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[. INTRODUCTION.

The currently used technologies for design of digital circuits include, among
others, gate arrays, standard cells, custom and semi-custom circuits and Pro-
grammable Logic Devices. Many design automation tools are currently avail-
able on the market for these technologies from different vendors. They include:
schematic capture, logic minimization, geometrical cell layout, placement, routing,
design rule checking, simulation and other. In this paper we will concentrate on
high-level tools that are relatively independent of the technology and are applied
to all the above technologies. Tools of this type have been built for a number of
years by large hardware companies and at universities and are starting to arrive
also from companies that produce commercially available CAD software: ENDOT
Inc., and Daisy being the first examples [73, 43].

While the circuit/system design on most current workstation systems starts ei-
ther from the netlist of the circuit and/or logic equations of a Boolean function
described in a textual form or from the schematic capture of a logic circuit, the
new generation of software design tools will start from higher level descriptions
and will generate these data in resultant or intermediate formats only. Since the
lower design stages are well known, we will concentrate in this paper on the upper
ones and we will briefly present design methods and software which produces data
for the current CAD systems in the form of netlists, minimized truth tables and
logic expressions.

High level descriptions available in the in-house tools from large companies, like
IBM, GE, GTE, RCA, INTEL include: register-transfer languages, finite-state
machines, Boolean expressions and structural languages. Universities (Carnegie-
Mellon, Stanford, UCLA, Kiel) experiment with various system description hard-



ware languages, regular expressions, Petri Nets, nondeterministic and parallel au-
tomata, recursive equations, general purpose languages like Lisp, C, Concurrent
Prolog or Ada as the high-level design automation source formats.

It is not clear these days, which direction design automation will follow with
respect to the high level languages and design methodologies. Some trends are
however clearly visible while attending the premiere conferences like the Design
Automation Conference or International Conference on Computer Aided Design
and watching the new software tools presented, and especially talking to the com-
pany’s representatives about future plans. These trends include: integration of
design/analysis/verification tools into comprehensive systems; giving the designer
choices to select various design styles, and providing him/her with tools to build
his own CAD software; mastering user-friendly interfaces based on windows and
graphics; incorporating Boolean minimization methods and technology adapta-
tion methods for various design styles, not only PLAs; using finite-state machine
description for custom cell design.

In this paper I will concentrate on the topics of finite state machine design tools,
that in my opinion are one of the most important tasks in CAD tools develop-
ment for the coming years. At Portland State University we investigate various
algorithms and programs for designing finite state machines (FSMs) with the goal
of building a comprehensive FSM design system. The following selection of topics
will present a subjective perspective; from large number of approaches we disscuss
those, which are related to methods and algorithms applied in our system. Other
important high-level issues like simulation, verification, and data-path design will
be not discussed in this paper due to size restrictions.

Good tutorials on CAD VLSI tools can be found in [131, 154, 115, 135]. The
recommended logic design textbooks, useful from the point of view of designing
CAD tools for logic design are: [26, 173, 148, 68, 123, 95, 77, 176, 112, 127, 179,
186, 38].

First, various methods of describing sequential circuits realized as finite-state
machines will be presented. Next, various methods to optimize FSMs will be pre-
sented, including minimization of the number of states of machines, state assign-
ment of machines’ internal states, decomposition, and partitioning of machines.
We will mention asynchronous circuits design methodologies that will be also gain-
ing importance in coming years. Finally we will discuss modern CAD tools for
logic minimization.

Papers presented in this session will be all related to implementation of software
tools for FSM design. The first paper will present optimization methods for design-



ing with PLDs (Programmable Logic Devices) using industrial tools. The author
discusses both the implementer’s and the user’s aspects of PLD design tools. Such
devices permit for very fast and inexpensive design (programming) of logic and
sequential circuits from small to medium size circuits. They are expected to have
a massive impact on the market and are of increasingly applied by electrial engi-
neers who are not able or do not require using more expensive highly integrated
technologies. The next paper will describe the user’s interface to the design au-
tomation system Diades, under design at Department of Electrical Engineering at
PSU. Designing better user interfaces is very important from the practical point
of view, not only in industrial, but also in the University environment, where
most of the system’s users are only casual digital designers and have troubles with
quickly learning how to use many various CAD tools. The system is implemented
in Lisp, Prolog, Pascal, C and Fortran on a Vax 11/750 computer under Unix and
cooperates with the widely used UC Berkeley CAD VLSI tools. The system can
be a front-end to both PLDs and Custom VLSI circuits design tools. The last
two papers describe two tools, implemented in C and Pascal, which are not only
useful, but can be easily implemented on personal computers. They will be used
by everybody interested in logic design, but having no access to expensive main-
frames - undergraduate PSU students being the first, to simulate and design logic
circuits on their personal home computers. Portable register-transfer simulator,
described in the third paper will permit for simulation of logic circuits on logic
and register-transfer levels. Visualization of logic values in time or geometrical
domains is helpful to understand intuitively a circuit’s behavior and was proven
a very useful design/debugging tool for both novice and experienced designers.
Finally , the last paper describes a Boolean minimizer based on the new principle
of graph coloring. It can be useful for PAL minimization on personal computers
with small memory. All papers, including this one, will be illustrated in lectures
with many practical examples.

Availability of the described above software tools, together with inexpensive PAL
and PLD programming devices (widely advertized in journals like Byte) permits
small and medium businnesses, as well as the individual hobbyists, to make his/her

own "poor man’s LST CAD/CAM design shop”.

II. INITIAL SPECIFICATION OF FINITE-STATE MACHINES.

Finite state machines (FSMs), as we all know them from basic Digital Design
courses are represented on inputs to the CAD systems by state graphs or by state
tables. Most of the current systems use either tabular descriptions or textual



descriptions corresponding to the FSM tables. Sometimes tables are specified as
sets of transitions:

(present state, input state, next state, output state),

where present state and next state are the internal states of the machine, and the
input and output states are values of combinations of input and output signals,
respectively. The internal states are either names or numbers or in the case of
encoded (assigned) machines, they are strings of ones and zeros. The Number of
elements in the string correspond to the number of flip-flops in a machine.

State tables are very useful for many types of machines, however they have two
disadvantages: they cannot be used for large machines and also are not easily
modifiable - adding new input signals or transitions often requires rewriting the
whole table.

Three approaches are then used in the systems:

e user decomposition of the machine,
e higher level description,
e graphics high-level schematic capture.

In the first approach, which is mainly caused by systems’ and technology’s
inability to deal with oversized machines, the user is responsible for specifying
the machine not as a single entity, but as a collection of mutually communicating
smaller machines, each of them with smaller numbers of internal states, input and
output signals. Unfortunately, little guidance is given as how to decompose the
machine. Some ancient theoretical papers are well known [116, 188], see also their
listing in [114], but as far as we are aware of, no working implementations of these
methods are available as usable computer programs. Recently, a new approach
to decomposition of machines is advocated by both university and industrial re-
searchers that can possibly lead to better software tools [32]. It is based not on
classical partition-based FSM decomposition theory, developed first by Harrison
and Hartmanis/Stearns, but on graph-partitioning methods applied to FSM graph.

The second approach, high level description of FSM, is currently used mostly
in academical systems and in some systems from large companies. Behavioral
register-transfer (rt) languages are the most commonly used medium at this point
[159]. The methods to convert rt-description to FSM state tables are well known
[110, 28, 164]. This description makes it also easy to integrate the CAD system
around it: with tools like rt-simulators, that simulate the circuit on behavioral
level; flow-graph optimizers, that optimize speed and cost of both data-path and
control unit parts of the circuit’s realization; data-path allocators, that help to



find optimum structures/floor plans of data paths, and other tools to design both
the control unit and the data path parts of the system under design [135, 138, 139].

Recently, there has also been an interest in other forms of high-level description:
regular expressions and Petri Nets. Regular expressions are expressions that de-
scribe a class of regular languages. They compose expressions E1 and E2 with
use of operations of sum of expressions: El or E2, concatenation: E1 next E2
and iteration: E1 repeated arbitrary number of times. The systems to design
FSMs from regular expressions have been designed in some universities, includ-
ing: Stanford [75], Carnegie-Mellon and Columbia [76], McGill [78], and Portland
State [144]. The Stanford system uses a special language, which is a combination
of state machines and regular expressions. The first version used certain rules
to directly map expressions to layout; the improved, second version uses a more
classical approach where the expression is first converted to FSM, encoded and
realized with Boolean functions [75]. The system from PSU uses the Brzozowski’s
method of derivatives of regular expressions [30], to convert a vector of regular
languages to a Mealy or Moore machine. The program is written in the Artificial
Intelligence language Prolog [33]. The regular expressions in this system can be of
extended type, which means that operations of product of expressions, difference
and negation of expressions are available, as well as those of sum, iteration and
concatenation of expressions used in most of other systems [144].

The systems to design from Petri Nets are implemented in Universities of Pader-
born and Dortmund in Germany [28]. Petri Nets are a form of graphs with paral-
lelism and concurrency of execution of separate paths. They are commonly used
to describe operating systems, controllers, and real time systems. Applications
of Petri Nets in hardware descriptions on many levels has recently been gaining
momentum.

Another interesting form of initial description includes predicate calculus clauses
[102] (similiar to Prolog programs) and recursion equations [101] (similiar to Lisp
programs).

The third method of FSM specification - graphical interface, seems to be very
promising for future systems and can be used in conjunction with all other specifi-
cation methods discussed above. Graphical schematic capture and window/menu
systems are used for capture of logic schemata, block schemata and real-time sys-
tem diagrams for software design. In two existing systems: one from Daisy and
one from Intel, schematic capture is used to capture FSM graphs. However, a very
similiar method can be applied also to capture flow-diagrams, Petri Nets, regu-
lar expressions or non-deterministic automata. We are not aware of any actual



implementations, but supposedly they are coming. The graphical interfaces for
these data should have all standard capabilities, like panning, zooming, pull-down
menus, separate windows for graphics and text that can be selected from higher
level pictorial descriptions. They should permit the introduction of hierarchially
organized obiect-oriented data like the hierarchical, parallel automata of Harel
[Hare 84].

Numerous papers and algorithms are devoted to the topic of converting high-level
FSM descriptions to either FSM tables, or to lower level descriptions like logic
networks. Some methods of direct conversion of flow-graphs, regular expressions
or Petri Nets, even to the level of schematic geometrical layout have been also
created.

Some of the conversions are NP-complete combinatorial problems [81], which
make them difficult to apply for larger machines, and the decomposition is again a
must. It also seems that not enough research was done on finding efficient transfor-
mation methods, which would make more use of algorithmic and heuristic methods
developed recently both in other areas of VLSI CAD and in Artificial Intelligence
and Mathematical Programming. Introduction of more powerful ”personal super-
computers”, like iPSC from Intel, should soon dramatically improve the prospects,
since many of the conversion algorithms are very well amenable for parallelization.

III. STAGES OF FINITE STATE MACHINE DESIGN.

When the machine is already available as a table or a set of 4-tuples (3-tuples
for Moore machines), the systems apply one of two approaches, a simple one or
the advanced one.

In most of the current systems this conversion is done in a straightforward -
primitive method. Widely available and used is the program Peg from UC Berke-
ley, which accepts FSM description in simple hardware desrcuption language on
input and produces logic equations on output [89]. This program is integrated into
UC Berkeley VLSI tools so finally PLA artwork can be generated from it. State
symbols are replaced with codes of states and the state table is rewritten to the
truth table format for D type flip-flops. The assignment of codes to states is done
either according to the order of their specification, which is practically random, or
the user can declare his/her own codes.

In more advanced systems not yet available commercially, several optimization
and analysis operations are done on the state table first to the truth table conver-
sion. We will first concentrate on synchronous machines.

The optimization operations include some (or usually one) of the following:



e minimization of number of internal states,

e state splitting for better assignment [114, 92, 93, 91, 94],

e minimization of number of input and output states,

e assignment of internal states,

e assignment of input, output and internal states,

e conversion from Mealy machine form to Moore machine form and vice versa,

The analysis includes simulation of the machine and testability analysis, as well
as analysis of hazards in output functions of machines’ realization.

In some systems the state table is enhanced with additional columns and /or rows
to increase its testability with methods like LSSD or other [80, 1].

Many other FSM analysis methods have been theoretically investigated [114],
and some of them were implemented in the academic environment, but industrial
systems do not yet incorporate these methods.

Finally, the analysed and optimized state table is converted to a truth table.
This truth table can be created for various types of flip-flops and has the primary
input signals and outputs from flip-flops as inputs, and primary outputs and inputs
to flip-flops as outputs. In most of current systems only the type D flip-flops are
assumed, in some others the user has a choice of flip-flop types (RS, JK, T, D,
RST) realized in an array. Selection of an appropriate flip-flop type can essentially
decrease the area of logic realization for some machines, (like counters). In yet
another system each flip-flop can be of a different type to further minimize silicon
area for both logic and flip-flop components. Some interesting work on new types
of flip-flops for VLSI implementation have been also published that will possibly
even further reduce area for Boolean logic implementation, increasing slightly the
area for flip-flops.

In the next stage the truth table is minimized and realized as a logic network.
In most of the current systems a two-level realization of logic is assumed, but the
recently realized systems also investigate the multi-level designs for many various
technologies. Developments in this area will have also an essential influence on
FSM optimization. For instance, the popular state assignment program Kiss [55]
gives worse results when the assigned machine is realized with many levels of
logic, than when it is realized in a two-level PLA. Existence of fast multi-level
circuit minimizers will have the same positive effect on next generation assignment
programs as PLA minimizer Espresso had on a creation of Kiss.



Below, we will discuss state assignment, minimization of number of states and
other approaches to design FSMs, as well as design of asynchronous machines.
State assignment will be discussed with most details, since it seems that this is an
issue of most immediate practical applications.

FSM design systems are described in [2, 174, 15, 48, 27, 73, 36, 100, 123, 138, 139].

IV. STATE ASSIGNMENT FOR FINITE STATE MACHINES.

A. Exsisting approaches to state assignment.

A State Assignment Problem is to assign codes to the internal states of FSM in
order to mimimize some cost function related to the circuit’s realization (like PLA
area or number of gates).

Most of the research papers discuss only the problem of assigning internal states,
assuming that the user specifies codes for input and output states. However,
there are efforts based on very similiar principles which assign input states and
output states (specified initially by names) with binary codes. They have found,
for instance, application in minimization of microprogrammed control units [57]
or in designing control units with PLAs [103].

The problem is a classic in Switching Circuits Theory, but relatively few pro-
grams have been widely available until recent years. In the early sixties the basic
main approaches to state assignment and structural theory of FSMs were formu-
lated. Few of them were programmed and the programming results were rather
unsatisfactory. Recently the state assignment problem is again gaining momentum
because of widespread attempts to realize a logic level silicon compiler for VLSI
[52] - [61], [121, 122], [138] - [143].

We will not characterize and evaluate in more detail the existing approaches
here. The reader can find respective discussion in [52, 55, 59, 122]. However, some
comparison of the known approaches will serve to present the main theoretical and
practical issues that must be solved to make the respective software tools useful.

There are basically seven approaches to state assignment:

1. Partition theory of Hartmanis, Stearns, Kohavi [92, 93, 91, 168, 106,
113]. The theory is based on a concept of the partition of states of machine
into blocks. Partitions are found from state tables and used to find sets
of partitions producing unique and optimal encodings. This theory is very
elegant from mathematical point of view, gives an insight into the nature of
structural properties of machines, as well it is very general (it permits also for
decomposition of FSMs, state minimization, realization with shift-registers,



etc.). However, the published results of programs that use this theory, as well
as our own experience with this approach prove that in general, this approach
is intractable for computer solutions of FSMs with more than 10 states, 10
inputs, and 10 outputs.

. Column evaluation approach of Dolotta and Mc Cluskey [69], ex-
tended by Curtis [40, 41], Weiner [182], Vavilov [179], Torng [176]. The
columns of the state table are scored with respect to many various criteria
influencing quality of assignment. The scores are used to find good partitions
and next the assignment. This approach can produce very good realizations
(also for various types of flip-flops); the results are even better than those
from approach 1, but is also intractable for machines of more than 12 states.

. Enumerative approach of Story [170]. All posible partitions are evalu-
ated as candidates for assignment separately by calculating the complexities
of realizations of the corresponding Boolean functions, and assuming that all
other partitions have been optimally selected for them. The subset of parti-
tions with the best scores, also mutually matching, is selected for assignment.
This approach gives better results than the approach from 2, but it is even
slower.

. Branch and bound approach of Perkowski, Lee and Zasowska [138,
187, 121, 122, 141]. This approach has two variants. The first permits re-
alization of machines with 8 input, 8 internal and 8 output states and gives
optimum realizations for arbitrary technology and flip-flops. However, in this
variant nearly all possible partitions have to be evaluated. This is perhaps
the program that generates most optimum solutions of all the published pro-
grams, but is very slow. The approximate method based on this method [122]
does not evaluate all partitions, but only heuristically selected best partitions.
It permits for realization of machines with 12 states, but can be extended to
18 - 20 states. Both approaches permit for state assignment combined with
state minimization.

. Quadratic assignment approaches of Armstrong, De Micheli and
Perkowski [6, 7, 52, 144]. All these approaches are based on embedding some
graphs created from FSM table to hypercube graphs. This approach permits
for realization of machines to 100 states but according to evaluations from [6],
it gave solutions too far from optimum. Some theoretical improvements were
made in [7], but not programmed. De Micheli implemented two algorithms
for state assignment, while at UC Berkeley. The first of them was based on



the quadratic assignment method - state assignment is reduced to the graph
embedding problem. The second algorithm was based on other principles since
he was not satisfied with quality of results. The results from [144], where both
creation of the graph for embedding and the embedding algorithm were done
on new principles, seem to be very satisfactory (machines with 136 states
have been assigned), but no detailed comparison with other approaches is yet
available.

6. Approach of Moroz [128]. This is a very fast constructive embedding
algorithm that is widely used in design automation systems in Soviet Union.
The author has implemented this algorithm and observed that it can find
assignments for machines with more than 100 states, but that the quality
of solutions for small machines was far from optimum. This is perhaps the
fastest program currently available. The speed results from the fact that it
does not solve the quadratic assignment but simple edges embedding problem,
and also the graph for embedding is created directly from the state graph.

7. Approach of De Michelli, Brayton and Sangiovanni-Vincentelli [52]
- cite[DeMi 85b], [23, 151] (KISS program). This approach is based on min-
imization of multiple-valuated Boolean functions to find state groups and
then constructive assignment by embedding of these groups to the faces of
a hypercube. Its strategy is very innovative and the computer results are
very good. It is perhaps the best product currently available from the point
of quality/time ratio. It was applied to machines with up to 100 states,
but the largest published result is for 27 states. The groups of states are
found with the use of multi-valued Boolean minimization program Espresso-
mv [23, 150, 151] applied to FSM before state assignment. This method of
finding groups of states (blocks), combined with fast Boolean minimization
was a source of program’s success. The Kiss program is now widely available
in universities and is used by many companies to build commercial software.
A program extending this approach was built in Intel [36].

B. Problems with existing approaches and requirements for a practical state as-
signment system.

We would like to have a program as fast as that of approach 6, as good as in
4 and as useful in VLSI design as approach 7. However, this is impossible. The
user then has to implement a method selected among the above for his class of
machines and systems’s speed and performance requirements, or implement many
algorithms and select among them interactively for any particular problem [143].



Let us consider in more detail what are the advantages and disadvantages of the
above methods.

The method of De Micheli fails when there are few or no groups of internal states
that transit to the same state under some input state. Unfortunately, such type of
machines often occur in industrial applications [36]. The new program, developed
by De Micheli at IBM gives results about 20constraint assignment problems [61].

The idea of applying Boolean minimization to the non-assigned machine is not
new. It was used in the systems of Story, Harrison and Reinhard [170] and of
Perkowski and Zasowska at Warsaw Technical University [187, 138], but because of
the lack of fast Boolean minimizers, like Espresso-mv, this approach was applicable
only to machines smaller than 9 internal states. However, the also method also
a secondary assignment, minimizes numbers of gates and can be used for multi-
level logic realization. The enumerative approach of the method allows finding
an absolutely minimum solution to the problem for various technologies, since
the cost function for realization is user-defined. Approximate variant for larger
machines was also created. Availability of fast minimizers permits for improvement
of methodologies from [121, 122]. The new methods and algorithms will be also
presented in the forthcoming papers. The methods give better results than Kiss,
but still cannot be applied to machines of more than 20 states.

The disadvantages of the original approach of De Micheli et al [55], are the
following:

e they do not take into account output assignment and various structures,

e they do not take into account modern methods of solving the quadratic as-
signment problem.

e they do not minimize secondary assignment.

Attempts to improve Kiss were successful [36, 61]. However, program still cannot
be applied for machines with more than 100 states [60]. Also, it does not take into
account output states for assignment.

The disadvantages of the approach of Armstrong are the following:

e the method of reduction to quadratic assignment was doubtful,

e he didn’t take into account the possibilities of fast logic minimizers (they
didn’t exist at that time),

e he didn’t take into account possibilities of modern approximate approaches
to quadratic assignment (they didn’t exist either).



e he didn’t took into account the assignment of outputs.
The disadvantages of Moroz approach are the following:
e the method of creating the assignment graph can be essentially improved,

e the method of solving the quadratic assignment problem can be used instead
of his embedding, which should produce results of better quality,

e he didn’t take into account assignment of outputs.

Different papers applying the embedding methods use different approaches to
create the assignment graph.

Saucier [157] creates a nonoriented weighted graph, whose edges correspond to
transitions between states of FSM.

Moroz [128] creates an oriented graph, whose edges correspond to oriented tran-
sitions between states. He writes about embedding, but his work can be treated
as approximate solution to quadratic assignment of a particular type, where the
graph is oriented, costs the of edges are equal, and the cost function is defined as
in the quadratic assignment.

Armstrong [6, 7] formulates a nonoriented graph, whose edges are created ac-
cording to several principles of adjacency.

The above authors use different constructive algorithms for embedding those
graphs on hypercubes. They do not give any, other than heuristic, explanations
of adequacy of the proposed assignment (embedding) techniques. Also, program
of Saucier is designed for asynchronous machines.

Perkowski uses a combination of factors that take into account adjacency of
states, inputs, and outputs, both from the view of primary adjacency (like De
Micheli), and also secondary adjacency with use of methods similiar to partition
theory and tabular methods.

Although many interesting approaches to state assignment have been recently
proposed, the careful comparison of algorithms is necessary on large benchmarks
of industrial machines. Many new interesting algorithmic concepts arise from the
papers and evaluation results recently available. Large sets of industrial FSMs
compiled by us anda other authors allows comparisons of methods. Perhaps in fu-
ture systems, various algorithms will be used for small (less than 8 states), medium
(9-40), and large (40-120) and very large (more than 120) machines to obtain good
speed /performance ratios. Detailed analysis of reduction methods is necessary, as
well as evaluation of the complexity of optimal and approximate algorithms for
related mathematical problems, like hypercube embedding, embedding to faces



and quadratic assignment [36, 144]. The possible use of general purpose parallel
computers as well as research on special hardware accelerators seem to be also
very promising.

V. MINIMIZATION OF NUMBER OF STATES OF FINITE STATE
MACHINE.

A. Do we really need state minimization in CAD systems?

Minimization of number of states of FSMs is a classical topic of most undergrad-
uate textbooks [114, 127, 125, 186] on logic design and sequential machines. It
consists of merging groups of compatible states of a machine into single states of
the new machine, in order to achieve an equivalent machine with reduced (and
possibly minimal) number of states. It is assumed, that a machine with less
states yields better realization. Compatible are the states that exhibit identical
input/output behavior. Problem is difficult in the general case since the groups
of compatible states are not disjoint and compatibility of some group of states
can imply compatibilities of other groups of states. A number of mathematically
interesting papers have been published [185, 134, 145, 184, 71, 3, 14, 16, 63, 64,
165, 152, 153, 107, 169, 84, 85, 86, 124]. However, it seems that no system is used
in American industry, which would apply this advantageous option. This is to the
contrary of practise in Europe and Soviet Union, where the present author has had
an opportunity to observe several systems of this type in industrial applications. In
USA responsible managers do not see a need for this kind of systems. Why is it so?
In my opinion there are two reasons for it. First of them is that in the States the
high level (architectural) design is often separated from logic minimization/layout
design and is done by separate groups of engineers. When the "logic minimization
people” receive the specification of the circuit from the ”architecture people” they
do not see many possibilities for improvement, for instance those that can result
from introducing don’t cares or minimizing the machine. The machines are small,
because the initial decomposition is done intuitively by architecture designer. The
other reason is that there never was a large market for industrial control systems
realized as FSMs, since the programmable controllers and microprocessors took
it early. In Eastern Europe for instance, these types of sequential circuits, which
are usually very large, were realized as finite state machines with PLAs, so a need
for software for state minimization and state assignment for machines of hundreds
states existed.

It is expected that a need for state minimization will be more evident when
the new high level tools for FSM description (like for regular expressions, Petri



Nets , parallel program schemata) will be incorporated into CAD systems and
conversions to state tables will be done automatically. For instance, minimization
of a completely specified machine is a part of procedures for: conversion of regular
expression to FSM state table, convertion of parallel automaton, nondeterministic
automaton or Petri Net to state table, equivalence verification of two FSMs [172]
and many others. Various new algorithms lead to state tables that are strongly
incomplete (have many don’t cares) and therefore can be substantially minimized
(for instance, when the invariants of the flow-graph are used to create don’t cares
in the state table).

B. The current approaches to state minimization.

The programs for state minimization can be divided into two categories: for
completely specified machines and for incompletely specified machines. The first
problem is relatively easy. The compatibility relation on states of the machine
[114] is in such a case an equivalence relation and therefore efficient O(n - log(n))
algorithms have been found [97, 114]. The problem to minimize an incompletely
specifed machine is much more difficult, and the solution is not unique to an
isomorphism (as it is for the completely specified machines). Very little information
on programmed state minimization algorithms can be found in literature available
in the U.S. All papers attempt to find a minimum solution and use a variant of
covering/closure algorithm for groups of compatible states (so called compatibles
). The point is to select such a subset of compatibles, that is full and closed, which
means that all state numbers of the initial machine are included in some groups,
and that each group implied by some selected group is also selected. Improved
variants of the classical algorithms were created but not programmed. The only
published references to fast approximate programs for large machines are [11, 12]
and [141]. Both these algorithms are based on the branch-and-bound principle to
find a closed and complete subset of groups of compatibles The program described
in [141] minimizes 7-8 state machines (20-30 compatibles) in 6-10 second of Cyber.
Generation of solutions for 10-state machines required 60-100 seconds. These
programs cannot yet be used for interactive design of FSMs with more than 30 -
40 states on Vax-class machines.

A lot of basic research and especially programming effort is necessary to design
practical state minimization algorithms for machines with hundreds of states, in-
puts and outputs, that occur in current circuits, like for instance control units of
MIiCroprocessors.



VI. OTHER APPROACHES TO FSM DESIGN AND OPTIMIZATION.

Because the traditional approach to FSM design either involves solving at least
two difficult combinational problems: state minimization and state assignment, or
produces possibly poor solutions, many attempts to implement other FSM design
methodologies have been undertaken. They attempt to minimize total area/chip
count and include:

e design of general-purpose FSMs based on shift-registers or other elementary
machines instead of flip-flops [49],

e design with special flip-flops with multiplexed inputs,
e design with regular arrays of elementary tunable machines,
e decomposition of FSMs into structures of FSMs [116, 188],

e converting the form of machine (Mealy to Moore and Moore to Mealy) to
select one of better performance,

e concurrent state minimization and state assignment [121, 122],

e special structures of FSMs, like different type of micro-programmed control
units with many ROMs and multiplexers, or partitioned realizations of logic

166, 109],

e direct conversion of high level description like parallel FSMs to symbolic or
geometric layout [99].

The above approaches are used selectively for various categories of machines:
some of them can be used for all machines, some of them are reasonable for large
machines only, some other can be applied only to small machines.

A. Concurrent state minimization and state assignment to improve area.

Below we will discuss one of the methods to improve a chip’s area. Current
approaches to structural synthesis of finite state machines are nonminimal. As
described above, the currently used design approach is first to minimize the number
of machine’s internal states and follow it with the states’ assignment.

The aim of these methods is generally to decrease the semiconductor area of
the realization for some selected implementing technology. However, the methods
apply very abstract cost approximations to achieve this. It would be more desirable
to minimize some generalized technology-dependent cost functions.



Minimization of the number of internal states results from the adopted assump-
tion: "the more internal states, the more complicated is the realization, hence more
memory elements are needed, there are more excitation functions, and therefore
their realization is more complicated”. Practical examples bear evidence that the
flow table with the minimum number of internal states is not necessarily the ap-
propriate starting point to achieve the circuit realization of the minimum total
complexity (computed for instance as the weighted sum of the number of flip-flops
and the number of combinational gates). Please note, that many contemporary
technologies (among others - MOS) do not require first of all minimization of the
number of memory elements, as is assumed in the classical methods.

Practical examples show evidence that we should not seek a FSM with the mini-
mum number of internal states, nor one with the excitation functions depending on
the minimum number of variables Examples of FSMs can be easily found that have
minimum realizations with the greater than minimum number of flip-flops (because
of much simpler excitation functions). Also, the attempt to find a realization of
the set of excitation functions with the minimum number of argument variables is
often useless, because such realizations can have more gates or connections than
other the realizations of these functions. Moreover, these assumptions do not take
into account the realization of excitation functions for flip-flops different than D
flip flops.

One of the possible approaches is to replace two stages:

- minimization of the number of the machine’s internal states,

- state assignment of the machine’s internal states,

with one stage of joint minimization and state assignment. In this joint process,
the cost function, related to the realization of the excitation functions in a selected
technology, is optimized. The optimum and approximate methods of this type are

presented in [121, 122].

B. Methods based on decomposition and partitioning of F'SMs.

Another group of methods is related to decomposing the machine into a group
of machines. Various approaches have been investigated. The classical methods,
based on partition theory, seek in general certain partitions that permit descrip-
tion of a machine as a parallel, cascade or parallel/cascade composition of other
machines. Such procedure can be done recursively. Unfortunately, such types of
decomposition are very laborious to find and their nontrivial cases occur rarely for
industrial machines. Some useful variants of classical theories discuss decomposi-
tion with use of important blocks like shift registers and counters.



New methods of decomposition try to use general graph partitioning methods
[Kern 70] to partition a state graph. Such methods are used in practical systems as
a neccessity, but their behavior seems to be unsatisfactory. Yet another group of
methods assumes certain structure of the realization of the machine, for instance
a microprogrammed unit, in which some outputs from the FSM are on the address
input of some multiplexer and control selection of input signals to this FSM (the
multiplexer’s output is one of inputs of a FSM). Separate PLAs are realized for
encoding of input and encoding of output signals. The main PLA realizing ex-
citation and output functions is partitioned into many PLAs. These approaches
combined can yield many various decomposed structures with essentially different
realization costs.

Another possible approach is to create methods, that are particularly suitable
for some selected method of machine’s realization. For instance, methods of FSM
design especially suitable for PLA minimization are discussed in [79, 117, 132, 166,
133].

VII. ASYNCHRONOUS MACHINES.

All the previously discussed methods for synchronous machines can be modified
for asynchronous machines, but the requirements for asynchronous design are more
difficult, the circuit should not produce hazards, races and oscillations, that can
occur mostly because of different delays in gates. This means that special design
tools must be built for asynchronous machines.

State minimization methods for synchronous state machines can be used with-
out modification for asynchronous machines, but more efficient methods can be
implemented for asynchronous machines, which make use of the specific forms of
tables in such machines.

In assignment of asynchronous machines the race-less condition must be ad-
ditionally taken into account. This constraint limits the number of applicable
partitions (codes) and sometimes permits finding an optimum design for small
machines faster than for synchronous machines of the same size. However, for
large asynchronous machines, the problem is very complex and good algorithms
are not currently available. The most advanced algorithms I am aware of permit
for assignment of machines of about hundred states, but no benchmark comparison
were run and results were hard to evaluate [88].

When the excitation functions are realized for asynchronous machines, the hazard
must be also avoided; static hazard in asynchronous circuits is very dangerous
indeed because changes not only dynamic but also static behavior of the machine.



The methods of logic circuit design to avoid both static and dynamic hazard
are well known and have been incorporated into some systems (see a paper by
Loc Nguyen/Perkowski in this issue). However, they increase the realization by
adding more gates and/or reducing number of logic levels, increasing the circuit’s
redundancy and therefore making it less testable.

The logic methods of races and hazard removal calculate for the worst case com-
bination of gates’ delays - some better results can be obtained when the delays of
particular gates are known from layout analysis. This method is however technol-
ogy dependent, and cannot be used in a technology-independent high-level system.

The algorithms for asynchronous machine design are given in [178, 157], and

[140].

VIII. MINIMIZATION OF LOGIC NETWORKS.

A. Why we need various logic minimization tools.

The portion of a chip implementing a set of Boolean functions usually represents
a major contribution to chip’s area or system’s chip count. Obviously, there are
many circuits which realize the same Boolean function. Unfortunately, at present
there is no general theory that provides designers (and design automation pro-
grams) with lower bounds for the total area of logic implementations in integrated
systems. Therefore, the main task for computer optimization programs appear
in choosing the circuit with the most convenient layout, minimizing the area but
also fulfilling many other constraints like timing, power consumption, and use of
standard cells. Various approaches are used for different technologies and design
styles (standard cells, ROM, PLA, Weinberger layout, SLA, gate arrays, etc.).

There are many sources of non-optimality of initial specification of logic circuits.
If the logic is created from FSM description, it was not minimized by the designer
at all. If it is specified as a source description - it bears all non-optimalities of
the way of how the designer thinks about his idea. The description of logic in
integrated design automation systems is a result of hardware compilation from
the high level front end system or the register-transfer language; this description
is then usually non optimal and should thus be next optimized with technology
independent and next technology dependent transformations based on Boolean
algebra.

The logic minimization is then always a must, but different methods are applied,
according to the design stage, design goals, and target technology. Therefore, two
stages are incorporated in the logic optimization systems - technology indepen-
dent, followed by the mapping from generic to target technology and technology-



dependent optimization.
The logic circuit design methods include basically two categories: two-level and
multi-level design. Two-level circuits are realized usually with Programmable

Logic Arrays (PLA) or Programmable Array Logic (PAL).

B. Minimization of PLAs and two-level circuits.

PLAs are used in many design to realize the logic part of FSMs or blocks of
combinational functions. If not minimized, PLAs can become extremely large,
consume a lot of power and are slow. For PLA design the problems of Boolean
minimization partitioning and folding are addressed. Logic minimization consists
of minimization of numbers of terms and sometimes also number of literals in
terms (for less power consumption, reliability and foldability). The Boolean mini-
mization algorithms for PLAs are optimum or approximate. The first can be used
for not more than 14 variables in general case and up to 20 variables for most
industrial functions [42]. The commonly used approximate program, Espresso,
[23] introduced a number of new theoretical and implementation ideas that are
now being tuned and improved both in industry and in universities. The topolog-
ical optimization includes partitioning [104], and folding (Hachtel) to decrease the
area of unused space inside a PLA. Folding attempts to find such a permutation
of rows and/or columns of AND and OR planes in the PLA, that as many as
possible rows or columns can be combined (folded) into single rows or columns.
Various folded architectures and folding algorithms have been implemented in UC
Berkeley, IBM and other places. Topological partitioning methods are described
in [52]. Recently the simulating annealing method [111] has been used by several
authors as a general method of solving combinatorial problems in CAD, includ-
ing all problems related to PLA optimization as well as many problems related
to multilevel optimization. The important partial problems related to (mostly)
two-level synthesis are that of complementation of a Boolean function [156], and
recognizing and minimizing unate functions [9, 24] (unate function is a sum of
products of non-negated variables).

Since operations on arrays of cubes representing Boolean functions are relatively
slow and are repeatedly used in the design process, hardware accelerators for them
have been recently proposed. Sasao had constructed a specialized accelerator to
verify logic tautologies [156], Perkowski proposed a general purpose accelerator
for solving combinatorial problems, based on reduction of problems to generic
combinatorial problems like "graph coloring” or satisfiability and implemented in
a parallel systolic architecture [141].



C. Multi-level logic minimization.

There are several possible design style alternatives for multilevel logic design:
e domino logic,

e Cmos static cells,

standard cells,

cascaded PLAs,

Weinberger layouts,

gate arrays,

multilevel PLAs,

e special regular layouts (like for symmetric functions).

Currently, optimization programs are designed or are under design for most of
these approaches. Structure of most of the systems is the following:

e front-end software converts the input high-level language design description
(functional,behavioral,or structural) to internal representation of logic net-
works,

e logic optimizer minimizes network independently on technology, optimizing
such criteria as number of gates, number of inputs, number of transistors,

e technology-dependent logical transformations are performed,

e topological optimizer (like folding of PLA, wire packing in Weinberger layout,
etc.) is used to generate symbolic layout,

The systems that we are aware of include:
e LSS (Logic Synthesis System) of IBM [44, 45, 46, 47, 17, 19], for gate arays,
e Yorktown Silicon Compiler [20] - [25],
e Cascode Voltage Switches [74].
e MAMBO system [96],
e Domino Logic,

Three approaches currently exist to multilevel logic design:



e global optimization, (Yorktown Silicon Compiler, part of Angel [98] and FDS
[72].

e local optimization (part of Angel, LSS, MAMBO).
e combination of the above.
Global optimization approaches include:

e decomposition of Boolean functions [5, 114, 147, 160, 161, 175]. An example
of global optimization approach is given in [20] and was found efficient for
single sided Cascade Voltage Switches. The approach of Brayton completely
redesigns the network.

Algorithms used include:

1. extraction - common subexpressions are recognized and replaced with one
variable,

2. collapsing - intermediate variables which do not offer savings are eliminated.

3. simplification - a two level Boolean expression is minimized by use of logic
minimization algorithms,

4. decomposition - a function too large to be implemented in a target technology

is factored and decomposed (FDS of Bell Labs).

The result of the first stages of compilation of high-level behavioral description
program is the nonoptimized logical network. At this stage of design some trans-
formations to optimize the network are possible, that hold true for arbitrary tech-
nology of network's realization. These transformations consist, generally speaking,
in removal of some parts of the network which do not influence its behavior (no
path goes from them to an output of the network) and in the reduction of the
number of inputs, according to the rules of the Boolean algebra. The parts of the
network not connected to outputs can be found which is an indirect effect of some
transformations executed at the previous stages of the structural implementation.
The fact that such parts of network occur can be either the designer’s error or
rather a result of high level initial specification.

Reductions of the number of gates’ inputs are also possible, as well as the number
of gates in some cases. They result from constant ones and zeros on gates’ inputs;
it is usually an effect of applying, on some previous design stages, of the standard
blocks (like registers, adders, multiplexers, comparators), with certain fixed input



data. For instance application of an adder to add a variable, (like a four-bit
bus), and a constant, (a four bit binary sequence), gives possibility of simplifying
the adder. The adder in the resultant network will not retain its universality.
The transformations applied to minimize such networks are rule-based. Each of
them is very simple, however their successive usage sometimes permits for essential
simplification of a network [Wiec 84al.

Next transformations optimize the network by applying a rule-based approach
and this is done also independently of technology. An excellent example of this
kind of system is one of GE, described in [51, 82, 87, 34]. Another system of this
type was designed in IBM and its description can be found in [44] - [47], [10]. The
transformational approach to NAND network design is presented in [120]. Other
rule-based systems for arbitrary negative gates are described in [180, 181] and
[162].

Another approach, which usually starts from a set of Boolean equations, is based
on factorization [65, 20]. The basic factoring rules (like ab+ac=a(b+c)) can be
usually applied in many places of the set of expressions, and applying some fac-
torization prohibits another one. The point is to select optimum factorizations
for large sets of logic equations. Factorization is strongly related to decomposi-
tion. Both the disjoint and the disjoint decompositions have been studied. The
function shall be presented as a composition of some other functions, possibly op-
erating on disjoint sets of input variables. The classical papers on decomposition
of Boolean functions are [37, 39, 62] and [105]. A branch and bound algorithm
to design optimum multilevel NAND networks was described by Davidson [50].
Another approach to multilevel design is presented in [118]. Approaches to design
multilevel multi-output functions are discussed in [171]. A modern approach to
decomposition and factoring was introduced in papers of Brayton and respective
software is currently being implemented in IBM. Some other special structures of
functions’ realization are : three level circuits with NANDs [136], trees, cascades,
and arrays of tunable gates. Problems of mapping circuits to different technolo-
gies, selecting modules, and partitioning are discussed in [83, 119, 35, 108]. A
dynamic programming approach to optimal mapping of logic network to a set of
modules is discussed in [158].

Interesting approaches to several partial problems in logic design are included in
[8, 29, 31] and [66]. It seems that they can be used for efficient implementation
of some new methods in a comprehensive global/local logic design system with
various representations of logic functions.



Since EXOR gates are used in most arithmetical and many coding/telecommunication
operations, design with this type of gates is important. Circuits that use many
exors usually produce PLAs with large areas, research in multilevel synthesis meth-
ods with EXORs and ANDs, XNORS and ORs, or any other functional system
including EXORs is very important from practical point of view. Many papers
have been devoted to this topic in the past [4, 13, 189, 129, 146], but results are
not widely used in industry. New research emphasizes programming efficiency and
possibility of using these methods for wider categories of circuits in comprehensive
general purpose global /local approaches.

In some systems logic minimization is done in conjunction with layout minimiza-
tion, best examples are perhaps [163] and [149].
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