
Causal Dependencies in Parallel Composition of

Stochastic Processes

Ling Cheung? and Martijn Hendriks??

Department of Computer Science, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{lcheung,martijnh}@cs.ru.nl

Abstract. We present some new perspectives on an old problem: com-
positionality of trace-style semantics for stochastic processes. The ini-
tial step is a more fine-grained analysis of how parallel composition of
stochastic processes can be defined in a meaningful way. We make a
connection between the notion of adversary models and the formal def-
initions of stochastic system types and parallel composition operators.
In particular, we focus on causal dependencies arising from the so-called
strong adversaries and argue that trace-style semantic compositionality
cannot be achieved under strong adversaries.

We identify a structural feature of stochastic processes called “invisible
probabilistic branching” and illustrate its connection with strong adver-
saries. Based on these observations, we introduce a new system type
together with appropriate notions of observable behavior and parallel
composition. We prove a finite approximation theorem for behaviors and
use that to prove semantic compositionality. Finally, we present a model
of the Chor-Israeli-Li consensus protocol in our new framework.

1 Motivations and Conceptual Analysis

The study of concurrency concerns the development and analysis of system com-
ponents executing in parallel. Such components may communicate with each
other via some well-defined mechanism, for instance, shared variables or asyn-
chronous message passing. Apart from this communication, the evolution of each
individual component is independent from the behavior of other components.
This independence assumption underlies the so-called modular approaches to
system development, which are popular in various stages of the development
process including design, implementation and analysis.

To put modular methods on firm grounds, it is essential that our formal
models come with a convincing notion of parallel composition, one that reflects

? Supported by DFG/NWO bilateral cooperation project Validation of Stochastic Sys-
tems (VOSS2)

?? Supported by EU IST project IST-2001-35304 Advanced Methods for Timed Systems
(AMETIST)

our intuitions about independent evolution of parallel components. This require-
ment usually takes the form of a semantic compositionality1 theorem, relating
the parallel composition operator to the relevant notion of system behavior.

Compositionality issues have been well-studied for non-deterministic models
of distributed computation. For stochastic processes, however, a careful study
of parallel composition is somewhat harder to find2. In particular, many articles
that do present parallel composition operators for stochastic processes fail to
provide an explanation of the intuitive meaning of these operators.

The present paper aims to provide some initial steps in this direction, with
a focus on causal dependencies among behaviors of parallel, stochastic com-
ponents. Aside from the conceptual analysis, we present a new system type for
modeling stochastic processes, together with a parallel composition operator and
a notion of trace-style observable behavior. Much attention will be devoted to
justifying our view on parallel composition and to arguing that our technical
definitions correctly capture those ideas.

We do not expect the reader to agree with every philosophical comment we
make in this paper. Our primary goal is to convey the following: (i) there are
legitimate foundational issues regarding the use of randomization in our models
of parallel computation, and (ii) it is a non-trivial task to fully understand the
philosophical implications of one’s mathematical definitions.

1.1 Interleaving Semantics and Random Choices

A fundamental idea in concurrency theory is the interleaving interpretation of
parallel composition. Namely, (i) every atomic step of a composite system is an
atomic step of one of its components (or more in case of synchronization); and
(ii) the scheduling among components is arbitrary. This view seems perfectly ade-
quate when the basic building blocks of a system are deterministic algorithms, in
which case uncertainty arises only from choices among distributed components.
As it turns out, non-determinism provides a very natural means to modeling
such choices, because it captures the idea of complete lack of information (or
“ignorance”).

The story is different when our basic algorithms contain stochastic elements.
Typically, a component is assumed to have access to some random source which,
upon request, draws an element from some pre-specified probability distribution.
Under this extension, we are confronted with two distinct types of uncertain-
ties: (i) random choices within individual components and (ii) non-deterministic
choices among distributed components. We illustrate this by introducing our
running example.

Example 1. Suppose two automata A and B are racing to write their own pref-
erence values into a shared register, which can be written to only once, i.e., all

1 We distinguish “semantic” compositionality from the “syntactic” version, which sim-
ply states that a parallel composition operator is definable for a particular formal
framework, without reference to the associated notion of observable behavior.

2 We refer our reader to [SdV04] for a comparative survey on this topic.

subsequent write operations are ignored. Moreover, suppose there is a third au-
tomaton Coin0 which tosses a fair coin and announces the result by sending a
one-bit message across a network to an unspecified recipient. �

·A

writeA

��·

GF ED@A BC ·B

writeB

��·

GF ED@A BC Coin0 ·
send(0)

//·
pp

1
2

77ppppp
NN

1
2

''NNNNN
·send(1) //·

toss

GF ED
@A BC

One may ask: what possible behavior can/will the composite A‖B‖Coin0 ex-
hibit? There are many possible execution sequences, including, among others,
writeA . toss . send(0).writeB and toss .writeB . send(1).writeA. How should one as-
sign probabilities to these sequences? Notice the temporal ordering of the oper-
ations writeA and writeB is significant, because it determines the content of the
shared register at the end of an execution.

In [DAHK98,Seg95], parallel composition is defined so that the composite
of two purely stochastic processes may contain non-determinism, reflecting the
lack of information in resolving the choice between these processes. Once the
composite process is constructed, one resorts to the so-called adversaries (or
schedulers) in order to remove all remaining non-deterministic choices. We refer
to this approach as “compose-and-schedule”. Since adversaries are usually his-
tory dependent, the outcome of interleaving can become causally connected to
previous events. This is the focus of the present paper.

There are of course other approaches to parallel composition of stochastic
processes, for example, parameterized composition [JLY01,DAHK98], real-time
delay [WSS94] and synchronous execution [dAHJ01,vGSS95]. Due to space con-
straints, we summarize these approaches in Appendix A and explain why we
find them unsatisfactory.

1.2 Adversary Models

In the setting of randomized distributed algorithms, one often speaks of adver-
sary models [Asp03,AB04]. An adversary is a function from a finite execution
of a system to an available next transition (or a convex combination of such
transitions, depending on the particular formalism). Such a function resolves
all non-deterministic choices in a system, so that random choices are the only
remaining uncertainties. The probability of each execution is then completely
determined by the sequence of coin tosses generating that execution.

Adversaries are important for analyzing worst case scenarios. That is, one can
image that the parties running a protocol are collaborating towards a certain
goal (e.g. termination), while the adversary tries to prevent the parties from
reaching that goal. Therefore, a stronger adversary model (i.e., adversaries with
more knowledge and power) gives a higher degree of confidence in the claim that
formal correctness proofs in fact guarantee correct behavior in real life systems.

Figure 1 below depicts an execution of A‖B‖Coin0 from Example 1. This
execution is induced by a so-called strong adversary, which can observe entire

histories of all system components, including internal states. Indeed, the adver-
sary chooses between writeA and writeB based on the outcome of toss.

· writeA //· writeB //· send(0) //·
pp

1
2

77ppppp
NN

1
2

''NNNNN
· writeB //· writeA //· send(1) //·

toss

Fig. 1. An execution of A‖B‖Coin0

Let us consider some implications of the existence of such an adversary, call it
A. Let α denote the action sequence toss .writeA .writeB . send(0) and assume α is
observed during a run controlled by A. Then both events EH := “coin comes up
heads” and EA := “writeA precedes writeB” occur and the probability of EA is 1
at the time of occurrence of EH . Moreover, if EH had not occurred, then ET :=
“coin comes up tails” would have occurred and the probability of EA would have
been much lower (in this case, 0). The conjunction of these statements turns out
to be exactly how one defines the causal dependence between EH and EA in the
probabilistic counterfactual theory of causation3.

How are we then to provide some justification for this causal dependency?
A logical explanation would be that the event EH somehow produced an ef-
fect on the computation environment, so that the system dynamics dictates “A
runs relatively faster than B.” Notice, this unknown effect must have been pro-
duced prior to the send(0) message from Coin0, because in α the subsequence
writeA .writeB precedes send(0). Moreover, this effect is not specified in the for-
mal description of Coin0.

We now draw some conclusions from our analysis. First, if one insists on the
existence of such an adversary A, one must give up the independence assump-
tion we mentioned at the onset of this paper. In particular, the evolution of A‖B
is dependent upon the evolution of Coin0 in some unspecified manner; that is,
a manner not described by the action synchronization mechanism of commu-
nication. Second, if one chooses to adopt the strong adversary model, then A
is definable and hence one must also give up the aforementioned independence
assumption. Finally, since the unknown effect of the previous paragraph is not
expressed in terms of actions, it is not captured as part of observable behavior
under a trace-style semantics. Consequently, a semantic compositionality the-
orem would not be possible. Many well-known counterexamples echo this last
claim and we provide one of them in Example 2.

Example 2. Consider Early0 and Late0 as depicted below, where they synchronize
with Coin0 on the action toss. These two are equivalent in a typical trace-style
semantics. Yet, in Late0 ‖Coin0, it is possible to define an execution in which

3 A detailed discussion on probabilistic causation is clearly beyond the scope of this
paper. We refer to [Hit02] for an overview.

the action a is totally correlated with send(0) and b with send(1). This is not
possible for Early0 ‖Coin0. We refer to [LSV03,CLSV04] for more details. �

Early0 ·
a

//·
·

toss
99rrrrrr

toss %%LLLLLL

· b //·

GF ED
@A BC Late0 ·

·
toss

//·
a

99rrrrrr

b %%LLLLLL

·

GF ED
@A BC Coin0 ·

send(0)
//·

pp

1
2

77ppppp
NN

1
2

''NNNNN
·send(1)//·

toss

GF ED
@A BC

Before moving on, we stress that many weaker forms of adversaries appear
in the literature [Asp03,AB04]. Below is a non-exhaustive list.

(1) Oblivious adversaries, which can observe only component names.
(2) Content-oblivious adversaries, which cannot distinguish operations that dif-

fer only in parameter (e.g. send(0) and send(1)).
(3) Write-oblivious adversaries, which cannot observe any value written to a

shared memory until that value has been read by some process.
(4) Local-oblivious adversaries, which cannot observe any randomly chosen value

until it is written to a shared memory.

1.3 Invisible Probabilistic Branching

Now we turn to the main objective of this paper: weakening the strong adversary
model just enough to guarantee a semantic compositionality theorem. Clearly, a
framework in which semantic compositionality holds is highly desirable. More-
over, our analysis in Section 1.2 shows that the strong adversary model commits
one to a strong assumption: the computation environment can detect the out-
come of any coin toss as soon as the coin lands, even if the outcome is not used
in any meaningful way. For example, we can remove the send(·) transitions from
Coin0 and still enforce the total correlation that A wins if and only if the coin
comes up heads. Therefore, we seek a slightly weaker adversary model in order
to avoid these irregularities.

We return to Example 1 and try to identify the structural features of Coin0

that allow the adversary to observe internal random outcomes and to make
decisions accordingly. We come with two key observations.

(1) The specification Coin0 exhibits invisible probabilistic branching : there is a
random choice over distinct transitions carrying the same label toss;

(2) The adversary A is obtained in a “compose-and-schedule” fashion (that is,
A uses the joint history of A, B and Coin0 in making scheduling decisions).

In fact, we have essentially made observation (2) in an earlier paper [CLSV04],
where component scheduling is done in a distributed fashion4. That is, we as-
sume a token structure on parallel processes in which the (unique) currently
active component always chooses the next active component. This approach

4 Distributed scheduling also appears in [BPW04] in a setting of computational cryp-
tography. We were not aware of the connection at the time we published[CLSV04].

can be characterized as “schedule-and-compose”, where local non-deterministic
choices are resolved by local schedulers and global choices (i.e., inter-component
choices) are resolved using the token structure.

As far as we know, observation (1) is original. In the literature (cf. overview
in [SdV04]), most authors specify probabilistic transitions using discrete distri-
butions on the Cartesian product Act ×S, where Act is the action alphabet and
S is the state space. Take for example the general probabilistic automata model
of [Seg95], with transition function Ω : S −→ P(Disc(Act ×S)).

In other words, each state s ∈ S enables a setΩ(s) of probabilistic transitions,
where each transition is given by a discrete distribution on pairs of the form
〈a, s′〉. In such a setting, it is possible to specify a transition that assigns non-
zero probability to some 〈a, s1〉 and 〈a, s2〉, with s1 6= s2. This situation is
precisely what we called invisible probabilistic branching in observation (1).

Guided by this insight, we introduce a variant of Ω:

∆ : S −→ P(Act → ([0, 1]× S)),

with the additional requirement that π1 ◦ f is a discrete distribution on Act for
all µ ∈ S and f ∈ ∆(µ). Notice we use variables µ, ν, etc. for states5. Such a
function f ∈ ∆(µ) is called a transition bundle from µ, representing a one-step
evolution from a state specified by µ. Along this step, an action a is observed
with probability π1(f(a)) and, in that case, the resulting state is π2(f(a)).

Clearly, given a bundle f ∈ ∆(µ), we obtain a distribution on Act ×S by
assigning probability π1(f(a)) to the pair 〈a, π2(f(a))〉. Thus our systems are
special cases of general probabilistic automata of [Seg95]. Note that the inclu-
sion is strict: because our transition bundles are functions, invisible probabilistic
branching cannot be expressed in our system type. This is precisely our goal.

Coin1 Dirac(⊥)

toss

��
Unif({0, 1})

vv

1
2

send(0)

{{vvvvvvv
HH

1
2

send(1)

##HHHHHHH

Dirac(0) Dirac(1)

GF ED
@A BC

Fig. 2. Coin1: removing invisible probabilistic branching from Coin0

Figure 2 illustrates a modification of Coin0 according to this new system
type. The states of Coin1 are discrete distributions on the set of all possible value
assignments to state variables. Specifically, there is a boolean state variable bit,
which is initially ⊥. After the toss action, bit is assigned either 0 or 1, each

5 We think of a state in our model as a discrete distribution on concrete states of an
underlying system. This will become clearer as we discuss Coin1 of Figure 2.

with probability 1
2 ; hence the state is represented by the uniform distribution

on {0, 1}, denoted Unif({0, 1}). Here Dirac(s) denotes the discrete distribution
assigning probability 1 to the value assignment s.

1.4 Parallel Composition and Compositionality

In some literature [DAHK98,Seg95], non-deterministic choices between parallel
components are resolved by randomized adversaries (i.e., they return convex
combinations of available transitions). We have chosen to work with deterministic
adversaries. To justify this design decision, we give some intuition in terms of
possible worlds.

The underlying idea is: the outcome of interleaving among distributed com-
ponents is uniquely determined in each individual world. Whenever some com-
ponent performs a visible action, we transit from one world to another and hence
the outcome of interleaving may differ. Notice such an action need not always
affect the world in such a way that relative speeds of processes change. Yet we
allow the adversary this freedom in order to strengthen our “worst case” guar-
antees (i.e., we quantify over more possible cases). An important, but subtle
point to note: if we start from the same world and observe the same visible ac-
tion, then the resulting world should be the same. This is in fact another way of
understanding our exclusion of invisible probabilistic branching.

For a more concrete illustration, we consider Example 1 with Coin0 replaced
by Coin1 of Figure 2. When the coin is tossed, the external world observes the
same action toss regardless of the outcome, therefore the target world is the
same. Of course we do not know whether A wins in this target world or B does,
so in our semantics both options are considered. The left execution below depicts
one of them. It may also happen that both write operations take place after Coin1

sends an announcement. In that case, the adversary can use the content of the
message to decide whether A or B wins. This is depicted below on the right.

·
· toss //· writeA //· writeB //· rr

1
2

send(0)

99rrrrr
LL

1
2

send(1)

%%LLLLL

·

·writeA //·writeB //·
· toss //· rr

1
2

send(0)

99rrrrr
LL

1
2

send(1)

%%LLLLL

·writeB //·writeA //·

As it turns out, the adversary model associated with our framework is very
similar to the local-oblivious adversary model of [CIL94], in that scheduling
among components is done (implicitly) by a centralized adversary which has no
knowledge of “unannounced” random outcomes. The difference is, in a typical
setting of randomized algorithms, each component is a purely stochastic process,
whereas in our setting components may themselves contain non-determinism.

Much of our technical efforts goes to achieving a clear separation between
local and global non-deterministic choices, so that all local choices are resolved
using strictly local information. Thus our notion of parallel composition is also
along the lines of “schedule-and-compose” of [CLSV04].

These considerations turn out to be sufficient to guarantee semantic com-
positionality of our trace-style behavioral preorder (Theorem 4). To our best
knowledge, we are the first to achieve this under a centralized scheduling scheme.

1.5 Overview

Sections 2 and 3 introduce notational preliminaries and basic notions of prob-
abilistic input/output automata. In Sections 4 and 5, we define the notion of
execution trees and their behavioral abstraction. Section 6 describes our ap-
proximation techniques for reasoning about infinite behaviors, where a detailed
development can be found in Appendix C. In Section 7 and Appendix D, we
define our notion of parallel composition and prove semantic compositionality.
Section 8 and Appendix E describe some preliminary modeling work on the
Chor-Israeli-Li consensus protocol. Finally, concluding remarks are in Section 9.

2 Preliminaries

Given set X , a function µ : X −→ [0, 1] is called a discrete (probability) distri-
bution on X if

∑
x∈X µ(x) = 1. The support of µ, denoted Supp(µ), is the set

{x ∈ X | µ(x) > 0}. We write Disc(X) for the set of all discrete distributions
on X . Given x ∈ X , the distribution Dirac(x) assigns probability 1 to x. If X is
finite, then the distribution Unif(X) assigns probability 1

|X| to every x in X .

Given two sets X and Y , we write X + Y for the disjoint union of X and
Y and X ×Y for the Cartesian product, where the projection maps are denoted
πi. Given an equivalence relation ≡ on X , the quotient of X under ≡ (written
X/ ≡) is the partition of X induced by ≡. The coset [x] in this quotient is the
equivalence class containing x.

The set of all partial functions from X to Y is denoted X ⇀ Y . For each
f ∈ X ⇀ Y , we write dom(f) for the domain of f and f(x) = ⊥ whenever
x 6∈ dom(f). Given f, g ∈ X ⇀ Y , we write f ⊆ g whenever the graph of f is a
subset of that of g.

3 Probabilistic Input/Output Automata

Throughout this paper, we fix a countable set Act of action symbols.

Definition 1. A probabilistic automaton (PA) A is a triple 〈SA, µ0
A, ∆A〉 where

– SA is the set of states with the initial state µ0
A ∈ SA;

– ∆A : SA −→ P(Act → ([0, 1] × SA)) is the transition function satisfying:
π1 ◦ f is a discrete distribution on Act for all µ ∈ SA and f ∈ ∆A(µ).

We say that f is a transition bundle from µ if f ∈ ∆A(µ). The set of all
transition bundles in A is Bun(A) :=

⋃
µ∈SA ∆A(µ). In this paper, we focus on

countably branching systems: SA and Bun(A) are both countable. We refer to
Figure 2 for an example of a PA in our sense. Next, we introduce input/output
(i/o) distinction. For that we associate an alphabet ActA ⊆ Act to each PA A.

Definition 2. A probabilistic i/o automaton (PIOA) A is a PA 〈SA, µ0
A, ∆A〉

where ActA is partitioned into {IA, OA, HA} (input, output, and hidden ac-
tions, respectively) and ∆A satisfies the two axioms below.

1. I/O. For all µ ∈ SA and f ∈ ∆A(µ), one of the following holds:
(a) π1 ◦ f = Dirac(a) for some a ∈ IA (f is an input bundle with label a),
(b) Supp(π1 ◦ f) ⊆ OA (f is an output bundle), or
(c) π1 ◦ f = Dirac(a) for some a ∈ HA (f is a hidden bundle with label a).

2. Input enabling. For all µ ∈ SA and a ∈ IA, there exists an input bundle
f ∈ ∆A(µ) with label a.

We say that A is closed if IA is empty and open otherwise. A few points of
clarification are in order. The i/o axiom divides transition bundles into three
classes: input, output and hidden. We write respectively BunI(A), BunO(A) and
BunH(A). As usual, the first two are visible and the last two are locally controlled.
Similar to Input/Output Automata (IOA) of Lynch and Tuttle [LT89], we have
an input enabling axiom requiring acceptance of all inputs at every state. More-
over, we avoid synchronization deadlocks by requiring that every input is received
with probability 1 (Clause (1a)). This can be viewed as a probabilistic version of
input enabling. As a result, our parallel composition operator, unlike most oth-
ers in the literature, does not involve a mechanism for normalizing probabilities
(i.e., collecting and redistributing deadlock probabilities). This greatly simplifies
our technical development, especially in proving compositionality (Theorem 4).

Clauses (1b) and (1c) are perhaps a bit more surprising. We explain using
two variants of Coin0. Suppose a hidden bundle may assign non-zero probability
to two distinct hidden actions, thus leading to two distinct end states, as shown
in Coin2. Then Coin2 also exhibits a form of invisible probabilistic branching
and can be used to distinguish Early0 and Late0 of Example 2. A similar analysis
applies to Coin3, therefore we must also rule out bundles that assign non-zero
probability to both hidden and output actions.

Coin2 ·
send(0)

//·
· rr

1
2

τ1

99rrrrr
LL

1
2

τ2

%%LLLLL

·send(1) //·

GF ED
@A BC Coin3 ·

toss
//·
send(0)

//·
pp

1
2

τ

77ppppp
NN

1
2

toss
''NNNNN
· τ //·send(1) //·

GF ED
@A BC

4 Executions

In a stochastic setting, a run of a process corresponds to a local scheduler that
resolves all local non-deterministic choices. This is sometimes called a “proba-
bilistic execution” [Seg95]. Such a run can be seen as a purely stochastic tree in
which every node is a finite execution sequence of the underlying PA. In our case,
the tree-like structure results from the fact that each transition bundle f may
lead to multiple end states, one for each a in Supp(π1 ◦ f). When we introduce
i/o distinction, the situation is complicated by non-deterministic choices involv-
ing inputs. Thus, we use the term “execution tree”, rather than probabilistic

execution, to emphasize the fact that execution trees are not purely stochas-
tic. As shown in [CLSV04], execution trees in a closed PIOA are precisely the
probabilistic executions in the sense of [Seg95]6.

We begin by defining the notion of branches in execution trees.

Definition 3. Let A be a PIOA and let µ ∈ SA be given. We use joint recursion
to define the set of (execution) branches from µ, denoted Bran(µ), together with
the function last : Bran(µ) −→ SA.

– The length-one sequence containing µ (written µ) is in Bran(µ) and is called
the empty branch, where last(µ) := µ.

– If r is in Bran(µ), then so is r.f.a.ν, provided: (i) f is a transition bundle
from last(r); (ii) a ∈ ActA and π1(f(a)) > 0; (iii) ν = π2(f(a)). Moreover,
last(r.f.a.ν) := ν.

We write Bran(A) for Bran(µ0). The likelihood of r ∈ Bran(µ) is the value Π [r]
defined as follows: (i) Π [µ] := 1, and (ii) Π [r.f.a.ν] := Π [r] · π1(f(a)). The
trace of r is the action sequence tr(r) given by: (i) tr(µ) := ε, and (ii) tr(r.f.a.ν)
equals tr(r).a if a 6∈ HA and tr(r) otherwise.

Essentially, the likelihood of r is obtained by multiplying the probabilities
of the sequence of events generating r. Notice we opt for the term “likelihood”,
rather than “probability”. This is because the probabilities involved in Π [r] are
conditional upon the choices of transition bundles along r, and therefore Π is
typically not a probability distribution over Bran(µ).

As hinted above, some subtle issues complicate the definition of execution
trees for open PIOAs. First we give an example of input non-determinism. Con-
sider automaton C below, synchronizing with Coin1 in Figure 2. (We use ? to
indicate input actions.) During a run, C receives a one-bit message from Coin1

and moves to two different states accordingly. From the perspective of C, the
choice between send(0)? and send(1)? is non-deterministic, yet a reasonable no-
tion of execution tree should include both branches in the same run.

C ·
a

//·
·

send(0)? 99rrrrrr

send(1)? %%LLLLLL

· b //·

GF ED
@A BC Early1 ·

toss?
//·

a
//·

· τ

99rrrrrr
toss?

%%LLLLLL

· b //·

GF ED
@A BC

Next, we consider automaton Early1. The question is whether an execution tree
can contain both branches of Early1. Here the choice between toss? and τ can
be seen as both (i) global, between Early1 and its environment, and (ii) local,
between the two branches within D. Since we take the “schedule-and-compose”
approach of parallel composition (Section 1.4), we insist on resolving this choice
locally. In other words, each run of Early1 involves at most one branch. This
is essentially an assumption that local schedulers are insensitive to the timing

6 Our execution trees are essentially the same as pseudo probabilistic executions
of [CLSV04].

of inputs relative to internal computations. This often holds in practice, where
components use e.g. FIFO queues to store interrupting inputs and handle them
only when internal computations are finished.

Thus we arrive at the following definition of execution trees. The symbol �
indicates complete termination of a system, whereas4 indicates that the system
is in a waiting state and may be later activated by an input. Moreover, let I
denote the function space IA → BunI (A) and let O denote BunO(A) ∪ {4}.

Definition 4. Let A be a PIOA and let µ ∈ SA be given. An (execution) tree
from µ is a partial function Q : Bran(µ) ⇀ ({�}+BunH(A)+(I×O)) satisfying
the conditions below.

1. For all r ∈ dom(Q),
(a) Q(r) ∈ BunH(A) implies Q(r) ∈ ∆A(last(r));
(b) Q(r) ∈ I × O implies, for all a ∈ IA, (π1(Q(r)))(a) is in ∆A(last(r))

and has label a;
(c) if Q(r) ∈ I ×O and π2(Q(r)) 6= 4, then π2(Q(r)) ∈ ∆A(last(r)).

2. The domain of Q is generated by the following closure rules:
(a) µ ∈ dom(Q);
(b) for all r ∈ dom(Q), the one-step extension r′ = r.f(a).a.π2(f(a)) is in

dom(Q), provided one of the following holds:
– f = Q(r) ∈ BunH(A) and a ∈ Supp(π1 ◦ f);
– Q(r) ∈ I ×O, a ∈ IA, and f = (π1(Q(r)))(a);
– Q(r) ∈ I ×O, f = π2(Q(r)) 6=4, and a ∈ Supp(π1 ◦ f).

(Notice, by Condition (1), r′ is in fact a well-defined branch.)

We write Tree(µ) for the set of all execution trees from µ and Tree(A) for
Tree(µ0). Intuitively, each such partial function Q corresponds to a local sched-
uler and dom(Q) is the set of branches reachable under that scheduler. The
closure rules defining dom(Q) capture the idea of “one-step” reachability.

5 Observable Behavior

As given in Definition 3, the behavioral abstraction of a branch r is the sequence
tr(r) of visible action symbols along r. To obtain the abstraction of an execution
tree, we first note that the trace function tr : Bran(µ) −→ Act<ω induces an
equivalence relation on Bran(µ) in the obvious way: for r, r′ ∈ dom(Q), r ≡tr

r′ if and only if tr(r) = tr(r′). Moreover, the following image mapping tr :
(Bran(µ)/ ≡tr) −→ Act<ω is well-defined: tr([r]) := tr(r).

Given any Q ∈ Tree(µ), dom(Q) is a subset of Bran(µ), therefore we may
restrict ≡tr to dom(Q). Below we state an interesting fact about the quotient
dom(Q)/ ≡tr. Here v denotes the prefix ordering on sequences.

Theorem 1. Let Q ∈ Tree(µ) be given. For all r ∈ dom(Q), the coset [r] ∈
dom(Q)/ ≡tr is linearly ordered by v and there exists a unique minimal element.
If [r] is finite, then there is also a unique maximal element.

Theorem 1 is a strong (and perhaps surprising) result. It says, given any tree
Q and finite trace α, there is “essentially” at most one branch r in dom(Q) with
trace α. We say “essentially” because there may in fact be more than one, but
they differ in a very limited way: if r and r′ in dom(Q) have the same trace,
then one must be a prefix of the other. This gives us a convenient way to define
observable behavior by grouping together branches with the same trace.

Definition 5. Let Q ∈ Tree(µ) be given. The likelihood assignment induced by
Q, denoted ΠQ, is the function from (IA ∪ OA)<ω to [0, 1] defined by:

– ΠQ[α] := 0 if tr([r]) 6= α for all [r] ∈ dom(Q)/ ≡tr;
– otherwise, ΠQ[α] := Π [r], where r is the unique minimal element of the

(unique) coset in dom(Q)/ ≡tr with trace α.

Again, we avoid the terminology “trace distribution” of [Seg95], because our
likelihood assignments do not necessarily induce probability measures (due to
the presence of input non-determinism). However, the two notions do coincide
for closed PIOAs.

Next we introduce the notion of probabilistic systems. This is simply an
underlying PIOA together with a set of “admissible” executions. As we shall see
in Section 7, some execution trees of a composite automaton are inadmissible
because they are not “generated” by execution trees of the components.

Definition 6. A probabilistic system (PS) P is a pair 〈A, L〉, where A is a
PIOA and L ⊆ Tree(A). We sometimes write PA when L is clear from context.
Such a system is full if L = Tree(A). We write Π(P) for the image of L under
Π. We define behavioral inclusion (≤Π) by: P1 ≤Π P2 if and only if Π(P1) ⊆
Π(P2).

6 Order Structures and Finite Approximation

In this section, we outline our development leading to a finite approximation
theorem (Theorem 3). Details can be found in Appendix C. Throughout the
section, we fix a PIOA A and µ ∈ SA. First, we define a simple order structure
on Tree(µ), very much analogous to the prefix ordering on sequences. This is
easily shown to be a poset. Theorem 2 then shows that every increasing sequence
in this poset has a least upperbound.

Definition 7. Given Q,Q′ ∈ Tree(µ), we define Q ≤ Q′ by: dom(Q) ⊆ dom(Q′).

Theorem 2. The poset 〈Tree(µ), ≤〉 is closed under limits of ω-chains.

Theorem 2 provides a definition principle for execution trees: every ω-chain
{Qk | k ∈ N} in 〈Tree(µ), ≤〉 has a uniquely determined limit (denoted

∨
k∈NQk).

In this way, we can specify an infinite element Q in Tree(µ) by constructing an
increasing sequence converging to Q.

Next, given an execution tree Q ∈ Tree(µ), we define Q �n for each n ∈ N
using an appropriate enumeration {rn | n ∈ N} of Bran(µ). The idea is: (i) Q �n

agrees with Q up to rn, and (ii) for all m > n, Q �n terminates on rm. This
sequence {Q �n | n ∈ N} is shown to converge to Q (Lemma 9).

For the final ingredient, we define an order structure on the function space
F := (IA∪OA)<ω → [0, 1]. (Recall from Definition 5 that likelihood assignments
are functions in this space.) This structure is analogous to the subset/information
ordering on partial functions.

Definition 8. Let D1, D2 ∈ F be given. Define D1 ≤ D2 by: for all α ∈ (IA ∪
OA)<ω, D1(α) 6= 0 implies D1(α) = D2(α).

Clearly, the poset 〈F , ≤〉 is closed under ω-limits (by taking pointwise limits).
Moreover, it is immediate that the operator Π : Tree(µ) −→ F is monotone: for
all Q,Q′ in Tree(µ), Q ≤ Q′ (in the sense of Definition 7) implies ΠQ ≤ ΠQ′ . It
is in fact continuous. This is precisely our finite approximation theorem.

Theorem 3. For any ω-chain {Qk | k ∈ N} in Tree(µ), ΠW
k∈N Qk =

∨
k∈NΠQk .

7 Parallel Composition and Compositionality

Intuitively, the basic building blocks of a distributed system are purely stochas-
tic processes. These are modeled by (trivially) full probabilistic systems (cf.
Definition 6). In a parallel composition of these basic elements, we consider the
underlying composite PIOA together with execution trees that are generated in
some appropriate sense (Definition 9).

To carry out this development, we start with the notion of compatibil-
ity: PIOAs A and B are said to be compatible if OA ∩ OB = ActA ∩HB =
ActB ∩HA = ∅. The composite A‖B is defined as usual with action synchroniza-
tion. In particular, every input bundle of the composite carrying label a involves
an input bundle of every component with a in its signature. Similarly, every
locally controlled bundle of the composite is generated by a locally controlled
bundle of (exactly) one of its components, synchronizing with input bundles of
other components whenever appropriate. The formal definition is standard but
tedious, therefore it is presented in Appendix D (Definition 13).

Moreover, given a transition bundle f in a composite ‖1≤i≤nAi, one can
define the ith-projection of f , denoted πAi(f), in the obvious way. Similarly,
one can also define the ith-projection of a branch r in the composite, denoted
πAi(r). (Again, details are in Appendix B, Definitions 14 and 15.) This allows
us to define “generated” execution trees and following that parallel composition
for probabilistic systems. Then we are ready to present our main theorem.

Definition 9. Let A,B be compatible PIOAs and let 〈µA, µB〉 ∈ SA‖B be given.
An execution tree Q ∈ Tree(〈µA, µB〉) is said to be generated by QA ∈ Tree(µA)
and QB ∈ Tree(µB) if πA(dom(Q)) ⊆ dom(QA) and πB(dom(Q)) ⊆ dom(QB).

Definition 10. Let PA = 〈A, LA〉 and PB = 〈B, LB〉 be probabilistic systems
with A and B compatible. The parallel composite of PA and PB, denoted PA‖PB,
is given by the underlying PIOA A‖B together with the set LA‖B := {Q ∈
Tree(A‖B) | Q is generated by some QA ∈ LA and QB ∈ LB}.

Theorem 4 (Compositionality). Let PA,PB and PC be probabilistic systems
such that A and B have the same signature and are both compatible with C.
Assume that PA ≤Π PB. Then PA‖PC ≤Π PB‖PC.

8 The Chor-Israeli-Li Protocol

Distributed consensus (or agreement) describes a class of problems in which a set
of parallel processes try to agree on a single value from a pre-specified domain
by exchanging messages. The famous impossibility result of [FLP85] shows that
no deterministic consensus algorithm can guarantee correct termination in an
asynchronous setting with undetected single process failure. This prompted the
move to randomized algorithms for consensus (cf. overview in [Asp03]) and the
termination condition is weakened to a probabilistic statement: the set of all
non-terminating runs has probability 0. Chor, Israeli and Li (CIL) were the first
to provide such a solution, which guarantees wait-free termination (i.e., all but
one process may fail) in a shared-memory setting [CIL87,CIL94].

The CIL protocol is of special interest to us, because its correctness relies on
the assumption that adversaries cannot observe internal probabilistic branching
of any process until the random outcome has been written to the shared memory.
We present in Appendix E some preliminary modeling efforts. In particular, we
provide PIOA codes for both the shared memory and a typical protocol party.

We also argue that the algorithm of [CIL94] and a simplified version in [Asp03]
both contain a minor initialization error (which, to our best knowledge, has not
been reported elsewhere). Although the error is easily remediable, it serves as
a fresh reminder that formal methods are in fact valuable in detecting human
errors.

9 Conclusions and Future Work

Compositionality is important for practical reasons, because it justifies modular
reasoning about large systems. In our view, it also serves as a criterion in evalu-
ating whether a formal model bears sufficient resemblance to reality (or at least
the abstract view of reality one has chosen for the formal analysis). Therefore,
we take a more philosophical approach to the problem of compositionality.

We start with some vague intuitions about parallel processes and try to
understand what happens when parallel components can toss coins. This exercise
leads to several useful conceptual discoveries. In Section 1 and Appendix A, we
argue that the more traditional definitions of parallel composition for stochastic
processes (e.g. bias factors and “compose-and-schedule”) do not fit very well
with our intuitive pictures. Instead, the notion of adversary models from the
setting of randomized consensus algorithms provides a lot more insight. As we
modify our definitions accordingly, compositionality indeed falls into place.

The most significant difficulty we encountered is finding a consistent way to
assign probabilities to various interleavings in a parallel composition (cf. Exam-

ple 1). In our view, this is due largely to the fact that interleaving is inherently
timing related, and yet our basic framework is untimed.

In other words, a trace-style semantics does not always capture properties
such as “some internal computations require more time than others.” For ex-
ample, when division operations are performed on randomly chosen values, pro-
cesses may exhibit delays of various lengths. In this way, internal random choices
can realistically affect the outcome of interleaving. (This, however, does not pro-
vide a direct explanation for the execution in Figure 1, because the specification
of Coin0 does not involve any computations on the randomly chosen bit.) There-
fore, we believe that our analysis will benefit from a move to a timed setting,
where timing properties can be treated explicitly.

Finally, we see much potential in formal verification of weak adversary proto-
cols such as the CIL protocol mentioned in Section 8. Typically, weak adversary
algorithms are much simpler and more efficient compared to their strong coun-
terparts (cf. [AB04]). In our view, the foundational difficulties associated with
the strong adversary model (cf. Section 1) increase the appeal of weak adversary
algorithms. We believe it will be fruitful to study weak adversary models in a
more systematic manner, providing suitable stochastic system types as well as
verification techniques.

10 Acknowledgment

We are greatly indebted to Nancy Lynch and Frits Vaandrager, with whom we
corresponded extensively during the writing of this paper. We also thank those
on whom we have imposed our conversations, including Luca de Alfaro, James
Aspnes, Christel Baier, Thomas Henzinger, Jesse Hughes, Wolter Pieters and
Roberto Segala.

References

[dAHJ01] L. de Alfaro, T.A. Henzinger, and R. Jhala. Compositional methods for
probabilistic systems. In K.G. Larsen and M. Nielsen, editors, Proceedings CON-
CUR 01, Aalborg, Denmark, August 20-25, 2001, volume 2154 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2001.

[DAHK98] P. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel com-
position. In Proceedings PROBMIV’98, ENTCS 22:105–122, 1998.

[Asp03] J. Aspnes. Randomized protocols for asynchronous consensus. Distributed
Computing, 16(2-3):165–175, 2003.

[AB04] Y. Aumann and M.A. Bender. Efficient low-contention asynchronous consensus
with the value-oblivious adversary scheduler. Accepted to Distributed Computing,
2004.

[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
Journal of Algorithms, 11(3):441-461, 1990.

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive
systems. Cryptology ePrint Archive, Report 2004/082, 2004.

[CLSV04] L. Cheung, N.A. Lynch, R. Segala, and F.W. Vaandrager. Switched proba-
bilistic i/o automata. In Proceedings First International Colloquium on Theoretical
Aspects of Computing (ICTAC2004), Guiyang, China, 20-24 September 2004, Lecture
Notes in Computer Science. Springer-Verlag, 2004. To appear.

[CIL87] B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous
hardware. In Proceedings PODC’87, pages 86–97, ACM Press New York, 1987

[CIL94] B. Chor, A. Israeli, and M. Li. Wait-free consensus Using asynchronous hard-
ware. SIAM Journal on Computing, 23(4):701–712, 1994.

[FLP85] M. Fischer, N.A. Lynch, and M.S. Paterson Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985

[vGSS95] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and
stratified models of probabilistic processes. Information and Computation, 121:59–80,
1995.

[Hit02] C. Hitchcock. Probabilistic causation. In E.N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy, Fall 2002. Available at
http://plato.stanford.edu/archives/fall2002/entries/causation-probabilistic/.

[JLY01] B .Josson, K.G. Larsen, and W. Yi. Probabilistic extensions of process alge-
bras. In Handbook of Process Algebras, Elsevier, North Holland, 2001.

[KNS01] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a
randomized distributed consensus protocol using Cadence SMV and PRISM. In
Proceedings CAV’01, LNCS 2102, pages 194-206, 2001.

[LSV03] N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for prob-
abilistic automata. In R. Amadio and D. Lugiez, editors, Proceedings 14th Inter-
national Conference on Concurrency Theory (CONCUR 2003), Marseille, France,
volume 2761 of Lecture Notes in Computer Science, pages 208–221. Springer-Verlag,
September 2003.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, September 1989.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1995. Available as Technical Report
MIT/LCS/TR-676.

[SdV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel
composition and comparison. In C. Baier et al., editor, Validation of Stochastic
Systems, volume 2925 of Lecture Notes in Computer Science, pages 1–43. Springer-
Verlag, 2004.

[WSS94] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of
probabilistic i/o automata. In B. Jonsson and J. Parrow, editors, Proceedings CON-
CUR 94, Uppsala, Sweden, volume 836 of Lecture Notes in Computer Science, pages
513–528. Springer-Verlag, 1994.

A Other Approaches to Parallel Composition

Here we give a more detailed account on the various approaches to parallel
composition of stochastic processes.

– Parameterized composition [JLY01,DAHK98]. Instead of a single (binary)
composition operator, one considers a family {‖p}p∈[0,1] of operators. The
parameter p indicates the bias towards the left process and 1 − p towards

the right process. In Example 1, A‖pB yields: with probability p, writeA is
performed before writeB and the opposite situation occurs with probability
1− p.
There are two main disadvantages associated with this approach. First, there
is no obvious reason that one should privilege a single number p ∈ [0, 1] as
a faithful representative of the underlying situation between two processes.
Except for degenerate cases in which p equals 0 or 1, the operator ‖p is not
associative. And, unless we adopt the uniform distribution (i.e., p = 1

2), the
operator ‖p is not commutative. These properties are quite contrary to our
intuitions about parallel processes. Second, the parameter p is static, in the
sense that the left process will always receive bias p regardless of activities
both in and around the process. This is again unsatisfactory.

– Real-time delay [WSS94]. To each state of a process, one associates a delay
parameter δ. Upon entering a state, every process draws a real-time delay
from an exponential distribution with the parameter δ for that state. Among
a group of parallel processes, the process with the shortest delay performs
the next move. Using specific properties of exponential distributions, one can
calculate the bias towards each component.
Here we find it questionable that the delay patterns of processes can be
universally characterized by exponential distributions. Even though this as-
sumption may be reasonable in certain applications (say, in a setting of
hybrid systems), it is only natural that we seek alternatives that are suitable
for a broader class of problems.

– Synchronous execution [dAHJ01,vGSS95]. In this model, components make
simultaneous moves, even if they are not involved in action synchronization.
In Example 1, 〈writeA, writeB , toss〉 would be a composite move. Assuming
independence of the random choices, the probability of a composite move is
simply the product of the probabilities of the atomic moves involved.
This approach takes us away from the realm of interleaving semantics. It
sometimes leads to technical difficulties in formal verification. For exam-
ple, one must distinguish between atomic and composite actions, while the
complexity of composite actions grows with the number of system compo-
nents being analyzed. Moreover, during a synchronous execution, compo-
nents evolve in a lock-step fashion, which is typically not the case in a truly
distributed setting. Therefore, asynchronous models have been more tradi-
tional for analyzing distributed algorithms.

B Basic Lemmas and Proofs

Lemma 1. Let A be a PIOA and let µ ∈ SA be given. For all r ∈ Bran(µ), we
have Π [r] > 0.

Proof (Lemma 1). Definition 3 requires π1(f(a)) > 0 for every well-formed
branch r.f.a.π2(f(a)). Using a simple inductive argument on the structure of
branches, we obtain the desired conclusion. ut

Lemma 2. Let Q ∈ Tree(µ) and r′ ∈ dom(Q) be given. For all r ∈ Bran(µ) with
r v r′, we have r ∈ dom(Q).

Proof (Lemma 2). Define X := {r′ ∈ dom(Q) | ∀r v r′, r ∈ dom(Q)} ⊆ dom(Q).
It is easy to check that X satisfies the closure rules in Definition 4, therefore it
must be the case that dom(Q) ⊆ X . ut
Lemma 3. Let Q ∈ Tree(µ) and r ∈ dom(Q) be given. Suppose the branch
r1 = r.f.a.π2(f(a)) is also in dom(Q).

1. If f is a hidden bundle, then Q(r) ∈ BunH(A) and f = Q(r).
2. If f is an input bundle, then Q(r) ∈ I ×O and f = (π1(Q(r))(a).
3. If f is an output bundle, then Q(r) ∈ I ×O and f = π2(Q(r)).

Proof (Lemma 3). For Item (1), assume Q(r) 6∈ BunH(A) or f 6= Q(r). Define
X := dom(Q) \ {r1}. It is easy to check that X satisfies the closure rules in
Definition 4, contradicting minimality of dom(Q). Similarly for Items (2) and (3).

ut
Lemma 4. Let Q ∈ Tree(µ) be given. For all r ∈ dom(Q) and n ∈ N, there is
at most one n-step extension r′ of r such that r′ ∈ dom(Q) and tr(r′) = tr(r).

Proof (Lemma 4). By the i/o axiom, every hidden transition bundle carries a
unique label, thus leads to a unique target state. Hence, for every r ∈ dom(Q)
with f = Q(r) ∈ BunH(A), the branch r′ = r.f.a.π2(f(a)) is the unique one-step
extension of r in dom(Q). With this observation, the desired conclusion follows
from a simple inductive argument. ut
Proof (Theorem 1). We prove these claims by induction on the length of tr([r]).
For the base case, note that ε is the unique length-0 trace and [µ] (where µ
is the empty branch) is the unique coset with trace ε. Let r1, r2 ∈ dom(Q)
be given with tr(r1) = tr(r2) = ε and r1 6= r2. Without loss, we may assume
that |r1| = n ≤ m = |r2|. By Lemma 2, the length-n prefix r0 of r2 is also
in dom(Q). Then r0 and r1 are both length-n extensions of µ in dom(Q) and
tr(r0) = tr(r1) = ε. By Lemma 4, it must be the case that r0 = r1, hence r1 v r2.
Clearly, the unique minimal element of [µ] is µ. If [µ] is finite, we may choose
r ∈ [µ] with maximal length. Again by Lemma 4, this element is unique.

For the induction step, we consider [r′] ∈ dom(Q)/ ≡tr with trace α.a. By
Lemma 2, there is r0 in dom(Q) with trace α. By the induction hypothesis,
we may choose a minimal such r0. Suppose [r0] is infinite. By the induction
hypothesis, [r0] is a ω-chain (w.r.t. v) starting from r0. Moreover, for every
r ∈ [r0], it must be the case that f = Q(r) is a hidden bundle with label
b for some b ∈ HA and the one-step extension r.f.b.(π2(f(b))) is again in [r0].
Therefore, it is easy to check that X := dom(Q)\{r′} satisfies the closure rules in
Definition 4. This contradicts the minimality of dom(Q) and hence we conclude
that [r0] is finite.

By the induction hypothesis, we may choose the unique maximal element
r1 ∈ [r0]. If Q(r1) = �, then X := dom(Q) \ {r′} satisfies the closure rules in
Definition 4, contradicting minimality of dom(Q). Then it must be the case that
Q(r1) ∈ I ×O. There are two cases.

– a ∈ IA. Let g = (π1(Q(r1)))(a). Then r2 := r1.g.a.π2(g(a)) is an element of
dom(Q) with trace α.a, hence in [r′]. By minimality of dom(Q) and unique-
ness of r1, we know that every r3 ∈ [r′] is an extension of r2. Now we apply
Lemma 4 to r2 as we did in the base case and we conclude that [r′] is linearly
ordered by prefix. Obviously, r2 is the minimal element and, if [r′] is finite,
there is a unique element with maximal length.

– a ∈ OA. Since dom(Q) is v-closed and r1 is the unique maximal element
of [r0], we know that r1 v r′. If π2(Q(r1)) = 4, then X := dom(Q) \ {r′}
satisfies the closure rules in Definition 4, contradicting minimality of dom(Q).
Therefore it must be the case that g = π2(Q(r1)) ∈ BunO(A). Using a
similar minimality argument, we know that π1(g(a)) > 0, therefore r2 :=
r1.g.a.π2(g(a)) is well-defined. The rest is similar to the input case.

ut
Lemma 5. Let Q ∈ Tree(µ) and [r] ∈ dom(Q)/ ≡tr be given. For all r′ ∈ [r],
we have Π [r] = Π [r′].

Proof (Lemma 5). By Theorem 1, [r] contains a unique minimal element. With-
out loss, we assume that r is such an element. Again by Theorem 1, every r′ ∈ [r]
is an n-step extension of r for some n ∈ N. Thus we may prove the claim by
induction on n.

Clearly,Π [r] = Π [r]. For the induction step, take r′′ = r′.f.a.π2(f(a)), where
f is a hidden bundle. By the i/o axiom, π1(f(a)) = 1, therefore Π [r′′] = Π [r′],
which equals Π [r] by the induction hypothesis. ut
Lemma 6. Let A and B be PIOAs and let µA ∈ SA and µB ∈ SB be given.
Suppose we have QA ∈ Bran(µA) and QB ∈ Bran(µB) with ΠQA = ΠQB . Then
there exists a bijection h : dom(QA)/ ≡tr−→ dom(QB)/ ≡tr preserving both trace
and likelihood.

Proof (Lemma 6). Let [rA] ∈ dom(QA)/ ≡tr be given and let α denote the trace
of [rA]. By Lemma 1 and Definition 5, we know that ΠQB [α] = ΠQA [α] 6= 0.
Therefore we may choose [rB] ∈ dom(QA)/ ≡tr such that the trace of [rB] is α
and the likelihood of [rB] is ΠQB [α] = ΠQA [α], which equals the likelihood of
[rA]. Clearly, such [rB] is unique and we may define h([rA]) := [rB]. Then h is
trace- and likelihood-preserving. Since the domain of h is a partition induced
by tr and h is tr-preserving, it follows immediately that h is injective. Moreover,
notice that we can define a right inverse h-1 of h in exactly the same manner as
we did h, therefore h is also surjective. ut

C Order Structures and Finite Approximation: Detailed
Development

To prove Theorem 2, we introduce an order structure � on

D := {⊥}+ {�}+ BunH(A) + (I × O)

and prove that ≤ on Tree(µ) coincides with the pointwise ordering induced by
�. Intuitively, we want: “unreachable” � “terminating” � “non-terminating”.

Definition 11. Recall that I = IA → BunI(A) and O = {4}∪BunO(A). Define
�O:= IdO ∪{〈4, f〉 | f ∈ O}. Let �I×O by the ordering on I ×O generated by
IdI and �O component-wise. Then � is the transition closure of the following:

IdD ∪ {〈⊥, �〉} ∪ {〈�, d〉 | d ∈ D, d 6= ⊥}∪ �I×O .

Lemma 7. Let Q1, Q2 ∈ Tree(µ) be given and assume that Q1 ≤ Q2. For all
branches r ∈ dom(Q1), we have

1. if Q1(r) ∈ BunH(A), then Q1(r) = Q2(r);
2. if Q1(r) ∈ I ×O, then so is Q1(r) and π1(Q1(r)) = π1(Q2(r));
3. if Q1(r) ∈ I ×O and π2(Q1(r)) 6= 4, then π2(Q1(r)) = π2(Q2(r));

Proof (Lemma 7). We treat only the second claim, as the other two follow sim-
ilarly. Let 〈F, f〉 denote Q1(r) and choose any a ∈ IA. Then dom(Q1) con-
tains the branch r.F (a).a.π2(F (a)(a)), hence so does dom(Q2). By Lemma 3,
Q2(r) ∈ I×O and (π1(Q1(r)))(a) = F (a) = (π1(Q2(r)))(a). Since this holds for
every a ∈ IA, we have π1(Q1(r)) = π1(Q2(r)). ut

Theorem 5. For all Q1, Q2 ∈ Tree(µ), Q1 ≤ Q2 if and only if Q1(r) � Q2(r)
for all r ∈ Bran(µ).

Proof (Theorem 5). Suppose Q1 6≤ Q2. Then there exists r such that Q1(r) 6= ⊥
but Q2(r) = ⊥, which implies Q1(r) 6� Q2(r). Therefore the “only if” part holds.

Now suppose Q1 ≤ Q2. If Q1(r) = ⊥, then clearly Q1(r) � Q2(r). Otherwise,
r ∈ dom(Q1) ⊆ dom(Q2). If Q1(r) = �, then Q1(r) � Q2(r); else we apply
Lemma 7 to conclude the same. ut

By virtue of Theorem 5, we may use either definition of ≤ on Tree(µ) as
we see fit. Next we prove that 〈D, �〉 is closed under ω-limits and hence so is
〈Tree(µ), ≤〉.

Lemma 8. The poset 〈D, �〉 is closed under limits of ω-chains.

Proof (Lemma 8). Let {dk | k ∈ N} be an ω-chain in 〈D, �〉. Without loss, we
may assume that dK1 6= ⊥ for some K1. If dk = � for all k ≥ K1, then the limit
is �. Otherwise, let K2 be the least k such that dk 6∈ {⊥,�}. If dK2 ∈ BunH(A),
then dk = dK2 for all k ≥ K2, hence the limit is dK2 .

Otherwise, {dk | k ≥ K2} is an ω-chain in 〈I × O, �I×O〉, which is closed
under limits of ω-chains. Therefore, 〈D, �〉 is also closed under limits of ω-chains.

ut

We are now ready for the proof of Theorem 2.

Proof (Theorem 2). Let {Qk | k ∈ N} ⊆ Tree(µ) be an ω-chain with respect to
≤. By Lemma 8, we may define Q by taking pointwise limits. We need to show
that Q ∈ Tree(µ).

Condition (1) in Definition 4 is satisfied because for all r ∈ dom(Q), there
exists k such that Q(r) = Qk(r). Moreover, since ⊥ is the bottom element for

�, we have dom(Q) =
⋃
k∈N dom(Qk). Hence dom(Q) is closed under the rules

in Condition (2). We need to show it is the smallest such set.
Let X ⊆ Bran(µ) be also closed under those rules. We prove that, for all

r ∈ Bran(µ), r ∈ dom(Q) implies r ∈ X . This is done by induction on the
structure of r.

– Clearly µ ∈ X .
– Consider r.f.a.π2(f(a)) ∈ dom(Q). If f is a hidden bundle, then by Lemma 3

we know that f = Q(r). By the definition of branches, we have π1(f(a)) >
0. Therefore r.f.a.π2(f(a)) must be in X . The two other cases (input and
output) follow similarly.

ut

Recall our assumption that Act is countable and A is countably branch-
ing. Therefore, Bran(µ) is countable for all µ ∈ SA. Take any enumeration
{r0, r1, r2, . . .} that is monotone with respect to the prefix ordering. That is,
for all m and n, m ≤ n implies rm v rn. This is always possible by first obtain-
ing a v-monotone enumeration of the set of all finite sequences over the alphabet
SA ∪Bun(A)∪Act , and then intersecting that enumeration with Bran(µ). Using
this enumeration, we define (finite) approximations of execution trees.

Definition 12. Let Q ∈ Tree(µ) be given. For each n ∈ N, define

– domn
[(Q) := dom(Q) ∩ {r0, . . . , rn},

– domn
] (Q) := {r.Q(r).a.π2(Q(r)) | r ∈ domn

[(Q) and a ∈ Supp(π1 ◦ (Q(r)))},
– domn(Q) := domn

[(Q) ∪ domn
] (Q).

Then the n-th approximation of Q, denoted Q �n, is the partial function with
domain domn(Q) such that:

– for all r ∈ domn
[(Q), Q �n (r) = Q(r);

– for all r ∈ domn
] (Q), Q �n (r) = �.

Since the enumeration {r0, r1, r2, . . .} is monotone with respect to prefix, it
is easy to check that Q �n is well-defined for all n ∈ N.

Lemma 9. For every Q ∈ Tree(µ), the sequence {Q �n | n ∈ N} forms a chain
with respect to ≤. Moreover, Q =

∨
n∈NQ �n.

Proof (Lemma 9). The first claim is trivial. The second follows from Theorem 2.
ut

This leads to the proof of Theorem 3.

Proof (Theorem 3). By the proof of Theorem 2, we know that dom(
∨
k∈NQk) =⋃

k∈N dom(Qk). Since ΠQ is defined entirely in terms of dom(Q) for all Q ∈
Tree(µ), the desired equality follows. ut

D Parallel Composition and Compositionality: Detailed
Development

First we give the formal definition of parallel composition for PIOAs.

Definition 13. Let {Ai | 1 ≤ i ≤ n} be pairwise compatible PIOAs. We define
the composite ‖1≤i≤nAi to be the following PIOA P .

1. SP :=
∏n
i=1 Si and the start state is 〈µ0

1, . . . , µ
0
n〉;

2. IP := (
⋃n
i=1 Ii) \ (

⋃n
i=1 Oi), OP := (

⋃n
i=1Oi), and HP := (

⋃n
i=1Hi);

3. given a state 〈µ1, . . . , µn〉, ∆P (〈µ1, . . . , µn〉) contains precisely those func-
tions f : ActP −→ [0, 1]× SP satisfying one of the following conditions.
(a) There exists 1 ≤ i ≤ n and locally controlled transition bundle gi from

µi such that:
– for all a ∈ Oi ∪Hi, f(a) = 〈π1(gi(a)), 〈ν1, . . . , νn〉〉, where
• νi = π2(gi(a));
• for all j 6= i such that a 6∈ Ij , νj = µj ;
• for all j 6= i such that a ∈ Ij , νj = π2(hj(a)) for some input

transition bundle hj from µj with label a;
– for all other a ∈ ActP , f(a) = 〈0, 〈µ1, . . . , µn〉〉.

(b) There exists action a ∈ IP such that:
– f(a) = 〈1, 〈ν1, . . . , νn〉〉, where
• for all i such that a ∈ Ii, νi = π2(hi(a)) for some input transition

bundle hi from µi carrying label a;
• for all i such that a 6∈ Ii, νi = µi;

– for all other b ∈ ActP , f(b) = 〈0, 〈µ1, . . . , µn〉〉.

Such a composite P is closed if IP = ∅. Sometimes we write ‖n{Ai | 1 ≤ i ≤
n} for ‖1≤i≤nAi. For n = 2, we write ‖ and use infix notation. It is easy to check
that ‖1≤i≤n is well-defined for all n and that ‖ is commutative and associative.

Lemma 10. The automaton ‖1≤i≤nAi is in fact a PIOA.

Proof (Lemma 10). Let µ = 〈µ1, . . . , µn〉 and f ∈ ∆‖1≤i≤nAi(〈µ1, . . . , µn〉) be
given. If f arises from Clause (3b) in Definition 2, then clearly π1 ◦ f is the dirac
measure on a. Otherwise, assume that f arises from Clause (3a). Choose locally
controlled transition bundle gi from µi such that f is induced by gi. Notice that
π1 ◦ f coincides with π1 ◦ gi on Oi ∪ Hi and is 0 elsewhere. Since π1 ◦ gi is a
discrete distribution, so is π1 ◦ f . Moreover, it follows that Supp(π1 ◦ f) ⊆ Oi
or Supp(π1 ◦ f) = {a} for some a ∈ Hi.

The argument above shows that f is a PA in the sense of Definition 1 and that
f satisfies the i/o axiom in Definition 2. Input enabling follows from Clause (3b)
of Definition 2 and the fact that every Ai satisfies input enabling. ut

Lemma 11. The composition operator ‖ is commutative and associative.

Proof (Lemma 11). Commutativity is trivial. For associativity, it is easy to see
that (A‖B)‖C is isomorphic to ‖3{A,B,C}. ut

Next we consider projection operations on transition bundles and execution
branches.

Definition 14. Let {Ai | 1 ≤ i ≤ n} be pairwise compatible PIOAs and let
〈µ1, . . . , µn〉 be a state in ‖1≤i≤nAi. Let f be a transition bundle from the state
〈µ1, . . . , µn〉. For each 1 ≤ i ≤ n, we define the ith-projection of f , denoted
πAi(f), as follows:

– if f arises from a locally controlled bundle gi from µi, then πAi(f) := gi;
– if f arises from a locally controlled bundle gj from µj with i 6= j, then πAi(f)

is the partial function from Ii to BunI(Ai) given by: for all a ∈ Ii,
• if a 6∈ Supp(π1 ◦ gj), then πAi(f)(a) := ⊥ (undefined);
• otherwise, πAi(f) is the unique input bundle hi from µi with π1(hi(a)) =

1 and π2(hi(a)) = πAi(π2(f(a)));
– if f is an input bundle carrying label a and a ∈ Ii, then πAi(f) is the

unique input bundle hi from µi such that π1(hi(a)) = 1 and π2(hi(a)) =
πAi(π2(f(a)));

– otherwise, πAi(f) := ⊥ (undefined).

Using Definition 13, it is easy to check that πAi(f) is well-defined. Notice
that πAi on transition bundles is a partial operation, because it need not be the
case that all components are involved in every step of the composite. Next we
treat execution branches.

Definition 15. For each 1 ≤ i ≤ n, we define a projection function πAi from
Bran(〈µ1, . . . , µn〉) to Bran(µi) as follows.

– πAi(〈µ1, . . . , µn〉) := µi.

– Consider r′ = r.f.a.π2(f(a)).
• If πAi(f) = g ∈ Bun(Ai), then it must be the case that a ∈ Supp(π1 ◦ g)

and we define πAi(r
′) := πAi(r).g.a.π2(g(a)).

• If πAi(f) = G ∈ Ii ⇀ BunI(Ai) and a ∈ dom(G), then πAi(r
′) :=

πAi(r).G(a).a.π2(G(a)(a)).
• Otherwise πAi(r

′) := πAi(r).

Using Definitions 13 and 14, one can easily check that πAi(r) is well-defined
for every r ∈ Bran(〈µ1, . . . , µn〉). Notice, unlike the case for transition bundles,
πAi is a total operation on execution branches.

For Lemmas 12 through 16, let Q ∈ Tree(〈µA, µB〉) be generated by QA ∈
Tree(µA) and QB ∈ Tree(µB) and let r be a branch in dom(Q) with Q(r) = �.

Lemma 12. Suppose f = QA(πA(r)) ∈ BunH(A). Then there is bundle g from
last(r) such that πA(g) = f . Moreover, there is Q′ in Tree(〈µA, µB〉) such that
Q′ is generated by QA and QB and dom(Q′) = dom(Q)∪{r.g.a.π2(g(a))}, where
a is the unique member of Supp(π1 ◦ f).

Proof (Lemma 12). By the definition of ∆A‖B , there is a bundle g from last(r)
in which component A follows bundle f and component B simply stutters. Then
we define Q′ as follows:

– Q′(r) := g;
– Q′(r.g.a.π2(g(a))) := �;
– for all other r′ ∈ Bran(〈µA, µB〉), Q′(r′) := Q(r′).

It is routine to check that Q′ is an execution tree generated by QA and QB and
satisfying the desired condition. ut

Lemma 13. Suppose QA(πA(r)) ∈ IA × OA and IB ∩ IA‖B = ∅. Then for all
a ∈ IA‖B, there is ga ∈ ∆A‖B(last(r)) such that πA(ga) = (π1(QA(πA(r))))(a).
Moreover, there is Q′ in Tree(〈µA, µB〉) such that Q′ is generated by QA and
QB and dom(Q′) = dom(Q) ∪ {r.ga.a.π2(ga(a)) | a ∈ IA‖B}.

Proof (Lemma 13). Let a ∈ IA‖B be given. By assumption, a is not in the
signature of B. By the definition of ∆A‖B , there is a bundle ga from last(r) in
which component A follows bundle (π1(QA(πA(r))))(a) and component B simply
stutters. Let G be the function from IA‖B to BunI(A‖B) defined by G(a) := ga.
Then we define Q′ as follows:

– Q′(r) := 〈G, 4〉;
– for all a ∈ IA‖B , Q′(r.ga.a.π2(ga(a))) := �;
– for all other r′ ∈ Bran(〈µA, µB〉), Q′(r′) := Q(r′).

It is routine to check that Q′ is an execution tree generated by QA and QB and
satisfying the desired condition. ut

Lemma 14. Suppose QA(πA(r)) ∈ IA × OA and IB ∩ IA‖B = ∅. Suppose in
addition f = π2(QA(πA(r))) 6= 4 and Supp(π1 ◦ f) ∩ IB = ∅. Then there is
g ∈ ∆A‖B(last(r)) such that πA(g) = f . Moreover, there is Q′ in Tree(〈µA, µB〉)
such that Q′ is generated by QA and QB and dom(Q′) equals

dom(Q) ∪ {r.ga.a.π2(ga(a)) | a ∈ IA‖B} ∪ {r.g.b.π2(g(b)) | b ∈ Supp(π1 ◦ g)},

where each ga is as given in Lemma 13.

Proof (Lemma 14). Let b ∈ Supp(π1 ◦ f) be given. By assumption, b is not in
the signature of B. By the definition of ∆A‖B , there is a bundle g from last(r) in
which component A follows bundle f and component B simply stutters. Let G
be the function from IA‖B to BunI(A‖B) as defined in the proof of Lemma 13.
Then we define Q′ as follows:

– Q′(r) := 〈G, g〉;
– for all a ∈ IA‖B , Q′(r.ga.a.π2(ga(a))) := �;
– for all b ∈ Supp(π1 ◦ f), Q′(r.g.b.π2(g(b))) := �;
– for all other r′ ∈ Bran(〈µA, µB〉), Q′(r′) := Q(r′).

It is routine to check that Q′ is an execution tree generated by QA and QB and
satisfying the desired condition. ut

Lemma 15. Suppose QA(πA(r)) ∈ IA ×OA and QB(πB(r)) ∈ IB ×OB . Then
for all a ∈ IA‖B, there is ga ∈ ∆A‖B(last(r)) such that

– if a ∈ IA, then πA(ga) = (π1(QA(πA(r))))(a) and
– if a ∈ IB , then πB(ga) = (π1(QB(πB(r))))(a).

Moreover, there is Q′ ∈ Tree(〈µA, µB〉) such that Q′ is generated by QA and QB
and dom(Q′) equals dom(Q) ∪ {r.ga.a.π2(ga(a)) | a ∈ IA‖B}.

Proof (Lemma 15). Let a ∈ IA‖B be given. Let fAa denote (π1(QA(πA(r))))(a)
if a ∈ IA and ⊥ otherwise. Similarly for fBa . By the definition of ∆A‖B , there is
unique bundle ga from last(r) with πA(ga) = fAa and πB(ga) = fBa . Now we may
define G and Q′ in the same fashion as in the proof of Lemma 13. ut

Lemma 16. Suppose QA(πA(r)) ∈ IA×OA and QB(πB(r)) ∈ IB×OB. Suppose
in addition that f = π2(QA(πA(r))) 6= 4. Then there is g ∈ ∆A‖B(last(r)) such
that πA(g) = f and πB(g)(b) = π2(QB(πB(r)))(b) for all b ∈ Supp(π1 ◦ g) ∩ IB.
Moreover, there is Q′ in Tree(〈µA, µB〉) such that Q′ is generated by QA and
QB and dom(Q′) equals

dom(Q) ∪ {r.ga.a.π2(ga(a)) | a ∈ IA‖B} ∪ {r.g.b.π2(g(b)) | b ∈ Supp(π1 ◦ g)},

where each ga is as given in Lemma 15.

Proof (Lemma 16). Let b ∈ Supp(π1 ◦ f) be given. Let fBb denote the bundle
(π2(QB(πB(r))))(b) if b ∈ IB and ⊥ otherwise. Again using the definition of
∆A‖B , there is a unique bundle g from last(r) with πA(g) = f and πB(g)(b) = fBb
for all b ∈ Supp(π1 ◦ f). Now we may define G and Q′ as we did in Lemma 14.

ut

We are now ready to prove Theorem 4.

Proof (Theorem 4). Let QA,C be an execution tree in A‖C. Suppose it’s gener-
ated by QA and QC . By assumption, choose QB so that Π(QA) = Π(QB).

For each n ∈ N, define QA,C,n := QA,C �n. From the chain {QA,C,n | n ∈ N},
we construct a chain {QB,C,n | n ∈ N} of execution trees in B‖C so that, for all
n,

(1) Π(QA,C,n) = Π(QB,C,n), and
(2) QB,C,n is generated by QB and QC ,
(3) QB,C,n(q) = � for every maximal q ∈ dom(QB,C,n) (w.r.t. prefix).

The base case is trivial. For the inductive step, assume we have constructed
such QB,C,n. By Lemma 6, there are trace- and likelihood-preserving bijections

– h from dom(QA)/ ≡tr to dom(QB)/ ≡tr and
– hn from dom(QA,C,n)/ ≡tr to dom(QB,C,n)/ ≡tr.

Consider rn+1.If QA,C(rn+1) equals � or is in BunH(A‖C), then we define
QB,C,n+1 := QB,C,n. Clearly Conditions (1), (2), and (3) are met.

Otherwise, let 〈F, f〉 denote QA,C(rn+1). We say that 〈F, f〉 is independent
from component C if IC ∩ IA‖C = ∅ and

– either f = 4
– or f is locally controlled by A and IC ∩ Supp(π1 ◦ f) = ∅.

First suppose 〈F, f〉 is in fact independent from component C. Let q0 be
the maximal branch in the coset hn([rn+1]) ∈ dom(QB,C,n)/ ≡tr. By the defini-
tion of QA,C,n, we know that QA,C,n(rn+1) = �. By Theorem 1, it follows that
tr(rn+1) is maximal in tr(dom(QA,C,n)). By the induction hypothesis, we have
that tr(q0) = tr(rn+1) is maximal in tr(dom(QB,C,n)) = tr(dom(QA,C,n)); there-
fore q0 must be maximal in dom(QB,C,n) with respect to the prefix ordering.
Again, applying the inductive hypothesis, we have QB,C,n(q0) = �.

Now let qB denote the maximal branch in the coset h([πA(rn+1)]) in the
quotient dom(QB)/ ≡tr. Notice that tr(q0) = tr(rn+1), therefore tr(πB(q0)) =
tr(πA(rn+1)) = tr(qB). By Theorem 1 and maximality of qB , we have πB(q0) v
qB and hence qB is πB(q0) followed by a finite number of hidden bundles. By
repeated application of Lemma 12, we obtain Q1 ∈ Tree(B‖C) such that Q1 is
generated by QB and QC and dom(Q1) is dom(QB,C,n) augmented with hidden
bundles in B so that there is q1 ∈ dom(Q1) with πB(q1) = qB . From the proof of
Lemma 12, we have Q1(q1) = �. Moreover, by maximality of qB , we know that
QB(qB) 6∈ BunH(B).

Since 〈F, f〉 is independent from component C, it must be the case that
QA(πA(rn+1)) ∈ IA×OA. By Theorem 1, maximality of qB and the assumption
that Π(QA) = Π(QB), we have QB(qB) ∈ IB ×OB . Now we may apply either
Lemma 13 or Lemma 14 to obtain Q2 ∈ Tree(B‖C) from Q1 and QB(qB).
Define QB,C,n+1 := Q2. It is routine to check Conditions (1), (2), and (3).
This concludes the construction for the case where 〈F, f〉 is independent from
component C. The construction for the case where 〈F, f〉 is independent from
component A is analogous. (In fact, it is much simpler, because we reason only
with component C.)

Now we consider the case in which both components A and C are involved
in 〈F, f〉. Construct qB , q1 and Q1 as above. Let qC denote πC(rn+1). Since
〈F, f〉 is not independent from C, we know that QC(qC) ∈ IC ×OC . Similarly,
it must be the case that QA(πA(rn+1)) ∈ IA ×OA. By Theorem 1, maximality
of qB and the assumption that Π(QA) = Π(QB), we have QB(qB) ∈ IB ×OB .
Now we may apply either Lemma 15 or Lemma 16 to obtain Q3 ∈ Tree(B‖C)
from Q1, f , QB(qB) and QC(qC). Define QB,C,n+1 := Q3. It is routine to check
Conditions (1), (2), and (3). This concludes the construction for the case where
both A and C are involved in 〈F, f〉.

By construction, {QB,C,n | n ∈ N} forms a chain. By Theorem 2, it has
a unique limit in Tree(B‖C), call it QB,C . We apply Theorem 3 to conclude
Π(QA,C) = Π(QB,C). ut

E Modeling the Chor-Israeli-Li Algorithm

Distributed consensus is a fundamental problem in distributed computing and
there exists a large body of research on finding efficient solutions under various

assumptions. In this section, we demonstrate that the Chor-Israeli-Li consensus
algorithm can be modeled very naturally in our PIOA framework.

Consider a system of n asynchronous processes, call them P1, . . . , Pn. These
processes communicate via single-writer multi-reader registers: every register
can be written to by exactly one process and can be read by all processes.
Each process is given an initial preference as input and an arbitrary number of
processes may fail without being detected. The three correctness requirements
are as follows.

(1) Validity : the final decision value of any non-faulty process Pi must be the
initial input of some process Pj .

(2) Agreement : if both processes Pi and Pj terminate successfully, then their
decision values must coincide.

(3) Wait-free (probabilistic) termination: for each non-faulty process Pi, the
probability of Pi terminating successfully after a finite number of steps is 1.

Now we introduce our PIOA model. Let I denote the index set {1, 2, . . . , n}
and let V denote the domain of preference values. For each i ∈ I , vi denotes
be the input value of process Pi. Notice, by assumption, vi ∈ V for all i ∈ I .
Finally, define N∞ := N ∪ {∞}.

We model all n shared registers using a single PIOA: the register automaton.
This automaton has two internal variables:

– register : I → (V × N∞) ∪ {⊥} (initially register(i) = ⊥ for all i ∈ I), and
– request : I × I → {true, false} (initially request(i, j) = false for all i, j ∈ I).

The action signature of the register automaton is as follows:

– Input : {read i,j ,writei(v) | i, j ∈ I ∧ v ∈ V × N∞}, and
– Output : {ack i,j(v) | i, j ∈ I ∧ v ∈ (V × N∞) ∪ {⊥}}.

Notice that there are no internal actions. Figure 3 shows a specification of
the register automaton where the transition bundles are written in an adapted
precondition-effect style. Recall that each input or hidden bundle must contain
exactly one fibre, so we skip the probability clause for those bundles.

Each process Pi is modeled by a single PIOA with 4 state variables:

– pref i ∈ V (initially vi),
– round i ∈ N∞ ∪ q(N∞) (initially 0),
– statusi ∈ {−1, 0, 1, . . . , 2n+ 1} (initially 0), and
– mem i : I → (V × N∞) ∪ {⊥} (initially mem i(j) = ⊥ for all j ∈ I).

Here q is a constant symbol. Whenever round i = q(r), the process Pi is in
round r with probability n−1

n and in round r+ 1 with probability 1
n . The action

signature of Pi is as follows.

– Input : {ack i,j(v) | j ∈ I ∧ v ∈ (V × N∞) ∪ {⊥}}.
– Output : {read i,j ,write i(v) | j ∈ I ∧ v ∈ V × N∞}.
– Hidden: {crash i, compute i}.

bundle (Input)
fiber writei(v)

eff: register (i) := v

bundle (Input)
fiber read i,j

eff: request (i, j) := true

bundle (Output)
pre: request (i, j) = true
fiber ack i,j(register (j))

prob: 1
eff: request (i, j) := false

Fig. 3. The bundle specification for the register automaton.

Figure 4 shows the specification of process Pi. Note that Pi terminates with
decision value v by writing (v,∞) to its register. Moreover, for clarity of pre-
sentation, the compute() procedure in bundle compute i is specified separately in
Figure 5. Finally, we use the following abbreviations:

– maxround := max({π2(mem i(j)) | j ∈ I ∧mem i(j) 6= ⊥}),
– L := {j ∈ I | π1(memi(j)) = maxround}, and
– AL := {j ∈ I | π1(memi(j)) = maxround − 1}.

This model is translated almost literally from [CIL94]. Upon our initial study,
we discovered that a process Pi may in fact terminate in round 0, before all n
processes join the protocol (i.e., some process Pj is still “sleeping”). This can
lead to a violation of the agreement condition. We believe this error can be
corrected by strengthening the termination condition so that Pi never decides in
round 0. That is, we add an extra conjunct round i > 0 to the second if -clause
in Figure 5.

Our modeling work so far is clearly elementary. We have yet to provide formal
correctness proofs. Typically, the two non-probabilistic correctness conditions
(namely, validity and agreement) follow easily from invariant-style reasoning.
For probabilistic termination, there are two obvious approaches:

– direct manual verification, following the correctness proof given in [CIL94];
– mechanized verification, similar to the approach taken in [KNS01] in verify-

ing the strong adversary consensus protocol of [AH90].

Finally, it may also be possible to reason in a game-theoretic setting, viewing
the algorithm as an n+ 1-player game where the n protocol parties collaborate
against the last player, the adversary. The potential of this last approach re-
mains to be discovered. The obvious attraction of game theory is the abundance
of existing theorems for stochastic games. Moreover, the notion of information
sharing found in game theory seems nicely compatible with our philosophical
motivations.

bundle (Hidden)
pre: true
fiber crash i

eff: status i := −1

bundle (Output)
pre: status i = 0 ∧ round i ∈ N∞
fiber writei(pref i, round i)

prob: 1
eff: status i := 1

bundle (Output)
pre: status i = 0 ∧ round i = q(r), where r ∈ N∞
fiber writei(pref i, r + 1)

prob: 1
2n

eff: status i := 1, round i := r + 1
fiber writei(pref i, r)

prob: 2n−1
2n

eff: status i := 1, round i := r

bundle (Output)
pre: status i ∈ {1, 3, 5, . . . , 2n − 1} ∧ round i 6=∞
fiber read i,(statusi+1)/2

prob: 1
eff: status i := status i + 1

bundle (Input)
fiber ack i,j(v)

eff: memi(j) := v, status i := status i + 1

bundle (Hidden)
pre: status i = 2n + 1
fiber compute i

eff: status i := 0, compute()

Fig. 4. The bundle specification for protocol party Pi.

if ∃j ∈ I memi(j) = (v,∞) then
pref i := v, round i :=∞

else if i ∈ L ∧ ∃v ∀j∈L∪AL π1(memi(j)) = v then
pref i := v, round i :=∞

else if i ∈ L then
round i := q(round i)

else if maxround − round i ≤ 2 then
round i := round i + 1
if ∃v ∀j∈L π1(memi(j)) = v then

pref i := v
else

round i := maxround − 2
pref i := π2(memi(min(L)))

Fig. 5. The compute() procedure.

