
A State Variable Assignment i~e-thod for Asynchronous
Sequential Switching Circuits*

C. N. LIu

IBM Corporation, Yorktown Heights, N. Y.t

A b.~tract. This paper describes a method of state variable assignment for asynchronous
sequential switching circuits. The method yields state variable assignments with a view
towards minimizing the number of state variables and maximizing the operating speed of
the circuit. A systematic procedure is presented. An upper bound on the number of state
variables for a general r-state circuit is included. The advantages and limitations of the
method are discussed.

]. [ntroduction

Sequential switching circuits are eommonly classified as being either syn-
chronous or asynchronous, depending upon whether or not the operations are
synchronized with some source of fundamental frequency which regulates the
entire circuit. The synchronization signal is generally called the clock of the
circuit. In a synchronous circuit, it is possible to predict the state of the circuit
at the time of any given clock period if one knows the initial state of the circuit
and its logical characteristics. However, in an asynchronous circuit it is not
generally possible to predict the state immediately resulting from a previous
state from a knowledge of the logical characteristics of the circuit alone. The
resulting state may also depend upon the relative speeds of some of the logical
elements which constitute the circuit.

In describing the terminal action of a sequential switching circuit, one method
commonly used is a flow table [1-3]. The columns of a flow table are associated
with the possible input states to the circuit and the rows represent internal
states (see Fig. 1). The entries in the table indicate the next internal state and
the output state which result h'om the given input and internal states. For
example, the underlined entry in Figure 1 indicates tha t if the input state is
1l and the internal state is 2 the output state is now 01, and the next internal
state will be 2 (if the input remains 11).

If the internal state component of a flow table entry is found in a row as-
sociated with the same internal state, the total state (combination of input and
internal state) is a stable one, and the entry may be circled to denote this faet.
Once circuit action reaches a stable total state, no further changes of internal
state can occur until the input state is changed.

An important step in carrying out the synthesis procedures for sequential
circuits is to assign to each row of the flow table of a unique state of a set of binary
valued state variables. Once this step is completed, the design problem becomes

* Received August, 1962.
t Formerly with the University of Illinois, Urbana, Ill.

209

INTERNAL ~ T - - - - INPUT STATE]
00 01 II 10

@ - o o @-co @-oo 2 - o o
,-oo e .o :

3 , - oo 2-o, 4-,I
4 , - o o ®-,, ® - , o

F~c. 1. A completely specified flow table

identical with the design of a combim~tional switching circuit. We consider in
this paper a method of assigning state varia, bles for asynchronous circuits with
a view towards minimizing the number of s tate variables and maximizing the
operating speed of the final circuit.

'2. State Val,iabZe Assig:1~ment ProbIen~

tn an asynchronous circuit, the assignment of" s tate variables must be made
so tha t each internal transit ion always leads to a definite and appropriate stable
state regardless of the relative speeds of the circuit elements (we restrict our
effort here to flow tables without cyclic state variable actions).

Cons:ider the case of the 4-row flow table in Figure 1. There are four internal
states to be distinguished. At least log~4 (= 2) state variables are necessary.
In general, for an r-row flow table, at least log2r state variables are necessary.
Let S~ be the smallest integer meeting the condition So => log2r for a given r.
We will then have available 2 s° states to assign to r rows. The requirements of
a flow table are satisfied if each inter-row transit ion is accomplished either by
a change of internal state in which only one state variable changes, or by a
change of internal state in which a multiple change of state variables always
leads to a definite destination.

A race occurs whenever a required internal transition involves the change of
two or more state variables simultaneously. If the result of a race may lead to
false operation of the circuit, we designate it as a critical race. In ternal states
which differ in only a single variable are said to be adj~ent states. One solution
to the problem then is to assign state variables so tha t each inter-row transition
is repres~ented by adjacent states. When this type of assignment is chosen, we
call the circuit lotally sequential. In a total ly sequential circuit, only one state
variable is excited at any t ime during a transition. If we define a unit time as
the t ime required for one state variable to change, this t ime being assumed to
be uniform, then an internal transition in a total ly sequential circuit will take
7' units of t ime when 7' s tate variables are required to change.

Another type of s tate variable assignment is to allow multiple changes of
variables. In this eas~ we must be certain tha t every race condition is non-
critical. The internal transition speed of this type of state variable assignment
may be the same as tha t of a circuit where each internal transit ion requires the

A S Y N C H R O N O U S S E Q U E N T I A L S W I T C H I N G C I R C U I T S 211

change of only a single state variable, because we have provided in this case all
possible noncritical races for each transition. In other words, if all races are
noncritical we can have a "free-running" condition in internal transitions.
Concurrently excited state variables may thus be relaxed in one step. The
following sections of this paper describe a method of this type of state variable
assignment.

3. Assignment Method

Methods for assigning state variables so that the resultant circuit is totally
sequential have been well known [1, 3]. We outline here a procedure to assign
state variables so that concurrent operations of state variables are provided to
increase the speed of the circuit [4].

We restrict here our effort to flow tables without cyclic state variable actions.
Indeed, when cycling occurs, the entire set of states involved in the cycling
action can be treated as one stable state and then separated with the aid of a
suitable additional number of state variables. This procedure may require more
state variables than would a direct a t tack on the entire problem, but it also
often leads to a much simpler final circuit.

In tile text of this paper, the symbol [x] is used to denote the nearest integer
that is larger than or equal to x.

Assume tha t we have an r-row flow table. Let r~ and rj be two arbi t rary
rows in the flow table. Let the state variable assignments for r~ and rj

i i j] be (y~ y2 • . . y,~) and (yl y~ . . . y j) , respectively. Suppose that a transition
exists between these two rows. Assume tha t both y~ and y2 change in this transi-
tion, i.e., y~ ~ y j , y2 ~ ~ y j . I t is simple to show that there will be no critical
races involved in this transition if ~ ~ ~ s J j k ~ k y~y4 " '" Y~ = YaY4 " " Y ~ ~ y~y4 " '" Y,,
componentwise, for k ~ i ~ j.

THEOREM 1. [n a flow table, i f we consider each column separately and assign
a sufftcient number of state variables for each column so that no critical races exist
in any column, then the comb#ted state variable assignment, i.e., the assignment
obtained by putting together all the individual assignments for the various columns,
has no critical races.

PaooF. Consider the flow table shown in Figure 2. Let us examine the
column for input X~.. There are three stable entries and one unstable ent ry in
this cohmm. To assure no critical races for transitions within this colunm we
must use two state variables to distinguish the three stable states. Generally,
[logan] state variables are required for a cohmm with n stable entries. I f we
use this sufficient number of state variables for each column considered sep-
arately, then the assignment obtained by combining all the individual assign-
ments has no critical races, because

(1) if a transition exists between rows rl and r2, then their assignments will
contain a nonchanging par t that is different from the corresponding part in any
other row assignment in the flow table;

(2) every transition within a column contains a different nonchanging part

212 C.N. l~IU

X o Xj X K X n

2
3

4

FIG. 2. Typical column of a flow table

in the assignments for the rows involved and therefore the set of intermediate
unstable states in each transition is disjoint.

Definition i . A table listing tile state variable assignment for each row of
the flow table is called an assignment table. This table is obtained, as outlined
above, by considering each column separately. The assignlnent table is an array
of O's and l 's, and 4,'s (don ' t cares) if the flow table is not completely specified.
Each row represents the state variable assignment for the corresponding row
in the flow table. A column of the assignment table contains one ent ry from each
row of the table. I f there are k s tate variables, then there are k columns.

Definition 2. Given a column S~ of an assignment table, we define the com-
plement of S~, denoted by S~, as the column obtained by changing all the
0's in S~ to l ' s and all the l ' s to O's. The ¢'s, if any, are not affected.

The following two definitions are due to Dolot ta and MeCluskey [5].
Definition 3. Given two columns, S~ and S j , S~ will be said to include Si if

and only if Sj agrees with S~ wherever the lat ter is 1 or 0. We write this relation
as S~ ~ $3 • I t is obvious tha t S~ has at least as many ¢'s as S~.

Detbnition ~. Column S~ will be said to cover column Sj if and only if either
S i p S ~ o r S j D S~.

T~EO~E:~ 2. Wherever S~ covers Si we may always discard S j .
PROOF. First consider the ease where Sj D S ; . I t is obvious that we may

discard S j . When Sj D S~, we can always re-assign the state variables for the
corresponding column in the flow table so tha t the S~ column in the assignment
table is complemented.

Definition 5. Given two columns, S~ and Si , there will exist an intersection
column of S~ and Ss if and only if S~ and Sj agree wherever both S~ and Si are
1 or 0. This intersection column agrees with both S~ and Sj where they agree
with each other, but agrees with either S,: or Ss when the other has entries ¢.

Definition 6. In a column of a flow table, all /c--1 unstable entries which
eventual ly lead to the corresponding stable entry, together with the stable
entry, form a l;-set.

We now outline the procedure for making the assignment.

(i) Construct a transition diagram of the given flow table by representing each rowby
a node and each inter-row transition by a line joining nodes. Solid lines are used to repre-
sent those transitions which must be accomplished by a direct transition, i.e., the unstable
entry must go to the stable state directly. Broken lines represent the transitions for which
~here are alternate routes.

(2) If the transition diagram is a complete graph, i.e., every pair of nodes is connected
by a line, make the assignment according to Theorem 3 described below. Otherwise,
continue to step 3.

ASYNCI-II:{ONOUS SEQUENTIAL SWITCHING CIRCUITS 213

(;~) Make a state variable assignment for each column of the flow table. The objective
is to o/)t~fi~ an assignment t~tble that can be reduced by Theorem 2. This may be accom-
plished by the following rules:
(a) Start on a column containing the largest number of stable states. Assume that there

:~re M; st,,'~blc states in this column. [log2Mi] state variables will be used. Assignment
will be made in this column so that a maximum number of direct transition require-
ments in the transition diagram is satisfied. Assign at first any arbitrary combination
to ~ stable state in this column. Then focus attention on the states in this column
which are connected to the first stable state by transition requirements in all col-
umns. Then assign these states to be adjacent to the first one, whenever possible.
Repeat this until all stable states in this column are examined.

(b) Unstable states in a column will have the same binary codings as the stable states to
which they are terminated. Utilize any extra combinations provided by [log=Md
state variables for elements in a k-set, i.e., assign adjacent codings to the unstable
states that lead to the same stable state. This may generate covering relationships
for state variable minimization.

(e) At this point switch to a different column in the flow table. The number of stable states
in this column is less than or equal to that in the first column. Again use [log2Md
state variables. If the number of stable states in this column is less than M~ , we
may have a large number of extra combinations to work with. The strategy to apply
here is to make assignments such that a maximum duplication of columns exists in
the assignment table. A rule for this is to use identical codings, whenever possible,
for entries in the same row of the flow table.

(d) For each of the columns containing only one stable entry we can safely set up races,
or any other transition patterns which eventually reach the row containing the
stable entry. Therefore, we can ignore such columns.

(4) Discard column S~ in the assignment table if it is covered by some column S~ .
(5) If intersection exists between two columns, replace both columns by the intersec-

tion.
(6) Compare the number of columns in the reduced assignment table with the upper

bound given by Theorem 3 described below. If this number is greater than the bound,
discard this assignment and use the assignment generated by Theorem 3.

The p rob l em of s ta te var iab le ass ignment can be viewed as a m a p p i n g of the

rows of a flow table in to the vert ices of a u n i t n -d imens iona l cube. A set of

vert ices f rom a n n -cube is said to be equidistant ff the d is tance be tween every

pair of ver t ices hi this set is t he same.

We now show t h a t equ id i s t an t error-correct ing codes m a y be appl ied to

assign s ta te var iab les for a n y general flow table . We es tabl ish an upper b o u n d

on the n u m b e r of s ta te var iab les needed for a n y 2m-row flow table.
THEOREM 3. A state variable assignment in which the row assignments cor-

respond to an equidistant error-correcting code contains no critical races.
PtmOF. On an n-cube, there are 2 m equ id i s t an t vert ices wi th m u t u a l d is tance

d = 2 ~-~ for n = 2 "~ - - 116]. Suppose there are n = 2 m -- 1 s tate var iables a nd

the d is tance be tween each pa i r of s tates is d = 2 ~-~. T h e n the t r ans i t ion f rom
a n y a r b i t r a r y s ta te r~ to a n y o ther s ta te re is the change of d s ta te variables .

Consider ano the r a rb i t r a ry s ta te ra. This s ta te is a t a d is tance d from bo th
r~ and r2. Suppose a crit ical race in the t r ans i t i on f rom r~ to r2 a nd invo lv ing

s ta te ra exists. T h e n the n - d s ta te var iables which do no t change in r~ a n d 7~
mus t have the same va lues as the corresponding var iables in ra. Therefore ra

canno t be a t a d i s tance d f rom both r~ and r2. This cont radic ts the hypothesis .

214 c . N . ~Iu

Now it remains to check if the transit ion between any pair of rows, say ~:
and re, will race critically with the transit ion between another pair of rows,
say ra and r~. We mus t find out ff any of the possible in termediate states be.
tween r~ and r2 would appear also between ra and r4, or a n y other pair' of rows.
We know tha t an equidis tant code with distance d = 2 '~'--* is capable of col
re t t ing 2 ' ' -e- 1 errors and detecting 2 '~'--2 errors. Therefore any intermediate
sta.tes a t distances less than or equal to 2 " - 2 - 1 f rom either rt or r2 c~m~ot appear
between any other pair of rows.

We now show that. the in termediate states at, a distance 2 "~-e between r~ and
re cannot appear between any other pair of rows. Let V be a ver tex a[. a distance
2 ' ' -e f rom both ','~ and re. Then we can represent V as shown in Figure 3. If
g is also at, a distance 2 "-2 f rom another pair of rows, ra and r4, then g must
contain 4 X 2 "~-2 bits. Therefore a n y intermediate s ta tes between a pair of
rows cannot, appear between any other pair of rows.

Methods for generating equidistant error-correcting codes are well-known
in the li terature [7]. Since an equidistant error-correcting code of 2" message
words requires 2 ~ - 1 bits, the number of s ta te variables required for a flow table
of 2 "~ rows will be 2 "~ - 1. Note tha t this number of s ta te variables is sufficient
for any general 2'%row flow table. I t is impor tan t to note t ha t in this assignment
all noncritical races in a transit ion are used to increase the speed of internal
transitions.

4. IlStstra~%,e Example

To make this presentat ion more complete, we offer the example shown in
Figure 4. First of all, we draw the transit ion d iagram of this flow table (Figure
5). There are three columns with four stable states in this flow table. Now focus
a t tent ion on the problem of assigning s tate variables for one of these columns.
For the 00 coturm~, two s ta te variables am required. Examina t ion of the transi-
t ion d iagram shows tha t ® should be made adjacent to (D, and ® should als0
be made adjacent to (D. Now make the assignment as follows: ® --~ 00, ® ~ 01,
(D ~ 10, @ --~ 11. At this point, examine the 01 colmral. ® is in the same row
as (D in the 00 column. Therefore, choose ® -~ 01. (D is coded with 01 because
this row in the 00 column has been coded with 00, and 01 would make the coding
for the uncircted 7 in the second row ma tch the corresponding coding in the 00
column. M a k e ® -+ 10, ® -+ 11 along the same line of reasoning. For the 1l
column, use ® --~ 10, @ --~ 11, @ --~ 00, @ --~ 01. The last column has
only two stable states. Let us use @ -~ 01, @ --~ 11. Ex t ra combinat ions 00 and
10 can now be used in a /c-set to make more duplications of columns in the

assignment table. We can use either 00 or 01 for the uncircled l a ' s and either
10 or 11 for the uncircled 14's. Figure 6 shows the complete assignment table.

m -1 m - 2 m - 2
2 =2 bits 2 bits

• , r " - - A

Fro. 3. Bit pattern of a ver tex

ASYNCHt~ON()US SEQUENTIAL SWYrCHING CIRCUITS 2~5

O0 Ol II I0

~) I ~I ~3 A

~- 7 - 14 D

I ~ II 13 F

4 s ~ i~ H
- 6 ~i ~ J

- ® i K
2 - 12 ~ L

4 - I0 (~) M

Flow table for the example FIG. 4.

M

..k L¢..
/\'A:

H

A

G

~C

q
W

FiG. 5. Transition diagram

12 34 5 6 7 8

O0 O0 O0 O0

O I O I O I I I

I 0 O 0 - - O 0

I I O I - 11

t 0 I 0 I 0 I 0
O0 0 I O0 OI

I 0 I I I 0 - -

I I I I I I OI
- - I 0 O0 I 0
- I I O I O I

O l - - O l O l

I I - - I I I I

FIG. 6. Assignment table

There are eight cohmms in this table. Note that columns 1 and 5 have an in-
tel'section, and so do colunms 2 and 6, 4 and 8. We may replace these pairs of
cohmms by their corresponding intersections and obtain the reduced assignment

table shown in Figure 7.

216 c .N. LIU

I 2 3 4 5

O 0 0 0 0 A

O I 0] 1 B

I 0 0 0 0 C

I I 0 I I D
I 0 I O I E

O 0 0 I O F
I 0 I I I G

I I I I O H
O 0 I O I d

0 I I I 0 K

0 I 0 1 0 L

I I I I I M

FIG. 7. Reduced assignment table

5. Conclusions

A method has been presented for generating state variable assig~ments for
asynchronous sequential switching circuits. This method yields assignments
with pro¥isions for concurrent changes of state variables. Reduction of the
number of state variables is included in the procedure. However, as is true for
most methods of this type, our procedure will be better suited to certain class
of problems than to others. As the example illustrated, this method works qtfite
well with incompletely specified flow tables.

Since the method does not do an exhaustive search, we cannot guarantee
that the reduction of the number of state variables yields a minimal solution.
A comparison of this solution with the upper bound calculated by Theorem 3
can give an idea. of how good our solution is.

Acknowledgment. The author wishes to thank Professor F. E. Hohn of the
University of Illinois, Urbana, Illinois, for his guidance and advice during the
writing of the doctoral dissertation [4] on which this paper is based.

REFERENCES

1. HUFFMAN, D . A . The synthesis of sequential switching circuits. J. Franklin Institute
257 (/vlar. 1954), 161-191 and (Apr. 1954), 275-303.

2. CADDEN, W.J . Equivalent sequential circuits. IRE Trans. CT-6 (Mar. 1959), 30-34.
3. CALDWELL, S.H. Switching Circuits and Logical Design. Wiley, New York, 1958.
4. LIu, C.N. The state variable assignment problem for asynchronous sequential switch-

ing circuits. Ph.D. dissertation, University of Illinois, Urbana, Ill., 1961; Digital
Computer Laboratory, University of Illinois, Rept. No. 110, July 3, 1961.

5. McCLUSKEY, JR., E. J. AND DOLOTTA, W.A. Encoding of incompletely specified Boolean
matrices. Proc. Western Joint Comput. Conf. 18 (1960), 231-238

6. - - . Error-correcting eodes--a linear programming approach. Bell System Tech. J.
38 (Nov. 1959), 1485--1512.

7. MACDONALD, J. E. Design methods or minimum-distance error-correcting codes. IBM
J. Res. Dev. ~ (Jan. 1960), 43-57.

