

Considering State Minimization during State Assignment1

Ney Laert Vilar CALAZANS

Instituto de Informática - PUCRS
Av. Ipiranga, 6681 - Prédio 16 - Porto Alegre - RS - CEP 90619-900 BRAZIL

Phone: +(55) (0) 51 3391511 Ext: 3211 Fax: +(55) (0) 51 3391564
e-mail address: calazans@music.pucrs.br

Abstract

The state minimization and the state encoding of finite state machines are complex problems
arising quite frequently in vlsi design. These problems have been treated separately for a long
time. In this paper, we provide a new algorithm to perform state encoding while considering
state minimization, for two-level logic implementations. The algorithm is based on a newly
developed, generalized formal treatment of the encoding problem. It has been implemented as a
prototype computer program and compared with approaches to solve the two problems separately.
The benchmark results show that our prototype has a performance comparable to these well-
established strategies in terms of area estimation and transistor count.

1 Introduction

Encoding information as vectors of binary digits is a fundamental step of numerous problems
encountered in Computer Science in general, and in computer design and vlsi design problems
in particular. The optimal solution of any encoding problem depends on the satisfaction of a
set of constraints as well as on objective optimization criteria, all of which must be defined in
terms of the original problem statement.

Encoding is basically a translation process, where a set of symbols is associated to a set
of Boolean vectors. Several of the general approaches to encoding in vlsi appeared as a by-
product of solutions to the state encoding problem for finite state machines (fsms), also known as
state assignment (sa). Most solutions to the state assignment of fsms assume encodings that are
injective functions from the state set into a set of Boolean vectors of a given fixed length [10, 11].
Although the use of injective functions be justified for the state assignment problem alone [4], it
poses severe limitations if more powerful encoding strategies are required. For example, suppose
that the set of symbols to be encoded has a structure that allows the identification of equivalence
classes in it. To capture this characteristic, we must allow encodings that are not injective, so
that every symbol in an equivalence class can be mapped into a unique Boolean vector. A more
complicated case arises when the set of symbols allows the definition of compatibility classes
onto it. Here, the encodings must be allowed to be both non-injective and non-functional, such
that the intersection of overlapping classes is related to more than one Boolean vector. Since
equivalence and compatibility classes are so commonly found in vlsi design problems, it is useful
to consider them in the scope of encoding problems. One problem where compatibility classes
identification is fundamental is the state minimization (sm) of incompletely specified fsms [5].

We provide here just an informal approach to encoding problems, aiming at the understand-
ing of the proposed algorithm. For a thorough formal treatment of the subject, the reader should
refer to [2, 3]. In Section 2, we provide a brief discussion on the sm and the sa problems. The
algorithm we propose appears detailed in Section 3. The implementation and the benchmark
results obtained with it are discussed in Section 4. Finally, Section 5 lists a set of conclusions,
and suggests further work on the subject.

1This work is partially supported by the CNPq, under research grant number 520523/94-6.

2 State Minimization and State Assignment

Given an fsm, sm is the problem of finding another fsm that has the same input/output behavior
of the original machine and has the least possible number of states. On the other hand, sa is
the problem of finding a function that to each state of the fsm associates a code, so that some
optimization criterion is satisfied. The satisfaction of this criterion is dependent on the way the
fsm will be implemented. For instance, if the criterion is smallest silicon area, satisfying it for a
two-level logic implementation is distinct from satisfying it for multilevel logic implementation.
In this work, we assume a two-level logic implementation.

Traditionally, sm and sa are separate steps of sequential logic synthesis, but using such a
serial strategy may prevent the obtainment of optimal state assignments [8]. In this work,
we address the problem of assigning codes to states of an fsm such that state minimization is
taken into account during the encoding process, in what we call a simultaneous strategy. This is
possible thanks to the fact that both problems can be expressed by means of a set of constraints.
The constraint classes involved in the definition of each of the problems have been related in
[2], and a unified representation framework has been proposed to gather them in the definition
of a new encoding problem. The solution of this problem is obtained by the satisfaction of the
constraints inside the framework.

All constraints in sm and sa express the need to separate (or not to separate) the code of
two states. In sm, if two states are compatible, their codes need not be disjoint. If two states
are incompatible, their codes must be disjoint. In sa, if a set of states lead to the same output
under a same unique input, making their codes lead to a Boolean cube2 that contain all of
them and no other code of states that do not obey this condition, generates encodings with
reduced logic implementations [4]. sa constraints for two-level implementations can be obtained
by a technique called symbolic minimization [4]. An interesting result arising from symbolic
minimization is that it generates an upper bound for the area of a two-level implementation of
the combinational part of the initial fsm. Other constraint classes are discussed in [2].

We represent the above constraint classes using a two-block partition-like notation. For
instance, suppose that states si and sj are incompatible. This corresponds to a constraint
represented by a pair [{si}, {sj}]. The first element of the pair is called 0-side, while the second
element is the 1-side. The pair means that there must be one bit position in the codes of si
and sj where either there is a 0 assigned to si and a 1 assigned to sj , or there is a 1 assigned to
si and a 0 assigned to sj , to make the codes disjoint. We say that the first possibility satisfies
the direct cube, while the second satisfies the reverse cube. Since this constraint is satisfied by
respecting it in a single column of the encoding, it is called a local constraint. If a constraint
must be satisfied in all columns of an encoding, it is called a global constraint. Example of global
constraint is the compatibility between a pair of states. If we want them to be implemented as
compatible, we must not allow any bit position where one of them is assigned 0 and the other
is assigned 1. Note that this does not mean that these codes must be identical, since we may
generate codes that are Boolean cubes. For example, 010− 1− and 01− 011 are two compatible
codes, where the character − stands for a don’t care. Finally, constraints may conflict among
themselves, but this issue is not addressed here.

To our knowledge, only three works have suggested the use of the simultaneous strategy
to date. In the first of these, Hallbauer [7] proposes a method based on pseudo-dichotomies
that avoid races in asynchronous circuits, and which tries to perform state minimization while
heuristically reducing the encoding length. The second work is due to Lee and Perkowski [9],
and suggests one exact method to tackle synchronous fsms. Their method employs a branch-
and-bound technique to reduce the search in the solution space. In a third work, Avedillo [1]

2A Boolean cube is a function representable by a disjunction or product of literals, where a literal is either a
Boolean variable or its complement.

presents a heuristic method in which the encoding is generated incrementally, and which may
create incompletely specified codes for the states in the original description. The subsequent
combinational logic minimization step can, in this way, merge compatible states so that the
equivalent of state minimization is performed.

No theoretical findings on the relationship between the sm and sa problems is provided in
any of these works. Besides, the method of Hallbauer has not been submitted to benchmark
tests, its efficiency being thus hard to evaluate. The second method is feasible only for very small
machines (no more than sixteen states). The Avedillo’s method has been extensively tested using
a subset of the mcnc fsm benchmark set, comprising machines with no more than 32 states.
Although reasonably efficient, the results of this method are poorer than those obtained with a
serial strategy proposed in the same work.

3 The Asstuce Algorithm

The algorithm is a generalization of a procedure suggested in [11]. Consider a set of states
S = {s0, s1, s2, s3, s4} and a set of local constraints defined over this set as follows:

Cl = {c0 = [∅, {s1}], c1 = [{s1}, {s3}], c2 = [{s4}, {s1, s2, s3}], c3 = [{s3, s4}, {s0, s2}]}.

Each constraint is satisfied by separating the codes of states placed on distinct sides. To simplify
the discussion, the set of global constraints is empty. While treating the example, we shall
ignore this fact. There are two other particularities in Cl. First, there is a constraint that has
an empty 0-side. Such a constraint is always trivial in the context of the sm and sa problems,
but have applications elsewhere [11]. The constraints in Cl will be represented using a matrix
formulation. The constraint matrix P contains one row for each element of S, and one column
for each constraint in Cl. The components pij are taken from the three-valued set {0, 1,−}, each
position i of a column j of P contains a 1 if the element si is in the 1-side of a constraint ∂j ,
contains a 0 if si is in the 0-side of ∂j , and contains − otherwise. Matrix P for our example is
displayed below, together with an encoding vector ξ.

P ξ
p0 p1 p2 p3

s0

s1

s2

s3

s4




− − − 1
1 0 1 −
− − 1 1
− 1 1 0
− − 0 0







−
−
−
−
−




The matrix P representation clarify the role of the constraints, the need to separate the codes
of two subsets of states. For example, the constraint c3 generates column p3, which requires
the separation of codes for the states {s0, s1} from the codes for states {s3, s4}. The matrix is
already a solution of the encoding problem. The optimization problem is to find another matrix
that respects all constraints and that has the minimum number of columns. Our algorithm is a
greedy approach to solve this covering problem through the generation of an encoding column
at a time. Each column is generated to satisfy as many constraints as possible. After satisfying
constraints, their columns can be dropped from P and the remaining columns become a new
matrix P . We depict now one typical iteration of the algorithm.

3.1 The First Iteration

The encoding vector ξ is a column vector with length equal to the cardinality of S. It represents
a single column of the final encoding Ξ. The asstuce method accepts as input the initial

configuration of this vector. If none is given, it generates the all don’t cares vector above. This
is in fact the least restraining configuration that may be specified, since our approach is to
produce one column encoding at a time, through the execution of a series of “moves” on the ξ
vector. Each move is a change of the value of a component of ξ. The allowed changes depend
on the initial value of ξ, but at any given moment, no change can make the vector contain more
don’t cares than in any previous step. Stated otherwise, no change from 1 or 0 to − is allowed.
Then, the all don’t cares version of ξ is the less restraining initial configuration, a consequence
of the choice of a greedy algorithm that generates column encodings without backtracking.

The First Move - From matrix P and vector ξ we produce an evaluation matrix E, which
contains information about how far we are from satisfying the constraints in P using vector ξ.
E is a matrix of pairs with the same dimensions as P , and the coordinate values of each pair
are taken from the same three-valued set used to construct P and ξ. The rules to construct the
components eij of E, given pij of P and ξi of ξ, appear in Table 1.

Table 1: Rules for defining the elements eij of the evaluation matrix E

ξi\pij 0 1 -
0 (1,-) (-,1) (-,-)
1 (-,0) (0,-) (-,-)
- (1,0) (0,1) (-,-)

Remember that a constraint in Cl is satisfied if the direct or the reverse cubes associated to it
evaluate to 1. In what follows, to satisfy a cube will mean to make it to evaluate to 1. In a pair
eij , the first coordinate refers to the reverse cube cj associated to the constraint represented in
column j, while the second coordinate refers to the direct cube cj . A value 0 in any coordinate
of a pair eij means that a change of the current value of the component ξi to 0 will make the
encoding vector ξ closer to satisfy the corresponding (reverse or direct) cube. A value 1 means
that a change of the current value of the component ξi to 1 will make the encoding vectorξ closer
to satisfy the corresponding (reverse or direct) cube, and a value − in any coordinate tells that
it is not possible to get closer to satisfy the cube by changing eij , because it is already satisfied
in position i by the current value ξi.

We may now compute the number of moves needed to satisfy each constraint. Since there
are two ways to satisfy each constraint, there are two such numbers, and they are gathered in
a vector of pairs of integers, which we call the distance vector ν. The components νj of ν
are computed by simply counting the number of non-don’t care values in a given column, and
this for each coordinate. The number of presently unsatisfied constraints, u, is the number of
components of ν where no coordinate is 0. Matrix E, vector ν and u, which are generated by
considering P and ξ above are:

P (1) ξ(1) E(1)



− − − 1
1 0 1 −
− − 1 1
− 1 1 0
− − 0 0







−
−
−
−
−







(−,−) (−,−) (−,−) (0, 1)
(0, 1) (1, 0) (0, 1) (−,−)
(−,−) (−,−) (0, 1) (0, 1)
(−,−) (0, 1) (0, 1) (1, 0)
(−,−) (−,−) (1, 0) (1, 0)




ν(1)

u(1) = 4
(

(1, 1) (2, 2) (4, 4) (4, 4)
)
.

Since u �= 0, we have to choose a component of vector ξ to change, in order to get the as
close as possible to a column encoding that maximizes the number of satisfied constraints. To do

so, we define a direction matrix D, which carries information about in which direction a single
change of a component in vector ξ can satisfy a constraint from Cl. D is a pair matrix, just like
E, but with a distinct interpretation for its values, and a distinct generation method. The first
and second coordinates of a pair dij in D correspond to changes to 0 and to 1, respectively. The
values of the dij pairs are thus interpreted as follows:




(1, 1), if a change of ξi to either 1 or 0 satisfies one of cj , cj ;
(0,−), if a change of ξi to 0 unsatisfies one of cj , cj ;
(−, 0), if a change of ξi to 1 unsatisfies one of cj , cj ;
(1,−), if a change of ξi to 0 satisfies one of cj , cj ;
(−, 1), if a change of ξi to 1 satisfies one of cj , cj ;
(−,−), otherwise.

The configurations not shown either never happen or represent trivial cases. The first con-
figuration arises only in a trivial case (from which the first constraint in P is an example) and
in a special case. In the list above, unsatisfies means turns a satisfied cube into an unsatisfied
one.

Matrix D can be obtained from an inspection of the distance vector ν and the evaluation
matrix E. There are various possible situations, but only five non-trivial ones. If we have
νj = (0,≥ 2) (resp. νj = (≥ 2, 0)), the cube cj (resp. cj) is already satisfied, and any change of
a component ξi such that pij �= − can only increase u, the number of unsatisfied constraints. If,
on the other hand, we have νj = (1,≥ 2) (resp. νj = (≥ 2, 1)), there is a component ξi that, if
changed, will satisfy the cube cj (resp. cj). Finally, there is the special case where νj = (1, 1) and
the direct and reverse cube associated to column j have only two non-don’t cares in their three-
valued representation. Then, there are exactly two possible single changes such that one can
lead to the satisfaction of cj and the other to the satisfaction of cj . Obviously, νj = (≥ 2,≥ 2)
implies that no single change of one component of ξ can satisfy any direct or reverse cube.

To accumulate the values of matrix D and determine the best move, we use a gain vector ω.
Vector ω is a column vector of pairs of integers. Its contents are obtained as a componentwise
sum of pairs over all columns of matrix D, for each D row. The sum is done as follows: if a
coordinate of a pair dij is 1, add 1 to the same coordinate of ωi; if a coordinate of a pair dij
is 0, add -1 to the same coordinate of ωi; if a coordinate of a pair dij is -, add 0 to the same
coordinate of ωi.

The direction matrix D and the gain vector ω resulting for our example are:

D(1) ω(1)



(−,−) (−,−) (−,−) (−,−)
(1, 1) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)







(0, 0)
(1, 1)
(0, 0)
(0, 0)
(0, 0)




select ξ1 → 0

The first coordinate of a component ωi of ω gives the gain of changing ξi to 0, while the
second coordinate gives the gain of a change to 1. The best choice is the one with the greatest
positive gain. In our example, there are two such best choices. Either we select a change of
ξ1 to 0 or to 1. Suppose that one selection is made. It is at this point that we must verify
if the change does not violate any of the global constraints. Suppose that a violation occurs.
Then, the change is discarded and a second choice is tried, and so on. If no feasible change
exists, none is performed, and the encoding column generated up to now is a column of the final
encoding. Our example has an empty set of global constraints, and thus such conflicts will not
occur here. The first choice is then arbitrarily taken, changing ξ. This is what we call the first

move, indicated by the exponent (1) on the denomination of the structures.

The Second Move - After the first move, the component ξ1 is locked (indicated by the
symbol × in the corresponding position of the gain vector ω), and cannot change anymore
during this column generation. The computations for the next move are summarized below.

ξ(2)



−
0
−
−
−




E(2) =




(−,−) (−,−) (−,−) (0, 1)
(−, 1) (1,−) (−, 1) (−,−)
(−,−) (−,−) (0, 1) (0, 1)
(−,−) (0, 1) (0, 1) (1, 0)
(−,−) (−,−) (1, 0) (1, 0)




ν(2) =
(

(0, 1) (2, 1) (3, 4) (4, 4)
)

u(2) = 3
ω(2)

D(2) =




(−,−) (−,−) (−,−) (−,−)
(−, 1) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−, 1) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)







(0, 0)
×

(0, 0)
(0, 1)
(0, 0)




select ξ3 → 1

The End of the Iteration - This process goes on until no more moves are possible. The
impossibility of making moves arises either when all positions of ξ are locked, or when all possible
moves violate a global constraint, or when only negative gains exist in ω for every non-locked
position in ξ that does not violate a global constraint, indicating that any allowed change will
decrease the number of satisfied constraints.

One heuristic choice that can be used is to make moves whenever one is possible, until all
positions of ξ are locked, retaining the configuration of ξ that satisfied most constraints, and
not necessarily the last one.

Suppose that after the second move, we make a third move, by selecting ξ2 → 0 and a fourth
move selecting ξ4 → 1. There is still room for another move in the example, which is:

ξ(5)



−
0
0
1
1




E(5) =




(−,−) (−,−) (−,−) (0, 1)
(−, 1) (1,−) (−, 1) (−,−)
(−,−) (−,−) (−, 1) (−, 1)
(−,−) (0,−) (0,−) (−, 0)
(−,−) (−,−) (−, 0) (−, 0)




ν(5) =
(

(0, 1) (2, 0) (1, 4) (1, 4)
)

u(5) = 2
ω(5)

D(5) =




(−,−) (−,−) (−,−) (1,−)
(−, 1) (−, 0) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (0,−) (1,−) (−,−)
(−,−) (−,−) (−,−) (−,−)







(1, 0)
×
×
×
×


 select ξ0 → 0

and stop.

3.2 The Subsequent Iterations

After the fifth move, all positions in ξ are locked, a first column encoding has been generated,
namely 00011T , which satisfies three of the four constraints describing the problem. A new
iteration is needed, since there are unsatisfied constraints left. All satisfied constraints are
eliminated from matrix P , transforming it into a smaller constraint matrix, which is the input
of the new iteration, together with the specified vector ξ. Note that the vector ξ need not be the

same at each step. This is useful if, for example, some symbol codes are to be preestablished.
Assuming the initial ξ vector to be the same as before, the start of the new iteration appears
below.

ξ(1)



−
−
−
−
−




E(1) =




(−,−)
(0, 1)
(0, 1)
(0, 1)
(1, 0)




ν(1) =
(

(4, 4)
)

u(1) = 1

The associated direction matrix D would be an all don’t cares column vector, and the
weight vector would have only pairs of the type (0, 0). A danger arises in the situation where
the maximum gains are 0, given an all don’t cares initial encoding vector. Since no direction was
given about how to choose one of the to 0 or to 1 moves when they have identical weights, the
method may pick one arbitrarily. In the example, we have to make at least three moves before
obtaining a matrix D that contains anything except don’t cares. Suppose that the method picks
moves arbitrarily, but deterministically, and that the moves ξ2 → 1 and ξ3 → 0 are the first
and second ones. Then, there will be no further ways of satisfying the constraint. The encoding
column would be added to the encoding and the iteration would repeat the same procedure ad
infinitum, without never finding a satisfying vector for the constraint. To avoid this, every time
that the maximum gains in the ω vector are zero, we choose to satisfy always the direct cubes.
This ensures that the column generation always stops. For our example, we would thus obtain
a vector ξ equal to −1110T , satisfying the last constraint, and the algorithm would stop.

The final encoding respecting all constraints would be obtained from the concatenation of
the two encoding columns, which gives

symbol code
s0 0−
s1 01
s2 01
s3 11
s4 10.

Note that the encoding is neither functional, nor injective, what we wanted to be able to do,
and that it solves the problem.

3.3 asstuce Method Discussion

The above method is heuristic, with no backtracking. One advantage of its application is the
execution speed. Indeed, our implementation iterates on encoding generation, not only on
column encoding generation, without great expense in computation time, even for big examples.
However, some observations should be pointed out about the algorithm. First, several choices
have to be made during the execution, like which best move to take, in which direction, and
what to do when only null gains are computed, which happens frequently in the initial steps of
the iteration. Second, only locally optimal solutions can be obtained, even if iteration over a
first solution is possible and applied. Third, the direct matrix computation may be substituted
by sparse matrix techniques to accelerate execution, which is done in the implementation.

The computational cost of the column encoding generation problem is influenced mainly by
four tasks: Task 1, the computation of the evaluation matrix E and of the distance vector
ν; Task 2, the computation of the direction matrix D and of the gain vector ω; Task 3,

the selection of the component in ω with the maximum gain; Task 4, the verification of the
feasibility of performing a move on the selected component.

Suppose that n is the cardinality of the set of symbols S to encode, and that m is the
cardinality of the local part Cl. Suppose also that the number of operations to verify if a move
does not violate a global constraint is constant. Suppose finally that we use the natural choices,
namely one-dimensional vectors for ν, ω and two-dimensional arrays for E,D. The, a column
encoding generation consists in an iteration repeated at most n times where E, ν,D, ω are built
with complexity bounded by O(n.m), and a best component to change is selected. We have
shown that selection of the best component takes a constant number of operations O(1) [2].
Each move has to be verified against at most (n−1) positions in ξ, giving a complexity bounded
by O(n). A move is made and the associated component of ξ is locked, using a constant number
of operations (O(1)). The final bound on the complexity of column encoding generation is then
O(n2.m).

The use of special data structures reduces this complexity, such that it is a function of the
number c of non-don’t care components in the initial constraint matrix P , instead of a function
of m.n [2]. Note that c is at most m.n, the total number of entries in matrix P . In practice c is
quite smaller than that, specially for large examples.

4 Implementation and Benchmark Results

The asstuce method has been implemented as a computer program and compared against
a serial strategy where state minimization is performed using the program stamina [6] and
state assignment is done with the program nova [12]. The fsm test set used is part of the
mcnc benchmarks, but only machines with at least one pair of distinct compatible states were
considered. Our prototype implementation at present do not consider output constraints, and
the program nova was parameterized to avoid their consideration (i.e. with the run-time option
-e ih), to allow a fair comparison.

All comparison parameters are extracted from the minimized two-level combinational part
of the encoded fsm. The program nova, as well as asstuce rely on the espresso program
to perform the combinational part minimization after encoding. The same statement is true
for the input constraints generation step. In this way, the comparisons reflect the differences
arising from the encoding strategy alone, not from side effects arising from the use of distinct
minimization schemes.

The data resulting from comparing asstuce and the serial strategy based on the stamina
and nova programs is depicted in Table 2.

asstuce and the partial encoding serial strategy based on nova are comparable for most
parameters, with the serial strategy obtaining slightly better area results and asstuce obtaining
slightly sparser machines but with reduced number of transistors in it, and less product terms.
The consequences of these differences is that we judge the asstuce results more adapted to
consider power dissipation issues in big plas, because of the combined effect of smaller areas
corresponding to sparser plas. Besides, we know that sparser plas favor the use of topological
optimization tools during the low level synthesis of the fsm [?].

The advantages related to asstuce are a consequence of using non-functional, non-injective
encodings. Cube merging is facilitated during the logic minimization step, and even if the
encoding length is increased, the final result in some cases combine smaller areas with less
dissipated power. However, the main issue here is to show that the formulation of the problem
does not imply less efficient solutions for encoding problems, which validates the basic idea of
searching for more powerful encoding methods.

Table 2: Comparison asstuce × stamina/nova

FSM
s27
beecount
lion9
ex5
ex7
ex3
bbara
opus
train11
mark1
sse
bbsse
ex2
tma
ex1
tbk
scf
s298

a_area
198
144
102
120
120
144
380
504
85
697
972
972
594
1230
2288
1680
17420
16632

n_area
234
247
136
252
306
324
550
448
153
684
990
990
609
1155
2496
4620
18471
22464

sn_area
216
160
77
96
96
96
380
448
66
646
1023
1023
195
1295
2132
1431
16244
10332

a_time
0.28
0.23
0.43
0.25
0.27
0.18
0.78
1.05
0.37
0.93
1.67
1.62
1.28
5.97
5.37

103.22
603.68

10637.90

n_time
0.10
0.10
0.30
0.50
0.30
0.20
0.20
0.20
0.60
5.10
0.50
0.40
0.50
6.60
6.50
140.7
105.8
828.8

sn_time
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.10
0.10
4.30
1.10
1.20
1.00
13.50
5.00
24.5
59.8
266.6

a_pt
11
9
6
8
8
8
20
18
5
17
27
27
18
30
44
56
130
308

n_pt
13
13
8
14
17
18
25
16
9
18
30
30
29
33
48
154
141
624

sn_pt
12
10
7
8
8
8
20
16
6
17
31
31
13
37
41
53
124
287

a_cl_f
3
2
4
3
3
4
3
4
4
5
5
5
9
7
5
5
8
14

n_cl_f
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
7
8

sn_cl_f
3
2
2
2
2
2
3
4
2
4
4
4
3
5
5
4
7
8

a_tr
43
50
24
34
38
33
94
139
26
145
196
196
91
241
399
614
1541
3824

n_tr
62
68
35
88
107
103
129
128
47
115
191
191
171
230
422
1423
1469
6783

sn_tr
51
54
24
34
36
35
94
123
24
117
206
206
66
257
330
553
1383
2586

a_spty
78.28
65.28
76.47
71.67
68.33
77.08
75.26
72.42
69.41
79.20
79.84
79.84
84.68
80.41
82.56
63.45
91.15
77.01

n_spty
73.5
72.47
74.26
65.08
65.03
68.21
76.55
71.43
69.28
83.19
80.71
80.71
71.92
80.09
83.09
69.2
92.04
69.81

sn_spty
76.39
66.25
68.83
64.58
62.5
63.54
75.26
72.54
63.64
81.73
79.86
79.86
66.15
80.15
84.52
61.36
91.49
74.96

Prefixes:
a_ : results obtained by running ASSTUCE
n_ : results obtained by running NOVA alone
sn_ : results obtained by running STAMINA followed by NOVA

Suffixes:
area : area estimate of the minimized combinational part for the encoded FSM
pt : number of product terms in the minimized combinational part of the encoded FSM
cl_f : encoding length
time : total execution time
tr : number of transistors in the minimized combinational part of the encoded FSM
spty : percentual sparsity of the minimized combinational part for the encoded FSM

5 Conclusions and Further Work

Symbols codes generated by our approach are by construction sparser than those obtained with
traditional encoding methods, as a result of employing non-injective, non-functional encodings.
The competitiveness of the results obtained so far with our prototype implementation indicates
that we may achieve gains in power dissipation and communication complexity without com-
promising the area occupied by the circuit if more elaborate encoding schemes are developed.

We envisage the evolution of the present work in several directions. The first of these is to
further validate the approach proposed here by obtaining more examples of encoding problems
where the identification of equivalence and/or compatibility classes is fundamental to the search
of optimal solutions. Second, we are presently doing research on the application of recently
developed techniques for the manipulation of implicit representations of switching functions
with the use of reduced ordered binary decision diagrams. We are considering the application
of these techniques to the representation and satisfaction of our constraint framework. Finally,
we are envisaging the application of the formal paradigm developed here to sequential logic
synthesis problems for fpgas.

References

[1] M. J. Avedillo, J. M. Quintana, and J. L. Huertas. smas: a program for concurrent
state reduction and state assignment of finite state machines. In Proceedings of the IEEE
International Symposium on Circuits and Systems - ISCAS, pages 1781–1784, Singapore,
June 1991. The Institute of Electrical and Electronics Engineers.

[2] N. L. V. Calazans. State minimization and state assignment of finite state machines: their
relationship and their impact on the implementation. PhD thesis, Université Catholique de
Louvain, Louvain-la-Neuve, Belgium, Oct. 1993.

[3] N. L. V. Calazans. Boolean constrained encoding: a new formulation and a case study. In
Proceedings of the IEEE International Conference on Computer-Aided Design - ICCAD,
San Jose, CA, Nov. 1994. The Institute of Electrical and Electronics Engineers.

[4] G. de Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for
finite state machines. IEEE Transactions on Computer-Aided Design, CAD-4(3):269–284,
July 1985.

[5] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in
incompletely specified sequential networks. IRE Transactions on Electronic Computers,
EC-14:350–359, June 1965.

[6] G. D. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for
the minimization of incompletely specified state machines. In Proceedings of the European
Conference on Design Automation - EDAC, pages 184–191, Amsterdam, Feb. 1991.

[7] G. Hallbauer. Procedures of state reduction and assignment in one step in synthesis of
asynchronous sequential circuits. In Proceedings of the International IFAC Symposium on
Discrete Systems, pages 272–282, 1974.

[8] J. Hartmanis and R. E. Stearns. Some dangers in state reduction of sequential machines.
Information and Control, 5:252–260, Sept. 1962.

[9] E. B. Lee and M. Perkowski. Concurrent minimization and state assignment of finite
state machines. In Proceedings of the 1984 International Conference on Systems Man and
Cybernetics, pages 248–260, Halifax, Oct. 1984.

[10] B. Lin and A. R. Newton. A generalized approach to the constrained cubical embedding
problem. In Proceedings of the International Conference on Computer Design: VLSI in
Computers and Processors - ICCD, pages 400–403. The Institute of Electrical and Elec-
tronics Engineers, Oct. 1989.

[11] C.-J. Shi and J. A. Brzozowski. Efficient constrained encoding for vlsi sequential logic
synthesis. In Proceedings of the European Design Automation Conference - EURO-DAC,
pages 266–271, Hamburg, Germany, Sept. 1992. IEEE Computer Society Press.

[12] T. Villa and A. Sangiovanni-Vincentelli. nova: state assignment of finite state machines
for optimal two-level logic implementation. IEEE Transactions on Computer-Aided Design,
9(9):905–924, Sept. 1990.

