum mechanics, we find that we are forced to consider asynchronous
(no global time) computing schemes (but still employing invertible logic ele-
ments). For suppose that our Hamiltonian is a sum of pieces each of which
only involves neighbor interactions

H =
∑

x,y,z

Hx,y,z (2)

Then consider the time evolution 1− iHt over an infinitesimal time interval.
When this operator acts on a configuration state of our system, we get a
superposition of configuration states: one term in the superposition for ev-
ery term in the sum (Equation 2) above. If we want all of the terms in this
superposition to be valid computational states, then we must allow configu-
rations in which one part has been updated, while everything else has been
left unchanged.

4This isn’t the usual definition of universality in CA, but it is the one that we’ll use
here.

8

7 Local synchronization

One can perform an effectively synchronous computation using an asyn-
chronous mechanism by adding extra state variables to keep track of relative
synchronization (how many more times one portion of the system has been
updated than an adjacent portion). To use an analogy, consider a bucket
brigade carrying a pile of stones up a hill. You hand a stone to the first
person in line, who passes it on to the next, and so on up the hill. An asyn-
chronous computation would correspond to every individual watching the
person ahead of himself, and passing his stone along when the next person
has gotten rid of theirs. This involves only local synchronization. A syn-
chronous computation would correspond to having everyone pass on their
stones whenever they hear the loud tick of a central clock. Notice that both
schemes get exactly the same sequence of stones up the hill; only the timing
of when a given stone moves from hand to hand changes.

Now let us consider a one-dimensional cellular automaton. We imagine a
row of cells, each containing a few bits of state. Our evolution will consist of
two phases: first, we group the cell at each even-numbered position with the
cell to its right, and perform a logical transformation on the state of these two
cells; then we regroup the cells so that each even-numbered cell is associated
with the cell to its left, and again we update the pair. We alternate these two
kinds of steps to produce a dynamics. Notice that if the transformation we
perform on each pair of cells is an invertible logic function, then the overall
dynamics will be invertible.

Since cells are updated in pairs, it is really unnecessary for the entire sys-
tem to be globally synchronous: we can achieve effectively the same result by
local means. Imagine that we take our configuration of cells, and to each cell
we add an extra number, which is the number of times that cell has been up-
dated. In a synchronous updating scheme, all cells would start out with this
number set to zero, and this number would increment uniformly throughout
the system: if one cell is at step 27, all cells are. But suppose we start out
with the same initial data, and only update one pair (with the appropriate
grouping for an even-numbered step). Since the result of this updating only
depends on the contents of these two cells, it makes no difference whether
or not any other cells have been updated yet. Next, we could update some
more pairs. Now suppose two adjacent pairs have been updated: we have
four consecutive cells that correspond to the synchronous time step number

9

Figure 2: A section of a one-dimensional pairing automaton showing only
the states of the clock bits in each cell. The solid bars bracket the pairing
used for even times, the dotted for odd times.

one, and are labeled as having been updated once. The middle two cells of
these four are a correct group for an odd-numbered synchronous step, and so
we can update this odd pair and label them as having been updated twice.
Each of these two cells is now ready to be updated again as part of even pairs,
as soon as the adjacent cells catch up! Thus we can perform an asynchronous
updating of pairs, using the count of updates for each cell to tell us when
adjacent cells can be updated as a pair. As long as we observe this protocol,
we can update cells in any order and retain the property that any cell that
is labeled as having been updated n times is at the same state that it would
have had if the whole system had been updated synchronously n times.

Notice that with this scheme, two adjacent cells cannot get more than
one step apart in update-count: since this count is only used to tell whether
a given cell is using the even step pairing or the odd step pairing, and to
tell if adjacent cells are at the same step, we only need to look at the least
significant bit of the update-count. Thus if we take our original synchronous
automaton and add a single bit of update-count to each cell, we can run the
system asynchronously while retaining a perfectly synchronous causality.

In Figure 2 we show a possible state for the update-count bits (henceforth
we’ll call them clock bits) in a one-dimensional pairing automaton of the type
we’ve been discussing, which is consistent with an evolution starting from a
synchronous initial state. In Figure 3 we use a spacetime diagram to integrate
the relative time phases: arbitrarily calling the time at the left hand position
t = 0, we mark cells using the relative time information encoded in the clock
bits. As we move across, if a cell is at the same time as its neighbor to the
left, we mark it at the same time on this diagram, if it is ahead, we mark
it one position ahead, etc. The result is a diagram illustrating the hills and
valleys of time present in this configuration. Note that we can tell if a given
cell in Figure 2 which is at a different time phase than its neighbor to the
left is ahead or behind this neighbor by seeing whether or not it is waiting

10

Figure 3: A spacetime diagram showing relative times of adjacent clock spins
corresponding to the data in the previous figure. Pairing of cells is indicated
as before.

for the neighbor to catch up in order to be paired with it.
Note that if we allow backward steps, this synchronization scheme still

works fine: we can imagine that a backward step is simply undoing a forward
step, getting us to a configuration we could have gotten to by starting at an
earlier initial synchronous step, and running forward.

These configurations then, with their hills and valleys of time, will be the
classical configurations which our quantum system will simulate.

8 A “quantum” parallel automaton

Again we imagine a collection of interacting spins as our computational sys-
tem. Let |n, α〉 be a state on our locally synchronized computational tra-
jectory, where n refers to time and α refers to other information needed to
uniquely specify a configuration. Since our configurations have no global
moment of time, we use an integrated notion of time: we simply add up the
equivalent synchronous times for all cells in the automaton, and divide by
the number of cells in a single block. With this normalization, if we have
a configuration at integrated time n and we take a step forward at a single

11

block, then the resulting configuration will be at time n + 1.
We imagine that our system has two kinds of spins at each site in our

one-dimensional chain of cells: data spins and clock spins. We’ll let Di be
our rule for updating the block of data spins belonging to two adjacent cells
at locations i and i + 1; D†

i is the inverse rule. We imagine that we have
a single spin- 1

2
clock spin at each cell, and that ci is the lowering operator

acting on the spin at cell i. Now we can define F , our forward time-step
operator:

F =
∑

i even

Dic
†
ic

†
i+1 +

∑

i odd

Dicici+1 =
∑

i

Fi (3)

This operator, acting on a state |n, α〉, produces a superposition of states
each of which belongs to time n + 1. Similarly, F † takes us backwards one
time step. Note however, that F † is not the inverse of F . Nevertheless, on
the subspace of computational configurations (those that can be obtained by
a sequence of local updatings starting from a synchronous configuration) F
and F † commute: this property, which will be proven below, will be crucial
in our construction.

As before, we let H = F + F †, and if we expand the time evolution op-
erator U(t) = e−iHt we get a superposition of terms, each involving products
of Fi’s and F †

j ’s for various i’s and j’s. Since each such term, acting on a
computational configuration, gives us another computational configuration
(by construction of the clock bits), the time evolution U doesn’t take us out
of our computational subspace.

8.1 Running in parallel

Now we would like to have our parallel computation run forward at a uniform
rate. We are imagining that our space is periodic: the chain of cells is finite
and the ends are joined. Designating one particular state of the equivalent
globally synchronous computation as t = 0, we can assign a value of t to
every configuration on each synchronous computational orbit, and from these
assign a value of n to the integrated time on every locally synchronized
computational configuration. Thus we can construct an operator N which,
acting on a configuration |n, α〉, returns n:

N |n, α〉 = n |n, α〉

12

From this we can construct a computational velocity operator V :

V =
[N, H]

i
=

[N, F]

i
+

[N, F †]
i

But NF |n, α〉 = (n+1)F |n, α〉, since F takes |n, α〉 into a superposition of
states all of which correspond to time n + 1, and so

[N, F] |n, α〉 = (n + 1)F |n, α〉 − nF |n, α〉 = F |n, α〉
and similarly, [N, F †] |n, α〉 = −F † |n, α〉. Thus on this subspace,

V =
F − F †

i

Now for the average computational velocity 〈V 〉 = d 〈N〉 /dt to be con-
stant, we would like V to commute with H . So the question becomes, does
V commute with H? Now [V, H] = [(F − F †)/i, F + F †] = 2[F, F †]/i and so
this is the same as the question, does F commute with F †?

Each term in the product F F † involves one Fj and one F †
k . Clearly if

|j − k| ≥ 2, then [Fj , F
†
k] = 0, since the two operators act on disjoint sets

of spins. If |j − k| = 1, then the product FjF
†
k vanishes when applied to a

computational state, since either Fj or F †
k vanishes: either the pair of cells

at k and k + 1 are not ready to take a step backwards (and so F †
k vanishes),

or if they are ready to go back and F †
k acts on them, then in the resulting

configuration these two cells are only ready to take a step forward if they are
paired together again, and so Fj vanishes. Thus the commutator of F and
F † can be written

[F, F †] =
∑

k

[Fk, F
†
k] =

∑

k

FkF
†
k − ∑

k

F †
kFk

which, when applied to a computational configuration, just gives the differ-
ence between the number of blocks that are ready to go backwards, and the
number that are ready to go forwards. Now the question of commutation
is reduced to a question about the computational configurations: “Is it true
that the number of blocks ready to go forward is always equal to the number
ready to go back?”

For the two-dimensional case considered in [10], the answer is no, but for
a one-dimensional automaton with periodic boundaries, the answer is yes: in

13

a flat (globally synchronous) configuration, the answer is clearly yes, and it
is easy to check that any sequence of updates preserves this property.5

Now we can make our cellular automaton run at a uniform rate: we use as
our initial state a superposition of eigenstates of V which has a fairly narrow
∆N , so that the integrated time in our computation is fairly definite.6 Since
〈V 〉 is constant, this state will evolve at a uniform rate, as desired.

8.2 Relating the models

It turns out that the one-dimensional version of Feynman’s serial model is
a special case of the model discussed above: if we complement the meaning
of every second clock spin (say, all the ones at even positions), Equation 3
becomes

F =
∑

i even

Dicic
†
i+1 +

∑

i odd

Dicic
†
i+1 =

∑

i

Dicic
†
i+1

which is of exactly the same form as Equation 1. An initial state containing
a single up clock spin and all the rest down would correspond, in our parallel
system of Equation 3, to all of the even clock spins up, and all of the odd ones
down, except for the spin at the active position k, which is the same as its
two neighbors. Since updating in our parallel model only occurs at positions
where two adjacent clock spins are the same, there are only two active blocks
in such an alternating configuration: the block involving k and k + 1, which
will be a step forward if updated, and the block involving k and k−1, which
will be a step back if updated. If we draw a spacetime diagram of the clock
spins around position k (see Figure 4) showing the relative synchronization
implied by the alternating pattern of clock spins, we see that it forms a
staircase with a landing that moves up and down in time as its leading edge
or trailing edge is updated. Because the space is periodic, the top of this

5Equivalently, one can simply observe that between every two blocks that are ready
to go forward, there is always a block that is ready to go back, and vice versa, and so in
a periodic configuration the number ready to go forward is always equal to the number
ready to go back.

6This also avoids the necessity of performing the whole computation ahead of time
in order to construct the initial superposition: we simply truncate the small-amplitude
long-time terms of our initial superposition, effectively adding a small error term to our
state whose amplitude doesn’t grow with time[16].

14

Figure 4: A spacetime diagram of the active region of a parallel one-
dimensional cellular automaton with a staircase configuration.

15

staircase is connected to the bottom: this configuration is not on the orbit
of any synchronous parallel computation.

9 Fixing the 2-d model

In [10] I gave a two-dimensional analog of the parallel model discussed here,
using a particular universal reversible cellular automaton which was updated
using a 2-d version of the locally synchronized block partitioning discussed
above. There I was unable to make the model run at a uniform rate; the
parallel technique used above can in fact be extended to make this earlier
model run, but with only one dimension of parallelism. The idea is to sweep
a one-dimensional parallel active region across the two-dimensional system
using staircase and landing configurations analogous to what we saw in the
previous section: we initialize the rows of our 2-d clock spins (they were
called guard bits in [10]) with an alternating pattern of horizontal stripes
(all of the even rows up, the odd rows down) except for a single row (the
active region) that is the same as its two neighboring rows. Then every
column contains exactly one segment with three consecutive clock spins that
are the same, and in fact each column of clock spins, when represented on a
spacetime diagram, looks exactly like Figure 4. It is easy to verify that this
property is preserved by the dynamics, and that the dynamics of the active
region is isomorphic with that of our 1-d parallel model. Thus if we make a
wave packet state out of configurations on the same computational orbit as a
staircase with a landing, we can make this wave packet run repeatedly across
our system, doing a line of updates in parallel as it travels up the staircase.

Note that the CA model of [10] has the property that one can perform
any desired computation by constructing patterns of up and down values in
the data spins that resemble conventional computer circuitry: gates, signals,
wires, etc. In such patterns, no signals need ever go outside a fixed-sized
region. Thus the fact that a staircase configuration is not on the compu-
tational orbit of any synchronous computation doesn’t mean that such a
configuration can’t perform an equivalent computation: the arrangement of
clock spins outside of the fixed-sized region containing the circuit of interest
is irrelevant as long as computation is able to proceed within this region, and
as long as relative synchronization is never locally violated.

Of course what we would really like is to have a fully parallel 2-d sys-

16

tem, but at least we now have shown that we can have parallelism in a
computationally universal quantum Hamiltonian system with only neighbor
interactions.

10 Conclusions

The study of the fundamental physical limits of efficient computation requires
us to consider models in which the mapping between the computational and
physical degrees of freedom is as close as is possible. This has led us to
ask whether the structure of quantum mechanics is compatible with parallel
deterministic computation. If the answer was no, then such computation
would in general have to be a macroscopic phenomenon. In fact, at least
in one dimension, it does seem possible to construct plausible models to
simulate any locally-interacting deterministic system at a constant rate and
in a local manner. The problem of finding satisfactory models of fully parallel
quantum computation in more than one dimension remains open.

Physically motivated models of computation such as those considered
here, in which individual degrees of freedom have both a computational and
a physical interpretation, act as bridges between theoretical physics and the-
oretical computer science. Computers constructed (for efficiency) with a
physics-like structure may be usefully analyzed using concepts and techniques
imported from physics[11]; computational reinterpretations of such imported
physical concepts may someday prove useful in the study of physics itself.

11 Acknowledgments

I would like to gratefully acknowledge conversations with R. P. Feynman
in which he pointed out to me the relationship between my parallel model
and his serial model, and discussions with L. M. Biafore in which it became
evident that the one-dimensional version of my parallel QM construction
might be made to run at a uniform rate.

17

References

[1] P. A. Benioff, “Quantum mechanical Hamiltonian models of discrete
processes that erase their own histories: application to Turing ma-
chines,” Int. J. Theor. Physics 21 (1982), 177–202.

[2] P. A. Benioff, “Quantum mechanical Hamiltonian models of comput-
ers,” in the proceedings of a conference “New Ideas and Techniques on
Quantum Measurement Theory,” (Jan. 1986). Ann. New York Acad.
Sci. 480 (1986), 475–486.

[3] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development 17 (1973), 525.

[4] D. Deutsch, “Quantum theory, the Church-Turing hypothesis, and uni-
versal quantum computers,” Proc. Roy. Soc. Lond. A 400 (1985), 97–
117.

[5] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor.
Phys. 21 (1982), 467.

[6] R. P. Feynman, “Quantum mechanical computers,” Opt. News 11
(1985).

[7] E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theor. Phys. 21
(1982), 219.

[8] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development 5 (1961) 183.

[9] N. Margolus, “Physics-like models of computation,” Physica 10D
(1984), 81.

[10] N. Margolus, “Quantum computation,” in the proceedings of a confer-
ence “New Ideas and Techniques on Quantum Measurement Theory,”
(Jan. 1986). Ann. New York Acad. Sci. 480 (1986), 487–497.

[11] N. Margolus, “Physics and computation,” (Ph. D. Thesis) Tech. Rep.
MIT/LCS/TR-415, MIT Laboratory for Computer Science (1988).

18

[12] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A 32
(Dec. 1985), 3266–3276.

[13] T. Toffoli, “Computation and construction universality of reversible
cellular automata,” Journal of Computer Systems Science 15 (1977),
213.

[14] T. Toffoli, “Cellular automata as an alternative to (rather than an
approximation of) differential equations in modeling physics,” Physica
10D (1984), 117.

[15] T. Toffoli, N. Margolus, Cellular automata machines: a new environ-
ment for modeling, MIT Press (1987).

[16] W. H. Zurek, “Reversibility and stability of information processing
systems,” Phys. Rev. Lett. 53 (1984) 391.

19

