A Mtate Variable Assignment Method for Asynchronous

Seguential Switching Circuits™
C. N. Liu

I3 Corporation, Yorkiown Heights, N. Y 1

Abstract. This paper deseribes o method of state variable assignment for asynchronous
sequentind swilching civeuits. The method yields state variable assignments with a view
towards minimizing the number of state variables and maximizing the operating speed of
the cireuit. A systematic procedure is presented. An upper bound on the number of state
variables for o general r-state eircuit is ineluded. The advantages and limitations of the
method are diseussed.

1. fntroduction

Sequential switching eircuits are commonly classified as being either syn-
chronous or asynchronous, depending upon whether or not the operations are
svnehronized with some souree of fundamental frequency which regulates the
entire circuit. The synchronization signal is generally called the elock of the
cireuit. In a synehronous circuit, it is possible to prediet the state of the cireuit
at the time of any given clock period if one knows the initial state of the circuit
and its logical charaeteristics. However, in an asynchronous circuit it is not
generally possible to prediet the state immediately resulting from a previous
state from a knowledge of the logical characteristies of the circuit alone. The
resulting state may also depend upon the rclative speeds of some of the logieal
elements which constitute the circuit.

In describing the terminal action of a sequential switching cireuit, one method
commonly used is a flow table [1-3]. The columms of a flow table are associated
with the possible input states to the eirenit and the rows represent internal
states (see Tig. 1). The entries in the table indicate the next internal state and
the output state which result from the given input and internal states. For
example, the underlined entry in Iigure 1 indicates that if the input state is
11 and the internal state is 2 the outpus state is now 01, and the next mternal
state will be 2 (if the input remains 11).

If the internal state component of a flow table entry is found in a row as-
sociated with the same internal state, the total state {combination of input and
internal state) is a stable one, and the entry may be circled to denate this faet.
Onee circuit action reaches a stable total state, no further changes of internal
state ean oceur until the input state is changed.

An important step in carrying out the synthesis procedures for sequential
eircuils is Lo assign to each row of the flow table of a unigue state of a set of binary
valued state variables. Once this step is completed, the design problem becomes

* Reeeived August, 1962,

T Formerly with the University of [llinois, Urbana, Hi.

209

2140 ¢oONLD LIy

INTERNAL STATE INPUT STATE
00 o " o
1 (D-o00 |(H-00 {(D-00 | 2-00
2 1 =00 @0t {01 | 3-0
3 1~ 001311 1 2-01 | 4~i!
4 = 00{(@-10 | 3-11 (@10

Fia. 1. A completely specified flow table

identieal with the design of a combinational switching eircuit. We consider in
this paper a method of assigning state variables for asynchronous circuits with
a view towards minimizing the number of state variables and maxinizing the
operating speed of the final civeuit,

2. State Variable Assignment Problem

In an asynchronous civeuit, the assignment of state variables must be made
5o that sach internal transition always leads to a defmite and appropriate stable
state regardless of the relative speeds of the circuit elements (we restrict our
offort here to flow tables without evelie state variable actions).

Consider the case of the 4-row flow table in Figure 1. There are four internal
states to be distinguished. At least loged (=2) state variables are necessavy.
In general, for an r-row flow table, at least logsr stale variables are necossary.
Let S, be the smallest integer meeting the eondition Sy Z logyr for a given r.
We will then have available 2% states to assign to 7 rows. The requirements of
a flow table are satisfied if each inter-row trausition is accomplished either by
a change of internal state in which only one state variable changes, or by a
change of internal state in which 2 multiple change of state variables always
leads to a definite destination.

A race veeurs whenever a vequired internal transition involves the change of
two or more state variables simultaneousty. If the result of a race may lead to
false operation of the ecircuit, we designate it as a eritical race. Internal states
which differ in only a single variable are said to be adjacent states. One solution
to the problem then is to assign state variables so that each inter-row transition
iz represented by adjacent states. When this type of assignment is chosen, we
call the cireuit fotally sequential. In a totally sequential circuit, only one state
variable s excited at any time during a transition. If we define a upit time as
the time required for one state variable to change, this time being assumed to
be wniform, then an internal transition in a totally sequential cirenit will take
T umite of time when T state variables are required to change.

Annther type of state variable assignment is to allow multiple changes of
variables. Tn this ease we must be certain that every race condition is non-
eritieal. The internal transition speed of this type of state variable assignment
may be the same as that of a circuit, where each internal transition requires the

ABYNCHRONOUS SEQUENTIAT. SWITCHING CIRCUITS 211

change of only a single state variable, because we have provided in this case all
possible noncritical races for each transition. In other words, if all races are
noncritical we can have a ‘“free-running” condition in internal transitions.
Coneurrently exeited state variables may thus be relaxed in one step. The
following sections of this paper describe a method of this type of state variable
assigninent,

3, Assignment Method

Methods for assigning state variables so that the resultant eireuit ig totally
sequential have been well known {1, 3]. We outline here a procedure to assign
state variables so that coneurrent operations of state variables are provided to
inerease the speed of the circuit [4],

We restrict here our effort to flow tables without cyclic state variable actions.
Indeed, when eyeling oceurs, the cotire set of states involved in the cycling
action can be treated as one stable state and then separated with the aid of a
suitable additional number of state variables. This procedure may require more
state variables than would a direct attack on the entire problem, but it also
often leads to a much simpler final eircuit.

In the text of this paper, the symbol [2] is used to denote the nearest integer
that is larger than or equal to 2.

Assume that we have an rrow flow table. Let r; and #; be two arbitrary
rows in the flow table. Let the state variable assignments for », and #;
be ('’ < -+ u') and ('ws’ - - u.”), respectively. Suppose that a transition
exists between these two rows. Assume that both y; and y; change in this transi-
tion, Le., g’ = ' ys’ # i’ It is simple to show that there will be no critical
races involved in this transition if y'me® - ¥’ = YW - Yo’ FE UYL W
componentwise, for & = ¢ # J,

TreoreM 1. In a flow table, if we consider eoch cobumn. separalely and assign
a sufficient number of state variables for each column so that no critical races exist
in any column, then the combined stote variable assignment, i.e., the assignment
obtained by putting together all the individual assignments for the various colwins,
has no eritical races. :

Proor. Consider the flow table shown in Figure 2. Let us examine the
column for input X, . There are three stable entries and one unstable entry in
this column. To assure no critical races for transitions within this column we
must use two state variables to distinguish the three stable states. Generally,
lloggn] state variables are required for a column with n stable entries. If we
use this sufficient number of state variables for each ecolumn considered sep-
arately, then the assignment obtained by combining all the individual assign-
ments has no critical races, becatise .

(1) il a transition exists between rows r, and 7z, then their assignments will
contain a nonchanging part that is different from the corresponding part in any
other row assignment in the flow table;

(2) every transition within a column contains a different nonchanging part

212 <N LIU

A
@

Fra. 2. Typieal column of o flow table

in the assignments for the rows involved and therefore the set of intermediaste
unstable states In each transition is disjoint.

Defindition 1. A table listing the state variable assignment for each row of
the flow table iz ealled an assigmment table. This table is obtained, as outlined
above, by cousidering each column separately. The assignment table is an array
of 0's and 1’s, and ¢’s {don’t cares) if the flow table is not completely specified.
Each row represents the state variable assignment for the corresponding row
in the fow table. A column of the assignment table containg one entry from each
row of the table. If there are £ state variables, then there arve & columns,

Defivdtion 2. Given a column S; of an assignment table, we define the com-
plement of S;, denoted by 8;, as the column obtained by changing all the
s in S to P's and all the 1's to 0’s. The ¢'s, if any, are not affected.

The following two definitions are due to Dolotta and MeCluskey [5].

Defindtion 3. Given two columns, §; and S;, S; will be said to include S; i
and only if 8, agrees with S; wherever the latter is 1 or 0. We write this relation
as & 2 8;. 1L is obvious that S; has at least as many ¢'s as 8,

Defindtion 4. Column S; will be said to cover column S if and only if etther
828 008> 8.

Taeorem 2. Wherever S; covers 8; we may abways discard S; .

Proor. First consider the case where §; O 8;. Tt is obvious that we may
diseard 8;. When §; = 8;, we can always re-assign the state variables for the
corresponding column in the How table so that the §; column in the assignment
table is complemented.

Defirdtion 5. Given two columns, S; and S, there will exist an infersection
eolumn of S, and §; if and only if S; and 8, agree wherever both 8; and S; are
1 or 0. This interseetion column agrees with both &; and §; where they agree
with each other, but agrees with either &, or §; when the ather has entries ¢.

Defindtion 6. In a column of a flow table, all k—1 unstable entries which
eventually lead to the corresponding stable entry, together with the stable
entry, form & k-sef.

We now outline the procedure for msking the assignment.

(1) Construct n trausition diagram of the given flow table by represeniing each row by
a node and each inter-row transition by a line joining nodes. Solid lines are used to repre-
sent those transitions which must be aceomplished by a direet transition, i.e., the unstable
entry must go to the stable state direetly. Broken lines represent the transitions for which
there are alternate routes.

(2y If the transition diagram is a complete graph, i.e., every pair of nodes is connected
by a line, make ths assignmen$ according to Theorem 3 deseribed below. Otherwise,
continue t0 step 4.

ASYNUHRONOUS SBQUENTIAL SWITCHING CIROUTTS 213

(%) Make o state variable nssignment for cach column of the flow table. The objective
is to obtain an assignment table that can be reduced by Theorem 2. This may be accom-
plishad by the following rules:

(a) Start on a column containing the largest number of stable states. Assume that there
are M, stable states 1o this column. [log.H] state variables will be used. Assignment
will be made in this column so that a maximum number of direct transition require-
ments in the transifion diagram is satisfied. Assign at first any arbitrary combination
to a stable state in this column. Then focus atienlion on the states in this column
whieh arve connected to the first stable state by transition requirements in all eol-
umng. Then assign these states to be adjacent to the first one, whenever possible.
Repeal this until all stable states in this column are examined.

() Unstable states in a column will have the same binary codings as the stable states to
which they are terminated. Utilize any extra combinations provided by [logeM:]
state variables for elements in a k-set, i.e., assign adjacent codings to the unstable
states that lead to the same stable state. This may generate covering relationships
{or state variable minimization.

(¢} Atthis point switeh to a different column in the flow table, The number of stable states
in this column is less than or equal to that in the first column. Again use [log:4:i
state variables. If the number of stable states in this column is less than M; , we
may have a large number of extra combinations to work with. The stralegy to apply
here is to make assignments such that o maximum duplieation of columns exists in
the assignment table. A rule for this is (v use identical codings, whenever possible,
for entries in the same row of the flow table.

(i1} For each of the columns eontaining only one stable entry we can safely set up races,
o1 any other trausition patterns which eventually reach the row containing the
stable entry. Therefore, we can ignore such columns.

{4) Diseard column S, in the assignment table if it is covered by some column §; .

() I intersection exists between two columng, replace both columns by the intersec-
tion.

(6) Clompare the number of columns in the reduced assignment table with the upper
bound given by Theorem 3 described below. If this number is greater than the bound,
discard this assigmnent and use the assignment generated by Theorem 3.

The problem of state variable assignment can be viewed as a mapping of the
rows of a flow table into the vertices of a unit n-dimensional cube. A set of
vertices from an n-cube is said to be equidistant if the distance between every
pair of vertices in this set is the same.

We now show that equidistant error-correcting codes may be applied to
assign state variables for any general flow table. We establish an upper bound
on the number of state variables needed for any 2"-row flow tahle.

THROREM 3. A slale variable assignment in which the row assignments cor-
respond In an equidislant error-correcting code contains no eritical races.

Proor. On an n-cube, there are 2" equidistant vertices with mutual distance
d = 9™ forn = 2™ — 1[B]. Suppose there are n = 2™ — 1 state variables and
the distance botween each pair of states is d = 2™ Then the transition from
any arbitrary state »; to any other state r» iz the change of d state variables.
Consider another arbitrary state ry. This state is at a distance d from both
r. and 2 . Suppose a critical race in the transition from r o and mvolving
state r exists. Then the n—d state variables which do not ehange in n and rq
must have the same valucs as the corresponding variables in »s. Therefore
cannot be at a distance d from both 1, and »; . This contradicts the hypothesis.

214 . N, LU

Now it remains to check if the transition between any pair of rows, say ;
and ro, will race eribically with the transition between another pair of Fows,
gay ry and 7. . We must find out if any of the possible intermediate states be.
tween r and » would appear alse betwesn 7y and vy, ov any other pair of rowg,

ey E . <4 a R —~1 - o
We know that an equidistant code with distance 4 = 2”7 is capable of cor-
. o~ 11— . N P } o - .
recting 2" —1 errors and detecting 277 errors. Thersfore any infermediate

states at distances less than or equal to 2777 —1 from either » or 75 cannob appear
between any other pair of rows.

We now show that the intermediate states at a distance 2" between 7 and
72 cannot appear between any other pair of rows. Let V be a vertex al u distance
2% from both 7 and #; . Then we can represent ¥V oas shown in igure 3 1f
Vis also at & distance 2" {rom another pair of rows, 75 and 7y, then V must
contain 4 X 2" bits. Therefore any intermediate states between a pair of
rows eaunof appear between any other pair of rows.

Methods for generating equidistant error-correcting codes ars well-known
in the literature [7]. Since an equidistant error-correcting code of 27 message
words requires 27 — 1 bits, the number of state variables requived for a flow table
of 2" rows will be 2™ — 1. Note that this number of state variables is suflicient
for any general 2%-vow flow table. It is important to note that in this sssigument
all noneritical races in a transition are used to increase the speed of internal
transitions.

4. [llusirative Example

To make this presentation more complete, we olfer the example shown in
Figure 4. First of all, we draw the transition diagram of this flow table (Figure
5). Thera are thres columns with four stable states in this flow table. Now focus
attention on the problem of assigning state variables for one of these columns.
For the 00 colwunn, two state variables are required. Examination of the transi-
tion diagram shows that ® should be made adjacent to @, and @ should alse
be made adjacent to . Now make the assighment as follows: ©@ — 00, @ —0l,
@~ 10, (@ - 11. At this point, examine the 01 column. (& is in the same row
as O in the 00 column. Therefore, choose & — 0L. & is coded with 01 because
this row in the 00 column has been coded with 00, and 01 would make the coding
for the uneireled 7 in the second row mateh the corresponding coding in the 00
column. Make & — 10, ® — 11 along the same line of reasoning. For the 11
column, use @ — 10, @ — 11, @& — 00, @ — 01l. The last column has
only two stable states. Let us use @ — 01, @ ~ 11. Extra combinations 00 and
10 can now be used in a k-set to make more duplications of columns in the
assignment table. We can use either 00 or 01 for the uncireled 13°s and either
10 or 11 for the uncireled 14’s. Figure 6 shows the complete assignment table.

2" 1 bits 2" % bits 2" Cobits

r 2 -y N

same as r, and v, | same as r, [some as 1,

Fre. 3. DBit pattern of a vertex

ASYNCHRONOLUD SBEQUENTIAL SWITCHING CIRCUITS

0o o i 10
ORICI RN
ORI 21 14
@18 - 113
@ -114
T (@)@
IREGIHIREE
3 9 | -
4 |8 E
- 176Gy 14
-1 &} @@ 13
e | -1 i (3
4 | -1 10

Fia. 4. Flow table for the example

EI‘XLIG)"IWOOOJI?

Fic. 5. Transition diagram

12 34 56 T8
oc 00 00 00
oy o1 0l L
I o0 - GO
1 ot - (N}
19 10 10 10
00 01 00 Ol
1o It 10 -
el i 0l
—~ {0 00 10
- 11 o1 O
ot ~— 0 0Ol
tl - b it
S—

Fra. 6. Assignment table

21

"There are cight columns in this table. Note that columns I and 5 have an in-
tersection, and so do columns 2 and 6, 4 and 8. We may replace these pairs of
columns by their corresponding intersections and obtain the reduced assignment

table shown in Figure 7.

<)

216 ¢, N, LIU
1 2345
00000 A
ot o1l B
1 0000 c
[I O R D
1 010 i E
oo0oo¢1 0 F
f o r G
S T T o H
0010 | J
ot 1 i 0 K
o101t 0 L
I T T M

TiG. 7. Reduced assignment table

5. Conclusions

A method has been presented for generating state variable assignioents for
asynchronous sequential switching circuits. This method yields assignments
with provisions for concurrent changes of state variables. Reduction of the
number of state variables is Included in the procedure. However, as is irue for
moest methods of this type, our procedure will bhe better suited to certain class
-of problems than to others. As the example illustrated, this method works quite
well with incompletely speeified fow tables.

Since the method does not do an exhaustive search, we caunot guaraniee
that the reduction of the number of state variables yields a minimal solution.
A comparison of this solution with the upper bound caleulated by Theorem 3
can give an idea of how good our solution is.

* * *

Acknowledgment. The author wishes to thank Professor ¥. E. Hohn of the
University of IMlinois, Urbana, Illinois, for his guidance and advice during the
writing of the doctoral dissertation [4] on which thig paper ix based.

REFERENCES

1. Horrman, 2. A, The synthesis of sequential switehing circuits. J. Franklin Insiitute
2567 (Mar. 1954}, 161-191 and {Apr. 1954;, 275-303.

2. Cappgxn, W. J. Equivalent sequential circuits. IRE Trans. CT-6 (Mar, 1959), 30-34.

3. Cawpwery, 3. H. Switehing Ctrcuits and Logical Design, Wiley, New York, 1958.

4. Luy, C. N. The state variable assignment problem for asynchronous sequential switeh-
ing ecircuits. Ph.D>. dissertalion, University of Illinois, Urbans, Iil., 1961; Digital
Computer Laboratory, University of Illinois, Rept. No. 110, July 3, 1961,

5. McCuuskny, Jk., E. J. sxp Dovorra, T. A, Encoding of incompletely specified Boolean
matrices. Proc, Western Joint Comput. Conf. 1§ (1960), 231-238.

§. ——. Error-correcting codes—a linear programming approach. Bell System Tech. d.
38 (Nov. 1959), 1485-1512.

7. MacDonanp, J. E. Design methods or minimum-distance error-correcting codes. [BY
J. Res. Dev. 4 (Jan. 1960), 43-57.

