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A b.~tract. This paper describes a method of state variable assignment for asynchronous 
sequential switching circuits. The method yields state variable assignments with a view 
towards minimizing the number of state variables and maximizing the operating speed of 
the circuit. A systematic procedure is presented. An upper bound on the number of state 
variables for a general r-state circuit is included. The advantages and limitations of the 
method are discussed. 

]. [ntroduction 

Sequential switching circuits are eommonly classified as being either syn- 
chronous or asynchronous, depending upon whether or not the operations are 
synchronized with some source of fundamental  frequency which regulates the 
entire circuit. The  synchronization signal is generally called the clock of the 
circuit. In  a synchronous circuit, it is possible to predict the state of the circuit 
at  the time of any given clock period if one knows the initial state of the circuit 
and its logical characteristics. However,  in an asynchronous circuit it is not  
generally possible to predict the state immediately resulting from a previous 
state from a knowledge of the logical characteristics of the circuit alone. The  
resulting state may  also depend upon the relative speeds of some of the logical 
elements which constitute the circuit. 

In describing the terminal action of a sequential switching circuit, one method 
commonly used is a flow table [1-3]. The columns of a flow table are associated 
with the possible input states to the circuit and the rows represent internal 
states (see Fig. 1). The entries in the table indicate the next internal state and 
the output  state which result h'om the given input and internal states. For  
example, the underlined entry in Figure 1 indicates tha t  if the input state is 
1l and the internal state is 2 the output  state is now 01, and the next internal 
state will be 2 (if the input remains 11). 

If the internal state component  of a flow table entry is found in a row as- 
sociated with the same internal state, the total  state (combination of input and 
internal state) is a stable one, and the entry  may be circled to denote this faet. 
Once circuit action reaches a stable total  state, no further changes of internal 
state can occur until  the input state is changed. 

An important  step in carrying out the synthesis procedures for sequential 
circuits is to assign to each row of the flow table of a unique state of a set of binary 
valued state variables. Once this step is completed, the design problem becomes 
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F~c. 1. A completely specified flow table 

identical with the design of a combim~tional switching circuit. We consider in 
this paper  a method of assigning state varia, bles for asynchronous circuits with 
a view towards minimizing the number  of s tate  variables and maximizing the 
operating speed of the final circuit. 

'2. State Val,iabZe Assig:1~ment ProbIen~ 

tn  an asynchronous circuit, the assignment of" s tate  variables must be made 
so tha t  each internal  transit ion always leads to a definite and appropriate stable 
state regardless of the relative speeds of the circuit elements (we restrict our 
effort here to flow tables without  cyclic state variable actions).  

Cons:ider the case of the 4-row flow table in Figure 1. There  are four internal 
states to be distinguished. At least log~4 ( =  2) state variables are necessary. 
In general, for an r-row flow table, at  least log2r state variables are necessary. 
Let  S~ be the smallest integer meeting the condition So => log2r for a given r. 
We will then have available 2 s° states to assign to r rows. The  requirements of 
a flow table are satisfied if each inter-row transit ion is accomplished either by 
a change of internal state in which only one state  variable changes, or by a 
change of internal state in which a multiple change of state variables always 
leads to a definite destination. 

A race occurs whenever a required internal transition involves the change of 
two or more state  variables simultaneously. If the result of a race may  lead to 
false operation of the circuit, we designate it as a critical race. In ternal  states 
which differ in only a single variable are said to be adj~ent states. One solution 
to the problem then is to assign state variables so tha t  each inter-row transition 
is repres~ented by  adjacent  states. When this type  of assignment is chosen, we 
call the circuit lotally sequential. In  a total ly sequential circuit, only one state 
variable is excited at  any  t ime during a transition. If  we define a unit time as 
the t ime required for one state variable to change, this t ime being assumed to 
be uniform, then an internal transition in a total ly sequential circuit will take 
7' units of t ime when 7' s tate  variables are required to change. 

Another  type  of s tate  variable assignment is to allow multiple changes of 
variables. In  this eas~ we must be certain tha t  every  race condition is non- 
critical. The  internal transition speed of this type  of state variable assignment 
may be the same as tha t  of a circuit where each internal transit ion requires the 
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change of only a single state variable, because we have provided in this case all 
possible noncritical races for each transition. In  other words, if all races are 
noncritical we can have a "free-running" condition in internal transitions. 
Concurrently excited state variables may  thus be relaxed in one step. The 
following sections of this paper describe a method of this type of state variable 
assignment. 

3. Assignment Method 

Methods for assigning state variables so that  the resultant circuit is totally 
sequential have been well known [1, 3]. We outline here a procedure to assign 
state variables so that  concurrent operations of state variables are provided to 
increase the speed of the circuit [4]. 

We restrict  here our effort to flow tables without cyclic state variable actions. 
Indeed, when cycling occurs, the entire set of states involved in the cycling 
action can be treated as one stable state and then separated with the aid of a 
suitable additional number  of state variables. This procedure may require more 
state variables than would a direct a t tack on the entire problem, but  it also 
often leads to a much simpler final circuit. 

In  tile text of this paper, the symbol [x] is used to denote the nearest integer 
that  is larger than or equal to x. 

Assume tha t  we have an r-row flow table. Let  r~ and rj be two arbi t rary  
rows in the flow table. Let  the state variable assignments for r~ and rj 

i i j ] be (y~ y2 • . .  y,~ ) and (yl y~ . . .  y j ) ,  respectively. Suppose that  a transition 
exists between these two rows. Assume tha t  both y~ and y2 change in this transi- 
tion, i.e., y~ ~ y j ,  y2 ~ ~ y j .  I t  is simple to show that  there will be no critical 
races involved in this transition if ~ ~ ~ s J j k ~ k y~y4 " '"  Y~ = YaY4 " " Y ~  ~ y~y4 " '"  Y,, 
componentwise, for k ~ i ~ j. 

THEOREM 1. [n a flow table, i f  we consider each column separately and assign 
a sufftcient number of state variables for each column so that no critical races exist 
in any column, then the comb#ted state variable assignment, i.e., the assignment 
obtained by putting together all the individual assignments for the various columns, 
has no critical races. 

PaooF. Consider the flow table shown in Figure 2. Let  us examine the 
column for input X~.. There are three stable entries and one unstable ent ry  in 
this cohmm. To assure no critical races for transitions within this colunm we 
must use two state variables to distinguish the three stable states. Generally, 
[logan] state variables are required for a cohmm with n stable entries. I f  we 
use this sufficient number of state variables for each column considered sep- 
arately, then the assignment obtained by  combining all the individual assign- 
ments has no critical races, because 

(1) if a transition exists between rows rl and r2, then their assignments will 
contain a nonchanging par t  that  is different from the corresponding part  in any 
other row assignment in the flow table; 

(2) every  transition within a column contains a different nonchanging part  
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FIG. 2. Typical column of a flow table 

in the assignments for the rows involved and therefore the set of intermediate 
unstable states in each transition is disjoint. 

Definition i .  A table listing tile state variable assignment for each row of 
the flow table is called an assignment table. This table is obtained, as outlined 
above, by  considering each column separately. The assignlnent table is an array 
of O's and l 's, and 4,'s (don ' t  cares) if the flow table is not  completely specified. 
Each row represents the state  variable assignment for the corresponding row 
in the flow table. A column of the assignment table contains one ent ry  from each 
row of the table. I f  there are k s tate  variables, then there are k columns. 

Definition 2. Given a column S~ of an assignment table, we define the com- 
plement  of S~, denoted by  S~, as the column obtained by  changing all the 
0's in S~ to l ' s  and all the l ' s  to O's. The ¢'s, if any, are not  affected. 

The  following two definitions are due to Dolot ta  and MeCluskey [5]. 
Definition 3. Given two columns, S~ and S j ,  S~ will be said to include Si if 

and only if Sj  agrees with S~ wherever the lat ter  is 1 or 0. We write this relation 
as S~ ~ $3 • I t  is obvious tha t  S~ has at  least as many  ¢'s as S~. 

Detbnition ~. Column S~ will be said to cover column Sj  if and only if either 
S i p  S ~ o r S j D  S~. 

T~EO~E:~ 2. Wherever S~ covers Si we may always discard S j .  
PROOF. First consider the ease where Sj  D S ; .  I t  is obvious that  we may 

discard S j .  When Sj  D S~, we can always re-assign the state variables for the 
corresponding column in the flow table so tha t  the S~ column in the assignment 
table is complemented. 

Definition 5. Given two columns, S~ and Si ,  there will exist an intersection 
column of S~ and Ss if and only if S~ and Sj  agree wherever both S~ and Si are 
1 or 0. This intersection column agrees with both S~ and Sj where they  agree 
with each other, but  agrees with either S,: or Ss when the other  has entries ¢. 

Definition 6. In  a column of a flow table, all /c--1 unstable entries which 
eventual ly lead to the corresponding stable entry,  together  with the stable 
entry,  form a l;-set. 

We now outline the procedure for making the assignment. 

(i) Construct a transition diagram of the given flow table by representing each rowby 
a node and each inter-row transition by a line joining nodes. Solid lines are used to repre- 
sent those transitions which must be accomplished by a direct transition, i.e., the unstable 
entry must go to the stable state directly. Broken lines represent the transitions for which 
~here are alternate routes. 

(2) If the transition diagram is a complete graph, i.e., every pair of nodes is connected 
by a line, make the assignment according to Theorem 3 described below. Otherwise, 
continue to step 3. 
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(;~) Make a state variable assignment for each column of the flow table. The objective 
is to o/)t~fi~ an assignment t~tble that can be reduced by Theorem 2. This may be accom- 
plished by the following rules: 
(a) Start on a column containing the largest number of stable states. Assume that there 

:~re M; st,,'~blc states in this column. [log2Mi] state variables will be used. Assignment 
will be made in this column so that a maximum number of direct transition require- 
ments in the transition diagram is satisfied. Assign at first any arbitrary combination 
to ~ stable state in this column. Then focus attention on the states in this column 
which are connected to the first stable state by transition requirements in all col- 
umns. Then assign these states to be adjacent to the first one, whenever possible. 
Repeat this until all stable states in this column are examined. 

(b) Unstable states in a column will have the same binary codings as the stable states to 
which they are terminated. Utilize any extra combinations provided by [log=Md 
state variables for elements in a k-set, i.e., assign adjacent codings to the unstable 
states that lead to the same stable state. This may generate covering relationships 
for state variable minimization. 

(e) At this point switch to a different column in the flow table. The number of stable states 
in this column is less than or equal to that in the first column. Again use [log2Md 
state variables. If the number of stable states in this column is less than M~ , we 
may have a large number of extra combinations to work with. The strategy to apply 
here is to make assignments such that a maximum duplication of columns exists in 
the assignment table. A rule for this is to use identical codings, whenever possible, 
for entries in the same row of the flow table. 

(d) For each of the columns containing only one stable entry we can safely set up races, 
or any other transition patterns which eventually reach the row containing the 
stable entry. Therefore, we can ignore such columns. 

(4) Discard column S~ in the assignment table if it is covered by some column S~ . 
(5) If intersection exists between two columns, replace both columns by the intersec- 

tion. 
(6) Compare the number of columns in the reduced assignment table with the upper 

bound given by Theorem 3 described below. If this number is greater than the bound, 
discard this assignment and use the assignment generated by Theorem 3. 

The  p rob l em of s ta te  var iab le  ass ignment  can  be viewed as a m a p p i n g  of the  

rows of a flow table  in to  the  vert ices of a u n i t  n -d imens iona l  cube.  A set of 

vert ices f rom a n  n -cube  is said to be equidistant ff the  d is tance  be tween  every  

pair  of ver t ices  hi this  set is t he  same. 

We now show t h a t  equ id i s t an t  error-correct ing codes m a y  be appl ied to  

assign s ta te  var iab les  for a n y  general  flow table .  We  es tabl ish  an  upper  b o u n d  

on the  n u m b e r  of s ta te  var iab les  needed for a n y  2m-row flow table.  
THEOREM 3. A state variable assignment in which the row assignments cor- 

respond to an equidistant error-correcting code contains no critical races. 
PtmOF. On an  n-cube,  there  are 2 m equ id i s t an t  vert ices wi th  m u t u a l  d is tance  

d = 2 ~-~ for n = 2 "~ - -  116]. Suppose there are n = 2 m --  1 s tate  var iables  a nd  

the d is tance  be tween  each pa i r  of s tates is d = 2 ~-~. T h e n  the t r ans i t ion  f rom 
a n y  a r b i t r a r y  s ta te  r~ to a n y  o ther  s ta te  re is the  change of d s ta te  variables .  

Consider  ano the r  a rb i t r a ry  s ta te  ra.  This  s ta te  is a t  a d is tance  d from bo th  
r~ and  r2. Suppose  a crit ical  race in  the t r ans i t i on  f rom r~ to r2 a nd  invo lv ing  

s ta te  ra exists. T h e n  the  n - d  s ta te  var iables  which do no t  change in  r~ a n d  7~ 
mus t  have  the  same va lues  as the corresponding var iables  in ra. Therefore ra 

canno t  be a t  a d i s tance  d f rom both  r~ and  r2. This  cont radic ts  the hypothesis .  



214 c . N .  ~Iu 

Now it remains to check if the transit ion between any  pair of rows, say ~: 
and re, will race critically with the transit ion between another  pair of rows, 
say ra and r~. We mus t  find out ff any  of the possible in termediate  states be. 
tween r~ and r2 would appear  also between ra and r4, or a n y  other pair' of rows. 
We know tha t  an equidis tant  code with distance d = 2 '~'--* is capable of col 
re t t ing  2 ' ' -e-  1 errors and detecting 2 '~'--2 errors. Therefore any  intermediate 
sta.tes a t  distances less than or equal to 2 " - 2 - 1  f rom either rt or r2 c~m~ot appear 
between any  other pair  of rows. 

We now show that. the in termediate  states at, a distance 2 "~-e between r~ and 
re cannot  appear  between any  other pair  of rows. Let  V be a ver tex a[. a distance 
2 ' ' -e f rom both  ','~ and re. Then we can represent  V as shown in Figure 3. If 
g is also at, a distance 2 "-2 f rom another  pair  of rows, ra and r4, then g must 
contain 4 X 2 "~-2 bits. Therefore a n y  intermediate  s ta tes  between a pair of 
rows cannot, appear  between any  other  pair  of rows. 

Methods  for generating equidistant  error-correcting codes are well-known 
in the li terature [7]. Since an equidistant  error-correcting code of 2"  message 
words requires 2 ~ - 1 bits, the number  of s ta te  variables required for a flow table 
of 2 "~ rows will be 2 "~ - 1. Note  tha t  this number  of s ta te  variables is sufficient 
for any  general 2'%row flow table. I t  is impor tan t  to note t ha t  in this assignment 
all noncritical races in a transit ion are used to increase the speed of internal 
transitions. 

4. IlStstra~%,e Example 

To make  this presentat ion more complete, we offer the example shown in 
Figure 4. First  of all, we draw the transit ion d iagram of this flow table (Figure 
5). There  are three columns with four stable states in this flow table. Now focus 
a t tent ion on the problem of assigning s tate  variables for one of these columns. 
For  the 00 coturm~, two s ta te  variables am required. Examina t ion  of the transi- 
t ion d iagram shows tha t  ® should be made adjacent  to (D, and ® should als0 
be made adjacent  to (D. Now make the assignment as follows: ® --~ 00, ® ~ 01, 
(D ~ 10, @ --~ 11. At this point,  examine the 01 colmral. ® is in the same row 
as (D in the 00 column. Therefore, choose ® -~ 01. (D is coded with 01 because 
this row in the 00 column has been coded with 00, and  01 would make  the coding 
for the uncircted 7 in the second row ma tch  the corresponding coding in the 00 
column. M a k e  ® -+ 10, ® -+  11 along the same line of reasoning. For  the 1l 
column, use ® --~ 10, @ --~ 11, @ --~ 00, @ --~ 01. The  last column has 
only two stable states. Let  us use @ -~ 01, @ --~ 11. Ex t ra  combinat ions 00 and 
10 can now be used in a /c-set to make  more duplications of columns in the 

assignment  table. We can use either 00 or 01 for the uncircled l a ' s  and either 
10 or 11 for the  uncircled 14's. Figure 6 shows the complete assignment  table. 

m -1 m - 2  m - 2  
2 =2 bits 2 bits 

• , r "  - -  A 

Fro. 3. Bit  pattern of  a ver tex  
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FiG. 5. Transition diagram 

12 34 5 6  7 8  

O0 O0 O0 O0 

O I  O I  O I  I I 

I 0  O 0  - -  O 0  

I I  O I  - 11 

t 0  I 0  I 0  I 0  
O0 0 I O0 OI 

I 0  I I I 0  - -  

I I  I I  I I  OI  
- -  I 0  O0 I 0  
- I I  O I  O I  

O l  - -  O l  O l  

I I  - -  I I  I I  

FIG. 6. Assignment table 

There are eight cohmms in this table. Note that  columns 1 and 5 have an in- 
tel'section, and so do colunms 2 and 6, 4 and 8. We may replace these pairs of 
cohmms by their corresponding intersections and obtain the reduced assignment 

table shown in Figure 7. 
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I 2 3 4  5 

O 0 0 0 0  A 

O I 0 ] 1 B 

I 0 0 0  0 C 

I I 0 I I D 
I 0 I O I E 

O 0 0 I O F 
I 0 I I I G 

I I I I O H 
O 0 I O I d 

0 I I I 0 K 

0 I 0 1 0 L 

I I I I I M 

FIG. 7. Reduced assignment table 

5. Conclusions 

A method has been presented for generating state variable assig~ments for 
asynchronous sequential switching circuits. This method yields assignments 
with pro¥isions for concurrent changes of state variables. Reduction of the 
number of state variables is included in the procedure. However, as is true for 
most methods of this type, our procedure will be better suited to certain class 
of problems than to others. As the example illustrated, this method works qtfite 
well with incompletely specified flow tables. 

Since the method does not do an exhaustive search, we cannot guarantee 
that the reduction of the number of state variables yields a minimal solution. 
A comparison of this solution with the upper bound calculated by Theorem 3 
can give an idea. of how good our solution is. 
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