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Abstract

Chu spaces are a recently developed model of concurrent computation extending
automata theory to express branching time and true concurrency. They exhibit
in a primitive form the quantum mechanical phenomena of complementarity and
uncertainty. The complementarity arises as the duality of information and time,
automata and schedules, and states and events. Uncertainty arises when we de-
fine a measurement to be a morphism and notice that increasing structure in the
observed object reduces clarity of observation. For a Chu space this uncertainty
can be calculated numerically in an attractively simple way directly from its form
factor to yield the usual Heisenberg uncertainty relation. Chu spaces correspond
to wavefunctions as vectors of Hilbert space, whose inner product operation is
realized for Chu spaces as right residuation and whose quantum logic becomes
Girard’s linear logic.

1 Introduction

1.1 Prospects for Chu Spaces

The automaton model of this paper, Chu spaces, is an outgrowth of automata
theory research done in the 1980’s, primarily in Europe, the US having more or
less settled on the brand of automata theory arrived at by 1970. Our own raison
d’être for Chu spaces is as a conceptual foundation for parallel programming and
computer architecture. There is an intensive ongoing search for an attractive
framework that can applied reliably to the modeling of computational behavior
in the same general way that vector spaces are heavily used today as a basis for
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computational geometry and computer graphics. Chu spaces are our current
favorite contender for this role.

This paper digresses from our main goal to pursue possible connections with
quantum mechanics. We see a reasonable possibility that such connections could
prove useful in both computer science and physics.

The full picture of Chu spaces that has emerged for us during the past two
years since we began using them is beyond the scope (or at least available space)
of this paper. We therefore refer the reader to other recent work [Pra94, Gup94,
GP93, Pra93b], in that order. These papers are all available either as cited, or
by anonymous ftp (start with /pub/ABSTRACTS from boole.stanford.edu), or
via World-Wide Web (WWW) via “mosaic http://boole.stanford.edu”.

In computer science Chu spaces as an automata-theoretic abstraction of
quantum mechanics could well serve as a bridge between the familiar world of
automata and the conceptually remote world of quantum mechanics. Such a
bridge may ease the transitions of computer architecture to quantum devices,
and of algorithms to quantum computing, by indicating how to relate concepts
of quantum mechanics to a suitable blend of classical mechanics and automata
theory, thereby capitalizing on familiar automata-theoretic intuitions. We con-
tinue this theme in the subsection below on applications to quantum computing.

For physics, Chu spaces offer an even more abstract quantum mechanics than
presently available. Quantum mechanics is already very abstract: although it
deals ostensibly with momentum p and position q, these may be interpreted
as any conjugate pair of attributes such as angular momentum respectively
along any two orthogonal axes in 3-space. General quantum reasoning is more
fundamental than particular attributes such as space, mass, charge, gravity,
relativity, etc. Pure quantum mechanics in its own right exists independently
of quantum spin, quantum geometry, quantum field theory, quantum gravity,
quantum white rabbits, etc. In this respect it is like group theory: it can be
studied as a pure subject in its own right, albeit at some pedagogical cost.

What QM has not let go of is the field of complex numbers, which is taken
to be an immutable and distinguishing feature of all quantum phenomena. Chu
spaces show how to abstract away even that last vestige of quantum identity,
not just to a group of complex numbers or even a monoid, but to a pure set!

This extreme level of abstraction is ordinarily confined to set theory and
number theory. A set is a relational structure with the empty language. With-
out language such a structure can signify nothing beyond cardinality. Not even
quantum logic [BvN36] abstracts that far, retaining the binary relation of or-
thogonality on an “orthoframe” as the primitive dictionary entry for its Kripke
semantics, and the logical connectives of conjunction (interpretable semantically
as for classical Boolean logic as intersection of closed subsets of the orthoframe)
and negation (interpretable via orthogonality as “not mistakable for”) as the
primitive lexical items for its finite equational axiomatization.

Chu spaces replace language by the complementarity of quantum mechan-
ics. How powerful is complementarity? We shall show that all of first-order
mathematical language, including its meaning, is recovered, along with (quite
literally) exponentially much more. Separable Hilbert space is recovered, but
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now in a small corner of a much larger universe.
Quantum mechanics has since its inception progressed along the two not alto-

gether independent axes of simplicity and generality. A fundamental step in this
development was Schrödinger’s discovery of the duality between his wave me-
chanics and Heisenberg-Born-Jordan matrix mechanics, thereby putting Bohr’s
intuitions about complementarity on what later proved, thanks to von Neu-
mann, to be a completely rigorous mathematical basis.

It seems to us that Chu spaces have the potential to continue this progress,
not merely a long way but “all” the way. Our thesis is that the category Set
is the ultimate abstraction of body, and that Setop, equivalent to the category
of complete atomic Boolean algebras (i.e. power sets), which we shall advocate
thinking of as antisets, is dually the ultimate abstraction of mind. A Chu space
over a set K is simply a K-valued binary relation from a set to an antiset. We
submit as circumstantial evidence for this thesis the above-mentioned univer-
sality of Chu spaces. The thesis can be contradicted by improving on Set (and
hence Setop) in a suitable way. We are not presently aware of a more appro-
priate basis for the Chu construction than Set, and until one appears we shall
stick to our thesis.

A core simplification that Chu spaces would achieve for quantum mechanics
is the reduction of wave-particle duality to matrix transposition. When the
Pontrjagin duality of locally compact Abelian groups (the category AbGrp) is
taken as the mathematical essence of wave-particle duality, the realization of
Abelian groups as Chu spaces realizes this duality simply and very surprisingly
as matrix transposition.

1.2 Quantum Logic is Incomplete

We argue here that quantum logic lacks the capabilities that give Chu spaces
their potential for quantum mechanics. Whereas Chu spaces single out comple-
mentarity as the essence of quantum mechanics, quantum logic abstracts away
from complementarity in favor of projectivity. In essentially the same sense that
Boolean logic is the logic of sets and intuitionistic logic that of partially ordered
sets, quantum logic is the logic of abstract projective geometry.1

If we define mathematics to be the gamut from pure sets to pure logic, then
Boolean logic, intuitionistic logic, and quantum logic all sit at the logic end of
this gamut. Chu spaces in contrast run the full gamut, and hence are neither sets
nor logics but general mathematical structures. Moreover they are exponentially
more general than the relational structures constituting the domain of discourse
of all of first-order-definable mathematics.

Quantum logic has thrown out the baby with the bathwater. Although pro-
jective geometry is an accompanying characteristic of standard quantum me-

1It can equivalently be understood as the logic of commuting operators, based on an arbi-
trary reflexive symmetric relation interpreted as commutability, but from its very beginning
it has customarily been described from the dual perspective of projectivity, perhaps because
the associated W ∗-algebras of operators would have reduced the accessibility of a framework
whose sheer novelty at the time already presented enough of a conceptual challenge.
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chanics, it is far from being its defining characteristic, which we maintain is
complementarity. When complementarity is made the basis for abstract quan-
tum mechanics, as with Chu spaces, the complexity is stripped away as with
quantum logic2 but the essence of quantum mechanics is retained. Projective
geometry as the essence of quantum logic is far too simple to constitute the
essence of quantum mechanics.

Just as Boolean algebra is the natural logic of sets and Heyting or intuition-
istic logic that of ordered sets, linear logic is the natural logic of Chu spaces.
As we discussed at length at the previous meeting [Pra93a], linear logic re-
sembles quantum logic in some respects while improving on it in others. The
resemblances are in details such as rejection of distributivity of conjunction over
disjunction and acceptance of double negation, differentiating both logics from
Boolean logic (which accepts the former) and intuitionistic logic (which rejects
the latter).

A key difference is in the foundation of entailment A ` B. In all of Boolean,
intuitionistic, and quantum logic, entailment is a truth value: A either does or
does not entail B. In linear logic interpreted for Chu spaces, entailment is a
set of alternative proofs of B from A, understood either as reasons why fact
B should follow from fact A, ways of getting from point (of view) A to point
B, or ways of transforming object A into object B. These proofs compose to
make the semantic basis not a poset as with nonconstructive logic but rather a
category. We argued there that while nonconstructive logic was all very well for
armchair philosophers, anyone planning to actually use logic in the field is not
adequately served by nonconstructive logic and should be reasoning construc-
tively. Knowing that you can get from A to B is practically useless if you do
not know even one method of doing so!

The universality of Chu spaces translates this into the concrete result that
constructive linear logic is mathematics, in the sense that its proofs are the con-
structions of mathematics, namely its homomorphisms or structure-preserving
functions. This is to be contrasted with first-order logic, which is a noncon-
structive symbolic logic of mathematics.

1.3 Relevance to Cosmology

Our proposed role for Chu spaces as the ultimate abstraction of quantum me-
chanics is relatively clear, if not yet as convincing as we would like. In a rather
more speculative vein, we may consider the significance of such an abstraction
for cosmology. Now a popular premise of cosmologists of all stripes is that the
space of competing conceptual frameworks must be very large, raising all sort of
knotty questions such as, why this universe, could the universe have supported
intelligent life if the periodic table had been organized differently, would TV
have been a passing fad had there never been color, etc.

The universality of Chu spaces undermines the premise of this question, by
raising the possibility that Chu spaces have no competition, in that any con-

2In fact even more so, Chu spaces viewed equivalently as either matrices or Boolean propo-
sitions being conceptually simpler than ortholattices.
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ceptual framework we have a chance of understanding can be found embedded
in Chu spaces. This simplifies the procedure for manufacturing a universe by
permitting the step of choosing a framework to be omitted.

Attention then focuses on quantity: how big to make the universe? Here
Chu spaces have nothing to suggest. Nothing intrinsic in either cosmology or
the present theory of Chu spaces suggests either Eddington’s original number
2 × 136 × 2256, for the number of protons and electrons in the universe, nor
its modern counterpart 2127 + 136 (squared?), the basis for the “combinatorial
hierarchy” popular with the neo-Eddingtonians (who I note have their own
session at this conference). So far as we know, the universe would have worked
just about as well at a quarter or a trillionth of its present size. On the other
hand I rather doubt one would be well served by being teleported to a Chu space
with only 240 elements—not enough room for a conventional sun, a nuclear
power station would be a must for maintaining temperature and atmosphere,
and there would probably be a disconcerting lack of inertia.

We therefore ask, how does the quality of a universe depend on its size?
Based on the existence of Chu as a universal framework, we gingerly advance
the thesis that there are only two integers of any relevance at the exact moment
of the Big Bang, the number of values permitted as entries of a Chu space (less
than 100 surely suffices, and 2 is not inconceivable), and the integer size of the
universe, which presumably differs from Eddington’s number in not too many
bits.

2 Recent Developments in Automata Theory

The classical 1970’s conception of an automaton was as a device for accepting
a formal language defined as a set of strings, possibly infinite in the case of so-
called ω-automata. This conception made two automata equivalent when they
accepted the same language. As models of behavior, each string of the accepted
language was considered as one of the alternative or possible behaviors of that
automaton, and the symbols in that string all occurred during that behavior,
in the order of occurrence in that string.

The new automata theory raised two objections to this conception. The first
was raised by Robin Milner in his book on CCS, a Calculus of Communicating
Systems [Mil80]. The standard model appears to condense all choices about
behavior into a single selection of a string from a language made at the start
of the behavior. Real behavior however makes informed decisions on the fly as
information comes to hand. Milner proposed a logic that took deferred branch-
ing into account by abandoning the equation a(b + c) = ab + ac, along with a
model, synchronization trees, to serve as counterexamples for this equation.

The second objection, raised sporadically by various people over a long pe-
riod [Pet62, Gre75, Maz77, Gra81, NPW81, Pra82], was that the standard model
assigned a well-defined order to every pair of events (symbol occurrences) in the
same string. Besides contradicting relativity, this assumption also contradicts
practical engineering issues at all scales, from “data skew” on parallel signal
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lines within a single chip to detecting when a husband and wife are simulta-
neously making withdrawals from the same account at remote automatic teller
machines.

A succession of models addressed these two issues during the 1980’s, initially
separately and then later jointly. R. van Glabbeek’s thesis [vG90] provides a
comprehensive summary of the state of the art in 1990. This paper is based
on a model that is, we feel, a particularly clean example of the state of that
art. It has two main sources for its basic structure, the event spaces of Winskel
[NPW81, Win88], and the *-autonomous categories of Barr [Bar79], originally
done entirely independently of any possibility of its application to computer
science. More specifically it makes use of those *-autonomous categories arising
from a construction studied by Barr’s student Chu and reported in an appendix
to Barr’s book. Chu spaces specialize this construction to the category Set,
greatly increasing its accessibility while at the same time nicely matching these
new requirements imposed on automata theory, and with the added bonus that
the loss of generality in passing from Chu(V, k) to Chu(Set,K) appears to be
negligible in practice in comparison with what is lost in the passage from V (any
symmetric closed category with pullbacks) to Set (a very constrained instance
of such a V ).

This model also picks up where we left off in [Pra93a], where we proposed
linear logic as an extension of quantum logic that equipped it with a dynam-
ics, a glaring omission from Birkhoff and von Neumann’s original formulation
[BvN36]. At the end of that paper we briefly hinted at “partial distributive
lattices” as a potentially superior model to the state and event spaces we had
presented as a model of our extension of quantum logic:

In a separate paper we will describe a uniform generalization of state
and event spaces to a single category PDL of partial distributive
lattices. Informally a PDL is a distributive lattice where any given
meet or join may or may not be defined. Maps of such preserve those
meets and joins that exist.

The “will” was rather optimistic and should have been “hope to,” given that
at that time we had only a hazy concept of this notion, and no nice properties.
Chu spaces turn out to be an ideal realization of that concept, as well as a
natural limiting case of the progression of the various European automaton
models of the 1980’s.

Besides being simple to define, Chu spaces are also definitionally robust
in having (at least) three strikingly different definitions, with each having a
situation for which it is the most appropriate of the three. Moreover they
create certain links between automata theory, model theory for first order logic,
and (the theme of this paper) quantum mechanics.

The objects of this model can be understood as binary relations from an
“antiset” to a set. Complementarity is then found in the duality of antisets and
sets, while uncertainty derives from the “area” of each object, which can be
understood as a sort of phase space.
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This notion also clarifies the connection between Stone duality and Pon-
trjagin duality, which both rely on the same basic mechanism with the former
based on the two truth values and the latter based on the unit circle. Pontrjagin
duality accounts for the Fourier transform; Stone duality is its counterpart for
logic, and the associated transform is the contravariant power set functor. “Un-
certainty” is intrinsic to the Fourier transform; complete certainty transforms
to complete uncertainty. The Heisenberg uncertainty principle ∆p.∆q ≥ h̄ of
quantum mechanics is a specialized instance of this phenomenon.

3 Definitions

3.1 Basic Notions

Vector spaces are defined by first fixing an arbitrary field k, which then deter-
mines the category of vector spaces over k and their operators (linear transfor-
mations). Chu spaces are similarly defined by first fixing merely an arbitrary
set K. A Chu space A = (A,X, |=) over K consists of sets A and X and a
function |=: X × A→ K. The binary application |=(x, a) may alternatively be
written as x |= a and pronounced “x satisfies a”, or as a=|x and pronounced “a
holds in x”. The dual of (A,X, |=), written (A,X, |=)⊥, is simply its transpose
(X,A,=|), itself a Chu space.

The rows of (A,X, |=) are the functions ρx : A → K, one for each x ∈ X,
defined by ρx(a) = |=(x, a). This makes ρ itself a function ρ : X → KA

(KA is synonymous with A → K, the set of all functions from A to K). An
extensional Chu space is one for which ρ is injective. A normal Chu space is one
for which ρ is the identity function on a subset X ⊆ KA; the data for a normal
Chu space may be abbreviated to (A,X), the binary application |=(x, a) then
being understood as unary application of x to a. The dual notions to “row”
and “extensional” are respectively column and T0 (since topological spaces are
T0 just when their Chu realizations are T0).

The smallest nontrivial choice of K is the set 2 = {0, 1}. This choice is of
use for propositional logic, Stone duality, and automata theory. A considerably
larger set is |C, the complex numbers, used in signal and image processing,
Pontrjagin duality, and quantum mechanics. Chu spaces tie together these and
other areas, including point set topology, Scott domain theory, vector spaces,
and relational structures of the kind interpreting first order logic, using less
machinery altogether than any one of them individually (due in effect to the
nontrivial overhead of identifying any given subcategory of ChuK). In addition
Chu spaces are very well organized, being furnished with the structure of a
category that is bicomplete, symmetric monoidal closed, self-dual, concrete (A),
and coconcrete (X), about as much fundamental structure as one could ever wish
for in a category. This structure is preserved to varying degrees in each of these
application areas; typically self-duality and the natural closed structure are lost
(which quantum mechanics goes to considerable lengths to regain!), and often
cocompleteness as well.
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3.2 Behavioral Interpretation

The interpretation of Chu spaces relevant to this paper, both for automata
theory and quantum mechanics, is as an automaton with state set X. Such an
automaton may be viewed either declaratively or imperatively.

In the declarative view, each a ∈ A is an atomic proposition or propositional
variable, and x |= a gives the truth value of that proposition in state x, as
an element of K. Propositional Boolean logic obtains for K = 2, where a
proposition is either true or false in any given state. A normal Chu space may
then be understood as an (abstract) Boolean proposition ϕ(A), with its rows as
its satisfying assignments. This proposition asserts all and only the properties of
A, understood as all Boolean consequences of ϕ(A) expressible with the variables
of A. Each property is determined by those missing rows of A that are restored,
whence A must have exactly 22A−X properties. Quantum mechanics obtains
for K = |C, where an atomic proposition such as “spin up” or “spin down” or
“energy level 3” has a complex “truth value” at position x in space (Heisenberg)
or space-time (Schrödinger). Hilbert spaces are a tiny fragment of ChuC ; our
thesis however is that the proper way to shrink ChuC is not by taking either
subobjects or quotients of ChuC (the self-duality of Hilbert spaces means that
the two approaches are the same) but by taking K � |C.

In the imperative view a becomes an event. The notion of event is a delicate
one, sitting between the two closely related notions of action and transition.
An event is the performance of an action. Thus whereas a given action may
happen repeatedly, a given event can happen at most once. A labeled Chu space
associates with each event the action of which it is an occurrence; we shall not
say any more about labeled Chu spaces. See [Pra94, Gup94] for a considerably
more detailed treatment of automata and schedules, including the use of partial
distributive lattices or two-toned Hasse diagrams to depict Chu space automata
and schedules graphically. This topic is of considerable interest to us and we
wish we had more space to go into it here.

A transition is a relationship between two states. For K = 2 we say that
there is a transition x→ y from x to y just when for all a, if x |= a then y |= a.
Thus the notion of transition expresses exactly the idea that what is done is
done, there is no taking back an event. Transition is a preorder (transitive
reflexive relation) on states, and is a partial order (antisymmetric) if and only
if the Chu space is extensional; for a normal Chu space it is the inclusion order
on states as sets of events. The effect of transition x → y is the set of events
that happened during that transition, namely y|= − x|=. An atomic transition
is one with a singleton effect: exactly one event happens.

For K = 2 there is an algebraic expression for the transition relation in
terms of ordinary binary relation composition of Chu spaces. Writing → for
the transition relation on X and R† for the complement of the converse of any
binary relation R (that is, uRv just when not vR † u), the reader may verify
that → = (|=; |= †)†. The operation R† plays the exactly analogous role for
binary relations that conjugate-of-transpose does for vectors and matrices over
|C in such expressions as 〈ψ|ψ〉 as a between-states relationship computed by
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summing over the atomic propositions or attribute-outcomes of ψ.
The expression (R;S†)† plays a fundamental role in the calculus of binary

relations. It is called the right residual of R by S, standardly notated S\R. It
has the property S; (S\R) ⊆ R, and is the greatest relation (under inclusion)
with that property. If we think of ; as a (noncommutative) conjunction and ⊆
as logical entailment |=, this property amounts to modus ponens, and makes
S\R the corresponding intuitionistic implication, S implies R.

The above expression for → then becomes |= \ |=, making it the right
residual of |= by itself. Elsewhere [Pra90] we have shown that the equation
(R\R)∗ = R\R, namely that R\R is its own reflexive transitive closure (the
meaning of * here), amounts to an induction axiom leading to a complete and
finite equational axiomatization for the theory of regular expressions expanded
with right residuation and its dual left residuation. This creates a remarkable
connection between the equational logic of the iterative behavior of finite state
automata and the form 〈ψ|ψ〉 basic to the computation of probabilities or corre-
lations between states. This connection urgently needs to be developed further.

It should now be clear that even though an event can only happen once, it
may nevertheless be associated with many transitions. We think of the event
as a physically real thing and the many transitions it participates in as mental
abstractions in our interpretation of what is going on, distinguished according
to the states we are contemplating at the time this event becomes relevant.

The QM Interpretation Problem. Lifted to K = |C, this interpretation of
events in terms of transitions suddenly becomes a much more intricate one.
We claim that the interpretation problem for quantum mechanics resides in the
difficult notion of state transition. There is nothing wrong with Schrödinger’s
model by itself, which we can understand simply as a Chu space. What is
impossibly complicated is the notion of transition as a concept in its own right.
We understand intuitively what we mean by transition, and for Chu spaces
over 2 this intuition is rendered concrete in a reasonably coherent way when
we associate each state transition x → y with a set of events. General state
transitions in Hilbert space however are a conceptual abomination: they entail
arbitrarily much “phase entanglement.”

The interpretation problem for quantum mechanics is the problem of relating
the obscure notion of transition as understood quantum mechanically to our
perceived notions of transition, which somehow we do not find obscure even
though the logic of quantum mechanics tells us that we should. The basis for
perceived transition is perceived state, which is different from the quantum
notion of state as intensionally a point x in space (or x, t in space-time) and
extensionally the value ψ(x) of the universal wavefunction at that point.

While this should be a reasonably clear statement of the interpretation prob-
lem, we regrettably have little to add to the many proposed solutions besides
the following. Our own position is on the pessimistic end of the spectrum of
interpretations, namely that we have evolved to perceive only computationally
tractable approximations to state and transition, and that the rest, von Neu-
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mann notwithstanding, constitutes hidden variables.3 Such an approximation
is more or less nicely understood as a mixed state in the sense of a distribution
over Hilbert space, but the domain of mixed states as “blurry” points of Hilbert
space makes this less rather than more. Not only is the appealing algebraic
structure of the domain of pure states as the points of Hilbert space lacking,
but the blurring, whatever it is exactly, is apparently not itself a solution to the
Schrödinger wave equation, and may be many other bad things besides. This
all leads to seemingly paradoxical faster-than-light correlations between spins of
formerly associated particles, violating the Bell inequalities and confusing even
such luminaries as Einstein.

A more optimistic resolution would be to show that quantum mechanics
can be as well or better understood with K = 4 or 3 or even 2, and that the
surprising interpretational paradoxes of quantum mechanics are merely approx-
imations to ordinary (but still surprising) chaos but in the discrete setting of
say Chu2. Current experimental research into the complexity of Boolean satis-
fiability (NP) hints at severe chaos for satisfiability of conjunctive normal form
formulas with certain critical numbers of variables per clause. This would leave
unchanged our hypothesis that we only perceive the computationally tractable
approximations to states, while however replacing the exotic notion of phase
entanglement complexity by the more conventional combinatorial complexity of
ordinary chaos of dynamical systems but with discrete Chu spaces replacing the
continuous spaces of classical mechanics. It is hard to believe that nature drew
up the complex numbers in their entirety before embarking on the Big Bang.
Better that they evolved later, and better still that our theory of evolution ad-
mits of a simplification in which complex numbers are dropped other than for
the purposes of elegant approximations to the real truth.

3.3 Chu Transforms

A Chu transform (f, g) : (A,X, |=) → (B, Y, |=′) consists of functions f : A→ B
and g : Y → X such that for all a ∈ A and y ∈ Y , f(a)=|′y = a=|g(y),
the adjointness condition. If we write the first expression as f ; =|′ and the
second as =|; g ,̆ in each case thinking of the semicolon as a form of composition,
and thinking of g˘ as a sort of “antifunction,” we may express the adjointness
condition as the commutativity of

A
f−→ B

=|
y y=|′

X
g˘−→ Y

The case K = 2 makes this a diagram in the category Rel of sets and their
binary relations, with g˘ being the binary relation obtained as the converse of

3Von Neumann’s “no-hidden-variables theorem” excludes only variables postulated to ac-
count for the “missing information” associated with Heisenberg uncertainty, and imposes no
other limitation on how uncertain a mixed state can get.
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g viewed as a binary relation. For K = |C we may take semicolon to be matrix
multiplication, f to be an A × B matrix over |C having one 1 per row and the
rest 0, and dually g˘ to have one 1 per column. Then f ; =|′ becomes the product
of an A×B matrix with a B×Y matrix while =|; g˘ is that of an A×X matrix
with an X ×A matrix, both products yielding an A× Y complex matrix.

It should be clear from the definition of Chu transform that duality of Chu
spaces is a true categorical duality, in the sense that it sends Chu transforms
(f, g) from A to B to their dual transforms (g, f) from B⊥ to A⊥. This makes
the category ChuK of Chu spaces and their transforms a self-dual category.

It is tempting to interpret an X ×A Chu space over |C as the usual matrix
representation of an operator from |CX to |CA. However no basis has been
singled out here, and |= is not an operator but rather a form of inner product
for a generalized vector space V over K, with point set A and dual point set
X (the functionals from H to K). As observed by Lafont and Streicher [LS91],
such a Chu space, or game as they call it, is an ordinary vector space just
when K is the underlying set of a field k, A is the underlying set of a vector
space V over k, and X consists of the functionals on V , meaning the operators
from V to k as the one-dimensional vector space over k. The Chu transforms
between two vector spaces U, V realized in this way as Chu spaces then have
as their f component exactly the operators f : U → V . This is the realization
of the category Vctk of vector spaces over k as a full, faithful, and concrete
subcategory of ChuK .

For finite-dimensional vector spaces X is itself a vector space with A as its
functionals to k, namely the dual space V ∗. Quantum mechanics covets this
duality but sets no intrinsic bound on the number of energy levels of an electron
(a discrete set) or the number of positions of a particle (a continuum). This
motivates the notion of an inner product space, namlely a vector space over |C
having a self-adjoint realization as a Chu space (A,A, |=). By self-adjoint here
we mean a |= b = (b |= a)∗ (complex conjugate) and a|=a > 0 for a not the
origin, taken to be the squared length ‖a‖2 of a. This furnishes V with a metric
d(a, b) = ‖a − b‖ as usual making V a metric space. The Chu transforms of
such are the unitary operators, that is, the isometric (length-preserving) linear
transformations.

A Hilbert space H is an inner product space which is complete in the sense
that all Cauchy sequences converge, that is, when H contains the limits of
all sequences in H the diameter of whose suffixes ultimately vanishes. There is
only one countably dimensioned Hilbert space up to isomorphism, and its points
are equally nicely represented either as the set of all square-summable complex
sequences, each being a row of the Chu space restricted to those columns indexed
by suitable basis vectors h0, h1, h2, . . . of H, or the set of all square-integrable
complex functions over H, each being an unrestricted row of the whole Chu
space. The Chu transforms of Hilbert spaces realized as above as Chu spaces
are automatically continuous in their metric, as an obvious consequence of being
unitary.

A rigged Hilbert space is obtained from a Hilbert space as a subset of its
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rows, namely those rows which when restricted to basis vectors (for any choice
of basis) remain square summable when the square of hi is scaled by in for
any integer n > 0 remaining fixed over the summation. The missing rows
remain as columns, which are then to be understood as points infinitely far
from the origin and constituting a completion at infinity of the original Hilbert
space. (This is analogous to compactifying the real line by adding the points
∞ and −∞, bearing in mind that the above construction yields no new such
points when H is finite-dimensional to begin with.) Rigged Hilbert spaces have
the pleasant property that the set of eigenvectors of every operator span the
space, permitting any operator one might draw out of a hat to be meaningfully
understood as a real-valued physical variable.

4 Universality of Chu Spaces

We say that a concrete category D (such as groups, Hilbert spaces, etc.) realizes
a concrete category C when there exists a functor F : C → D that is full and
faithful and which commutes with the respective underlying-set functors of C
and D. The category Strκ of κ-ary relational structures and their homomor-
phisms where κ is any ordinal is a universal category for mathematics to the
extent that it realizes all categories definable by first order logic in a language
with relational symbols of total arity κ and whose homomorphisms are assumed
to as usual for any first-order relational structure. Groups, lattices, and Boolean
algebras appear at κ = 3, monoids, rings, fields, and categories at κ = 4, etc.

The significance of fullness and faithfulness here is that they ensure that the
representing object F (c) transforms in the same way that c does. Concreteness
means that c and its representation F (c) have the same underlying set, an es-
sential missing detail of previous such universality results [HL69]. For example
groups with carrier (underlying set) G are realized as ternary relational struc-
tures on G (whence concreteness), the ternary relation being xy = z; monoids
are quaternary because the unit must be given explicitly, in groups it can be read
off from the multiplication and the homomorphisms preserve it automatically.

Elsewhere [Pra93b, p.153-4] we have proved that the self-dual category
Chu2κ of Chu spaces over the power set κ = {0, 1, . . . , κ − 1} realizes Strκ.
This makes the hierarchy of categories of Chu spaces at least as universal as
first-order definable mathematics. We have recently shortened and clarified
that argument, and have squeezed the full proof onto a single page, available
electronically as /pub/uni.tex.Z on boole.stanford.edu.

5 Pontrjagin Duality

The representation of the preceding section is somewhat arbitrary. While it does
the claimed job, one would hope that it preserved other worthwhile structure
when present. Here we describe one instance of a quite different representation
that is a better fit to the self-duality of Chu spaces.
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We know of no reasonable duality theorem for general groups themselves,
where instead one resorts to Hopf algebras. But there is a beautiful duality the-
ory for locally compact Abelian groups, namely Pontrjagin duality; indeed this
category is self-dual. This particular self-duality gets to the heart of standard
quantum mechanics as based on complex numbers, being the algebraic basis for
both the discrete Fourier transform (finite or infinite) and the continuous. Its
exact counterpart for logic is Stone duality, where K = 2, which we do not treat
here. The following requires no knowledge of groups beyond the definitions of
group and group homomorphism.

Given any two abelian groups G and H, the set HG of all group homo-
morphisms f : G → H can be made a group by pointwise combination, i.e.
(f · g)(x) = f(x) · g(x). Let T denote the “circle” group of complex numbers
on the unit circle under complex multiplication. Define the dual of a group
G (not yet a true dual) to be the group TG. This operation on groups, col-
loquially called “homming into” T , is a functor D : AbGrpop → AbGrp,
that is, a contravariant functor on the category AbGrp of all Abelian groups.
The significance of being a functor is that it maps not just groups but group
homomorphisms (and preserves their composition). The significance of being
contravariant is that it reverses the homomorphisms. Thinking of the homomor-
phisms of AbGrp as its highways and byways, namely how groups get around
in AbGrp, we see that duality has the feel of “looking in the mirror,” in that
it reverses the direction of the highways.

Now show that the set GZ from the group Z of integers to an arbitrary
abelian group G is isomorphic to G when the homomorphisms are made a group.
(Hint: where can f send 1? Where must everything else go?) Now take G to
be the “circle” group T of complex numbers on the unit circle under complex
multiplication to yield TZ ∼= T . Thus the circle group is the dual of the integers.

Now duality ought to be a symmetric relationship, for which we require
TT ∼= Z. To see that this is indeed the case, observe first that any group
homomorphism f : T → T must be a “speedup of travel round the circle,”
definable formally by f(eiθ) = eisθ for some real s constituting the speedup.
We then have e2πis = f(e2πi) = f(1) = 1, whence 2πs is an integer multiple of
2π, i.e. s is an integer. Hence TT ∼= Z, completing the argument that the group
of integers and the circle group are Pontrjagin duals of each other.

Now this duality underpins that between Heisenberg’s matrix mechanics and
Schrödinger’s wave mechanics for the periodic case, as arising in situations of
resonance. Heisenberg’s discrete particle-oriented matrices are indexed by the
integers, while Schrödinger’s waves oscillate smoothly by going around the unit
circle. The aperiodic case corresponds to the Pontrjagin duality of the additive
group of reals with themselves, a self-duality. Another self-duality is that of
the cyclic group of any order (finite by definition), which arises in connection
with particle spin, which can have only finitely many values, namely 2s+ 1 for
a particle of spin s: 1

2 for electrons, 1 for photons, etc.
Now it turns out that the subcategory of AbGrp consisting of the locally

compact Abelian groups (compact means essentially that its dual can be com-
pletely described by a (in general infinite) set of finite statements) is self-dual

13



with respect to the duality of homming into T , making homming into T a true
dual (which we did not have until now). Such a category can be realized in a
category of Chu spaces along quite different lines to our previous representation,
in such as way as to preserve the duality. Since duality in Chu spaces is always
matrix transposition, this means that in this realization, the duality of interest
is realized simply as transposition!

The representation is as follows. Take the realizing category to be ChuT

where T is simply the set of complex numbers on the unit circle. Realize the
group G as the normal Chu space (G,TG) where G is taken to be the underlying
set of G and TG is the set of group homomorphisms from G to T . A Chu trans-
form between two such representations is then exactly a group homomorphism
between the corresponding groups. Hence Chu duality is AbGrp duality, that
is, this realization preserves the self-dual structure of AbGrp, in the sense of
mapping G and its dual to a Chu space and its Chu dual, i.e. its transpose,
obvious from the realization as (G,TG). What is easy about this is the duality
as transposition, what is interesting is that this duality is also a representable
duality in Chu (reflecting that in AbGrp), with (T,Z) as the dualizing object
in Chu realizing AbGrp’s T (since TT ∼= Z).

6 Uncertainty

We give a naive argument that the joint uncertainty of a Chu space and its
dual satisfies ∆x∆a ≥ h̄ for a plausible interpretation of these three symbolic
quantities.

The essential idea is to measure the visibility or otherwise of a normal Chu
space A = (A,X) by the number of Chu transforms from it to the Chu space
(K, 1) (when K = 2, the two-element Boolean algebra), which we may regard as
the possible states it can be observed in. If A is a set, corresponding to X being
KA, we think of the points of A as being independent. This is the situation
with the set of pixels on a computer screen, which can display all possible black-
and-white images as its messages to the user. If however A has some structure,
e.g. a linear ordering imposed on those pixels, the variety of possible messages
can drop sharply; we then think of this additional structure as creating a sort
of veil that defocuses the screen, making it less distinct. This gives a primitive
model of the intuitively plausible idea that while one can see straight through
an idiot, deeper thinkers are harder to understand.

But in a Chu space, X indexes the possible messages to (K, 1), whence there
can be at most |X| (exactly |X| just when A is extensional). The reciprocal
1/|X| of the size of the message space then gives the intrinsic uncertainty in a
message from A, which we call ∆x. Similarly 1/|A| bounds from below is the
intrinsic uncertainty in a message from the dual A⊥, which we call ∆a.

The amount of information in a Chu space is bounded above by the number
of bits in it (assuming K = 2), which is just |X| × |A|. The reciprocal of that
quantity then measures the intrinsic uncertainty of that Chu space as a whole,
ignoring its form factor, which we shall call h̄. Relative to that uncertainty we
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then have ∆x∆a ≥ h̄.
If the universe were a single Chu space, which fits well with the Schrödinger

picture in which it is a single wavefunction, both h̄ and the uncertainty principle
would arise in this way. In this case we are talking about uncertainty of x and
a for the whole universe, which may or may not be a square Chu space, but
the same idea obtains for neighborhoods of the universe, some of which will
be highly rectangular, i.e. have a relatively precise position in space-time or
have a precise value for momentum-energy. See [Pra94, §5] for a more detailed
discussion of these ideas.

7 Conclusion

Chu spaces are the latest in a series of models addressing foundational concerns
about the nature of concurrent behavior in the context of specification and im-
plementation of concurrent hardware and software, as well as other systems
found in e.g. telecommunications, manufacturing, transportation, and the ser-
vice sector. They are particularly attractive with regard to the “total package”
of requirements for such a model, namely simplicity, generality, and structure.

An unexpected spinoff of meeting all three of these needs simultaneously has
been that they exhibit the basic phenomena of quantum mechanical behavior
about as well as could be expected of a model based on truth values (the case
K = 2) rather than complex numbers. When K is the set of complex numbers,
the universality theorem for Chu spaces suggests that they may realize the
objects not only of quantum mechanics but also of quantum electrodynamics.
A yet more speculative possibility is that they may also realize facets of physics
not fully accounted for by quantum mechanics and electrodynamics alone, in
particular particle physics and quantum gravity.

Whether all this requires K to be infinite is a very interesting question. It
may well be that K = 4 is already generous, and that the seeming dependence
of quantum phenomena on as large a set as the complex numbers is only a
consequence of finding numbers like 2256 best accommodated by approximating
them with infinity. No combinatorialist should have any qualms with this ap-
proximation; the combinatorics of propositions about sets is already quite hard
enough with sets of size 50.
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