

Laboratoire de Microélectronique
Faculté de Sciences Appliquées

Université Catholique
de Louvain

State Minimization and State Assignment of

Finite State Machines: their relationship and their

impact on the implementation

Minimisation d’Etats et Codage d’Etats des Machines à
Etats Finis: leur rapport et leur impact sur l’implementation

Promoteurs: M. Davio (in memoriam)
A.-M. Trullemans

Ney Laert Vilar
Calazans

Jury: M. Ciesielski
J.-J. Quisquater
A. Thayse
J. Zahnd

Thèse présentée en vue
de l’obtention du grade
de Docteur en sciences

appliquées

October 18, 1993

Abstract

This work analyzes the relationship between two fundamental problems in the vlsi
synthesis of finite state machines, viz. state minimization and state assignment.

First, we express each of the problems as a set of constraint classes. The relation-
ship between the two problems is then determined from the dependencies existing
among their respective constraint classes. Second, a framework is proposed to uni-
formly represent all constraints. Based on this framework, efficient techniques are
developed to find a finite state machine vlsi implementation that satisfies a chosen
set of feasible constraints. We show here that this problem is a generalization of
the state encoding problem of finite state machines.

The main contribution of this thesis is to create a clear connection between two
fundamental problems of vlsi sequential synthesis, often regarded as unrelated,
through the use of the constrained encoding paradigm. The ultimate result is a
method that takes advantage of this connection to improve the final quality of vlsi
circuit implementations.

Additionally, we propose a generalized formulation for the Boolean constrained
encoding problem, an important constituent of several vlsi design subproblems,
and we point out the usefulness of such a general problem statement.

To Karin, with all
of my love

Acknowledgements

To the memory of Prof. Marc Davio, my former research advisor, whose contributions were
fundamental to the achievements of this work. I will forever remember his keen observations
during the unfortunately few afternoons we worked together, at his house in Nil-Saint-Vincent.
I will never forget the ideas exchanged during the contemplation of some cozy sunset through
the window pane of his living room, by the end of a working day.

To Dr. Anne-Marie Trullemans, my latter research advisor. She accepted me as a research
student and competently ensured the continuation and conclusion of the work started under
the direction of Marc Davio.

To Prof. Maciej Ciesielski, member of my jury, and also a good friend. Maciek provided
me with invaluable advices on the subject of this thesis in several occasions. The comments he
provided on the preliminary version of this volume were thorough and relevant. I owe him a
lot, and I hope we can continue to cooperate in the future.

To Prof. Jacques Zahnd and to Dr. André Thayse, members of my jury, and also members
of my thesis committee. They have dedicated much of their precious time to deeply criticize
the theoretical aspects of this work in more than one opportunity. In particular, Prof. Zahnd
provided me with numerous corrections for my often awkward notational conventions, and fur-
nished me with many advices that helped to compensate my lack of mathematical background.

To Dr. Jean-Jacques Quisquater, who accepted to be the President of my jury, and who
also contributed with several suggestions to enhance the readability of this final volume.

To the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), not only
for the financial support provided during my stay in Belgium, but also for the respect this
organism has revealed towards the research activities in Brazil.

To the Pontif́ıcia Universidade Católica do Rio Grande do Sul, my employer back in Brazil,
for the economical and intellectual assistance supplied in the last four and a half years.

To my Lab colleagues of yesterday and of today: Paulo Fernandes, Luis Claudio, Frank Vos
(in memoriam), Bruno Yernaux, Olivier L’Heureux, Ricardo Jacobi, Professor Jorge Barreto
and João Netto. They have eased a lot my adaptation here in this otherwise rainy country
which is Belgium.

To “the girls”, as my wife and I kindly call them: Ana, Débora, Fátima, Macarena and
Tania, which have always had time for an additional cup of tea in the middle of an afternoon,
every time the inspiration to work had abandoned me. To Father Edélcio and Brother Francisco,
for their friendship. To Vivian and Gilberto, who came later, but quickly became the best of
friends.

To Eugênio and Fernando, for all the misery we shared during the last months of our
respective thesis.

To Antonio Vivaldi, Johann Sebastian Bach, and their interpreters, for the constant assis-
tance in my hours of deadliest desperation.

To my parents, Paulo e Mariinha. Even if we are more than ten thousand kilometers apart,

they have always played an essential role in this work. During many years they sacrificed much
of their own lives to ensure the best education to my brothers and to me. I hope that this thesis
will be a little compensation to their immeasurable efforts. I know they will like it, maybe even
more than I do.

To Karin, my wife, friend and more than this, for the love she dedicates to me, for the
companionship she reveals in the everyday life, and for the pleasure that is to live with her.
Karin has unconditionally sustained me during this whole work. She was always ready to
encourage me, whenever the difficulties seemed impossible to surmount. She even abdicated of
taking a well-deserved rest after her own PhD was over, just to help me finishing mine. I have
no words to tell what I feel for her. Thank you, Ka!

Contents

0 Introduction 1

0.1 Models for the Design Process . 1

0.2 Goals and Scope of the Work . 3

0.3 Dissertation Outline . 6

I Preliminaries 9

1 Related Work 11

1.1 Combinational Logic Optimization Techniques 11

1.1.1 Two-level Optimization . 12

1.1.2 Multilevel Optimization . 12

1.2 Sequential Logic Synthesis Techniques . 13

1.2.1 The Behavior-driven Approach . 13

1.2.1.1 State Minimization . 14

1.2.1.2 State Assignment . 15

1.2.1.3 Simultaneous State Minimization and State Assignment 18

1.2.2 The Structure-driven Approach . 19

1.2.3 Relationship Between Approaches . 19

1.2.4 Future Approaches . 20

2 An Introductory Case Study 23

2.1 The Case Study . 23

2.1.1 sm-Related Considerations . 24

2.1.2 sa-Related Considerations . 27

2.1.3 Logic Level Assumptions . 29

2.1.4 Three State Assignment Solutions for Machine beecount 30

2.2 Discussion . 33

i

ii CONTENTS

3 General Definitions 35

3.1 Binary Relations and Discrete Functions . 35

3.2 Finite Automata and Finite State Machines . 39

3.3 Representations of Discrete Functions . 41

3.3.1 Cubical Representations of Discrete Functions 45

3.3.1.1 Cube Table Schemes for Sets of Discrete Functions 49

3.3.1.2 Cube Table Scheme for Sets of Switching Functions 50

3.3.1.3 Cube Table Mixed Schemes . 52

II Constraints: Nature, Generation and Relationship 55

4 State Minimization Constraints 57

4.1 State Minimization Definitions . 57

4.2 State Minimization Problem Statement . 59

4.3 Compatibility and Incompatibility Constraints 60

4.4 Covering Constraints . 61

4.5 Closure Constraints . 62

4.6 Generation of the sm Constraints . 63

4.7 Complexity of the sm Constraints Generation 65

5 State Assignment Constraints 67

5.1 The fsm Assignment Problem . 67

5.2 Input Constraints . 73

5.3 Output Constraints . 78

5.3.1 Dominance Constraints . 78

5.3.2 Disjunctive Constraints . 79

5.4 Complexity of Generating the sa Constraints 80

5.4.1 Generation of the Input Constraints . 80

5.4.2 Generation of the Output Constraints . 81

6 Relationship among SM and SA Constraints 83

6.1 Extending Constrained Encoding Assignments 84

6.2 State Splitting and Equivalent fsms . 86

6.3 Justifying the Use of Extended Assignments . 89

6.4 Violation of sm Constraints by Input Constraints 91

CONTENTS iii

6.5 Violation of Input Constraints by sm Constraints 93

6.6 Conflicts within and with Output Constraints 97

6.7 Conflicts among Output Constraints . 97

7 Conclusions on Constraint Nature and Generation 99

III A Unified Framework for SM and SA Constraints 101

8 Pseudo-Dichotomies 103

8.1 The Pseudo-Dichotomy Definition . 103

8.1.1 Generality of the Pseudo-Dichotomy Definition 105

8.2 Pseudo-Dichotomies and Encoding . 106

9 Pseudo-Dichotomies and Constraint Representation 109

9.1 Representing Constraints with Pseudo-dichotomies 109

9.1.1 Representing sm Constraints . 110

9.1.2 Representing sa Constraints . 111

9.2 The Pseudo-Dichotomy Framework . 112

9.2.1 Building the Local Part . 113

9.2.2 Building the Global Part . 116

10 Conclusions on the Unified Framework 117

IV Encoding by Constraints Satisfaction 119

11 The Boolean Constrained Encoding Problem 121

11.1 Boolean Constrained Encoding - Statement . 121

11.2 The Two-level sm/sa Problem Statement . 125

11.2.1 Boolean Constrained Encoding and the pd Framework 126

11.3 Solutions to Constrained Encoding Problems . 126

12 The ASSTUCE Encoding Method 129

12.1 Solving the sm/sa Problem . 129

12.2 asstuce Method Overview . 130

12.2.1 The First Iteration . 131

12.2.2 The Subsequent Iterations . 135

iv CONTENTS

12.2.3 asstuce Method Discussion . 136

12.3 The asstuce Method Data Structures . 137

12.3.1 Data Structure for the Global Part . 137

12.3.2 Data Structures for the Local Part . 137

12.4 asstuce Heuristic Improvements and Extensions 141

12.4.1 Improvements . 141

12.4.2 Extensions . 142

13 Conclusions on Constraint Satisfaction 143

V Implementation, Results and Final Remarks 145

14 Implementation and Benchmark Results 147

14.1 The asstuce Implementation . 147

14.1.1 The asstuce Program Implementation Environment 151

14.2 Benchmark Tests . 152

14.2.1 The Benchmark fsms . 152

14.2.2 Benchmark Tests Strategy . 153

14.2.3 The Compared Parameters . 156

14.2.4 Benchmark Tests with asstuce . 157

14.2.4.1 asstuce Benchmark Tests Discussion 157

14.2.5 asstuce versus Complete Encoding Serial Strategy 160

14.2.5.1 asstuce versus Complete Serial Strategy - Discussion 167

14.2.6 asstuce versus Partial Encoding Serial Strategy 167

14.2.6.1 asstuce versus Partial Serial Strategy - Discussion 175

14.2.7 Benchmark Tests - Conclusions . 175

15 Overall Conclusions and Future Work 177

15.1 Overall Conclusions . 177

15.2 Future Work . 180

Bibliography 181

CONTENTS v

Appendices 191

A I/O Formats for FSM and Discrete Function Descriptions 211

B Requirements for an FSM Exploratory Environment 213

C Manual Pages for ESPRESSO, DIET, NOVA and STAMINA 215

D Manual Pages for ESPRESSO, DIET, NOVA and STAMINA 217

vi CONTENTS

List of Figures

0.1 Y-diagram - a model to represent the design process of digital ics 2

0.2 Simple Data Flow diagram of a vlsi ic design system 4

0.3 Y-diagram for the behavior-driven approach to sequential synthesis 6

1.1 Y-diagram for the structure-driven approach to sequential synthesis 20

2.1 Merge graph for fsm beecount . 26

2.2 One optimal set of entry subsets for machine beecount 27

2.3 Three Combinational Part plas for machine beecount 32

3.1 Sequential Mealy machine. 41

3.2 Hasse diagram for Example 3.3 . 46

3.3 Symbolic and positional cube schemes to represent the f discrete function 50

3.4 Behavior of function F using symbolic and positional cube schemes 52

4.1 Initial and final compatibility tables for example 4.1 64

4.2 Merge and compatibility graphs for example 4.1 65

5.1 Original and minimized cube tables for example 5.2 76

5.2 Three assignments and corresponding minimized cube tables for example 5.2 . . 76

5.3 Cube table optimization using dominance constraints 78

5.4 Cube table optimization using disjunctive constraints 80

6.1 Merge graph for example 6.1 . 85

6.2 Flow table, cube table, minimized cube table and full input constraints for fsm A 94

6.3 Flow table, cube table, minimized cube table and full input constraints for fsm A′ 95

6.4 Flow table, cube table, minimized cube table and full input constraints for fsm A 96

6.5 Flow table, cube table, minimized cube table and full input constraints for fsm A′ 96

8.1 State encoding and final pla for machine lion9 107

vii

viii LIST OF FIGURES

11.1 Flow table and input constraints for fsm A . 123

12.1 Symbol array and pd array during first move computation 138

12.2 Bucket list B0 before the first move . 139

14.1 Execution flow for the asstuce program . 148

14.2 Theoretical bound versus measured execution time for asstuce 160

14.3 asstuce versus complete encoding - area - C-group 163

14.4 asstuce versus complete encoding - area - I-group 164

14.5 asstuce versus complete encoding - product terms - C-group 165

14.6 asstuce versus complete encoding - product terms - I-group 165

14.7 asstuce versus complete encoding - execution time - C-group 166

14.8 asstuce versus complete encoding - execution time - I-group 166

14.9 asstuce versus partial encoding - area - C-group 170

14.10asstuce versus partial encoding - area - I-group 170

14.11asstuce versus partial encoding - product terms - C-group 171

14.12asstuce versus partial encoding - product terms - I-group 171

14.13asstuce versus partial encoding - sparsity - C-group 172

14.14asstuce versus partial encoding - sparsity - I-group 172

14.15asstuce versus partial encoding - transistor cardinality - C-group 173

14.16asstuce versus partial encoding - transistor cardinality - I-group 173

14.17asstuce versus partial encoding - time - C-group 174

14.18asstuce versus partial encoding - time - I-group 174

15.1 The asstuce approach . 178

List of Tables

2.1 Flow table describing the behavior of the fsm beecount 24

2.2 Flow table for the beecount fsm after merging states 3 and 4 25

2.3 Three valid state assignments for machine beecount 30

2.4 Quantitative comparison for three pla implementations of machine beecount . 32

3.1 Truth table for Example 3.4 . 48

3.2 Three cube tables for Example 3.4 . 49

3.3 Componentwise conjunction of cubes . 51

3.4 Componentwise supercube operation . 52

4.1 Flow table for example 4.1 . 64

6.1 Flow table for example 6.1 . 85

6.2 A valid non-functional, non-injective assignment for example 6.1 86

6.3 Flow table for original fsm in example 6.2 . 87

6.4 Flow table for the partition augmentation fsm in example 6.2 88

6.5 A functional, injective assignment for closed cover κ of example 6.3 91

6.6 A non-functional, non-injective assignment for the state set S of example 6.3 . . 91

8.1 Flow table for machine lion9 . 107

12.1 Rules for building the evaluation matrix E . 131

12.2 Rules to build E and ν incrementally after a move 138

12.3 Rules to build B0 and B1 from E and ν . 140

14.1 Characteristics of the mcnc fsm benchmark test set - C-group 153

14.2 Characteristics of the mcnc fsm benchmark test set - I-group 154

14.5 asstuce versus complete encoding strategy for the C-group of fsms 161

14.6 asstuce versus complete encoding strategy for the I-group of fsms 162

14.8 asstuce versus partial encoding strategy for the I-group of fsms 169

ix

Chapter 0

Introduction

The synthesis and the analysis of very large scale integration (vlsi) digital integrated circuits
(ics) require the extensive use of hierarchical decomposition of the design process into abstrac-
tion levels. This is due to the high degree of complexity achieved by present vlsi digital ics,
which are typically composed by a number of electronic components in the order of 105 to 106

[73, 96]. Besides the abstraction levels classification, we can frequently rank design descriptions
according to the nature of the information they convey. This information can be classified into
three domains of description: physical, structural and behavioral. For example, a schematic
diagram depicting an interconnection of logic gates is typically a structural description on the
logic level of abstraction, since it tells how to connect logic elements to perform a given task,
without concern for the geometrical details of the final circuit layout. On the other hand, the
symbolic flow table of a finite state machine is a behavioral description on the logic level. It
tells what is the expected behavior of the machine, disregarding both elements’ interconnec-
tions and geometrical disposition of devices needed to realize the machine as a circuit. Before
establishing the scope of the present work, we introduce some abstract models that facilitate
the understanding of the ic design process.

0.1 Models for the Design Process

The combination of abstraction levels and domains of description provides a simple, yet useful
model for interpreting the digital ic design process. Such two-dimensional model was first
proposed by Gajski and Kuhn in [52], and may be described by the so-called Y-diagram, a
sample of which appears in Figure 0.1. In this diagram, concentric circles stand for abstraction
levels, while radiating segments stand for the domains of description. Each intersection of a
circle with a straight line segment represents one distinct design description, like the schematic
diagram or the flow table mentioned above. A design process is depicted as a directed graph
over the Y-diagram, where the vertex set is the set of design descriptions (corresponding to the
set of points determined by the intersections between circles and straight lines). The graph’s
edge set corresponds to the set of transformations applied to these descriptions.

Some comments about the Y-diagram are helpful for its understanding. First, the center of
the diagram corresponds conceptually to the final design, i.e. a description containing all infor-
mation needed to fabricate the ic. Design tools perform transformations on design descriptions

1

2 CHAPTER 0. INTRODUCTION

electric

logic

algorithmic

system

physical

behavioral structural

Figure 0.1: Y-diagram - a model to represent the design process of digital ics

and can thus be identified with edges (or, more generally, paths) in the graph describing the
design process. The tools can be classified according to the kind of transformation operated
on their input description. For example, analysis tools produce an output description which is
not closer to the center of the diagram than the input description. Conversely, synthesis tools
produce a description which is not farther from the center of the diagram than their input.
Optimization tools correspond to self-loops in the design process graph. An ideal automatic
design process would resemble a spiral path going from the behavioral description with the
highest level of abstraction to the center of the diagram. In this ideal case, the abstraction
level of the successive descriptions would become lower at each synthesis step.

Given the above design process model, we may envisage a general model describing a typical
vlsi ic design system. Before doing so, however, we have to partition the Y-diagram design
descriptions into three groups: high-level, logic level and low-level descriptions. High-level
descriptions correspond roughly to the region between the behavioral and structural axes,
and outside the logic circle in Figure 0.1. An example is a hardware description language
(hdl) definition of an ic. Low-level descriptions convey a greater amount of electrical or
geometrical details, and are thus situated along the physical axis and/or inside the electric circle
in Figure 0.1. Examples are the final layout of an ic or its floor plan. Logic descriptions are
intermediate between high-level descriptions and low-level descriptions. Examples of the latter
are schematic diagrams, describing an interconnection of logic gates, and symbolic flow tables,
describing the behavior of an fsm. With each description group, we associate a subsystem of
our typical design system, that is the subsystem responsible for manipulating the descriptions
in its associated group.

vlsi ics are sequential circuits1. We may accomplish the description of any such circuit by
using the finite state machine (fsm) model [72], but this may be impractical in many cases.
Alternatively, we may model the circuit as a network of communicating blocks, each of them
described as an fsm. We assume here a high-level design subsystem that produces as output
such a network, extracted from some high-level circuit description.

To the high-level design subsystem follows the logic level design subsystem, which transforms
a network of communicating fsms into a netlist of library elements. We call the problem of

1We remind that we may consider combinational circuits as 1-state sequential ones.

0.2. GOALS AND SCOPE OF THE WORK 3

designing general purpose sequential circuits sequential logic design, whenever the circuits are
initially described in the logic level of abstraction, and no special purpose technique is available
to implement them more efficiently. For instance, there are several specific techniques to design
fsms that describe arithmetic functions such as adders or multipliers. There are two reasons
that justify the application of such techniques. First, the widespread use of the blocks they
are designed for in vlsi ic design, and second, the performance gain achieved by using these
techniques with regard to using general purpose ones.

After logic design comes the low-level design subsystem, which transforms the netlist of
library elements into a geometrical detailed description of the ic implementing the behavior
initially described. Figure 0.2 describes our typical vlsi ic design system using a Data Flow
Diagram notation [53]. Note that the user’s interference is considered in the diagram and that
it may occur at any step of the design process. This representation is in accordance with
the current trend of allowing user intervention during the execution of automated synthesis
procedures. Also, note that this oversimplified model of a design process is useful for our local
use only. High-level and low-level issues were intentionally overlooked, and only a very simple
model of the logic level is retained.

0.2 Goals and Scope of the Work

The present work concerns the sequential logic design step of the ic design process, indicated
in Figure 0.2 by the shadowed rounded box. Accordingly, all design descriptions we manip-
ulate herein (flow tables, Boolean functions, encoded plas, etc.) belong to the logic level of
abstraction. The sequential logic design step can be partitioned into two main tasks: sequential
logic synthesis and sequential logic analysis. In order to allow such a bipartition of this design
step, we may consider that design errors correction is a form of optimization, and that design
optimization is a synthesis activity.

A finite state machine is a convenient model to represent a sequential circuit in the logic
level of abstraction. The complete task of automatically designing a system of general purpose
communicating fsms, requires the use of a considerable number of synthesis and analysis design
tools to perform tasks such as:

• fsm/system behavioral simulation and/or formal verification;

• fsm decomposition;

• fsm/system state minimization;

• fsm/system state assignment;

• logic optimization;

• test pattern generation;

• test structures insertion, etc.

The task of building and integrating such a set of tools comprises the concurrent work of
several researchers [38]. To render the present work feasible, we have built this dissertation

4 CHAPTER 0. INTRODUCTION

User

High-Level
Design Subsystem

Low-Level
Design Subsystem

Netlist

Communicating
FSMs

Physical
Description

VLSI Design System
Data Flow Diagram

Special Purpose
Design

S e q u e n t i a l
L o g i c

D e s i g n

Figure 0.2: Simple Data Flow diagram of a vlsi ic design system

0.2. GOALS AND SCOPE OF THE WORK 5

around two major topics of the sequential logic synthesis of fsms, viz. “state minimization”
and “state assignment”.

The main objective of the present work is to study the relationship between state minimiza-
tion (sm) and state assignment (sa) of fsms. State assignment is also called state encoding.
We use both terms interchangeably in the rest of this work. sm and sa are the two main tasks
to accomplish during the logic synthesis of fsms. Intuitively, we know that these tasks are
not independent, and too strong a state minimization can actually deteriorate the performance
level accessible to the best available state assignment technique. In fact, we define here a new
problem. This new problem is called the two-level sm/sa problem. The main original contribu-
tion of this dissertation in the practical sense, is a method to solve the two-level sm/sa problem
using a constrained encoding approach. This method considers state minimization during the
solution of the state assignment problem.

Note that we address the general problem of minimizing incompletely specified fsms. Mini-
mizing completely specified machines is a special case situation, which can be easily dealt with,
since there are algorithms with worst-case running time O(n log n) to solve it exactly, with
n representing the number of states in the original machine [66]. We are interested here in
real-world machines. Thus, references to state minimization for the rest of this dissertation
regard the general problem, unless it is explicitly stated otherwise. This is a sound choice,
for real machines are seldom completely specified. Another basic choice we make is to limit
attention to synchronous fsms. Although most of the constraint formulations provided here
are independent of clock considerations, a generalization effort will later be needed to show
their validity for asynchronous circuits in general. We have also limited attention to single fsm
circuits.

Besides state minimization and state assignment, combinational logic optimization tech-
niques will be extensively used here. We will apply these techniques to generate some of the
constraint classes associated with the sa problem, as well as to provide bounds for evaluating
the involved cost functions. These techniques will additionally allow us to measure the quality
of the obtained results.

The sm and sa problems are part of the general sequential logic synthesis task, as we defined
in the beginning of the present Section. This task can be stated as the transformation of some
non-physical logic description of a sequential circuit into some implementable design description
that is optimal in some sense. We will restrict attention to transformations that start in the
behavioral domain (e.g. a symbolic flow table of an fsm) and which end in the structural
domain (e.g. the personality matrix of a pla). Also, we assume our final target to be a two-
level (in particular, a sum-of-products) design description, in order to reduce the problem’s
complexity. Figure 0.3 illustrates our approach, which we call a behavior-driven approach to
sequential synthesis, because the starting point is a behavioral description. In Chapter 1, we
introduce other ways to regard the sequential logic synthesis task, which can be found in recent
publications. There, we will also compare the tradeoffs associated with these approaches and
ours.

A secondary objective here is to compare the two possible strategies to solve the sm and
sa problems. These are the simultaneous state minimization and assignment (or simultaneous
strategy), and the application of minimization procedures followed by assignment procedures
(or serial strategy).

6 CHAPTER 0. INTRODUCTION

electric

logic

algorithmic

system

physical

behavioral structural

FSM flow table encoded PLA

Figure 0.3: Y-diagram for the behavior-driven approach to sequential synthesis

0.3 Dissertation Outline

The main original contribution of this dissertation in the practical sense, is a method to solve
the two-level sm/sa problem, i.e. a method to solve the state assignment while considering the
state minimization problem.

We divide this document into five parts.

Part I, Preliminaries, comprises three Chapters. Chapter 1 provides a justification for the
work, by comparing previous approaches to sequential logic synthesis with our proposition.
Chapter 2 gives an informal overview of the main ideas through the presentation of a case
study of fsm minimization and encoding. The goal of Chapter 3 is to formally introduce the
fundamental concepts we use in the rest of the work.

In order to establish the relationship between the sm and the sa problems, we decompose
them into relations we call constraints. Parts II to IV are dedicated to describe the manipulation
of these constraints and constitute the core of the dissertation.

Part II analyzes in detail the nature of the constraints, and presents techniques for their
generation from an fsm behavioral description. In Chapter 4, the constraints yielded by state
minimization are considered, while Chapter 5 tackles the constraints obtained from the decom-
position of the state assignment problem. The relationship between sm and sa constraints are
the object of Chapter 6, which contains several of the original findings of the present work. This
part ends with a set of conclusions about the sm and sa constraints, depicted in Chapter 7.

Part III proposes a new, unified framework for representing all relevant constraints described
in Part II. It begins with the introduction of some additional terminology in Chapter 8.
Chapter 9 sets up the unified framework, showing how to accommodate each relevant class of
constraints into it. At this point, we obtain the fusion of both sm and sa into a single problem,
i.e. that of satisfying a set of constraints represented inside the framework. This is what we
call the two-level sm/sa problem. Chapter 10 gathers a set of conclusions about Part III.

Part IV explains how to solve the constraint satisfaction problem determined by the unified
framework proposed in part III. Chapter 11 provides a new statement of the Boolean constrained

0.3. DISSERTATION OUTLINE 7

encoding problem, and discusses the genericity of this new statement. In the same Chapter,
we formally state the two-level sm/sa problem and show that it is an instance of the Boolean
constrained encoding problem. In Chapter 12, we describe a method to solve the two-level
sm/sa problem. A set of conclusions about this part is drawn in Chapter 13.

Part V closes the work. Chapter 14 describes the characteristics of a prototype program
that implements the method proposed in Chapter 12, and compares the results obtained by
its execution with those achieved by applying some previous approaches to solve the sa and
sm problems. Finally, Chapter 15 gathers the main contributions of the study, a set of final
conclusions and plans for future work in the subject.

8 CHAPTER 0. INTRODUCTION

Part I

Preliminaries

9

Chapter 1

Related Work

We now review the basic approaches to the solution of the sequential logic synthesis problem.
The main objective of the present Chapter is to position our work with regard to previous
publications, as well as to provide a justification for the proposal included herein.

The sequential logic design and the combinational logic design problems rely on the theoret-
ical findings of discrete function mathematics [35, 114]. One way to solve the former is to model
a sequential circuit as a Mealy fsm [83]. In a Mealy fsm model, the fsm output and transition
functions are gathered in a lumped combinational network, while the state information is kept
in a synchronous register, which interposes a time barrier in the feedback lines characterizing
the sequentiality of the implementation. In this way, the original design problem is made sim-
pler [64], since timing problems such as races and hazards are easily eliminated. If the fsm
specification is an already binary encoded description, we solve the problem through the appli-
cation of adequate combinational synthesis techniques to the combinational part. On the other
hand, if the original description is stated symbolically, there is a prior step left, namely the
obtainment of some optimal binary encoding of the machine’s combinational network from the
symbolic information. This step comprises the consideration of the sequential aspects of the
circuit, and includes the search for a solution to both state minimization and state assignment
problems, as well as of input and output assignments, if these are also stated symbolically.

Providing a thorough view of the field of sequential logic synthesis is out of the scope of this
work. Instead, we concentrate in the description of the outstanding contributions in theoretical
and practical aspects of the problem. We give special attention to works that have generated
effective synthesis tools.

The next Section discusses briefly combinational logic optimization techniques. Next, ap-
pears a review of sequential synthesis research related to the state minimization and the state
assignment problems.

1.1 Combinational Logic Optimization Techniques

Combinational (logic) optimization has received continued attention for a long time, and is still
regarded as containing open questions, even though many methods exist that solve restricted
versions of the problem. Most methods start with a behavioral description, manipulating
discrete functions according to Boolean or algebraic techniques. However, some methods deal

11

12 CHAPTER 1. RELATED WORK

directly with structural information, since this allows the use of more concrete cost functions
to evaluate the optimization results.

The first successful methods dedicated themselves to the search of a two-level solution (in
particular, under the form of either a sum-of-products or a product-of-sums) to the optimiza-
tion problem. This simplification is due to the existence of area-efficient layout counterparts for
two-level representations, like roms and plas [49]. The two-level representations assumption
eases the task of combinational optimization, since the solution space is significantly reduced.
However, this is still a very complex problem, for which the extensive use of heuristic optimiza-
tion procedures is fundamental. Recently, several efforts appeared to address the more general
problem of optimization of factored forms, also called multilevel optimization. The following
sections discuss two-level and multilevel optimization tools.

1.1.1 Two-level Optimization

A first successful heuristic two-level minimizer tool was mini, developed at IBM [65]. On the
academia side, we have the tools presto [21] and espresso [16], originated from the research
in the University of California at Berkeley. espresso has been since then extended to provide
exact logic minimization capability [100], and to allow multiple-valued logic minimization [101].
This tool has become an industrial de facto standard, and it is widely used for various aspects of
combinational, as well as sequential synthesis. Additional efforts concentrated in improving the
espresso results in specific aspects, such as the program mcboole developed at the McGill
University of Montreal [30], which performs exact two-level minimization comparing favorably
with espresso for small to medium-sized examples (up to 20-input, 20-output variables), or
as the asyl system, developed at the INPG of Grenoble [104], which capitalizes on a totally
different, rule-based approach to the combinational optimization problem.

With the exception of asyl, all of the above tools use versions of a canonical recursive
paradigm [29] to decompose the initial problem into a set of simpler functions. Morreale [86]
applied this paradigm to the determination of prime and irredundant normal forms of switching
functions. The paradigm relies upon the application of the well-known Shannon expansion to
switching function decomposition. The tools cited above introduced heuristic techniques to cut
the complexity of the canonical recursive paradigm, the most important of which are based on
the concept of unate discrete functions [35].

For a comprehensive review of two-level combinational optimization techniques we may
consult [16].

1.1.2 Multilevel Optimization

One early tool to perform multilevel logic optimization was lss [32], developed at IBM. This
tool applied local transformations to a netlist of gates, using a rule-based approach. Meanwhile,
as the first publications about the theoretical [14] and practical [15] aspects of the two-level
minimizer espresso appeared, Brayton and McMullen introduced concepts connected to the
multilevel logic minimization of combinational functions using algebraic operations [18]. These
concepts, which are called algebraic kernel and algebraic or weak division, were later used as
the basis to the implementation of at least three tools dedicated to multilevel combinational

1.2. SEQUENTIAL LOGIC SYNTHESIS TECHNIQUES 13

optimization: the IBM’s Yorktown Silicon Compiler [13], mis from the University of California
at Berkeley [19], and bold from the University of Colorado at Boulder [11].

Other research efforts started with these concepts and went further in the research of good
solutions for the problem of multilevel optimization. The socrates tool from General Elec-
tric [57] added a rule-based expert system to customize the generic solution obtained from the
multilevel logic synthesis step, adapting the results to different layout strategies and several
technologies. The transduction method, from the University of Illinois at Urbana, takes an input
description under the form of a schematic diagram of 2-input nor gates, and apply transfor-
mations over it on the structural domain. The transformations are based on the computation
of don’t cares for each gate output and on the concept of permissible functions developed by
Muroga et al in [87]. Another tool, phifact, developed by the Philips Research Laboratory at
Brussels, generalizes the kernel and division concepts, obtaining their more powerful and more
complex Boolean counterparts [120].

Multilevel logic synthesis poses a harder problem than its two-level counterpart, since the
cost functions used to evaluate the optimization results correlate less well to physical parameters
such as circuit surface, timing and dissipated power. This explains the success of structural
methods like transduction and the one proposed in the lss tool, which are inherently closer
to the final design description than the behavioral methods. Despite the large number of
publications on the subject, multilevel synthesis is still a little understood problem. We refer
to [12, 17] for a broad review of the literature on the subject.

1.2 Sequential Logic Synthesis Techniques

We may classify the approaches to sequential (logic) synthesis into two families, according to the
domain of description to which belongs the initial circuit specification. The first family, whose
members we call behavior-driven approaches, was introduced in Chapter 0, using Figure 0.3.
The second family consists of approaches where the initial circuit description is a structural
one, and these approaches are accordingly named structure-driven. In this Section we discuss
the research related to both families. We also provide some comments on how to combine these
approaches to obtain a better solution for the sequential logic synthesis problem, and point out
some present research directions.

The focus of the discussion is on state minimization and state assignment of single fsms.
A complete review should include considerations of fsm decomposition and the consequent
communicating fsms issues. This is out of the scope of this work. A more thorough review of
sequential logic synthesis exists in [5].

1.2.1 The Behavior-driven Approach

This approach was presented in Chapter 0, and it is illustrated in Figure 0.3. The idea is
to start with a purely behavioral description of an fsm, producing a lower level structural
description of it. Its main advantage is to allow a smooth transition from high-level to logic
level descriptions, because fsms are naturally identified during the compilation of hdl circuit
descriptions [107]. The next sections discuss the sm and sa problems in this approach.

14 CHAPTER 1. RELATED WORK

1.2.1.1 State Minimization

The state minimization of incompletely specified fsms experimented a period of effervescence
in the 60’s, when Paull and Unger, and Grasselli and Luccio set up the basic theory [91, 56], its
popularity declining in the next two decades. One proof of this last fact is the present lack of
state minimization programs in most commercial and academic fsm synthesis systems. Exam-
ples of these are the octtools [48], from the University of Berkeley and the fsm Synthesizer
System, from the AT&T Bell Laboratories [112]. It is as if the designers of those and similar
systems simply had taken for granted that the generation of fsm specifications without redun-
dant states was an easy task. Quite recently, some works have shown [8, 69] that this is not
the case. They proposed state minimization tools and applied them to a widely available set
of benchmark fsms, which are part of the mcnc1 benchmarks [118]. Some of these machines
turned out to be, after a state minimization step, a one-state fsm. This implies that we can
generate the functionality of this fsm using a combinational circuit alone. However, several
modern synthesis systems, e.g. the ones cited above, when trying to implement the original
specification of these machines do produce a complete sequential circuit, with a combinational
part realizing the transition and output functions, and registers to store the present state. This
lack of insight of present systems may result in waste of precious semiconductor surface. A more
important result is that, in the present version of the mcnc benchmarks, more than 40% of the
machines (22 out of 53) may be implemented with less states than the original specification.

The general theory of the sm problem superseded previous formalization efforts, like those
in [55]. Paull and Unger provided the main results in [91]. They defined the concepts of
compatibles, incompatibles, maximal compatibles and closed sets of compatibles (see Section 4.1
for definitions of these terms). The sm problem was stated by them as a closure-covering
problem (following the terminology of Davio et al [37]). Grasselli and Luccio [56] contributed
with an important enhancement, by proving that only a restricted subset of all compatibles
(namely, the prime compatibles, to be defined in Section 4.1) should be considered while looking
for an optimum solution. Most modern works on the field restrict themselves to the proposition
of efficient techniques to solve the original problem formulated by these authors [69]. Note that
there are two complex subproblems at the heart of the solution of the sm problem, viz. finding
the complete set of maximal compatibles (resp. prime compatibles), and searching for a closed
cover of compatibles (or maximal compatibles, or prime compatibles). These problems are
np-hard, since the np-complete problems of clique finding and set covering [54] can be reduced
to the first and the second, respectively. The whole sm problem was already shown to be
np-complete [95]. Several works suggest heuristics or quick exact techniques to generate the
maximal or prime compatibles, and then use some general or particular technique to solve
the covering problem [69, 59, 94]. Since the number of prime compatibles or even of maximal
compatibles can be very large, other authors propose techniques that avoid their generation,
and still obtain a good, although not optimum, solution to the problem [7, 9].

Since the mathematical background of the sm problem is very well established, and given
that the associated cost functions (number of states) relate well enough to physical parameters
(circuit area, propagation delay and dissipated power), no alternative formulation was proposed
to the general theory, even if the number of publications on the subject in the last years is quite
abundant. See [97] for a significant review of the works published between 1959 and 1985, and

1The fsms included in this benchmark set come from industrial and academic environments, and are intended
to be a representative sample of present typical designs.

1.2. SEQUENTIAL LOGIC SYNTHESIS TECHNIQUES 15

[69] for an account of the most important achievements on the subject during this period. The
present theoretical formulation of the state minimization problem is thus largely satisfying for
most purposes. We will see that this is not the case for the state assignment problem.

However, there is at least one point where the sm general theory is defective. The minimized
machine, solution of the sm problem, can still be (and it often is) incompletely specified. In this
case, some degree of freedom arises in the choice of the state transition and/or output functions
to implement. Choosing the best suited functions to use in order to optimize the physical
parameters is called the mapping problem [59]. This problem is not addressed by the theory.
Here, considerations of other synthesis steps, like state assignment, can be advantageous. A
first approach to the solution of the mapping problem is provided in [59].

1.2.1.2 State Assignment

Given an fsm symbolic description, the assignment problem of fsms comprises the solution of
at least three encoding problems, before producing an implementable design:

• input assignment;

• output assignment;

• state assignment.

Hartmanis and Stearns proposed the first thorough, systematic approach to the fsm as-
signment problem in [63]. They developed an algebraic structure theory of sequential machines,
based on the mathematical theory of partitions. Also, they used the algebra of partition pairs
introduced by Krohn and Rhodes [74] to develop tools for the analysis of the information flow
in fsms. Finally, they suggested techniques to synthesize machines with reduced functional
dependence assignments or decomposition driven assignments, based on this algebra. Although
this is the best established theoretical approach to the subject, the structure theory is not
considered the most suitable one, due to:

1. the computational complexity of implementing it;

2. the fact that reduced functional dependence demands more algebraic structure than most
fsms have [61];

3. the non-existence of a direct correlation between the target cost function, functional
dependence minimization, and area/delay characteristics of practical circuits.

As a consequence, the straightforward application of these techniques conducts frequently
to poor practical results in state assignment [90]. Yet, it remains a basic reference for further
research in the subject.

Among the many practical methods for working out solutions to the sa problem, we can cite
the one described by Humphrey that establishes general conditions to respect when looking for a
good state assignment without using exhaustive enumeration [67]. The first of these conditions
states that

16 CHAPTER 1. RELATED WORK

Condition 1.1 (First Condition of Humphrey) All states that are next states of another,
under some input value, must be assigned adjacent binary codes, in order to increase the mini-
mization likelihood in the final combinational part.

Based on this same argument, Armstrong proposed in [4] an algorithm to solve the state
assignment problem for synchronous sequential machines. He was the first to formulate sa as a
graph embedding problem, using the gate count of the final implementation as cost function to
minimize. Liu proposed a state assignment technique for asynchronous circuits in [79] that also
respects Humphrey’s first condition. Papachristou and Sarma suggested a state assignment
method for synchronous circuits based on the same principles of the Liu method [90]. They
obtained an important result for synchronous fsm synthesis, which is the observation that, for
these machines, assignments based on the findings of Liu associate a single Boolean cube with
a set of states whose next state under a given input is unique, and that this cube is disjoint
from all other cubes associated with the other next states under the same input. We will see
below that the Liu assignments, as they are denominated by Unger in [114], are fundamental
in modern state assignment methods.

Other authors have used the Hartmanis and Stearns’ paradigm, trying to eliminate its
weaknesses [70, 47]. Saucier et al [104] proposed artificial intelligence techniques for performing
state assignment, while Amann and Baitinger [3] suggested the consideration of lower level
structural issues, like the use of counter-based rom/pla architectures, to reduce the cost of
the fsm implementation. A complete review of the published propositions would be too long
to suit this dissertation. We would rather cite Marc Davio’s [33] comment regarding the large
number of different techniques available today for tackling the sa problem:

The diversity of the approaches encountered so far probably attests our ignorance,
or at least the lack of sufficiently deep problem understanding.

Only recently, the first significant improvement to this situation emerged, and this since the
advent of the structure theory of Hartmanis and Stearns. The symbolic optimization method
developed by de Micheli et al [43, 39], provided an alternative paradigm for dealing with various
aspects of the encoding problem. Before discussing symbolic optimization, let us recall that the
synchronous sequential implementation of an fsm combinational part has as inputs the primary
inputs plus the present state feedback lines coming from the state register (i.e. the sequential
part). The outputs are the primary outputs plus the next state lines that feed the state register
inputs. Thus, solving the input and output assignment problems for the combinational part
solves also the state assignment problem.

In a first work [43], de Micheli et al developed a method called disjoint minimization that
is useful to solve the state assignment problem by reducing it to an input encoding problem.
The program kiss [42] implements this method. In [39, 40] the method is extended to take into
account both input and output influences. The extended version is called symbolic minimiza-
tion2. Both methods rely upon a two-step scheme: an encoding independent minimization step
generates constraints for a subsequent encoding step. The encoding independent step groups
inputs and present states according to the needs of a Liu assignment. In fact, the kiss program
output is an assignment of this kind. The most significant finding of de Micheli et al is twofold:

2In later works, the denomination symbolic minimization is adopted to design the technique described in the
first work. We adopt this later convention.

1.2. SEQUENTIAL LOGIC SYNTHESIS TECHNIQUES 17

1. they showed how to compute a tight upper bound for the product term cardinality of the
final two-level implementation, from the encoding independent step;

2. they showed that constraining codes to have the shortest possible length in bits is fre-
quently a bad choice if the cost function to minimize is final circuit area.

In these methods, one uses the length of the encoding (number of bits) as cost function to min-
imize, while trying to respect a set of constraints. If the final encoding satisfies all constraints
generated in the first, encoding independent step, the implementation is sure to comply with
the predicted product term cardinality upper bound.

However, the outputs influence on symbolic minimization was not fully captured by the
techniques in [39, 40]. Devadas and Newton [45] proposed the concept of generalized prime
implicants, that was used to model more thoroughly the output encoding problem. They
developed exact solutions, with very low computational efficiency. In another work, Ciesielski et
al [26] suggested exact techniques to generate all possibly useful elementary output constraints,
into which the generalized prime implicants decompose. The efficiency of the technique is not
discussed in the reference. Any method considering the outputs’ influence relies upon the
generation of a set of potentially useful output constraints, from which a subset is used later.
The initial set can be very big, as can be concluded from an analysis of the exact techniques to
generate them. In general, the input constraints are considered as the fundamental ones, since
they provide bounds on the length of the final encoding, while output constraints are used to
achieve further enhancement of the result.

More recently still, the use of the pseudo-dichotomy concept provided a tighter link between
symbolic optimization and the structure theory. Tracey [111] introduced the pseudo-dichotomy
concept to deal with the sa problem in asynchronous sequential circuits. Some modern works
[119, 26, 103] have taken advantage of this partition-like structure to represent and manipulate
the sa constraints generated by symbolic optimization. Their approach is to translate the
constraints to pseudo-dichotomies, and then to solve the associated pseudo-dichotomy covering
problem. Prime pseudo-dichotomies are defined, and used to reduce the solution search space
for the subsequent covering step. In a newer work, Shi and Brzozowski suggest a greedy
technique that uses pseudo-dichotomies, but avoid the generation of primes [106]. Their results
compare favorably with previous approaches in terms of both final area and encoding length.
Additionally, their implementation runs much faster.

Some methods [4, 47] fix the encoding length to the minimum possible value, and then try to
encode the states so as to optimize the resulting combinational part. Methods using symbolic
minimization try to reduce the encoding length while respecting the generated constraints.

The symbolic minimization techniques and the derived constrained encoding approach
showed that, if area estimate is the cost function to minimize, there are relevant constraints
to be considered during state encoding other than minimum code length. Symbolic methods
may be subdivided into (complete) constrained encoding and partial constrained encoding. In
complete constrained encodings, the codes generated satisfy all sa constraints, and the encod-
ing length is a cost function to minimize. The programs kiss [42] and diet [119] generate
this kind of encoding. Partial constrained encoding consists in preestablishing a code length
(minimum or not), and then trying to find an encoding with this code length that satisfies as
many constraints as possible. In general, partial constrained encoding gives better results than
complete constrained encoding in terms of pla area, since it provides a better control over the

18 CHAPTER 1. RELATED WORK

final code length. The program nova [115], for example, uses partial constrained encoding.
However, for machines with a relatively low number of constraints, complete constrained en-
coding performs better, and that is why the program encore [106] allows the choice between
these two methods.

In state assignment, there is too vast a number of publications to cover them all in this
work. We could not even find a reasonably comprehensive review in the available literature.
Limited, yet broad reviews on the subject can be found in [5, 6].

1.2.1.3 Simultaneous State Minimization and State Assignment

We stated, in Chapter 0, that there are two strategies to solve the sm and sa problems, viz.
the simultaneous strategy and the serial strategy. Traditionally, one uses the serial strategy.
However, some works have proposed the use of the latter to provide a more global view of the
fsm synthesis design process. No conclusive result exists, up to now, to show which strategy
performs best. Still, we intuitively feel that taking into account the sa constraints while doing
state minimization can only further the insight on the characteristics of both problems.

Hartmanis and Stearns studied the relationship between the sa and sm problems in [62, 63],
showing that a state minimization phase that does not take into account the subsequent state
assignment may obscure some potentially good implementations of the machine. They even
suggested the use of state splitting techniques for coping with the problem of highly minimized
descriptions, where little structural information is available. State splitting is the converse
of state minimization, in the sense that it “unreduces” a machine in order to obtain a best
realization.

To our knowledge, only three works have suggested the simultaneous strategy to date. In the
first of these, Hallbauer [60] proposes a method based on pseudo-dichotomies that avoid races in
asynchronous circuits, and which tries to perform state minimization while heuristically reduc-
ing the encoding length. The second work is due to Lee and Perkowski [75], and suggests one
exact method to tackle synchronous fsms. Their method employs a branch-and-bound tech-
nique to reduce the search in the solution space. In a third work Avedillo [8] presents a heuristic
method in which the encoding is generated incrementally, and which may create incompletely
specified codes for the states in the original description. The subsequent combinational logic
minimization step can, in this way, merge compatible states such that the equivalent of state
minimization is performed.

No theoretical findings on the relationship between the sm and sa problems is provided in
any of these works. Besides, the method of Hallbauer has not been submitted to benchmark
tests, its efficiency being thus hard to evaluate. The Lee and Perkowski’s method is feasible
only for very small machines (no more than sixteen states). The Avedillo’s method has been
extensively tested using a subset of the mcnc fsm benchmark set, comprising machines with
no more than 32 states. Although reasonably efficient, the results of this method are poorer
than those obtained with a serial strategy proposed in the same work.

These facts have driven the ideas behind the work presented here. We wanted to investigate
more thoroughly the possibility of providing a theoretical framework in which the sm and
sa problems can be conveniently compared, as well as to propose a more efficient method
to approach the simultaneous strategy. The advent of high-level synthesis tools imply the
occurrence of automatically generated fsms. Such fsms are expected to increase the needs for

1.2. SEQUENTIAL LOGIC SYNTHESIS TECHNIQUES 19

redundancy removal in the logic level design phase [107].

Let us recall that this work is grounded on a constraint satisfaction formulation of the sm
and sa problems. Previous publications have suggested similar formulations for both the sm
problem [37] and the sa problem [45]. However, these approaches have always considered only
one of the problems at a time. Here we envisage this formulation as a natural way of establishing
a relationship between the two problems. Our main objective is to decompose both of them
into comparable sets of entities, such that the final solution takes into account the tradeoffs
arising between the sm and sa problems. This is possible only if we employ the simultaneous
strategy.

1.2.2 The Structure-driven Approach

This is a modern approach to fsm synthesis, derived from the application of the concept
of retiming [76] to the synthesis of synchronous circuits. The basic idea of retiming is to
manipulate a structural description of a synchronous circuit, such as a netlist, as a whole. No
previous extraction of the memory elements is done. In this way, we obtain a more thorough
optimization of the sequential network. Retiming allows the accomplishment of transformations
where registers, as well as gates, are moved, extracted, merged or decomposed.

A first work by Malik et al [80] proposed a limited method of retiming and resynthesis that
could optimize circuits containing pipelined sections. Other works generalized the method. In
[41], de Micheli extends the multiple level optimization techniques from [19] to the synchronous
domain using the retiming concept. At the same time, he provides algorithms based on these
operations to reduce the global cycle time of a synchronous circuit. A general theoretical
framework for synchronous optimization is proposed in [31] to solve the problem based on
recurrence equations, but the reported practical results are worse than those obtained with
combinational optimization techniques. More recently, Lin [77] proposed a generalization of
the well-known algebraic kernel concept of combinational optimization [18]. His extension of
the combinational techniques based on synchronous kernels obtained very good results, in terms
both of area reduction and timing performance.

The advantage in the structure-driven approach is that, unlike the behavior-driven approach,
area and timing metrics can be directly evaluated at each step of the computation, and not
only estimated. Figure 1.1 depicts the corresponding Y-diagram.

1.2.3 Relationship Between Approaches

Although the behavior-driven and the structure-driven approaches are frequently stated as
alternative [41], in fact they are not. Instead, we consider them as complementary. With the
present trend of using high-level behavioral descriptions as input to design systems [93, 92],
it is going to be quite difficult to avoid the use of the fsm behavioral models in a first step.
This is due to the fact that direct translation of hdl descriptions into netlists may generate
too big initial descriptions. Thus, the behavior-driven approach can produce an intermediate
description, which can then be retimed and resynthesized in a subsequent design step.

On the other hand, the pure structure-driven approach can be useful alone in resynthe-
sizing and retiming circuits initially described as a schematic diagram or netlist. This may

20 CHAPTER 1. RELATED WORK

electric

logic

algorithmic

system

physical

behavioral structural

netlist

Figure 1.1: Y-diagram for the structure-driven approach to sequential synthesis

happen every time an old design is to be reused or enhanced, as well as on conservative design
environments.

1.2.4 Future Approaches

New advances in sequential logic analysis may, in a near future, produce significant changes in
the way sequential logic synthesis is performed. These advances rely on two concepts introduced
by recent research works. Let us briefly discuss these concepts.

The first concept is an efficient canonical form for representing combinational switching
functions by means of binary decision diagrams [2]. This form is called ordered binary decision
diagram (obdd), and it was introduced in [23] by Randal Bryant from the Carnegie-Melon
University. This canonical form has been successfully used to enhance the performance of
combinational and sequential verification algorithms [81, 28]. Although very efficient, obdds
present two problems. First, we have to find the optimal total ordering of input variables
to construct the canonical form from it, together with the function description. Although
this problem is np-complete [50], various works have suggested good heuristic techniques to
circumvent the problem, e.g. [51, 24]. Second, there exists a class of functions for which an
obdd has an exponential size on the number of input variables for any total ordering of input
variables, as is the case for the integer multiplication function.

The second concept is the use of implicit descriptions of fsms in sequential verification
algorithms [10]. Implicit representations of fsms describe the output and next state functions
of a machine by means of well-formed algebraic expressions [35]. They are opposed to explicit
representations, where these functions are described in the tabular or the equivalent graph
forms. Note that implicit representations:

• can be obtained directly from high-level specifications;

• are intrinsically capable of handling functions which are bigger (due to their compactness)
than those handled by explicit representations;

• have a direct translation to the obdd representation.

1.2. SEQUENTIAL LOGIC SYNTHESIS TECHNIQUES 21

Due to the above reasons, they may advantageously substitute explicit representations in the
behavioral approach. However, this can happen only if implicit representations prove to be
practical in solving the traditional problems of sequential synthesis, which is still an open
research issue.

22 CHAPTER 1. RELATED WORK

Chapter 2

An Introductory Case Study

The goal of the present Chapter is to introduce the subject of this work through an fsm logic
synthesis case study. Along with the discussion of the synthesis process applied to the case
study, we informally uncover the main concepts to be treated in the remaining of this thesis.
The presentation of most formal definitions will take place later, in Chapter 3. Meanwhile, the
use of some otherwise inexact terms and concepts will favor the intuitive understanding of the
problems; these terms will be presented here inside single quotes (‘’) when they are referred to
for the first time, instead of the bold slanted typeface we adopt in the thesis to introduce new
terms. This convention is used to avoid confusion when we later define the terms formally.

Section 2.1 presents the case study. It begins with an introduction of the sm and sa problems
using a hypothetical serial strategy to solve them. The Section includes a brief discussion,
pointing out some deficiencies of this and other serial strategies, resulting from assumptions
that have to be made when working in the logic level of abstraction. In the same Section,
three distinct practical solutions for the case study are displayed. At the end of the Chapter,
Section 2.2 unveils some relevant questions that will be answered alongside the rest of this
volume.

2.1 The Case Study

The fsm we use here as case study comes from the already mentioned mcnc benchmarks [118],
and is named beecount. Table 2.1 displays the behavior of this synchronous fsm. As usual
in synchronous flow tables, columns and rows are associated with input values and states,
respectively. As is the case for all mcnc fsm benchmarks, the inputs and outputs are already
binary encoded. States are represented symbolically as integers. beecount has eight inputs
(encoded in three bits), four outputs (encoded in four bits), and seven states. Each entry of
the flow table describes a possible transition of the machine, where the column and row specify
the present input and state of the fsm, and the contents of the entry comprise the next state
and the output associated with the transition, respectively. Next state and/or output values
may be unspecified in some entries, which constitutes a don’t care condition for the transition
and/or output functions of the fsm, and this is indicated by the use of the “-” sign.

Now, we want to study the relationship between the sm and sa problems using this fsm
behavior description. The objective of doing so is to show that it is possible to take advantage

23

24 CHAPTER 2. AN INTRODUCTORY CASE STUDY

Table 2.1: Flow table describing the behavior of the fsm beecount

state \ input 000 100 010 110 001 101 011 111

0 0,0101 1,0101 2,0101 -,- 0,1010 0,1010 0,1010 0,1010
1 0,0101 1,0101 0,0101 3,0101 0,1010 0,1010 0,1010 0,1010
2 0,0101 0,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010
3 -,- 1,0101 4,0101 3,0101 0,1010 0,1010 0,1010 0,1010
4 0,0110 -,- 4,0101 3,0101 0,1010 0,1010 0,1010 0,1010
5 -,- 6,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010
6 0,1001 6,0101 -,- 5,0101 0,1010 0,1010 0,1010 0,1010

of their relationship during the search for an optimal two-level implementation of fsms. Trans-
lated to practical considerations for this case study, and imposing all restrictions we stated
in Section 0.2, this means we want to answer the following question: “How can we optimally
assign codes to the states of machine beecount?” Or, stated in more detail: “How can we
obtain a state encoding for beecount such that a two-level circuit implementing it will be
optimum with regard to some cost function taking into account the three minimization criteria
of occupied area, propagation delay and power consumption?” We now examine the conditions
that permeate through this question, and that we repute important to consider during the
encoding. We begin with the conditions connected to the sm problem only.

2.1.1 sm-Related Considerations

First, we note that there are no two identical rows in the flow table for the beecount fsm.
However, consider states 3 and 4. They have identical rows, except for the entries corresponding
to the inputs 000 and 100. Because the difference is due only to the existence of unspecified
entries in these columns, we may change the unspecified entries to contain any state/output
pair, without modifying the ‘specified’ behavior. In particular, the entry corresponding to state
3 and input 000 may hold the same contents as the entry corresponding to state 4 and input
000, while the entry corresponding to state 4 and input 100 may hold the same contents as the
entry corresponding to state 3 and input 100. If we perform both changes in the flow table,
the first two rows become identical, and we say that states 3 and 4 are then ‘equivalent’. If a
pair of states can be made equivalent without changing the specified behavior, we say they are
‘compatible’.

With the notions of equivalence and compatibility we associate the existence of redundancy
in the machine, because they imply that there are two states we cannot ‘distinguish’, as long
as we limit attention to the external (i.e. input/output) behavior of the fsm. Since this is the
behavior addressed by fsm users, any transformation of the machine specification that does
not affect it is valid.

The concept of fsm valid transformations is very important, since these are the only trans-
formations allowed during the fsm synthesis process. In the scope of this work, we are interested
in dealing with ‘encoding transformations’ only, and the central concept here is that of ‘valid
state assignment’ to be introduced in Chapter 5. In fact, generalizing this last concept will
allow the simultaneous consideration of both sm and sa problems.

2.1. THE CASE STUDY 25

Back to our example, after making the states 3 and 4 equivalent we can simply merge the
flow table rows associated with them into a single one, thus reducing the total number of states
of the fsm. Additionally, we must provide a new designation for the row resulting from the
merging process (for instance, {3, 4}), and change every reference to any of the original states
by this designation. The result appears in Table 2.2. The merging process may produce a
smaller combinational part, because every encoded output1 potentially depends on less input
values, and because the lower bound on the number of bits needed to encode the outputs may
become smaller. Nonetheless, the final functions are ‘denser’, since the number of unspecified
entries in the flow table is reduced (in our example it passes from 5 to 3), which can render the
minimization of the combinational part harder to perform.

Table 2.2: Flow table for the beecount fsm after merging states 3 and 4

state \ input 000 100 010 110 001 101 011 111

0 0,0101 1,0101 2,0101 -,- 0,1010 0,1010 0,1010 0,1010
1 0,0101 1,0101 0,0101 {3,4},0101 0,1010 0,1010 0,1010 0,1010
2 0,0101 0,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010
{3,4} 0,0110 1,0101 {3,4},0101 {3,4},0101 0,1010 0,1010 0,1010 0,1010

5 -,- 6,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010
6 0,1001 6,0101 -,- 5,0101 0,1010 0,1010 0,1010 0,1010

We may generalize the concepts of state pair equivalence (resp. compatibility) and state
merging, to sets with an arbitrary number of states. A set of states is called an ‘equivalent’ (resp.
‘compatible’) if its elements are pairwise equivalent (resp. compatible). Back to the original
flow table, we may depict the compatibility relations within the machine using a graph, called
‘merge graph’. In this graph, each distinct vertex represents a distinct fsm state, and an edge
connects a pair of nodes if and only if the two associated states are compatible. Labeled edges
correspond to ‘conditionally compatible’ pairs of states, the label representing a set of pairs
of states that need to be compatible so that the states associated to the nodes be themselves
compatible. The merge graph for beecount is showed in Figure 2.1. Note, for instance, that
states 1 and 0 are compatible if states 0 and 2 are also compatible, and vice versa. Thus, they
are conditionally compatible. However, states 1 and 2 are not compatible, even though they
assert no conflicting output value for any input value. Their incompatibility comes from the
fact that there is at least a sequence of inputs (for example 110 followed by 100, followed by
000) that may distinguish if the fsm is initially in one of these two states.

In the merge graph, we point out that the maximal complete subgraphs [27] (also called
maximal cliques) represent the compatibles of maximum size that contain some state. These
are accordingly named ‘maximal compatibles’. For the beecount fsm, the set of all maximal
compatibles is:

{{0,1}, {0,2}, {3,4}, {5,6}}.

Noting that the particular external behavior of every state in the original description must
be contemplated in the fsm description after a set of state merging steps, we may informally

1Recall that combinational part outputs comprise the output lines and the next state lines. The same
comment is valid mutatis mutandis for the inputs.

26 CHAPTER 2. AN INTRODUCTORY CASE STUDY

2

1

6

5

3

4

0
02

01

Figure 2.1: Merge graph for fsm beecount

enunciate the goal of state minimization2: The solution of the sm problem can be achieved if we
compute a set of compatibles with minimum cardinality, such that each state of the original fsm
belongs to at least one of its elements, i.e. if we can find a ‘minimum cover of compatibles’. A
maximally reduced equivalent fsm can then be constructed from this set, by associating a state
to each compatible, defining a new flow table according to the row merging rule introduced
before. An inspection of the merge graph of our example fsm allows the extraction of all ‘valid
covers’ for this example. A cover is valid if all conditions imposed by compatible pairs of states
in it are respected. It is thus called a ‘closed cover’ of compatibles. For our example, there are
only 8 such covers, namely:

1. {{0}, {1}, {2}, {3}, {4}, {5}, {6}};

2. {{0}, {1}, {2}, {3,4}, {5}, {6}};

3. {{0}, {1}, {2}, {3}, {4}, {5,6}};

4. {{0}, {1}, {2}, {3,4}, {5,6}};

5. {{0,1}, {0,2}, {3}, {4}, {5}, {6}};

6. {{0,1}, {0,2}, {3,4}, {5}, {6}};

7. {{0,1}, {0,2}, {3}, {4}, {5,6}};

8. {{0,1}, {0,2}, {3,4}, {5,6}};

First, we observe that in no closed cover representation we may have the compatible {0,1}
without having the compatible {0,2}, since the former implies the latter (and vice versa, since
the latter also implies the former). Second, we notice that there is only one minimal closed
cover, formed by the set of maximal compatibles, but this does not account for the general
case. The set of all maximal compatibles always represents a cover of the state set, but it is not
necessarily minimum, nor unique. Indeed, there is no need for a minimum cover representation
to have any maximal compatible at all [72]. However, any compatible is contained in at least
one maximal compatible. Thus, the set of all maximal compatibles is a ‘reasonable’ starting
point for the search of the minimum covers, since we can generate any minimum cover from it.

2This statement is not only informal, but also incomplete, but will serve our purposes in this Chapter.

2.1. THE CASE STUDY 27

A question arises as to how we can choose the best cover with regard to our minimization
criteria. In this particular example, the minimum cover is unique, and gives a good approx-
imation of the best implementation. However, solving the sm does not necessarily guarantee
the satisfaction of any of the three criteria of minimum area, propagation delay and dissipated
power. More important, since the minimum closed cover is not unique in general, there must
be ways to choose among all minimum closed covers. To select the best one, we may consider
the conditions imposed by the state assignment step.

2.1.2 sa-Related Considerations

We have mentioned in Section 1.2.1.2 how the first condition of Humphrey (Condition 1.1)
has led to the development of modern state assignment methods. In particular, the symbolic
minimization method [43] relies upon this condition to generate constraints on the assignment
of state codes for a pla implementation of an fsm combinational part. We highlight below the
functioning of the method as applied to machine beecount. The objective is to show how the
‘input constraints’ may help us in the search for the optimum implementation of the fsm.

It is well known [16] that one of the most critical factors influencing the cost of a two-
level implementation is its ‘product term’ cardinality, which is associated with the concept of
‘cubes’. Thus, an fsm state encoding method viewing the obtainment of optimal area results
for two-level implementations should be able to reduce the product term cardinality.

The symbolic minimization method identifies subsets of entries in the flow table that are
identical in some aspect (next state, output or both) and whose corresponding inputs and
present states, together, ‘can’ form a ‘valid’ product term in the final pla. The method looks
for a set of entry subsets that is optimal, in the sense that the least possible number of such
subsets is obtained, while ensuring that every relevant entry is included in some subset. For
machine beecount, the result of applying this procedure to the original flow table of Table 2.1
appears in Figure 2.2. From these subsets the method generates the constraints to be respected
by the state encoding, as we will discuss next.

0 0,0101 1,0101 2,0101 -, - 0,1010 0,1010 0,1010 0,1010

1 0,0101 1,0101 0,0101 3,0101 0,1010 0,1010 0,1010 0,1010

2 0,0101 0,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010

3 -, - 1,0101 4,0101 3,0101 0,1010 0,1010 0,1010 0,1010

4 0,0110 -, - 4,0101 3,0101 0,1010 0,1010 0,1010 0,1010

5 -, - 6,0101 2,0101 5,0101 0,1010 0,1010 0,1010 0,1010

6 0,1001 6,0101 -, - 5,0101 0,1010 0,1010 0,1010 0,1010

state \ 000 100 010 110 001 101 011 111
input

Figure 2.2: One optimal set of entry subsets for machine beecount

Let us first explain what we mean by ‘valid’ product term. Consider the subset of entries

28 CHAPTER 2. AN INTRODUCTORY CASE STUDY

associated with the second input column (100) and the three lines corresponding to states 0,1,
and 3 in Figure 2.2. To implement this partial behavior optimally, we need only one product
term in the encoded two-level implementation, because all three entries share a single output
pattern. The product term has to account for all three entries associated with the subset,
and for no other entry in the flow table. To do so, it suffices to impose that the binary codes
we assign to states 0, 1, and 3 be such that the ‘smallest cube’ containing the codes (also
denominated the ‘supercube’ of the codes) of these three states does not contain the code of
any other state in the machine.

We may informally show the soundness of this reasoning by contradiction. Suppose that the
supercube of the codes contains codes of other states as well. Remember that a product term
in a pla produces a single particular output pattern. In our example, using such a supercube
as part of the product term generating the output pattern unique to the entries of the subset,
would associate this same pattern with states outside the subset. This may indeed change
the specified behavior of the machine, and must thus be avoided. For example, if we assign
code 0011 to state 0, code 0001 to state 1, and code 0000 to state 3, the smallest binary cube
accounting for these states is 00−−. This encoding allows that a single pla product term
(10 00−−) generate the entry subset in question if the code 0010 is not assigned to any state
contained in the subset {2, 4, 5, 6}. In this case, 10 00−− would be a ‘valid’ product term.

As long as the conditions imposed by every subset of entries are respected during the state
encoding step, we may ensure that the final pla will have at most as many product terms
as there are subsets in the table. The goal of the state encoding using symbolic techniques
becomes then, as we have already cited in Section 1.2.1.2, the search for either:

• the minimum length encoding that respects all constraints, if we use complete constrained
encoding;

• the encoding with a given length (often, the absolute minimum necessary) that satisfies
the largest number of constraints, if we use partial constrained encoding.

The satisfaction of the constraints we have just presented coerces the encoding of states, so that
the use of such codes in the generation of outputs of the fsm combinational part (i.e. as inputs
to this part) leads to a minimized machine. They are accordingly called ‘input constraints’,
and each of them is represented as the subset of present states associated with some subset of
entries encircled in Figure 2.2. The example constraint we used to explain the concept of valid
product term is then represented by the state set {0, 1, 3}, and satisfying it implies assigning
codes to states 0, 1 and 3 such that the supercube of these three codes does not intersect any
state code other than those.

Now, we come back to the selection of the best two-level pla implementation for beecount,
started in the previous Section. We have eight distinct closed cover representations, each
corresponding to a distinct fsm structure that may replace machine beecount. If we assume
that the symbolic minimization method leads to good solutions for the sa problem, we may
evaluate which of the covers leads to the best fsm implementation as follows.

1. generate all machines associated to each closed cover representation;

2. submit each machine to the symbolic minimization process;

2.1. THE CASE STUDY 29

3. generate an encoding for each machine by respecting the conditions imposed by the re-
spective symbolic minimization;

4. in each machine description, substitute each state symbol by the associated state code
and submit the ‘encoded’ machine to logic minimization, obtaining a final two-level logic
implementation of the fsm.

The best solution will be that associated with the two-level logic implementation presenting
the best area, delay and power characteristics.

2.1.3 Logic Level Assumptions

Most of the available techniques to solve the sm and sa problems rely upon a few basic assump-
tions. The first one is that state minimization leads to smaller fsm implementations. However,
as we pointed out in Section 2.1.1, state minimization produces denser machines, which are
harder to minimize. We will see experimentally, in Part V, that performing state minimization
to its maximum extent may lead to larger plas than performing no state minimization at all,
although this is not the general case. The second common assumption is that to reduce the
area of the final pla after state assignment, we have to reduce the code length to its minimum.
Again, in Part V we will find machines for which a code length two to three times larger than
the minimum necessary lead to a final pla smaller than those produced by “good” minimum
length encodings.

On the other hand, the two above assumptions rely on the fact that smaller plas are
preferable to bigger ones. But this simplification does not account for at least three facts.

The first one is the use of topological optimization methods in low-level synthesis. In fact,
topological methods, comprising pla partitioning [68] and simple [58] and/or multiple [38]
folding, capitalize on the initial pla sparsity to attain silicon surface gains from 20 to 70% over
the original area estimate [38].

The second fact is that the propagation delay time in plas depends strongly on the oc-
cupied surface, as well as on the form factor, which should ideally be close to the unity. If
topological optimization is overlooked, the form factor is determined after state assignment,
and its optimization imposes a trade-off between the code length and the number of products.
This trade-off could be accounted for during the state assignment step.

The third fact is the consideration of the power dissipated by the module, which is rarely
addressed at the logic level. At this level of abstraction, however, we may roughly estimate
power consumption based on the number of transistors of the final pla. In the last Section
of this Chapter, these considerations will be used to direct the discussion about useful cost
functions to use during the search for a solution to the sm and sa problems.

In Section 2.1.2, we have noticed the existence of a relationship between the sm and sa
problems, namely that the constraints derived from the sa problem can be used to evaluate the
multiple minimum solutions arising in the sm problem. In so doing, we are able to eliminate
some of these solutions, i.e. those identified as leading to bad implementations according to our
final minimization criteria. The method suggested above is useful to introduce the problem
we want to treat, but it is not a practical one to apply to ‘large’ fsms, since it requires the
generation of all possible solutions of the sm problem, followed by the selection of the best one

30 CHAPTER 2. AN INTRODUCTORY CASE STUDY

among these. However the obtainment of a solution to the sm problem is already np-complete
[95]. We refer to Zahnd [122] for an exact method describing how to engender all “irredundant
covers” of compatibles. By irredundant cover, Zahnd means a cover where no proper subset of
it is also a cover. In particular, all minimum covers are irredundant.

In Chapter 6 we will disclose other useful relationships between the sm and sa problems,
while in Parts III and IV we propose an efficient method to cope with the complexity of
both problems at once. In the next Section, we present three solutions for the sa problem of
machine beecount. These solutions will be confronted with respect to the satisfaction of the
optimization criteria of area, propagation delay, and power consumption, in view of all cost
functions suggested above.

2.1.4 Three State Assignment Solutions for Machine beecount

From the discussion in the last Section, we note that state encoding could hardly be classified as
a one-solution problem, since many cost functions may interfere in the evaluation of the quality
of a solution to this problem. Often, these cost functions conflict with each other, thus making
optimality strongly dependent upon which cost functions are retained to compute the quality.
Table 2.3 shows three valid state assignments for the states of machine beecount. Again, the
assignments are valid in the sense that all three preserve the external behavior predicted by
the initial specification.

Table 2.3: Three valid state assignments for machine beecount

state nova code asstuce code compatible stamina + nova code

0 000 0- {0,1} 01
1 101 00 {0,2} 00
2 100 01 {3,4} 10
3 110 10 {5,6} 11
4 010 10
5 011 11
6 111 11

We obtained the encodings in Table 2.3 by running either an sa program, or a combination
of sm and sa programs.

The first column, labeled nova code, presents an encoding obtained with nova [116], an
sa program using a partial constrained encoding approach. It is in fact the best performing
program we could find using this approach. The second column, labeled asstuce code,
presents an encoding obtained with asstuce, the program developed in the scope of this
thesis. asstuce may employ either complete or partial constrained encoding approaches. The
solution presented in the Table resulted from the use of the partial approach, to allow a fair
comparison with nova.

Both programs were asked to assign minimum length codes to the machine, but the length
of the respective codes are distinct. The explanation for this fact relies in the fact that nova
is not capable of identifying the existence of compatibility classes in the original description.
It thus assigns a code of length 3 to beecount, which is the minimum for a machine with

2.1. THE CASE STUDY 31

7 states. asstuce, on the other hand, can identify the existence of such classes, since it
implements a simultaneous strategy to solve the sm and sa problems, and is thus able to assign
codes to beecount so that the equivalent of state minimization can be performed during the
logic minimization phase. Both, nova and asstuce assign codes to the states of the original
machine description.

A third encoding appears in the column labeled stamina + nova code. This last encoding
was obtained according to a serial strategy to solve the sm and sa problems. First, an sm
program, stamina [59] was run on beecount, generating an exactly minimized version of this
machine, where states correspond to the compatibles shown in the Table. After this, nova was
used to assign the minimized machine, obtaining a code of length 2, the minimum for a 4-state
fsm.

Details about the method employed by asstuce will be found in Chapter 12, while the
program implementation will appear in Chapter 14.

A comparison of the three solutions is useful to reveal the main distinctions between our
approach and any other constrained encoding method we can find in the available literature.
To our knowledge, all constrained encoding programs to date generate encodings that are
injections from the fsm state set into a subset of the binary codes of a given length. asstuce,
on the other hand, engenders state codes that are not necessarily distinct for distinct states,
and which additionally can be incompletely specified. This is fundamental to allow full-fledged
performance of a simultaneous strategy to solve the sm and sa problems for incompletely
specified fsms.

To justify this, consider states 0,1 and 2 of machine beecount. In order to encode these
states so that the minimum closed cover of beecount can be obtained, we have to guarantee
that once encoded, these states lead to the compatibles {0, 1} and {0, 2}. To do so, the code
assigned to state 0 must be ‘compatible’ with the codes assigned to states 1 and 2. However, the
codes for states 1 and 2 cannot be compatible, because these are incompatible states. One way
to maintain the correct external behavior, while respecting the compatibility relations, is to use
an incompletely specified code for state 0, and arrange for states 1 and 2 to have incompatible
codes, but both compatible with the code for state 0. asstuce assigns codes in this way: for
state 0, it assigns the code 0−, and for states 1 and 2 the codes 00 and 01, respectively.

We also advance that asstuce does not perform state minimization explicitly, i.e. we cannot
in general devise the final compatibles from the encoding, since codes are incompletely spec-
ified. State minimization is done by the combinational logic minimization tool, which groups
compatible state codes, but only if this leads to a better implementation, according to its less
abstract minimization criteria.

We have used the three state assignments depicted in Table 2.3 to obtain the corresponding
minimal two-level combinational part plas of the associated fsm implementations. After sub-
stituting the encoding in the corresponding symbolic description, we obtained an encoded fsm,
represented as a pla personality matrix. This personality matrix was submitted to espresso,
which generated the minimized personality matrices appearing in Figure 2.3.

The personality matrix in the espresso format has two sides: inputs, including the primary
input columns and the present state columns, and outputs, including the next state columns
and the output columns. Each 1 (resp. 0) in the inputs represents a transistor in the and
plane of the pla, connected to the value of one primary input or present state (resp. to its

32 CHAPTER 2. AN INTRODUCTORY CASE STUDY

 NOVA ASSTUCE STAMINA+NOVA
inputs outputs inputs outputs inputs outputs
010 --0 010 0000 000 10 00 0110 000 11 00 1001
100 --1 100 0000 000 11 00 1001 1-- 00 01 0000
0-0 111 000 1001 1-0 11 11 0000 -10 10 10 0000
-00 110 000 0110 110 -- 10 0000 000 10 01 0110
100 -0- 001 0000 -10 10 10 0101 1-0 11 11 0000
110 0-- 001 0000 --1 -- 00 1010 110 -- 10 0000
-10 0-- 010 0000 0-0 0- 01 0101 -00 0- 01 0101
1-0 -0- 100 0000 -10 -1 01 0101 --1 -- 01 1010
-10 1-0 100 0101 1-0 -- 00 0101 -10 -- 00 0101
1-0 -11 011 0101 100 -- 01 0101
--1 --- 000 1010
--0 -0- 000 0101
--0 0-- 000 0101

Three FSM Combinational Parts PLAs after Encoding and Minimization

Figure 2.3: Three Combinational Part plas for machine beecount

complement). Each 1 in the outputs corresponds to a transistor in the or plane of the pla.
For detailed information about the espresso format refer to Appendix A.

A visual inspection of Table 2.3 and Figure 2.3 provides us already with qualitative informa-
tion about the results of the three solutions. Table 2.4 shows some quantitative data available
from these Figures.

Table 2.4: Quantitative comparison for three pla implementations of machine beecount

Parameter \ Solution nova asstuce stamina + nova

Code length 3 2 2
Number of states 7 4 4
Number of product terms 13 9 10
Number of transistors 68 50 54
Area estimate 247 144 160
Sparsity estimate 72.47 65.27 66.25
Form factor estimate 1.46 1.78 1.6

It is interesting to note that the asstuce solution has a bounded but unspecified number
of states. We know only that states 3 and 4 (resp. 5 and 6) are implemented always as a single
one since their codes are both identical and contain no don’t care. The final implementation
may even choose to implement states 0 and 1 and/or 0 and 2 as distinct ones, since state 0 has
an incompletely specified code. This freedom is absent in other approaches, and it implies the
observation that the number of states of the final implementation is completely irrelevant, as
long as the correctness of the fsm’s external behavior is guaranteed. The other quantitative data
show that, although asstuce does not effectuate explicit state minimization, it has obtained
an overall result that is not only better than ordinary state assignment programs results, but
also better than the result obtained by a serial strategy. One explanation for this fact is that
asstuce allows more degrees of freedom to subsequent synthesis steps, due to the use of codes

2.2. DISCUSSION 33

that are specified only where necessary. An extensive comparison of various approaches to the
solution of sm and sa problems will be provided in Part V.

2.2 Discussion

The case study showed that to develop a method leading to the solution of both sm and sa
problems, we have to carefully study their relationship, in order to access cost functions that
guarantee “optimum” fsm implementations. The main point to be clarified here is how we
define an optimum fsm implementation. Ideally, such an implementation has the least area,
the least delay, and the least power consumption. In practice, these often conflicting goals must
be traded-off during state minimization and encoding. In the rest of this work, we search for
techniques to answer simultaneously the following set of questions:

Given an fsm symbolic specification, how can we assign codes to its states such
that we achieve:

1. the least number of distinct codes, which allows for extensive state minimiza-
tion, and reduces the final pla size?

2. the most sparse codes, to permit the greatest possibility of minimization for
the final combinational part, allowing enhanced topological minimization, and
reduced power consumption?

3. codes with the least length in bits, to obtain small plas, and to generate the
least number of outputs for the combinational part of the machine?

To engender short length codes, we need to minimize the ‘size’ of the cubes used to encode
states. To allow sparse codes to be obtained, we must maximize the size of the same cubes,
which conflicts directly with the third item above. To reduce the number of distinct codes,
any compatible pair of states should receive equal, or at most compatible codes, but this again
conflicts with the requirement for the last item, because the use of compatible codes imply
that the code length may have to be increased. Sparse codes favor topological minimization,
but may still produce larger final areas, if the code length grows without bounds to favor the
sparsity. The fastest plas have a form factor close to unity. However, the pla form factor
depends on the number of inputs, outputs and product terms directly, and only indirectly on
the structure of the state encoding. Thus, it is quite hard to control the form factor during
state minimization/encoding. Power consumption is also hard to estimate, even though we
know that the sparser the pla, the less it consumes, given the same area and the same form
factor.

34 CHAPTER 2. AN INTRODUCTORY CASE STUDY

Chapter 3

General Definitions

In this Chapter, we define some basic concepts needed in the rest of this dissertation. We assume
the familiarity with the elementary definitions of finite sets theory, lattices and enumeration
orders, as well as with the Cartesian product definition.

The concepts introduced herein are related to discrete and switching functions, and to finite
state machines. They do not constitute a complete review of any of these subjects, and they
were based in the terminology of some classical textbooks. Rutherford presents a comprehensive
set of algebraic terms definitions in [102]. Discrete and switching functions receive an in-depth
formal treatment by Davio, Deschamps and Thayse in [35]. On the other hand, our formal
concepts regarding finite state machines were based on the expositions of Zahnd in [122] and
Kohavi in [72]. The notation we use is distinct in minor points from that proposed in each of
the cited works, due to the coherence requirements across the various domains. Although most
concepts presented are applicable to sets in general, any mention to sets below implies finite,
non-empty sets, except when explicitly stated otherwise.

The next Section introduces discrete functions, and defines formally some terms abundantly
used in next Chapters. Section 3.2 defines fsms, while Section 3.3 discusses the compact
representation we will use to describe discrete functions, namely the cube tables.

3.1 Binary Relations and Discrete Functions

Discrete functions are the fundamental mathematical concept we will later use to formalize
the sm and sa problems. Because functions derive directly from the binary relation concept,
this latter is the starting point for the definitions, preceded by a brief introduction of some
set notations we adopt. The definitions in this Section were adapted from [35], except when
indicated otherwise.

Definitions 3.1 (Set related definitions) Given a set S, | S | denotes the number of ele-
ments in S, or the cardinality of S. The notation P(S) stands for the set of all subsets of S,
also called the powerset of S. The empty set is noted below by the symbol ∅.

Definitions 3.2 (Binary relation) A binary relation from a set S to a set T , is a triple
〈S, T, r〉, where

35

36 CHAPTER 3. GENERAL DEFINITIONS

1. S is the domain of r, noted dom(r);

2. T is the codomain of r, noted cod(r);

3. r is a subset of the Cartesian product S × T , called graph of the relation.

The graph of the relation is noted r : S −→ T . When no confusion can arise, the binary relation
〈S, T, r〉 is represented by its graph r. A binary relation associates with every element s of S,
a subset of T , noted r(s), and called the image of s by r. The image of the subset S ′ of S by r
is defined by

r(S ′) =
⋃
s∈S′

r(s).

A binary relation of the type 〈S, S, r〉 is called a binary relation on a set.

Properties 3.1 (Binary relations) It is useful to describe some of the properties that a bi-
nary relation 〈S, T, r〉 may enjoy:

1. it is completely specified if r(s) �= ∅, for every s ∈ S;

2. it is onto if r(S) = T ;

3. it is functional if |r(s) | ≤ 1, for every s ∈ S;

4. it is one-to-one if for every two distinct elements s ∈ S, s′ ∈ S we have r(s) ∩ r(s′) = ∅.

Properties 3.2 (Binary relations on a set) The special case of binary relations on a set
〈S, S, r〉 may have, in addition, other properties:

1. it is reflexive if s ∈ r(s), for every s ∈ S;

2. it is symmetric if s ∈ r(t) =⇒ t ∈ r(s), for every s ∈ S, t ∈ S;

3. it is antisymmetric if s ∈ r(t) ∧ t ∈ r(s) =⇒ s = t, for every s ∈ S, t ∈ S;

4. it is transitive if s ∈ r(t) ∧ t ∈ r(u) =⇒ s ∈ r(u), for every s ∈ S, t ∈ S, u ∈ S.

A reflexive and transitive binary relation is called a preorder relation. An antisymmetric pre-
order relation is an order relation. A symmetric, reflexive binary relation is a compatibility

relation. A transitive compatibility relation is an equivalence relation.

Definition 3.3 (Cover) Given two sets S and T , a binary relation 〈S, T, c〉 is called a cover

of T iff

⋃
s∈S

c(s) = T.

A cover is thus an onto binary relation. The images c(s) of the elements s ∈ S are called
the classes of c.

3.1. BINARY RELATIONS AND DISCRETE FUNCTIONS 37

Definition 3.4 (Partition) Given two sets S and T , a binary relation 〈S, T, π〉 is a partition

of T iff it is onto and one-to-one. Stated less abstractly, 〈S, T, π〉 is a partition iff it is a cover
of T and

∀(s ∈ S, s′ ∈ S), s �= s′ =⇒ π(s) ∩ π(s′) = ∅.

The image π(s) of an element s of S is called a block of partition π. Since π is also a cover,
its blocks are also called classes. A partition can then be defined as a cover where the classes
are mutually disjoint.

Definitions 3.5 (Function) A partial mapping or partial function is a functional binary rela-
tion. A mapping, or complete function is a functional and completely specified binary relation.
A surjection is an onto mapping. An injection is a one-to-one mapping. A bijection is a one-
to-one and onto mapping. Where no confusion arises, the term function stands for the more
general partial function definition.

Notice that the definition of complete function comes as a special case of the partial function
definition.

We are now able to define discrete functions, which is the class of functions more relevant
to the present work.

Definition 3.6 (Discrete function) A function

f : S −→ L

is a discrete function when S and L are finite, non-empty sets.

In many cases, the domain of a discrete function is the Cartesian product of n finite sets Si:

Sn−1 × . . .× S1 × S0 =
0

×
i=n−1

Si.

If Sn−1 = . . . = S1 = S0, we use the exponential notation Sn as a shorthand for
0

×
i=n−1

Si.

The discrete function

f :
0

×
i=n−1

Si −→ L

is then represented by f(x), with x = (xn−1, . . . , x1, x0), where each variable xi takes its
value from the set Si.

Definition 3.7 (General discrete function) A discrete function of the form

f :
0

×
i=n−1

Si −→ Lm

is called a general discrete function. Function f is interpreted as a set of discrete functions
of the form

fj :
0

×
i=n−1

Si −→ L, 0 ≤ j ≤ m− 1.

38 CHAPTER 3. GENERAL DEFINITIONS

As a consequence of the last definition, all properties and results obtained for discrete
functions are directly applicable to general discrete functions, since general discrete functions
are discrete functions.

Some particular kinds of discrete functions deserve special attention in the scope of the
present work. We introduce first the notion of sequences, a concept that has a close connection
with the modeling of the temporal behavior of sequential circuits. Our definition is borrowed
directly from Zahnd [122], with only minor notational differences.

For every integer n ≥ 1, we designate by n the set of integers k such that 1 ≤ k ≤ n. Thus,

1 = {1}, 2 = {1, 2}, 3 = {1, 2, 3}, etc.

Definitions 3.8 (Sequence) Let A be a finite non-empty set and n be an integer such that
n ≥ 1. The discrete complete function

x : n −→ A

is called a sequence of length n over A. Sequences like x above are represented by an
expression with the generic form [x(1)x(2) . . . x(n)], which is called a word1 of length n over A.
Alternatively, the shorthand notation [x(1, n)] is used.

A finite, non-empty set is referred to as an alphabet, when the need to consider sequences
over this set arises. The elements of the alphabet may accordingly be called letters. The set of
all sequences of length n over an alphabet A is designated here by A[n]. The set of sequences
of arbitrary length over the alphabet A, i.e. the infinite set A[1] ∪A[2] ∪A[3] ∪ . . ., is noted A+.
For instance, if A = {a, b}:

A[1] = {[a], [b]}
A[2] = {[aa], [ab], [ba], [bb]}
A[3] = {[aaa], [aab], [aba], [abb], [baa], [bab], [bba], [bbb]}

Definition 3.9 (Integer function) An integer function is a function

g :
0

×
i=n−1

{0, 1, . . . ,mi − 1} −→ {0, 1, . . . , r − 1}.

Evidently, integer functions are discrete functions. Additionally, observe that any discrete

function f :
0

×
i=n−1

Si −→ L, | L |= r, can be expressed as an integer function, by defining an

adequate set of injections as follows:

1. define an injection of the set Si onto the set of integers {0, 1, . . . ,mi − 1}, for i =
0, 1, . . . , n− 1;

2. define an injection of the set L onto the set of integers {0, 1, . . . , r − 1}.
1The notation used to represent sequences is coherent with the value vector representation of discrete func-

tions, to be introduced in Section 3.3.

3.2. FINITE AUTOMATA AND FINITE STATE MACHINES 39

Definition 3.10 (Binary function) A binary function is an integer function of the form

f :
0

×
i=n−1

{0, 1, . . . ,mi − 1} −→ {0, 1}.

A binary function is thus a two-valued function of multiple-valued or multivalued variables.

Definition 3.11 (Switching function) A switching function, also called Boolean function,
is an integer function

f : {0, 1}n −→ {0, 1}.

The set {0, 1} will appear very often in the discussion of subsequent Chapters. We shall
accordingly denote it by the shorthand B in what follows. The above definitions are already
sufficient to formally introduce fsms, our main concern in this Chapter. Other definitions
related to discrete functions will be introduced later, in Section 3.3, during the discussion on
discrete functions representations.

3.2 Finite Automata and Finite State Machines

Definition 3.12 (Finite automaton) A finite automaton is an algebraic structure of the
form A = 〈I, S,O, δ, λ〉 where:

1. I = {ip−1, ip−2, . . . , i0} is the input alphabet;

2. S = {sq−1, sq−2, . . . , s0} is the finite state set;

3. O = {or−1, or−2, . . . , o0} is the output alphabet;

4. δ is a discrete function:

δ : I × S −→ S;

called next state or transition function of A; given a pair (ij, sk) ∈ I × S, if δ(ij, sk) is
specified, sl = δ(ij, sk) is the next state of the automaton A corresponding to the input ij
and to the present state sk;

5. λ is a discrete function:

λ : I × S −→ O,

called output function of A; given a pair (ij, sk) ∈ I × S, if λ(ij, sk) is specified om =
λ(ij, sk) is the output of the automaton A corresponding to the input ij and to the present

state sk;

The pair (δ(ij, sk), λ(ij, sk)) is called a transition of automaton A.

40 CHAPTER 3. GENERAL DEFINITIONS

When both δ and λ are complete functions, the automaton is complete or completely spec-

ified; otherwise, it is partial or incompletely specified.

The first observation we can make about the above definition of finite automata is that it
could be more general, by letting δ and λ be defined as binary relations. This more general
case is treated extensively by Zahnd in [122]. By constraining δ and λ to be functions, we
limit the finite automaton model, which is then capable of describing standard type sequential
machines only, according to the terminology introduced in [122]. However, we are interested
here in manipulating sequential machines that present a deterministic behavior (as defined by
Kohavi in [72]), and the finite automaton definition we provide is capable of representing any
deterministic sequential machine specification [72].

Second, our definition corresponds to the model known as a Mealy machine [83]. Another
possibility would be to define automata based on the Moore machine model [85], where the
output function depends on the state set only. As long as we do not admit null length input
sequences (which is exactly what is implied by the sequence definition above), the two models
are completely equivalent, i.e. any behavior described using one model can be described using
the other, and vice versa [72].

An fsm is considered here as one possible implementation (abstract or concrete) of the
finite automaton algebraic definition. For simplicity reasons, however, no distinction between
these terms is to be made in this work. An fsm can be represented in several ways. The most
common explicit representations are the tabular form called flow table, and the graph form
called flow graph. In the present work, we rely mostly on tabular representations. One example
is the flow table, another is the cube table, to be introduced in Section 3.3.

Rows in the flow table correspond to states of an fsm, while columns are associated with
the fsm inputs; the table entry corresponding to a pair (input, present state), noted (ij, sk),
is filled in with the transition (δ(ij, sk), λ(ij, sk)). An example of flow table appeared already
in Chapter 2, where Table 2.1 described the behavior of the fsm used as a case study. Again,
unspecified entries, also called don’t care conditions, are identified by dashes (-) in flow tables.

A finite automaton describes an iterative process; as such, it can receive distinct hardware
implementations:

1. a combinational implementation, as the cascade connection of cells realizing the next state
and output functions;

2. a sequential synchronous implementation, as the loop connection of a combinational circuit
cc realizing the next state and output functions with a suitable clocked memory;

3. a sequential asynchronous implementation, similar to the previous implementation, but
where combinational and sequential elements are interspersed in the structure, with no
global clock to control the evolution of the states;

4. a mixed implementation, arising from trading-off the above “pure” implementations, and
usually resulting in a flat or hierarchical network of communicating hardware blocks.

In this text, we always refer to the implementation of an automaton as a sequential syn-
chronous one. The sequential synchronous implementation is sketched for a Mealy machine in
Figure 3.1. This is the hardware model we assume in the rest of this work. In what follows, we
call cc the combinational part of the fsm.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 41

cc

mem

- -

-

6

ij

sk

ck

λ(ij, sk) = om

δ(ij, sk) = sl

Figure 3.1: Sequential Mealy machine.

The finite automaton concept introduced in this Section is not directly implementable as
a digital circuit, as Figure 3.1 may suggest. The practical aspects to be accounted for in the
necessary “translation” process are explored from Chapter 5 on.

3.3 Representations of Discrete Functions

The main benefit of assuming a synchronous implementation as goal is that some complex
problems of sequential logic design are made simpler. Notably, a synchronous implementation
simplifies the consideration of delay problems, concentrating the complexity of the sequential
logic design task on the implementation of the purely combinational part2. The discrete func-
tions δ and λ describe the input/output behavior of the combinational part. The combinational
part is then a discrete function as well, according to our definitions, and it would be useful to
have at our disposal ways of efficiently representing such functions. In this Section, we develop
a cubical notation to represent discrete functions that is adequate to our purposes. We presup-
pose the knowledge of common representation forms such as truth tables, for discrete functions
in general, and Boolean expressions, for Boolean functions.

Let f be a discrete function of the form

f : S −→ L, where S =
0

×
i=n−1

Si,

and where the cardinalities of S and L are m =
∏0

i=n−1 | Si | and r, respectively. We will
assume every discrete function mentioned in this Section to be of this form, except when noted
otherwise.

We define now a simple form for representing discrete functions.

Definition 3.13 (Value vector) Let us choose an adequate enumeration order [35] of the
elements of S, by defining an injection j from S onto the set of integers {0, 1, . . . ,m − 1}.

2This fact does not imply that all sequential aspects of the fsm can be overlooked. The sequential char-
acteristics of the problem must be used to guide the combinational part synthesis, in the form, e.g. of cost
functions.

42 CHAPTER 3. GENERAL DEFINITIONS

Define an integer function g : {0, 1, . . . ,m− 1} −→ L, such that g(j(s)) = f(s). Function g is
represented by a vector of m values of the form

[g(e)], with e = 0, 1, . . . ,m− 1; g(e) ∈ L, ∀e.

Given an enumeration order, this is the value vector of function f , noted [fe].

Example 3.1 (Value vector) Let f be a discrete function from the set S = {0, 1, 2, 3, 4} into
the set L = {0, 1}, where f(x) = 0 if x is even, and f(x) = 1 otherwise. Assume the natural
enumeration order of the integer elements of S. With this enumeration order, the value vector
that describes the behavior of f is [fe] = [0 1 0 1 0].

It should be clear from Definition 3.13 that, given an enumeration order on S, the associated
value vector uniquely describes f . This representation is but a compact version of the traditional
truth table representation of discrete functions.

Davio, Deschamps and Thayse discuss the lattice [102] structure of discrete functions in [35].
A global overview of their work is out of the scope of this work. However, two of the concepts
they define are invaluable to understand our definitions, the lattice exponentiation function and
the cube function.

Let us choose an enumeration order for the elements of the codomain L of function f . We
do so by defining an injection from L to the set of integers {0, 1, . . . , r− 1}. L is then a totally
ordered set under this enumeration. The algebraic structure 〈L,∨,∧, 0, r− 1〉 is a lattice under
the disjunction (∨) and conjunction (∧) operations, having a least element 0, and a greatest
element (r − 1). Davio, Deschamps and Thayse define the disjunction and conjunction of two
discrete functions f and g, and of a discrete function f and an element l of the codomain L, as
the componentwise extensions of the lattice operations in L. These extensions are easily made
explicit with the help of the value vector representation:

[(f ∨ g)e] = [fe ∨ ge], [(f ∧ g)e] = [fe ∧ ge], and

[(f ∨ l)e] = [fe ∨ l], [(f ∧ l)e] = [fe ∧ l].

Definition 3.14 (Lattice exponentiation function) Let x denote the vector of variables

(xn−1, . . . , x1, x0), taking values on S, with S =
0

×
i=n−1

Si; given a variable xi ∈ x and a subset

Ci ⊂ Si, we define the lattice exponentiation function x
(Ci)
i as the discrete complete function

x
(Ci)
i =

{
r − 1 iff xi ∈ Ci

0 otherwise.

From this definition it should be clear that x
(Si)
i = r − 1 and that x

(∅)
i = 0, for all i. The

lattice exponentiation concept allows us to express any of the r|Si| distinct functions of a single
variable taking values on the set Si. To verify this statement we present the special case of
switching functions as an example.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 43

Example 3.2 (Switching functions) Consider a switching function

h : Bn −→ B.

Remember that B = {0, 1} (cf. last paragraph of Section 3.1). Let x be the vector of n
Boolean variables (xn−1, . . . , x1, x0). Then, for any xi, all possible distinct lattice exponentiation
functions are:

x
(∅)
i = 0; x

({0})
i = xi; x

({1})
i = xi; x

(B)
i = 1.

The horizontal bar over a symbol, like in xi above stands for the Boolean complement
operation. One often refers to the lattice exponentiation functions x

({0})
i = xi and x

({1})
i = xi

as literals or Boolean literals.

By lattice expression we understand a well-formed expression [35] made up of three kinds of
symbols:

1. lattice elements, i.e. elements of the set {0, 1, . . . , r − 1};

2. variables of the form x
(Ci)
i ;

3. binary lattice operations (disjunction and conjunction).

Any discrete function, as demonstrated in [35], can be represented by a lattice expression.

Definitions 3.15 (Cube function) A cube function or simply a cube is a discrete complete
function c : S −→ L, where the values c(x) are computed by the expression

c(x) = l ∧
0∧

i=n−1

x
(Ci)
i , l ∈ L,Ci ∈ Si;

The lattice element l is called the weight of the cube. If c(x) is such that ∀Ci, | Ci |= 1,

then c(x) is a minterm. Given two cubes, c(x) = l ∧ ∧0
i=n−1 x

(Ci)
i , l ∈ L,Ci ∈ Si, and d(x) =

m ∧ ∧0
i=n−1 x

(Di)
i , m ∈ L,Di ∈ Si, their supercube is a cube

p(x) = (l ∧m) ∧
0∧

i=n−1

x
(Ci∪Di)
i .

The supercube definition is immediately extendable to sets of cubes with cardinality bigger
than two. The cubes c(x) and d(x) are disjoint if there is no v ∈ S for which c(v) = l and
d(v) = m, or if l = 0 or m = 0. The size of a cube c(x) is | {x | c(x) = l} |, if l �= 0, otherwise
the size is 0.

The satisfying set of c is the set of Boolean vectors {x | c(x) = l}, if l �= 0, otherwise it is
the empty set. The satisfying set of a cube is noted sat(c). Every element in this set is said to
satisfy the cube function c. A switching cube function is a cube whose domain is S = Bn and
whose codomain is L = B, for some integer n.

44 CHAPTER 3. GENERAL DEFINITIONS

The satisfying set, together with the weight completely define a cube. Very often, cubes
are manipulated through their satisfying sets, specially in switching functions where the weight
can be assumed to be 1. When no confusion may arise, references to the cube c as a set stand
for the satisfying set of some cube c.

The concept of cube function as stated above was introduced by Davio and Bioul in [34].
The cube c(x) takes the value l iff for all i, xi ∈ Ci, and takes the value 0 otherwise. If at least
one of the Ci sets is empty, the cube assumes the value 0 everywhere, and it is accordingly
called an empty cube. On the other hand, if Ci = Si for every i, the cube c(x) is the constant

cube c(x) = l; l ∈ L.

To illustrate the cube concept, we revisit the switching functions example.

Example 3.2 (Continued) Non-trivial switching cubes (i.e. those distinct from the empty
and constant cubes) correspond to a conjunction, or product of literals. The only lattice element
relevant in these cubes is 1, the greatest element in the lattice B, which can accordingly be
dropped. For instance, the switching cube function c(x) corresponding to the lattice expression

1 ∧ x
({0})
2 ∧ x

({0,1})
1 ∧ x

({1})
0 can be represented by the product of literals x2 ∧ x0.

The interpretation of a cube function depends strongly on the underlying structure of the
domain set. If the domain S of a cube c is not considered as a Cartesian product, sat(c) can be
any subset of S. However, if S is considered as a Cartesian product S = S1 × . . .× Sm, sat(c)
must be one set of the form X1 × . . .×Xm, where for i = 1, . . . ,m, Xi is a subset of Si. Thus,
if the structure of the domain is not specified, the cube function concept is ambiguous [123].
In what follows we always specify explicitly this Cartesian structure.

If a discrete function is expressed by a disjunction of cube functions, the resulting represen-
tation is called a disjunctive normal form3.

Cubes and the disjunctive normal form are used in [35] to develop a canonical disjunctive
form, having the form of a special disjunction of cubes. Any discrete function may be repre-
sented in both disjunctive normal form and canonical disjunctive form. The dual concepts of
cubes, anticubes, and of the disjunctive forms, conjunctive normal form and canonical conjunc-
tive form, are also extensively discussed in the same work. The canonical forms have a direct
mapping to hardware implementations in the form of read-only memories or roms, while the
normal forms can be associated with any two-level hardware implementation, and particularly
to pla implementations [36].

Before discussing cubical representation of discrete functions, we introduce a tabular nota-
tion due to Zahnd [123], that is adequate to represent discrete functions whenever the Cartesian
structure of the domain is irrelevant.

Definitions 3.16 (Function tabular specification) Given sets S and L, a function tabular

specification with domain S and codomain L, which is also called simply function specification

is a set of pairs of the form

Γ = {(A1, z1), . . . , (An, zn)}
3We follow here the terminology of [35], which distinguishes normal form from canonical form. Given a

function, a canonical form of it is a normal form that is unique.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 45

such that for i = 1, . . . , n we have Ai ⊂ S, zi ∈ L, and such that for i, j = 1, . . . , n, we have

zi �= zj =⇒ Ai ∩ Aj = ∅. (3.1)

The elements (Ai, zi) are the rows of Γ. We say that a complete function f : S −→ L satisfies

the specification Γ (or the table Γ) if, for all i = 1, . . . , n we have

f(s) = zi, for all s ∈ Ai. (3.2)

The specification Γ is a tabular representation of the set of complete functions f : S −→ L
that satisfy it. Due to (3.1), this set is never empty. In the special case where the union of the
sets A1, . . . , An is the set S, there is only one complete function f : S −→ L that satisfies the
table.

Definitions 3.17 (Equivalence between function specifications) Given Γ and Γ′, two
function specifications of the form S −→ L, we say that Γ is finer than Γ′ if every complete
function f : S −→ L that satisfies Γ satisfies Γ′ as well. We may also say that Γ′ is coarser than
Γ. This determines a binary relation which is reflexive and transitive, i.e. a preorder relation
on the set of function specifications of the form S −→ L. We say that Γ and Γ′ are equivalent if
each specification is finer than the other, or alternatively, if every complete function satisfying
one specification satisfies also the other. This clearly defines an equivalence relation (reflexive,
symmetric and transitive) on the set of specifications with domain S and codomain L.

A function specification Γ = {(A1, z1), . . . , (An, zn)} is said to be reduced if it does not
contain two rows (Ai, zi), (Aj, zj) such that Ai �= Aj and zi = zj. It is clear that if this last
case arises, we can always build an equivalent specification by substituting these two rows by
(Ai ∪ Aj, zi). It is also obvious that if Γ is reduced, every table equivalent to Γ has at least
as many rows as Γ. On the other hand, given a specification Γ′, there is one and only one4

reduced specification Γ equivalent to Γ′. We will say that Γ is obtained by reduction from Γ′.
This reduction process is what we call symbolic minimization.

3.3.1 Cubical Representations of Discrete Functions

Cube representations are adapted to compactly express two-level forms of discrete functions. In
this Section, we introduce cube tables, a representation form that can describe sets of discrete
functions that share a domain interpreted as a Cartesian product. The whole set of represented
discrete functions can always be seen as a single discrete function whose codomain is the
Cartesian product of the codomains of all functions in the set, and can thus be treated using the
ordinary function tabular specification defined in the last Section. However, the manipulation
of discrete partial functions is enhanced if the set of functions notation is retained, and the
use of cubes allows a smooth passage from tabular symbolic representations to tabular encoded
representations, and that is what we need it for. Before introducing cube tables, we discuss a
graphical interpretation for cubes.

The satisfying set of a cube function characterizes its behavior, describing completely the
set of elements of the domain that evaluate to the weight of the cube. We may use Hasse

4We must keep in mind that this will not be the case in the cube tables, to be defined in Section 3.3.1.

46 CHAPTER 3. GENERAL DEFINITIONS

diagrams [22] to represent ordered sets in general, lattices, and of course, satisfying sets of cube
functions in particular.

Definition 3.18 (Hasse diagram) Given an ordered set 〈S,≤〉 [102], a Hasse diagram rep-
resents 〈S,≤〉 as a directed graph. Each element of S is represented by a vertex in the diagram;
the vertices are connected by edges in such a way that there is a path from an element a to an
element b iff a ≤ b. To achieve this result with the fewest possible edges, an edge is drawn from
a to b iff:

1. a ≤ b and

2. there is no c such that a ≤ c ≤ b.

Example 3.3 (Hasse diagrams of switching cubes) Let 〈B4,≤〉 be an ordered set where
≤ is the partial ordering ≤: {(a, b) |a∨ b = b}, ∨ being the componentwise Boolean disjunction
operation. The Hasse diagram representing this set is shown in Figure 3.2. The direction of
the edges is not shown, being implicit [35] that they go from a lower to an upper position.

1111

0111 1011 1101

0101 0110 1001 1010

1110

0001

0011 1100

0000

100001000010

Figure 3.2: Hasse diagram for Example 3.3

Every switching cube function has a satisfying set that is a complete subgraph in the Hasse
diagram (if we ignore the directed nature of the graph) of the domain Bn, under the ≤ relation
or equivalent [35]. For example, each vertex in the diagram corresponds to a minterm cube
function, and the supercube of two cubes is the smallest complete subgraph that contains every
element in each satisfying set of the two cubes.

Now, let S = S1 × S2 × . . . × Sm be a Cartesian product, L1, . . . , Ln be sets and F =
{f1, . . . , fn} be a set of discrete functions of the form fi : S −→ Li, (i = 1, . . . , n). Remember
that n = {1, . . . , n} represent the set of positive integers between 1 and n.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 47

Definitions 3.19 (Cube table) A cube table is a set

Ω = {(C1, D1), . . . , (Cq, Dq)}

of pairs (Cj, Dj) where the Cjs are satisfying sets of non-empty cubes cj with domain S,
where Dj = {dj1, . . . , djn}, with each element dji being one of:

1. the empty set ∅;

2. the set Li;

3. a singleton {li} contained in Li,

and where the following condition holds:

dji �= dki =⇒ Cj ∩ Ck = ∅, for all i ∈ n and for all i, j ∈ k.

The set of Cjs is called the input part of Ω, while the set of Djs is called the output part of
Ω.

The last requirement in the above definition expresses the conditions a cube table must
obey so that it represents a set of discrete functions. This definition allows the simultaneous
representation of a number n of discrete functions of a Cartesian product S, using a single set
of cubes. Unspecified values in partial functions are represented by the situations where one
element dji is the set Li in the output part. The empty set in the output part of the cube table
is needed to model the situation where a cube is irrelevant to the representation of a subset
of the n functions. Since the n functions represented are defined as partial, and any partial
function may be seen as a set of complete functions, a cube table can be viewed as a set of n
sets of complete functions.

Cube tables are identical to function tabular specifications if the Cartesian product structure
of the involved domain and codomain is ignored, which is adequate when dealing with the
theoretical aspects of discrete functions.

Definition 3.20 (Cube table satisfaction and equivalence) The set F = {f1, . . . , fn}5
of discrete functions satisfies a cube table Ω if

∀(i ∈ n, (Cj, Dj) ∈ Ω), dji = {li} =⇒ for all s ∈ Cj we have fi(s) = li.

Conversely, a cube table Ω satisfies the set F if

∀(i ∈ n, s ∈ S), fi(s) = li =⇒ ∃(Cj, Dj) ∈ Ω such that s ∈ Cj, d
j
i = {li}.

The cube table Ω represents F if Ω satisfies F and F satisfies Ω. A necessary condition for
this to happen is that for all i ∈ n, s ∈ S,

fi(s) ∈ F is unspecified =⇒ either ∃(Cj, Dj) ∈ Ω such that s ∈ Cj, d
j
i = Li

or � ∃(Cj, Dj) ∈ Ω such that s ∈ Cj, d
j
i �= ∅.

5Note that the term satisfaction applies here to partial functions in general, not only to complete functions.

48 CHAPTER 3. GENERAL DEFINITIONS

Let Ω and Ω′ be two cube tables describing a set of n functions with domain S = {S1, . . . , Sm}
and respective codomains Li for i = 1, . . . , n. We say that Ω is finer than Ω′ if every set of
functions F satisfying Ω satisfies Ω′. Alternatively we say that Ω′ is coarser than Ω. This
defines a preorder relation on the set of cube tables of this form. Ω and Ω′ are equivalent if
each is finer than the other, which defines an equivalence relation on the set of cube tables with
domain S and respective codomains Li.

One cube table Ω = {(C1, D1), . . . , (Cq, Dq)} is said to be reduced if there is no equivalent
cube table Ω′ with less elements than Ω.

A cube table that satisfies a set of functions does not necessarily represents the set, since
it can have less unspecified entries in the associated truth table than the set of functions that
satisfies it. The importance of the satisfaction concept is that it tells in what conditions we
may substitute a set of functions by a cube table, whenever only the specified behavior of
the functions is relevant. In case all functions in F are completely specified, the concepts of
satisfaction and equivalence are clearly synonyms. In general, a reduced cube table is not
unique, due to the requirement that the input parts be cubes, not any subset of S. Let us
illustrate cube tables by an example.

Example 3.4 (Discrete functions and cube tables) Let I1 = {a, b, c}, I2 = {d, e}, O1 =
{g, h} and O2 = {i, j, k} be sets, S = I1 × I2 and F = {f1, f2} be a set of discrete functions
such that f1 : S −→ O1 and f2 : S −→ O2. The behavior of F is depicted in Table 3.1, under
the form of a truth table.

Table 3.1: Truth table for Example 3.4

S F
I1 I2 f1 f2

a d h k
a e h i
b d h k
b e g -
c d - k
c e g j

Table 3.2, on the other hand, depicts three cube tables that satisfy F , and introduces the
notation we use to represent a cube table. Each row in each of the cube tables corresponds to an
element of the cube table, with the input part represented to the right, using set notation. Each
Cj is the Cartesian product of the sets in the input part of some row. The output part, on the
other hand, uses a distinct notation. Since every dji in Dj is the empty set, Li or a singleton of
Li, we omit the braces of the set notation. In both, input and output parts, unspecified entries
“-” represent the set Li associated with the column. Any subset of S not explicitly assigned
a value by the cube table corresponds to an unspecified condition as well. Thus, unspecified
conditions can be represented either explicitly or implicitly. For example, consider the cube
table 2 in Table 3.2. Function f1 is not specified for the element (c, d) ∈ S, but this is only
implicit in cube table 2, while the fact that f2 is not specified for the element (b, e) ∈ S is
explicitly depicted in the fourth row of cube table 2.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 49

Table 3.2: Three cube tables for Example 3.4

1 2 3
Cj Dj Cj Dj Cj Dj

I1 I2 f1 f2 I1 I2 f1 f2 I1 I2 f1 f2

{a} - h ∅ {a, b} {d} h k {a, b, c} {d} h k
- {d} ∅ k - {d} ∅ k {b, c} {e} g j
{a} {e} ∅ i {a} {e} h i {a} {e} h i
{b} {d} h ∅ {b} {e} g -
{b} {e} g - {c} {e} g j
{c} {e} g j

Cube tables 1 and 2 satisfy F , they are both satisfied by F and are thus equivalent. We
then conclude that cube table representations are not canonical. Cube table 3 satisfies F but
is not satisfied by it, and it is neither equivalent to cube table 1 nor to cube table 2. Indeed,
cube table 3 represents a set of two discrete complete functions, and is an instance of what we
define below as a complete cube table.

Definition 3.21 (Complete cube tables) The cube table Ω is complete or completely spec-

ified if for all s ∈ S, there exists a subset of Ω defined as

Υ = {(Cj, Dj) | s ∈ Cj},

and for all i ∈ n there is an integer j such that Dj ∈ Υ, dji ∈ Dj and | dji |= 1.

Complete cube tables are related to circuit implementations of discrete functions. Every
circuit intended to implement the behavior of a cube table implements in fact a complete cube
table that satisfies the set of functions from which the cube table was obtained.

We will employ four schemes to represent sets of discrete functions using cube tables. The
first two are the symbolic scheme and the positional cube scheme. These are general schemes,
since both may represent any set of discrete functions. The first of them represents the set
elements of the domain and codomain directly, using set notation. The second is equivalent
to the first, but the domain and codomain elements are assigned 1-hot Boolean codes. This
encoding allows the use of multiple-valued logic techniques to manipulate the set of functions.
The switching scheme is useful to represent sets of switching functions only, while the last, called
mixed scheme, allows the representation of sets of functions where part of the specification is
already in the form of Boolean codes and part is in symbolic form.

3.3.1.1 Cube Table Schemes for Sets of Discrete Functions

Example 3.4 introduced the symbolic scheme for cube tables. The positional cube scheme
implies the use of bit vectors to represent cubes, as well as output values. Su and Cheung
suggested the positional cube scheme to represent multiple-valued functions [109]. The par-
ticularities of this scheme will be introduced in Example 3.5. We refer to [109] for a formal
statement of the positional cube scheme.

50 CHAPTER 3. GENERAL DEFINITIONS

Example 3.5 (Discrete function cube table) Let I = {inp0, inp1, inp2, inp3, inp4} be a
set of input symbols and O = {out0, out1, out2} be a set of output symbols. Define a discrete
function

f : I −→ O,

and let the behavior of f be displayed in Figure 3.3, using a cube table. Figure 3.3(a) shows
the symbolic scheme, while Figure 3.3(b) illustrates the equivalent positional cube scheme.

 Symbolic Scheme Positional Cube Scheme

{inp0,inp2} {out1} 10100 010
 {inp3} - 00010 111
 {inp1} {out2} 01000 001

 (a) (b)

Figure 3.3: Symbolic and positional cube schemes to represent the f discrete function

In Figure 3.3(b), the domain and codomain of f are represented by | I |-bit and | O |-bit
vectors, respectively. Enumeration orders must be defined on the elements of both sets, prior
to establishing the representation. Herein, the enumeration will be either obvious from the
naming of the elements or given explicitly. An element name ending with the integer value v
is represented by a 1 in the v − th position. Don’t cares are accordingly represented by an all
1s bit vector.

3.3.1.2 Cube Table Scheme for Sets of Switching Functions

A specific cube table scheme for discrete switching functions is justified by the efficiency it
provides in manipulating such functions.

Consider the general switching function

h : Bn −→ Br.

Remember that a switching cube c(x) can be represented either by 0 (the empty cube) or
by a product of v distinct literals (0 ≤ v ≤ n), where each literal is either xi or xi, with every
literal corresponding to a position in x (cf. Example 3.2). We may represent this function
compactly if we build its cube table as follows:

1. Associate the symbol 1 with the literal xi and the symbol 0 to the literal xi. With the
lattice exponentiation x

({0,1})
i = 1 associate the don’t care symbol ‘-’. Depict the satisfying

set of a cube of h as the vector of length n that represents this cube in this encoding.
Such a vector represents a set Cj for a cube table representing h;

2. the output part Dj is also represented by a vector containing the elements 0,1 and ‘-’, with
length r, but the interpretation of the symbols is distinct. Let the component switching
functions of h be hr−1, . . . , h1, h0 and:

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 51

(a) insert a 1 on the right side of a cube table row in position hi if the component hi

assumes the lattice value 1 whenever the cube associated with the row evaluates to
1;

(b) insert a 0 on the same position if the cube in question does not participate in the
lattice expression describing the behavior of the component hi;

(c) insert a ‘-’ if the component hi may assume either 1 or 0 whenever the corresponding
cube evaluates to 1, i.e. a don’t care.

(d) if no cube evaluating to 1 in a given input configuration has a right side specifying 1
or ‘-’ for component hi, hi assumes the lattice value 0, which is thus a default value.

Such a vector corresponds to the set Dj in the cube table.

The first item above suggests a three-valued representation for cubes that is adequate to
represent any single switching function.

Definition 3.22 (Three-valued switching cube representation) Any non-null switching
cube function c : Bn −→ B can be represented by a three-valued vector qn−1 . . . q0, where qi ∈
{0, 1,−}, as explained in item 1 above. Let two cubes, c1 and c2, be represented in this notation.
These cubes are disjoint iff there is at least a position qi where c1 and c2 are distinct and both
are distinct from ‘-’.

As an example of three-valued switching cube representation, consider the cube of Exam-
ple 3.2, c(x2, x1, x0) = x2 ∧x0. In the three-valued representation we have c(x2, x1, x0) = 0− 1.

We define a componentwise conjunction operation ∧ over the set {0, 1,−} in Table 3.3.

Table 3.3: Componentwise conjunction of cubes

∧ 0 1 -

0 0 ∅ 0
1 ∅ 1 1
- 0 1 -

It can be verified that the three-valued representation of the conjunction of two cubes c1

and c2 results from the componentwise conjunction of the three-valued representations of cubes
c1 and c2. If any position of the resulting cube evaluates to the empty set, the resulting cube
is the null cube.

We also define the componentwise supercube operation, in Table 3.4.

Again, the three-valued representation of the supercube of c1 and c2 results from the appli-
cation of the componentwise supercube operation to the three-valued representations of c1 and
c2.

Herein, we shall use the three-valued representation to note either the cube itself or its
satisfying set.

52 CHAPTER 3. GENERAL DEFINITIONS

Table 3.4: Componentwise supercube operation

sup 0 1 -

0 0 - -
1 - 1 -
- - - -

3.3.1.3 Cube Table Mixed Schemes

The goal of introducing the above representations is to permit the manipulation of mixed
descriptions that often arise in fsm logic synthesis. We highlight the benefits of mixed repre-
sentations in the Example below.

Example 3.6 (Mixed cube table for discrete functions) Consider the following two fi-
nite sets I = {inp0, inp1, inp2} and O = {out0, out1, out2}, and S = B4 × I. Define a set of
discrete functions F = {f1, f2, f3, f4} such that f1 : S −→ O, f2 : S −→ B, f3 : S −→ B, and
f4 : S −→ B, the behavior of F being described by Figure 3.4.

 Mixed symbolic/switching Mixed positional cube/switching

 Input Output Input Output
 Part Part Part Part

1-00 {inp0,inp2} out2 100 1-00 101 001 100
111- {inp0,inp2} - 011 111- 101 111 011
101- {inp0,inp1} out1 11- 101- 110 010 11-
1-01 - out0 101 1-01 111 100 101
0--- {inp0} out0 111 0--- 100 100 111

 (a) (b)

Figure 3.4: Behavior of function F using symbolic and positional cube schemes

Note that F is a set discrete function that has the domain specified as a Cartesian product
presenting two-valued, as well as multiple-valued components, and that the elements of F have
codomains that are either multiple-valued (f1) or two-valued (the others). Figure 3.4(a) depicts
a mixed symbolic/switching cube table that satisfies F , with the multiple-valued components
displayed as in the symbolic scheme. Figure 3.4(b) shows the same cube table using a mixed
positional cube/switching scheme.

The compactness of using the cube notation is evident from the Figure (e.g. F would require
a 48-row truth table to specify its behavior). Most computationally efficient methods devised
to manipulate two-level forms of sets of discrete functions employ some variation of the mixed
positional cube/switching scheme to represent functions internally. Since the symbols used to
represent two-valued and multiple-valued information are the same, a distinction must be made
between them to avoid confusion. In our examples, we separate distinct-valued information in
distinct column groups, and we also separate the input part from the output part, since the
same symbols have distinct meanings in each part.

3.3. REPRESENTATIONS OF DISCRETE FUNCTIONS 53

Note that the output parts of both cube tables in the Figure are disjoint, in the sense that
no two rows have intersecting output values. This characteristic is a desirable one, otherwise a
conflicting specification may arise. If the output part is disjoint, the input part has to be, too.
Otherwise the cube table cannot describe a set of functions. For example, if the fourth row in
Figure 3.4(a) were “0001 {inp0,inp2}” instead of “1-01 -”, the Figure could not represent
a function, since there would be two distinct output values associated with the input “0001
{inp0}”, namely “{out0} 101” and “{out0} 111”. We can also verify that all elements of
F are partial functions, once there are elements of the common domain with no output value
associated with it for any function, e.g. “0000 {inp2}”.

The advantages of using the above cube representations should be clear by now. They in
fact allow the use of efficient Boolean manipulation techniques for treating discrete functions.
At the same time, the use of positional cube schemes permits encoding multiple-valued data in
binary form without loosing track of the symbolic nature of the information.

54 CHAPTER 3. GENERAL DEFINITIONS

Part II

Constraints: Nature, Generation and
Relationship

55

Chapter 4

State Minimization Constraints

In this Chapter, we analyze the sm problem, from the standpoint of a state assignment con-
straint formulation. The main objective is to provide a formal definition of a set of elementary
constraint types that is sufficient to uniquely specify a generic instance of the sm problem, hav-
ing in sight the use of such constraints to guide the state encoding design step. After identifying
the constraints involved in the sm problem, we model each constraint kind as a binary relation,
the elements of which are constraints of a given kind, represented in the most elementary form.

The specific definitions required to state the sm problem appear in Section 4.1. We stress
that our intent in that Section will be to introduce the related terminology, not to provide a
thorough insight of the problem, which can be found in textbooks like [72, 122], except for the
class set concept suggested by Grasselli and Luccio in [56]. Section 4.2 contains the sm problem
statement. The three next Sections define the constraint types that are sufficient to unequivo-
cally describe any instance of the problem. To conclude the Chapter, Section 4.6 outlines the
classical method of sm constraints generation, and Section 4.7 discusses the complexity of the
method.

4.1 State Minimization Definitions

Let A be an fsm A = 〈I, S,O, δ, λ〉. Consider a word of length n over the input alphabet I,
noted [i(1, n)] ∈ I+, where I+ is the set of sequences of arbitrary length over the alphabet I,
and an arbitrary state s ∈ S of machine A. We define

λ([i(1, n)], s) = λi(s) = λ(in, δ(in−1, δ(in−2, . . . , δ(i1, s) . . .))).

Thus, λi(s) corresponds to the output value after the word [i(1, n)] is applied to the machine
A in the initial state s. Since we assume here deterministic fsms, every δ(ii, si) above is assumed
to be specified.

Definitions 4.1 (Machine simulation and reduction) Given two fsms, A and A′, with
A = 〈I, S,O, δ, λ〉 and A′ = 〈I, T,O, δ′, λ′〉, we say that machine A′ simulates machine A iff
for every state s ∈ S, there exists a state t ∈ T such that λi(s) = λ′

i(t) for any word i ∈ I+,
whenever λi(s) is specified. The fsm A′ is a reduction of A if A′ simulates A and |T |≤|S |. A′

57

58 CHAPTER 4. STATE MINIMIZATION CONSTRAINTS

is a minimal reduction or minimization of A iff there is no other reduction A′′ = 〈I, U,O, δ′′, λ′′〉
of A such that |U |<|T |.

The interpretation of the concept is clear. If A′ simulates A, then machine A initially in
state s can be replaced by machine A′ initially in state t, without changing the input/output
behavior expected from A. Since to every s ∈ S corresponds some t ∈ T , the replacement is
possible for any initial state. We remark that the machine simulation definition is immediately
applicable for two instances of a single machine. It corresponds to the special case where
A = A′. However, we can draw a stronger relationship among the states of a machine.

Definitions 4.2 (State compatibility) Consider an fsm A = 〈I, S,O, δ, λ〉. Two states
s1 ∈ S and s2 ∈ S are compatible iff for every word i ∈ I+, whenever both λi(s1) and λi(s2) are
specified, we have λi(s1) = λi(s2). We denote that states s1 and s2 are compatible by writing
s1 ∼ s2. A subset of states C ∈ S is a compatibility class or a compatible of A iff the states
in C are pairwise compatible. A compatible C is a maximal compatibility class or a maximal

compatible of A iff there is no other compatible D of A such that C ⊂ D.

Let us interpret the compatibility concept intuitively. Suppose we have a machine A con-
taining two compatible states s1 and s2. Suppose also that the machine is in one of these two
states. Then, it is impossible to distinguish from the input/output (i/o) behavior alone, if the
machine is in one or another of these two states, and this for any input word1 i ∈ I+.

Under certain conditions that we will discuss next, a compatible may represent a state in a
minimization of A. In fact, in any minimization of A each state corresponds to a judiciously
chosen compatible [122]. As a result, compatible states may be distinguishable or not in the
final implementation of the fsm, depending on how the grouping of compatible states into
compatibility classes is performed.

Definitions 4.3 (Implied compatibles, closed sets and covers) Given a compatible C of
an fsm A = 〈I, S,O, δ, λ〉, and an input letter i ∈ I, let D be the set {c ∈ C | δ(i, c) is specified}.
The set

C ′ = {c′ | c′ = δ(i, d) for some d ∈ D}

is a compatible of A, as shown in [72]. Then, C is said to imply C ′ under the input letter i,
which is represented by the notation C[i]→ C ′. We say that C ′ is a closure condition imposed
on C by A. A closed set of compatibles of A is a set K of compatibles such that for every
k ∈ K and for every i ∈ I

k[i]→ k′ and ∃k′′ ∈ K | k′ ⊆ k′′.

Putting it into words, every compatible k′ implied by some compatible k in a closed set (of
compatibles) is contained in some element of the closed set. Given a closed set of compatibles
K of A, a closed cover of compatibles of A is a cover

v : K −→ S,

1In the special case of completely specified machines (not treated here), this condition implies that the
outputs associated with two compatible states are always identical, for all input word i ∈ I+. In this case, the
compatibility relation becomes an equivalence relation.

4.2. STATE MINIMIZATION PROBLEM STATEMENT 59

of S such that a pair (k, s) ∈ K×S is in the graph v of the cover iff s ∈ k. This closed cover
is minimum iff for any other closed set of compatibles K ′ of A associated to a closed cover of
compatibles v′ : K ′ −→ S of S, we have |K |≤|K ′ |.

Definitions 4.4 (Class sets) A class set PC implied by a compatible C is the subset of com-
patibles implied by C, each one of which:

1. has more than one element;

2. is not contained in C;

3. is not contained in any other compatible in PC.

If a given compatible has an implied class set that is empty, the states in it are unconditionally

compatible. Otherwise, the states are conditionally or transitively compatible.

Note that the class set concept expresses the non-trivial closure conditions associated to
C. In other words, any domain of a closed cover of compatibles containing C must, for each
compatible P ∈ PC , contain a compatible D such that P ⊂ D.

Definitions 4.5 (Prime compatibles) A compatible C is excluded by a compatible D iff:

1. D ⊃ C;

2. PD ⊆ PC, where PD, PC are the class sets of D and C, respectively.

A prime compatibility class or prime compatible of an fsm A is one compatible that is not
excluded by any other compatible of A.

Grasselli and Luccio [56] showed that any fsm has at least one minimum closed cover of
compatibles whose domain contains only prime compatibles. Whenever there is a need to obtain
a single minimum closed cover of compatibles, restricting the search space to prime compatibles
can lead to significant reductions in the computation resources required during the search.

4.2 State Minimization Problem Statement

In view of the definitions presented in Section 4.1, we may now discuss the formal statement
of the fsm sm problem.

Problem Statement 4.1 (fsm state minimization) In view of the definitions presented in
Section 4.1, this problem is characterized by:

INSTANCE: An fsm A = 〈I, S,O, δ, λ〉, as described in Definition 3.12, and an integer k.

QUESTION: Does an fsm A′ exist, with A′ = 〈I, S ′, O, δ′, λ′〉, such that A′ is a minimiza-
tion of A and |S ′ |≤ k?

60 CHAPTER 4. STATE MINIMIZATION CONSTRAINTS

Pfleeger already showed in [95] that the above decision problem [54] is np-complete. Never-
theless, its solution can be stated simply, using the following two-step procedure.

Given an fsm A = 〈I, S,O, δ, λ〉,

1. find a minimum closed cover of compatibles v : K −→ S, of A;

2. from v, construct a new machine A′ = 〈I, S ′, O, δ′, λ′〉, that is a minimization of A. Each
element in S ′ corresponds to one compatible in K; also, define δ′ and λ′ based on δ and
λ, respectively, such that A′ simulates2 A.

In the following Sections, we decompose the sm problem into the set of elementary con-
straints arising from the problem statement, as well as from the definitions in the previous
Section. After investigating the different kinds of constraints arising from the structure of an
fsm, a method for generating these constraints is presented, which we refer to as the compati-
bility table method.

4.3 Compatibility and Incompatibility Constraints

From the state compatibility definition in Section 4.1, we may draw two binary relations on
the set of states of an fsm.

Definitions 4.6 (Compatibility and Incompatibility relations) Given a finite state ma-
chine A = 〈I, S,O, δ, λ〉, the compatibility relation of A is the binary relation 〈S, S, θ〉, where

θ = {(s, t) | s, t ∈ S and s ∼ t}.

The incompatibility relation of A is the binary relation 〈S, S, ι〉, where

ι = {(s, t) | s, t ∈ S and s �∼ t}.

We note that the compatibility and incompatibility relations carry the same information
under dual forms. It is also immediate to verify that the compatibility relation θ is reflexive and
symmetric, but not necessarily transitive, whereas the incompatibility relation is symmetric,
but not necessarily transitive, and it is never reflexive. Any pair (s, t) in θ (resp. ι) corresponds
to a pair of compatible (resp. incompatible) states, and constitutes an elementary compatibility

(resp. incompatibility) constraint of machine A.

Addressing the compatibility relation as a set of constraints is one of the original propositions
in the present thesis. Previous works have never treated the state compatibility relation as a
set of constraints, since given a subset of states of an fsm, they either form a compatible or not,
depending only on the structure of the machine. However, we are interested in encoded fsm
implementations, and how these implementations relate to the state minimization problem.

2Given v, the construction of δ′ and λ′ is straightforward, as can be seen from step 4 of Process A in [91].
A practical example illustrating the application of this step appeared in Chapter 2, in the process of building
Table 2.2 from Table 2.1, and from the compatible pair of states {0, 1}.

4.4. COVERING CONSTRAINTS 61

In this sense, the fact that states are compatible imposes constraints in the subsequent state
encoding step, so that respecting these constraints can lead to implementations that take into
account state minimization.

Suppose that v is a minimum closed cover of compatibles of A. From the point of view
of state minimization, a compatibility constraint designates that states s and t may be in the
same compatible of the domain of v. An incompatibility constraint (s, t), on the other hand,
means that s and t may never be present in any compatible of the fsm, nor in any compatible
of the domain of v. From the point of view of state encoding3, a compatibility constraint (s, t)
implies that s and t need not be encoded with disjoint codes in any valid encoding of machine
A. An incompatibility constraint obliges that disjoint codes be assigned to s and t in every
valid encoding of A.

Given an fsm A = 〈I, S,O, δ, λ〉, the cardinality of θ depends on the nature of functions δ
and λ. However, we may easily compute the bounds within which |θ | varies. By Definition 4.2,
(s, s) ∈ θ for every s ∈ S. The minimum cardinality of θ is thus | S |, corresponding to a
situation where every two distinct states are incompatible. The upper bound occurs when
every two states are compatible, corresponding to |θ |= (|S |)2.

Consider now the incompatibility relation ι. Since it is not reflexive, the lower bound for ι
is the empty set, when all states of the fsm are pairwise compatible, and the machine can be
implemented as a combinational one. If all possible pairs of distinct states belong to ι, there
is no compatible in the fsm, in which case the machine is already reduced, and it is thus itself
the solution of the sm problem. The cardinality of ι is thus comprised between 0 and

2

(
|S |
2

)
= (|S |)2− |S | .

This happens due to two facts:

1. ι is symmetric: ((s, t) in ι implies (t, s) in ι, for every s, t in S, generating the 2 multipli-
cand);

2. (s, s) is never in ι, for any s.

4.4 Covering Constraints

A set of compatibles of an fsm can be a solution of the sm problem if, among other conditions,
it is the domain of some cover of the set of states of the fsm. We have already defined a closed
cover of compatibles in Section 4.1. Here we define covering relations overlooking the closedness
requirements.

Definition 4.7 (Covering relations) Given an fsm A = 〈I, S,O, δ, λ〉 and a set of compat-
ibles K ∈ P(S)4 of A, the covering relation corresponding to K is the binary relation 〈K,S, γ〉,
where

γ = {(k, s) | k ∈ K and s ∈ k}.
3See Chapter 5 for a discussion of state encoding, as well as of the related definitions.
4Recall that the notation P(S) stands for the powerset of S (cf. Definitions 3.1).

62 CHAPTER 4. STATE MINIMIZATION CONSTRAINTS

The set K is the domain of a cover of S iff ∀s ∈ S, ∃(k, s) ∈ γ. In this case, each pair in
γ is called an elementary covering constraint of machine A.

From the point of view of sm, a covering constraint (k, s) means that if K is the domain of
a closed cover of S, the compatible k corresponds to a state in some machine that simulates A,
and this state accounts for the behavior of state s in the original machine.

The number of covering constraints in a solution of the sm problem for a machine with
|S | can be very large, since the cardinality of K is bounded by O(2|S|). However, if we limit
attention to minimum solutions of the sm problem, the cardinality of the set of compatibles K
cannot be larger than |S |, and it is at least a singleton. The lower bound on the cardinality of
a covering relation graph γ that corresponds to such a cover of S is thus |S |, and it is obtained
in two trivial cases:

1. when K is a singleton (meaning that all states are compatible);

2. when |K |=|S | and every element k ∈ K has unit cardinality (corresponding to a machine
without any compatible pair of states).

To attain an upper bound for the cardinality of this covering relation, we consider a set K
containing the maximum number of elements, | S |, each element having the largest possible
cardinality, i.e. (|S | −1). This corresponds to |γ |= (|S |)2− |S |.

4.5 Closure Constraints

Class sets, as introduced in Section 4.1, express the non-trivial closure conditions related to
compatibles of an fsm. If we restrict the attention to compatible pairs of states only, we can
still represent all non-trivial closure conditions imposed by compatibles of this fsm without
loss of generality [72]. This can be done by defining a binary relation on its set of state pairs.

Definition 4.8 (Closure relation) Let A = 〈I, S,O, δ, λ〉 be an fsm and θ be the graph of
the compatibility relation extracted from the description of A, according to Definition 4.6. The
closure relation of machine A is a binary relation 〈P(S),P(S), σ〉

σ = {({s, t}, {k, l}) | (s, t), (k, l) ∈ θ, s �= t and {k, l} ∈ P{s,t}},

where P{s,t} denotes the class set of the set {s, t}. The elements of the graph σ are called
elementary closure constraints imposed by A on the compatible state pairs.

Note that σ contains only non-trivial constraints, since it is built based on the class set
concept. Indeed, due to the class set definition, every element in the class set of a pair of
compatibles P{s,t} contains exactly two states.

From the standpoint of sm, a closure constraint ({s, t}, {k, l}) means that if the states s and
t are present in the same compatible of the domain of a minimum closed cover of compatibles
of A, the states k and l must also be in the same compatible of the same set. From the point

4.6. GENERATION OF THE SM CONSTRAINTS 63

of view of sa, it means that assigning non-disjoint codes to s and t forces the codes assigned
to k and l also to be non-disjoint.

If, for a given fsm, the graph σ is empty, any cover of compatibles is automatically closed,
and the search for optimal solutions of the sm problem is simplified. The bounds on the number
of distinct elementary closure constraints for a machine with |S | states are obtained as follows:
the lower bound is obviously 0; the upper bound is obtained for a relation σ where every possible
pair of distinct states is present and imply all other pairs. The number of distinct pairs is

(
|S |
2

)
=
|S |2 − |S |

2
.

Since σ is not necessarily symmetric ({s, t}, {k, l}) is distinct from ({k, l}, {s, t}). Thus, |σ |
is at most

(
|S |2 − |S |

2
)((
|S |2 − |S |

2
)− 1) =

|S |4 −2 |S |3 − |S |2 +2 |S |
4

.

4.6 Generation of the sm Constraints

We introduce now the method due to Paull and Unger [91] to generate the compatibility,
incompatibility and closure constraints at once. This method relies upon the construction of
a compatibility table. Given a cover, the generation of the associated covering constraints is
straightforward, and will not be addressed here, because we are not interested in explicitly
generating covers of compatibles. The generation of this cover, based on the compatibility and
closure constraints is the problem that Pfleeger showed to be np-complete [95].

Example 4.1 Consider an fsm A = 〈I, S,O, δ, λ〉 with:

I = {001, 010, 011, 100, 101, 110, 111}, S = {0, 1, 2, 3, 4, 5, 6, 7}, O = {0, 1}

and δ, λ defined in Table 4.1 as a flow table. Note that the input and output fields are
already binary encoded.

The compatibility table contains one entry for each pair of distinct states in the machine.
The objective of the method is to iteratively fill the entries of the table with the necessary
conditions for each pair of distinct states to be compatible, if any.

The first step consists in searching the flow table for state pairs that are distinguishable by
an input sequence of unit length. If a pair is distinguishable in this step, their elements are
incompatible states. To denote this fact, we insert a cross (×) in the corresponding entry. If
the states are not distinguishable with a sequence of unit length, we fill the corresponding entry
with all class sets for the pair. If no such class set exists for a given pair of states, the states in
it are fully compatible, which is denoted by a check mark (

√
) in the compatibility table. The

result of this first step for our example is shown in Figure 4.1(a).

After the first step, transitively incompatible pairs were left uncrossed. For instance, we
can see that the pair (6, 7) would form a compatible iff the pairs (0, 4), (1, 3) and (2, 3) were

64 CHAPTER 4. STATE MINIMIZATION CONSTRAINTS

Table 4.1: Flow table for example 4.1

state \ input 001 010 011 100 101 110 111

0 0,0 -,- 6,0 3,1 1,0 0,- -,-
1 1,0 6,1 0,- -,- 0,- 0,1 -,-
2 1,0 6,1 0,1 -,- -,- -,- 7,0
3 1,- 3,- 0,- -,- 1,- 3,- 0,1
4 1,0 2,- -,1 5,1 4,1 7,0 -,-
5 0,1 3,0 6,1 1,0 1,- 3,- 0,1
6 -,- 3,- -,- 1,- 1,0 -,- 0,-
7 -,- 2,1 -,- 3,1 -,- 7,0 4,0

compatible. Examining the entry associated to the first of these pairs, we note that (0, 4) is an
incompatible pair. Thus, (6, 7) is also an incompatible pair, and its entry in the compatibility
table can be crossed. This process continues, working over the initial compatibility table
until an iteration over all entries is executed without any new entry being crossed. The final
compatibility table obtained for our example appears in Figure 4.1(b).

06

√

13

√

√ √

26

35

01
06

26
47

01
06

01
36

07
36

01 03
36

14 23
37

04 13
23

1

2

3

5

7

4

6

0 1 2 3 4 5 6

06

√

13

√

√√

26

35

01
06

26
47

01
06

01
36

07
36

01 03
36

1

2

3

5

7

4

6

0 1 2 3 4 5 6

(a) (b)

Compatibility Tables

Initial Final

Figure 4.1: Initial and final compatibility tables for example 4.1

In the final table, each crossed entry corresponds to an elementary incompatibility con-
straint, while each pair of states inside some entry represents an elementary closure constraint.
This information can be visualized through graphs. A labeled undirected graph, called merge

graph (mg) is used to express the compatibility constraints. Each vertex in mg is associated
to a state, and an edge exists between two vertices if the associated states are compatible, the
trivial self-loops being omitted. Edges are labeled with the non-trivial conditions needed to
guarantee the compatibility between the states. Another graph, called compatibility graph (cg)
is useful in dealing with the closure constraints. This is a directed graph where each vertex
represents a (non-trivial) compatible pair of states. An edge goes from a source vertex to a sink

4.7. COMPLEXITY OF THE SM CONSTRAINTS GENERATION 65

vertex iff the sink vertex corresponds to a needed non-trivial condition for the source vertex
pair to be compatible. Figure 4.2(a) and Figure 4.2(b) present the mg and cg graphs for our
example, respectively.

Merge Graph Compatibility Graph

12

56

35 01

06 03
16

47

3627

26

24 07

(b)

13

4

7 2

1

63

0

5

26, 47

2635

06 07,36

01,36

01,06

01,06
13

01,03,36

(a)

Figure 4.2: Merge and compatibility graphs for example 4.1

4.7 Complexity of the sm Constraints Generation

Let A = 〈I, S,O, δ, λ〉 be an fsm and let p =| I | and q =|S | be the respective cardinalities of
the input alphabet and of the state set of A. To give an exact measure of the hardness of the
above method, we now proceed to a worst-case analysis of its space and time complexity, to
prove that they are O(p.q2) and O(p.q4), respectively. We also introduce some comments on
how the running time of such algorithms can be reduced in practice.

The space complexity is easily computed, since, given the flow table, we build a single
compatibility table that can be used during the application of the method. This table has
exactly q2−q

2
entries, and each entry contains a list of at most p pairs. The space complexity is

then derived directly from the product of these quantities, which gives us O(p.q2).

The time complexity is a little harder to compute. The first step of the method consists
in generating the first version of the compatibility table using the flow table. Every pair of
distinct states has to be inspected for output compatibility over all inputs. For a machine with
p inputs and q states, this means p q2−q

2
tests executed in the worst case.

Now, we have to calculate how many additional iterations are executed in the worst case, as
well as how much computation is done at each iteration. This worst case occurs, for instance, in

66 CHAPTER 4. STATE MINIMIZATION CONSTRAINTS

a machine with no compatible pairs, but where all pairs of states are transitively incompatible
except one5. In this case, the first step ends up with a table where only one crossed entry is
present.

Suppose now that the structure of the flow table is such that only one new cross is added
at each new step, which is possible, and corresponds to the maximum number of iterations of
the method. Suppose also that this cross is obtained only when doing the last possible test
at each iteration: this corresponds to a maximum amount of work executed at each iteration.
Such a situation can be obtained, for instance, if each entry depends on p distinct pairs, all
but one lexicographically inferior to the pair under analysis, considering we process entries in
lexicographic order. We can then measure the number of operations needed in this worst case.
Since each entry in a compatibility table can have at most p pairs inside it, the cost of each
iteration is exactly p(q

2−q
2

)− j, where j is the number of the iteration, varying from 0 (in the

first step) to q2−q
2
− 1 (in the last step). Thus, the total number of steps in the worst-case

situation is given by the following summation:

q2−q
2

−1∑
j=0

(p
q2 − q

2
− j) = p

q2 − q

2

q2−q
2

−1∑
j=0

1−
q2−q

2
−1∑

j=0

j

= p(
q2 − q

2
)2 − (q

2−q
2
− 1) q

2−q
2

2

= p
q4 − 2q3 + q2

4
− q4 − 2q3 − q2 + 2q

8

This result shows that we can design algorithms to implement the method whose running
time is bounded by O(p.q4). Nevertheless, some heuristic techniques can be added to the
method to make it run faster. For example, we can solve the above worst case in only two steps,
by adequately ordering the states and using a look-up table (implemented by a hash table, e.g.)
to keep the incompatible pairs information up-to-date. A good heuristic ordering strategy is to
test first states which are either fully compatible or incompatible with many other states. This
ordering can be performed immediately after building the initial compatibility table.

5No fsm may have only transitively incompatible pairs of states. At least one has to be fully incompatible
such that this condition is propagated to all other pairs.

Chapter 5

State Assignment Constraints

The hardware implementation of fsms relies upon the existence of two-state devices. A tran-
sistor configured to work in either on or off states provides a typical elementary device
used in such implementations. Two-state devices can directly manipulate information if and
only if the information has a binary character. The elements of the sets defining an fsm
A = 〈I, S,O, δ, λ〉, given generally as symbolic information, must thus be translated into bi-
nary (also called Boolean) codes, to allow the construction of a hardware version of A. In this
way, a fundamental step in the process of fsm synthesis is the encoding of the input alphabet
I, the output alphabet O, and the state set S. As a consequence of this assignment process,
the discrete functions δ and λ must accordingly be replaced by adequately designed switching
functions.

In the next Section, we characterize the fsm assignment problem in general, and the state
assignment problem in particular. Succeeding Sections propose the decomposition of the sa
problem into its constituent constraint sets, discuss techniques available to generate such con-
straints and study the complexity of these techniques.

5.1 The fsm Assignment Problem

Definitions 5.1 (Assignment) Given an integer n, an assignment or encoding of a set S is
a mapping or complete function

e : S −→ P(Bn),

where P(Bn) stands for the powerset of Bn. The integer n is called the length of the assign-
ment. For every s ∈ S, the image e(s) is called the code of the element s. Two codes e(s), e(t)
are disjoint iff e(s) ∩ e(t) = ∅, otherwise the codes are intersecting. An assignment that is an
injection and where codes are pairwise disjoint is an injective encoding, in which case

∀(s, t ∈ S), s �= t =⇒ e(s) ∩ e(t) = ∅.

Any assignment that is not injective is called non-injective.

67

68 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

A cube assignment or cube encoding of S is an assignment e of S where every code e(s) is
the satisfying set of some cube, i.e. there is a switching cube c(x) over Bn such that

c(x) = 1⇔ x ∈ e(s).

Let the codes of a cube assignment e be represented as three-valued vectors v = vn−1 . . . v0,
and the cardinality of S be q. The three-valued column vectors obtained by selecting all elements
vi for some i, over all codes e(s), s ∈ S, have the form (vi,0 . . . vi,q−1)

T , and are called columns

of the encoding. The exponent T notation indicates that this corresponds to a column of the
encoding (i.e. the transpose of the row vector).

A functional assignment or functional encoding of S is an assignment where every code is a
singleton. Accordingly, a functional assignment is redefined as a function

e : S −→ Bn,

without loss of generality. Any assignment that is not functional is called non-functional.

The concept of assignment is limited here to fixed-length codes. We may thus refer to
the encoding length also as the code length. In the rest of this work, we restrict attention
to functional and/or cube encodings. Correspondingly, Boolean codes will be represented as
either Boolean tuples or as three-valued vectors, respectively. We adopt herein the simplified
notation x = xn−1 . . . x1x0 to represent a tuple of the set Bn, and call it a Boolean vector.

Definition 5.2 (Discrete function satisfaction) Let f : S −→ L be a discrete function
and fe : Bp −→ Bq be a general switching function. We say that fe satisfies f under the two
assignments ϕ : S −→ Bp and ψ : L −→ Bq if these assignments are such that

∀(s ∈ S) f(s) = l =⇒ fe(ϕ(s)) = ψ(l).

We may now define a kind of finite automaton directly related to the fsm assignment
problem.

Definition 5.3 (Assigned finite automaton) Given three integers l, m, and n, an assigned

or encoded finite automaton is an algebraic structure of the form Ae = 〈Bl,Bm,Bn, δe, λe〉 where:

1. Bl is the input alphabet;

2. Bm is the finite set of states;

3. Bn is the output alphabet;

4. δe is a general partial switching function:

δe : Bl × Bm −→ Bm;

called next state or transition function of Ae; given the pair (i,ps) ∈ Bl × Bm, suppose
that δe(i,ps) is specified; then, ns = δe(i,ps) is the next state of the automaton Ae after
receiving the input i, when in the present state ps;

5.1. THE FSM ASSIGNMENT PROBLEM 69

5. λe is a general partial switching function:

λe : Bl × Bm −→ Bn,

called output function of Ae; given a pair (i,ps) ∈ Bl × Bm, suppose that λe(i,ps) is
specified; then, o = λe(i,ps) is the output of the automaton Ae after receiving the input
i, when in the present state ps.

The pair (δe(i,ps), λe(i,ps)) is called a transition of automaton Ae.

Definition 5.4 (Automaton satisfaction) Given two finite automata A = 〈I, S,O, δ, λ〉
and A′ = 〈I ′, S ′, O′, δ′, λ′〉, we say that A′ satisfies A if it is possible to define three functions:

ϕ : I −→ I ′;

ξ : S −→ S ′;

ψ : O −→ O′,

such that for all i ∈ I, s ∈ S, δ′ and λ′ obey to the conditions

δ(i, s) specified =⇒ δ′(ϕ(i), ξ(s)) = ξ(δ(i, s)), (5.1)

λ(i, s) specified =⇒ λ′(ϕ(i), ξ(s)) = ψ(λ(i, s)). (5.2)

A necessary and sufficient condition for an assigned finite automaton Ae to implement an
fsm A = 〈I, S,O, δ, λ〉 is that it satisfies A.

Given the above definitions, we may envisage a simple procedure to transform a symbolic
automaton into an encoded automaton that satisfies the initial specification and is directly
implementable using two-state devices. This procedure is based on the simplifying assumption
that to each distinct input, state or output value of the original specification we make correspond
one distinct input, state or output code in the encoded automaton, respectively. This clearly
implies the use of functional injective encodings.

In this case, the first requirement imposed on Ae is the minimum length of the Boolean
codes used to represent the sets I, S, O. The lower bounds for the integers l, m and n are,

l ≥ !log2(|I |)", m ≥ !log2(|S |)", n ≥ !log2(|O |)", (5.3)

respectively, where the notation !" designates the smallest integer not smaller than the expres-
sion between ! and ".

After determining the integers l, m, n using inequalities (5.3), it suffices to choose any three
functional injective assignments:

ϕ : I −→ Bl;

ξ : S −→ Bm;

ψ : O −→ Bn.

Function ϕ is called an input encoding or input assignment, function ξ is called an state

encoding or state assignment, and function ψ is called an output encoding or output assignment.

70 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

Last, functions δ and λ need to be replaced by suitable general switching functions δe and λe.
Given the above assignments and the automaton satisfaction definition, the obtainment of such
switching functions is immediate. For every i ∈ I, s ∈ S, we define δe, λe as

δe(ϕ(i), ξ(s)) = ξ(δ(i, s)) and

λe(ϕ(i), ξ(s)) = ψ(λ(i, s)).

Together, these functions specify the input-output behavior of the combinational circuit
(cc) in the sequential synchronous implementation of Figure 3.1. Additionally, we may easily
show that the encoded automaton generated by this procedure satisfies the initial specification,
by noting that such encodings are just a renaming of the original values. Now, consider the
general fsm assignment problem statement below:

Problem Statement 5.1 (fsm assignment) Given the fsm A = 〈I, S,O, δ, λ〉, compute
the three assignments ϕ, ξ and ψ, and three integers l, m, n leading to an encoded fsm
Ae = 〈Bl,Bm,Bn, δe, λe〉 that satisfies A and “optimizes” the combinational circuit cc of the
corresponding sequential synchronous hardware implementation.

The simple procedure we just provided meet all requirements of the above problem state-
ment, except for the (crucial) optimization requirement, which requires additional comments:

1. the word “optimizes” should of course receive an accurate definition; such a definition is
application dependent, and it can put the emphasis on one of the following criteria: area
of the circuit cc, its input-output delay or its dissipated power. In practical situations,
we shall usually adopt some acceptable trade-off among these often conflicting goals;

2. while simple to formulate, the fsm assignment problem is an extremely difficult one to
solve exactly; the natural strategy is then to concentrate on restricted situations, easier
to deal with:

(a) first, one often considers subproblems of the general problem; most of the available
literature is devoted to the sa subproblem: one assumes that the input and output
signals are given by their binary representations, and deal with a mixed symbolic-
Boolean representation. In this case, the only unknown assignment is the state
assignment ξ. Such a situation is frequently encountered in the design of the con-
troller in an algorithmic state machine [36], when the data path design has already
been completed. Since we are interested in studying the relationship between the
sm and sa problems, this is the subproblem we consider in this work;

(b) one may consider restricted optimization goals: most of the available techniques are
oriented towards area minimization;

(c) one may also introduce extraneous conditions that will guide the solution, by allowing
an accurate and simple definition of the optimization goal(s); such conditions can
be:

5.1. THE FSM ASSIGNMENT PROBLEM 71

- of architectural nature: we can for example assume that the combinational
circuit will be implemented as a pla, and then measure the size of this pla by
the corresponding number of product terms. We can also assume that the circuit
will be implemented using standard cells from an appropriate library, and then
measure the size of the corresponding realization by the number of literals in
the associated multilevel Boolean network. The advent of vlsi programmable
devices has pushed researchers to consider the efficient implementation of fsms
using these components. Here, the area-based cost functions become useless,
and new ways of evaluating the implementation cost must be provided;

- of topological nature: we can indeed simplify the problem by limiting the design
search space to a particular class of circuits, for example the two-level circuits;
obviously, the larger the design space, the better the optimization possibilities;

3. even with the various types of simplifying assumptions we just discussed, assignment prob-
lems remain difficult and they always require the solution of non-polynomial complexity
subproblems. In many practical situations, this precludes the use of rigorous solutions,
which orient us toward the use of heuristic techniques and approximate optimization.

Since the most important issue in modern fsm logic synthesis is the optimization of the
combinational part (cc)[38], encoding techniques play an important role in this field. De
Micheli depicted four relevant encoding problems frequently found in vlsi logic design [43]:

P1 - find an encoding of the inputs (or some inputs) of a cc that optimizes it;

P2 - find an encoding of the outputs (or some outputs) of a cc that optimizes it;

P3 - find an encoding of both the inputs and the outputs (or some inputs and some outputs)
of a cc that optimizes it;

P4 - find an encoding of both the inputs and the outputs (or some inputs and some outputs) of
a cc that optimizes it, such that the encoding of the inputs is the same as the encoding of
the outputs (or the encoding of some inputs is the same as the encoding of some outputs).

Solving the general assignment problem for fsms is equivalent to solving P4. On the other
hand, solving the sa problem alone is also equivalent to solving P4. This happens because
states are at the same time inputs and outputs of the combinational part of the fsm, due to
the feedback present in sequential synchronous implementations of circuits. The next Example
gives an idea of the complexity of solving P4 exactly.

Example 5.1 (Exhaustive state assignment) Let A = 〈I, S,O, δ, λ〉 be an fsm with |S |=
q states. Suppose also that we simplify the problem by using a fixed length encoding with the
least number of bits (!log2(q)") to represent states. Since we have at least q distinct codes to
assign to the q states, the number of possible state assignments is at least q!. In order to find
the best assignment, we should generate each of them and then minimize the resulting encoded
machine. The best exact solution would be found after at least q! minimizations, supposing we
had an exact minimizer at our disposal. Since the minimization problem itself is a very complex
one, we cannot envisage such an exact solution of the state assignment problem, except for very
small problems of little practical interest.

72 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

In Section 1.2.1.2, the various methods proposed to solve the sa problem have been parti-
tioned into two classes we now restate:

1. the classical methods: which start by selecting the number q of internal state code bits
(usually the minimum possible value, !log2(q)"); these methods then compute the state
assignment ξ to minimize the cost of the combinational circuit cc;

2. the symbolic methods: which carry out an initial cost minimization in symbolic form,
with the use, for instance, of a multiple-valued counterpart of a prime implicant based
method, or symbolic factorization; these methods attempt then to mimic the symbolic
optimization process on its binary coded counterpart, trying to select a code with a
minimum possible length.

In conclusion, a trivial solution for the fsm assignment problem always exists, but it is not
guaranteed to be an acceptable one. Exhaustive strategies to obtain solutions for the problem
are not feasible. The search for an optimized solution of the assignment problem passes through
the formulation of constraints the assignment must respect in order to reach or to get close to
the optimum solution.

Let us now define state assignment and valid state assignments formally.

Definitions 5.5 (fsm valid state assignment) Given an fsm A = 〈I, S,O, δ, λ〉, a state

assignment or state encoding of A is a function

Ξ : S −→ P(Bn).

Function Ξ is a valid state assignment for A if there exists an fsm A′ = 〈I,Ξ(S), O, δ′, λ′〉
which simulates A. A sufficient condition for A′ to simulate A is that

δ′(i,Ξ(s)) = Ξ(δ(i, s)), and λ′(i,Ξ(s)) = λ(i, s).

If A′ simulates A, the encoding preserves the input/output behavior of A.

This is the most important concept to be retained throughout the present work, since the
main objective of this thesis is to propose a change in the way valid state assignments are
computed, in order to enhance the quality of vlsi design implementations of fsms. Most
previous works limited the search space of the sa problem to functional injective encodings,
since these are always valid, as shown by the following theorem.

Theorem 5.1 (Functional injective sas) Given an fsm A = 〈I, S,O, δ, λ〉, let ξ be a func-
tional injective encoding of the form ξ : S −→ Bn, with n ≥ !log2(|S |)". Then, ξ is always a
valid state encoding of A.

Proof. Remark that if ξ is functional and injective, it consists in nothing but a renaming of
the states in S. Then, the proof is evident from the above definition of state assignment.

5.2. INPUT CONSTRAINTS 73

We present now a formulation of the sa problem constraints that can be used to enhance
the results of the encoding process. The presentation is separated in two parts: the input
constraints, discussed in Section 5.2, and the output constraints, object of Section 5.3. The
presentation of input and output constraints evolves within the context of combinational circuits
only. Nonetheless, this happens with no loss of generality for sa issues, since we have chosen
to deal with sequential synchronous implementations only. Section 5.4 discusses the techniques
available to generate the input and output constraints, and contains a brief analysis of the
complexity of these techniques.

5.2 Input Constraints

During the case study presentation in Chapter 2, we have seen that symbolic minimization-
driven sa methods were developed based on the first condition of Humphrey, as well as on the
derived Liu assignments properties for synchronous fsms. The symbolic minimization methods
rely upon a two-step procedure: an encoding independent minimization step, followed by a
constrained encoding step. In fact, symbolic minimization is a general technique to reduce the
number of cubes needed to represent a Boolean encoding of a general discrete function. The
encoding independent step in these methods generates a set of constraints that, if respected
during the second step, conducts to an optimal (as for the number of product terms) two-level
implementation of a combinational circuit.

In Section 2.1.2, we intuitively described the fsm sa input constraints arising from the
symbolic minimization process, according to the grouping of entries in the flow table. Here we
discuss input constraints formally, based on tabular representations of discrete functions.

Definition 5.6 (Function specification implementation) Given a function tabular speci-
fication

Γ = {(A1, z1), . . . , (An, zn)},

with domain S and codomain L, and two functional injective assignments

ϕ : S −→ Bm, ψ : L −→ Br,

we say that one implementation of Γ according to these assignments is a complete function

g : Bm −→ Br

that satisfies the function tabular specification

∆ = {(ϕ(A1), ψ(z1)), . . . , (ϕ(An), ψ(zn))}.

Note that ∆ do correspond to a function specification, i.e. we have ψ(zi) �= ψ(zj) =⇒
ϕ(Ai) ∩ ϕ(Aj) = ∅ for all i, j = 1, . . . , n. This comes as a consequence of the condition (3.1) in
the function tabular specification definition, as well as from the injectivity of ϕ.

74 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

A function ψ : L −→ Br can be seen as an r-tuple of functions ψk : L −→ B, such that for
all z ∈ L, ψ(z) = (ψ1(z), . . . , ψr(z)). With some notational abuse we write

ψ = (ψ1, . . . , ψr).

Likewise, a function g : Bm −→ Br can be considered as an r-tuple

g = (g1, . . . , gr)

of functions gk : Bm −→ B.

In view of this, to have g as an implementation of the function specification Γ it is necessary
and sufficient that for all k = 1, . . . , r the function gk : Bm −→ B satisfy the specification

∆k = {(ϕ(A1), ψk(z1)), . . . , (ϕ(An), ψk(zn))}.

Theorem 5.2 (Function specification bounds) Let Γ = {(A1, z1), . . . , (An, zn)} be a dis-
crete function specification with domain S and codomain L. Then, there exists at least one
functional injective assignment ϕ of S such that:

1. ϕ has a length of at most | S |;

2. the number of rows in a reduced tabular specification of a complete function fe that is an
implementation of Γ according to ϕ and any functional injective assignment ψ of L is at
most n.

Proof. Consider the two functional injective assignments of S and L, respectively

ϕ : S −→ Bm, ψ : L −→ Br,

and suppose that ϕ is constructed to satisfy the following condition:

condition C(Γ,m): There is a set of switching cubes of the form ci : Bm −→ B
such that sat(ci) = Ci, and for all i = 1, . . . , n, and for all s ∈ S we have:

s ∈ Ai =⇒ ϕ(s) ∈ Ci; (5.4)

s �∈ Ai =⇒ ϕ(s) �∈ Ci. (5.5)

Designating ϕ(Ai) the set of elements ϕ(s) such that s ∈ Ai, the property (5.4), valid for
all s ∈ S is equivalent to:

ϕ(Ai) ⊂ Ci. (5.6)

Note first that for m =| S |, there is always one functional injective assignment ϕ : S −→
Bm satisfying condition C(Γ,m), e.g. any 1-hot encoding of S. This demonstrates that ϕ
constructed as described above verifies the first statement of the enunciate.

5.2. INPUT CONSTRAINTS 75

Now, since sat(ci) = Ci, for all i = 1, . . . , n, we have that the cubes ci are defined by

ci(y) =

{
1 if y ∈ Ci;
0 if y �∈ Ci.

It is easy to verify that the general switching function g = (g1, . . . , gr) : Bm −→ Br, the
components gk (k = 1, . . . , r) of which are defined by

gk =
m∨
i=1

ψk(zi).ci (5.7)

is an implementation of Γ according to the assignments ϕ and ψ. Stating it otherwise, for
k = 1, . . . , r, the functions gk defined by (5.7) satisfy the specifications

∆k = {(ϕ(A1), ψk(z1)), . . . , (ϕ(An), ψk(zn))},

according to Definition 5.6 above. Indeed, if y ∈ ϕ(Aj) then y ∈ Cj due to (5.6), thus
cj(y) = 1 and ci(y) = 0 for every i �= j, due to (5.5). Thus,

gk(y) =
m∨
i=1

ψk(zi).ci(y) = ψk(zj).

In this way, for all y ∈ Bm and for j = 1, . . . , n, we have

y ∈ ϕ(Aj) =⇒ gk(y) = ψk(zj).

This being true for k = 1, . . . , r, function g is an implementation of Γ according to the
assignments ϕ and ψ. Additionally, all functions gk (5.7) are disjunctions of cubes taken from
the set {c1, . . . , cn}, which demonstrates the second statement of the enunciate.

To understand the relevance of Theorem 5.2, remember that a function tabular specification
is the representation of a partial function (equivalently, of a set of complete functions), and that
symbolic minimization (cf. Definitions 3.17) generates a function specification with the least
number of rows. From the Theorem, we conclude that symbolic minimization determines an
upper bound to both, the number of rows of a reduced tabular specification of the implementa-
tion of a function (i.e. the number of product terms in a sum-of-products implementation of the
function) and the length of the encoding needed to attain this number of rows. Theorem 5.2
is an interpretation of the results published by de Micheli et al in [43]. This Theorem states
also the conditions that must be respected in order to attain the bounds. These correspond to
the implications (5.4) and (5.5), that determine a bijection between the sets Ai in the original
function specification and the sets Ci in the encoded function specification.

The following Example will help to clarify the symbolic minimization process, as well as the
subsequent constrained encoding step.

Example 5.2 (Symbolic minimization and constrained encoding) Let L = {l,m} and
S = {s0, s1, s2, s3} be sets, and f : S −→ L be a discrete function. Assume that c(x) =

76 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

{s0} {l}
{s1} {m}
{s2} {l} {s0,s2} {l}
{s3} {m} {s1,s3} {m}

 (a) (b)

Figure 5.1: Original and minimized cube tables for example 5.2

l ∧ x({s0,s2}) and d(x) = m ∧ x({s1,s3}) are cube functions. Let f be represented by the tabular
specification of Figure 5.1(a).

Figure 5.1(b), on the other hand, represents an equivalent tabular specification obtained
after symbolic two-level minimization. The row merging obtained by the minimization step is
obvious from the Figure. This specification states that f is in fact the disjunction of the cubes
c(x) and d(x).

The minimization was achieved using the espresso program, parameterized to perform
exact multiple-valued minimization. The row cardinality of the minimized cube table, which is
2, is thus an upper bound for the minimized encoded specification row cardinality corresponding
to any assignment of f , according to Theorem 5.2. Let us now consider how the symbolically
minimized specification may guide the encoding step.

Figure 5.2 displays three possible functional injective assignments of the symbols in S. After
substituting the codes of each assignment into the original cube table describing f , the encoded
cube tables thus obtained were submitted to logic minimization (using again the program
espresso), producing the cube tables shown to the right of each encoding.

encoding table encoding table encoding table

α((s0)=0001 α(s0)=00 α(s0)=00 00 {l}
α(s1)=0010 α(s1)=01 α(s1)=01 01 {m}
α(s2)=0100 0-0- {l} α(s2)=10 -0 {l} α(s2)=11 11 {l}
α(s3)=1000 -0-0 {m} α(s3)=11 -1 {m} α(s3)=10 10 {m}

 (a) (b) (c)

Figure 5.2: Three assignments and corresponding minimized cube tables for example 5.2

Note that the first two assignments respect the upper bound predicted by symbolic min-
imization, while the third assignment does not. Note also that, since the assignments are
injective, each code is associated with a row in the original specification.

The first assignment in Figure 5.2(a) corresponds to one positional cube scheme represen-
tation of S, under the enumeration order evident from the naming of its elements. Actually,
every positional cube encoding is a trivial solution of the constrained encoding problem as
demonstrated by Theorem 5.2. However, the code length for this scheme is often too long,
leading to the search of smaller length encodings, which becomes then the cost function to be
minimized during the encoding. Also, note that the associated cube table has a domain that
is defined as B4−{0000}, since for the all 0s input value there is a conflict in the reduced cube
table, which would prevent it from being a cube table. Excluding the all 0s value from the

5.2. INPUT CONSTRAINTS 77

domain is needed in every 1-hot encoding.

The second and third assignments, on the other hand, implement minimum length codes.
The encoding of Figure 5.2(b) respects both restrictions imposed by the minimized cube table,
i.e. {α(s0), α(s2)} and {α(s1), α(s3)} do not intersect. The last assignment in Figure 5.2(c)
does not respect any of these restrictions, and accordingly gives a representation that has more
product terms than the predicted upper bound. Such a situation happens because this encoding
does not allow that the row merging performed in the symbolic minimization step occurs in the
logic minimization step.

The constraints generated by symbolic minimization do not consider the outputs encoding
influence at all. All the bounds and results of the encodings mentioned above are valid for any
encoding of the outputs, which is clear from the enunciate of Theorem 5.2. To point out this
fact, the outputs remained unencoded in the above Example. We may now define what we
mean by a set of input constraints on the domain of a discrete function.

Definition 5.7 (Set of input constraints for a discrete function) Let f : S −→ L be
a partial discrete function. A set of input constraints of f is a set of cube satisfying sets
C = {C1, . . . , Cm} such that Ci = sat(ci), with ci a cube function of the form ci : S −→ L, for
all i = 1, . . . ,m, and

1. dom(f) ⊂ ⋃m
i=1 Ci;

2. for each Ci (i = 1, . . . ,m), f is constant or unspecified in Ci ∩ dom(f).

Given a function specification Γ = {(A1, z1), . . . , (An, zn)} of a discrete function f , one set
of input constraints for f is clearly the set {A1, . . . , An}. These constraints on the encoding of
f can be described by a binary relation as follows.

Definitions 5.8 (Input relation) Consider a discrete function f : S −→ L and a specifica-
tion Γ of f , such that Γ is represented as pairs of the form

(Si ⊂ S, Lj ⊂ L).

The first coordinate of a pair in Γ is the input part of the row, while the second is its output

part. Define an input relation on S, also called face embedding relation on S, as a binary
relation 〈P(S), S, φ〉 such that

φ = {(Si, sk) | (Si, Lj) ∈ Γ, sk ∈ S, sk �∈ Si}.

Each pair in the graph φ of this relation is an elementary input constraint, also called
elementary face embedding constraint on the input set S of function f . A pair of the form
(Si, Sk) with Sk ⊂ S, is called a full input constraint or full face embedding constraint iff
Sk = {sk | (Si, sk) ∈ φ} and Si ∪ Sk = S. Full input constraints may always be translated into
an equivalent set of elementary input constraints with cardinality |Sk |.

78 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

The input relation φ obtained from a (eventually reduced) function specification describes
the elementary constraints to be respected by an encoding, so as to achieve the bounds predicted
by Theorem 5.2.

Let n =|Γ |. The cardinality of the input relation graph φ depends on the number of rows
n in the specification, as well as on the number of symbols on the set S. The cardinality of φ
is then bounded by O(n.q), where q is the number of elements in S.

From the standpoint of the sa problem, each elementary input constraint (Si, sk) tells that
states in Si must be encoded such that in some bit position all of them present the same bit
value, while state sk presents the complement of this value in the corresponding position.

5.3 Output Constraints

In the previous Section, we discussed how conditions imposed on the encoding of the inputs of
a discrete function may lead to an optimized binary implementation of this function. In the
present Section, we are interested in analyzing the conditions to impose on the outputs of a
discrete function in order to obtain optimized implementations as well. Historically, the use of
input constraints came first, with the development of symbolic minimization methods to apply
to the sa problem. In an enhancement of the work in [43], de Micheli recognized the exis-
tence of one kind of output constraints, the so-called dominance constraints [40], and used it to
ameliorate the results of the sa method he proposed in [43], that considered input constraints
only. After this, Devadas and Newton treated the output encoding problem independently
of both input encoding and sa, and proposed a systematic approach to the generation of a
more thorough set of output constraints [45]. In their work, besides the dominance constraints,
two other kinds of constraints appear: disjunctive constraints and disjunctive-conjunctive con-
straints. Dominance and conjunctive constraints are special cases of the disjunctive-conjunctive
constraints. We do not discuss disjunctive-conjunctive constraints in this work.

5.3.1 Dominance Constraints

We introduce the principle behind dominance constraints by using an example.

Example 5.3 (Dominance constraints) Let I = {i0, i1}, J = {j0, j1} and O = {o0, o1}
be sets and f a discrete function f : I × J −→ O, whose behavior is represented by the cube
table in Figure 5.3(a).

Original Table Output constraint Encoding respecting
 reduced Table output constraint
{i0}{j0,j1} o0
{i1}{j1} o0 {i0,i1}{j0,j1} o0 α(o0)=01
{i1}{j0} o1 {i1} {j0} o1 α(o1)=11

 (a) (b) (c)

Figure 5.3: Cube table optimization using dominance constraints

5.3. OUTPUT CONSTRAINTS 79

Consider the first two rows in Figure 5.3(a). Since the cubes corresponding to them assert
the same output value, these rows could be merged by the logic minimization step, for some
adequate encoding of the input set I ×J . However, symbolic minimization alone cannot merge
the two rows, since this would imply that the resulting cube and the cube associated with the
last row would not be disjoint anymore.

In hardware implementations of functions, we need to specify how to generate one of the
binary values only, the other being the default value. Thus, if we guarantee that the encoding of
the outputs is such that the code assigned to the output value o1 never presents a default value
in a bit position where o0 has the complement of this value, the input part of the last row cube
can be considered as a don’t care for the output value o0. In this case, the first two rows can be
merged. Figure 5.3(b) shows the equivalent cube table, assuming this constraint is respected,
while Figure 5.3(c) displays an encoding of the outputs that do respect the constraints.

If dominance constraints are considered during symbolic minimization, the upper bound
predicted by using only input constraints may thus be further reduced.

Definition 5.9 (Dominance between Boolean vectors) Let x and y be two Boolean vec-
tors x = xn−1 . . . x0 and y = yn−1 . . . y0 over Bn. Then, x dominates y iff

∀i, xi = 0 =⇒ yi = 0.

This relation is denoted by x # y.

We may now introduce a dominance relation of a discrete function under an encoding.

Definitions 5.10 (Dominance relation) Consider a discrete function f : S −→ L and an
encoding α : L −→ Bn, for some integer n. Define a dominance relation on L under the
encoding α as a binary relation 〈L,L, µ〉 such that

µ = {(j, k) | α(j) # α(k)}.

Each pair in the graph µ of this relation is an elementary dominance constraint on the output
set L under α.

The cardinality of the dominance relation graph µ is bounded by O(|L |2).

5.3.2 Disjunctive Constraints

We introduce the nature of disjunctive constraints through the presentation of an example as
well, to ease its understanding.

Example 5.4 (Disjunctive constraints) Let I = {i0, i1}, J = {j0, j1}, O = {o0, o1, o2} be
sets and f a discrete function f : I ×J −→ O, whose behavior is represented by the cube table
in Figure 5.4(a).

80 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

Original Table Disj. constraint Encoding respecting
 reduced Table Disj. constraint
{i0}{j0} o0 α(o0)=11
{i0}{j1} o1 {i0} {j0,j1} o1 α(o1)=01
{i1}{j0} o2 {i0,i1}{j0} o2 α(o2)=10

 (a) (b) (c)

Figure 5.4: Cube table optimization using disjunctive constraints

The cardinality of this cube table cannot be reduced by symbolic minimization, since all
weights of its cubes are distinct. No possible dominance relation that could be established
would produce a reduction in this cardinality either. However, suppose that there is a functional
injective encoding α of the output set O such that the code of o0 is the disjunction (inclusive
or) of the codes of the elements o1 and o2, i.e. α(o0) = α(o1) ∨ α(o2). If this restriction
holds, every cube with weight o0 in the original cube table can be alternatively represented
by the disjunction of two cubes with the same input part and weights o1 and o2, respectively.
Proceeding to such a substitution in Figure 5.4(a), we see then that the symbolic minimization
process may now merge cubes, obtaining the minimized table of Figure 5.4(b). Figure 5.4(c)
presents an encoding that respects the restriction, and may accordingly lead to a cube table
with the number of rows predicted by symbolic minimization.

Again, disjunctive constraints may provide further enhancement to the results of symbolic
minimization, if they can be adequately generated. We may then introduce a disjunctive
relation of a discrete function under an encoding.

Definitions 5.11 (Disjunctive relation) Consider a discrete function f : S −→ L and an
encoding α : L −→ Bn, for some integer n. Define a disjunctive relation on L under the
encoding α as a binary relation 〈L,P(L), χ〉 such that

χ = {(j, {k, l}) | α(j) = α(k) ∨ α(l)}.

Each pair in the graph χ of this relation is an elementary disjunctive constraint of the output
set L under α.

The cardinality of the disjunctive relation graph χ is bounded by O(|L |3).

5.4 Complexity of Generating the sa Constraints

We mentioned above the existence of techniques to generate all constraints related to the sa
problem in synchronous fsms. In the present Section we briefly restate these methods and
discuss their complexity.

5.4.1 Generation of the Input Constraints

We have pointed out, in Section 5.2, that the generation of the input constraints relies upon a
symbolic minimization step, which can be performed by adequate multiple-level minimization

5.4. COMPLEXITY OF GENERATING THE SA CONSTRAINTS 81

methods. These methods are available in logic level minimizers like the programs espresso
[16] and mcboole [30].

The symbolic minimization process can then be seen to have a complexity equivalent to
two-level logic minimization. However, there is a major difference between the growth rate of
the execution time for a function described in terms of binary variables, and the same parameter
for a discrete function described with multiple-valued variables. The internal representation
of multiple-valued variables is obtained with the positional cube scheme. In this case, the
execution time depends linearly on the size of the sets defining the function. For switching
functions, however, this dependence is only logarithmic, since functions are directly represented
using a switching cube scheme. The use of specific techniques to deal with multiple-valued
variables does alleviate the problems, but cannot change its more complex nature. An example
of program using such techniques is espresso-mv [99], which we employ in this work.

5.4.2 Generation of the Output Constraints

Dominance constraints were identified by de Micheli in [40]. He suggested a method which
consists in generating face embedding and dominance constraints simultaneously, using the
following technique. While performing symbolic minimization, instead of constraining the final
cube table to be disjoint, one iteratively builds a partial ordering for the outputs. The final
result is a set of face embedding constraints and a set of dominance constraints. The final set
of constraints is satisfiable by construction, since the only way to violate a dominance relation
would be defining cyclic constraints. This is avoided by the choice of a partial order, instead
of a more general relation between the outputs. The program capuccino [40] implements the
method. The obtained results, although superior to ordinary, input constraints-based encoding,
are not very good. One reason is that the iterative method relies on the treatment of one output
at a time. However, the final quality of the result depends strongly on the order in which these
outputs are considered. To date, no satisfactory technique to select the outputs is available.

Ciesielski et al proposed a dedicated method that directly obtains all dominance and dis-
junctive constraints that may potentially produce a reduction in the size of the final cube table
[26]. This method is exact.

When studying the input relations, we have seen that obtaining these relations poses a prob-
lem roughly as complex as the one of a two-level multiple-valued minimization step. Although
this implies that the generation of input constraints is already a non-polynomial time problem,
there are efficient heuristic methods for the generation of a feasible set of constraints. On the
other hand, the methods available for creating output constraints do generate a larger set of
possibly useful relations, and not directly a feasible subset of them. This is indeed the case for
the exact method suggested by Devadas and Newton in [45] and for the method suggested by
Ciesielski et al in [26].

As a conclusion, the author knows of no efficient method to generate output constraints
for the sa problem. An additional problem with output constraints is that they, unlike the
input constraints, may conflict among themselves, as well as with the input constraints. This
question is addressed in some detail in the next Chapter.

82 CHAPTER 5. STATE ASSIGNMENT CONSTRAINTS

Chapter 6

Relationship among SM and SA
Constraints

Although we have already defined various constraints types in previous Chapters, a formal
statement of the constraint general concept has not yet been furnished. In fact, we will delay
this statement until Chapter 11, where the problem we want to treat will be fully delimited. For
now, we rely on the intuitive notion that a constraint is a restriction imposed on the solutions
of a problem, a way to delimit the search in the solution space to potentially “good” choices.
In particular, we are interested in this thesis in studying constraints associated to encoding
problems, which we call encoding constraints.

The basic idea of a constraint formulation of a problem is to show the possibility of si-
multaneously considering a feasible subset of constraints describing the problem with sufficient
thoroughness. After this study, we must devise a method to satisfy the feasible subset of
constraints such that an optimal solution of the problem is obtained.

One of the original contributions of this work is the proposition of the simultaneous con-
sideration of the sm and sa problems within the scope of an fsm state encoding method using
a constraint formulation. The goal of this Chapter is to derive the relationships existing be-
tween the constraints in each of the two problems. In the two previous Chapters, we separately
analyzed each of the constraints sets of sm and sa. The result of this analysis has been the
modeling of each constraint kind by means of a binary relation, the pairs of which are the
elementary constraints imposed on the solution of one of the two, sm or sa problems. We are
now able to analyze the correlation between the problems with precision.

Definitions 6.1 (Encoding constraint set feasibility) A set of encoding constraints is fea-

sible if all elements in it can be satisfied simultaneously by some encoding. Two encoding con-
straints are feasible if they do not imply conflicting encoding requirements, i.e. iff they alone
form a feasible set of constraints.

Even if the sm constraints were not originally devised in the scope of encoding problems,
they may be reinterpreted under the sa standpoint. Chapter 4 advanced an intuitive view on
this interpretation, which we now restate. Let A = 〈I, S,O, δ, λ〉 be an fsm:

1. if a pair of states (s, t), s, t ∈ S of A belongs to the graph ι of the incompatibility relation

83

84 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

of A, no valid state encoding for this machine may associate intersecting codes with s
and t;

2. let A′ = 〈I, S ′, O, δ′, λ′〉 be a machine that simulates A, obtained from a closed cover of
compatibles κ of A; if a compatible C ∈ dom(κ) and a state s ∈ S of machine A form a
pair (C, s) of the graph γ describing the covering relation of A, and if C is the compatible
associated with the state s′ ∈ S ′ of machine A′, to any valid code of s′ corresponds a
valid code of s which intersects the code of s′;

3. if four states s, t, u, v of A form a pair ({s, t}, {u, v}) belonging to the graph σ of the
closure relation of A, assigning intersecting codes to s and t can be part of a valid state
encoding iff u and v also receive intersecting codes.

The above three remarks need to be considered in the scope of an encoding method, so as
to allow that sm constraints be accounted for in the encoding process. To do so, we need to
extend the assignments traditionally generated as solutions of a constrained state assignment
problem. This is one of the main practical targets of this Chapter.

The next Section provides an informal discussion on the need and the usefulness of extend-
ing currently used constrained encoding methods. Follows Section 6.2, where we review the
state splitting concept, from the standpoint of equivalent machines obtainment. The results of
this Section are used to prove some important propositions of Section 6.3, which is dedicated
to justify the use of extended concepts of assignment. The following two Sections deal with the
violation of sm constraints by input constraints and vice-versa, revealing an interesting result
about the use of injectivity constraints in the scope of the sa problem. At last, Section 6.6
concerns the conflicting requirements across constraints, giving particular attention to the re-
lationship between the dominance and disjunctive output constraints, as well as to the possible
conflicts between output constraints and the other constraint kinds.

6.1 Extending Constrained Encoding Assignments

The fsm assignment problem and the definition of assigned automaton, both stated in Sec-
tion 5.1, assumed assignments of the more general type characterized in Definition 5.1. However,
all along Chapter 5 we referred to functional injective assignments only. These assignments im-
ply that every code is a single Boolean vector (functional assignment), and that no two distinct
elements of the assignment domain receive identical codes. This is in fact the assumption of
most constrained encoding methods addressing the sa problem alone [116, 119, 43]. This choice
is justified, for instance, by the observation that in the sa problem, any functional assignment
that is a solution of constrained encoding has code length less than or at most equal to a
non-functional assignment [43]. As the code length is one of the most important cost functions
to minimize during the encoding step, using functional assignments helps the satisfaction of
this requirement. On the other hand, using injective assignments guarantees that every state
behavior in the original machine will correspond to a unique state behavior in the equivalent
assigned machine and vice versa.

If state minimization is considered during the encoding of an fsm, the above statement
about the code length of a functional assignment with regard to non-functional ones is no
longer true. We may show this by means of a simple counterexample.

6.1. EXTENDING CONSTRAINED ENCODING ASSIGNMENTS 85

Example 6.1 (Non-minimum functional assignments) LetA = 〈I, S,O, δ, λ〉 be an fsm.
Let the sets in this machine be I = {0, 1, 2}, S = {s, t, u, v, x}, O = B, while δ and λ are
specified by Table 6.1.

Table 6.1: Flow table for example 6.1

state \ input 0 1 2

s s,1 t,0 v,0
t t,1 u,- v,0
u s,1 s,1 v,0
v x,0 v,1 t,1
x s,0 t,0 t,1

The merge graph resulting from the compatibility analysis for A is shown in Figure 6.1.
There is obviously only one minimum closed cover of compatibles for this machine, whose
domain is

{{s, t}, {t, u}, {v}, {x}}.

Thus, we see that a reduction A′ = 〈I, S ′, O, δ′, λ′〉 of A may be built based on this minimum
closed cover, resulting in a state set S ′ with cardinality equal to 4. Any solution assignment of
the sa problem for machine A will have a code length which is at least !log2(|S |)" = 3, while
the state set S ′ of machine A′ may be assigned codes with length 2.

tu

x

s

v

t

u

st

Figure 6.1: Merge graph for example 6.1

Since the reduction A′ can be state encoded with a smaller encoding length than A, we
know that the behavior of A may be described with a smaller state encoding. The problem is
to know if there are encodings of S leading directly to such a state encoding.

If the specification of A had only one compatible pair of states, say {s, t}1, we intuitively
see that encoding both s and t with a same code, i.e. using non-injective state encoding, would
still allow the specified behavior of A to be obtained in the encoded machine.

However, in machine A, the state t is present in two distinct compatibles, and thus cannot
receive a single binary code. The solution to the encoding of t can only be obtained if three
conditions hold:

1. the requirement of building functional encodings of the state set is relaxed;

1It should be clear that, in this case, no class set could exist

86 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

2. a code is assigned to t that contains at least two Boolean vectors;

3. we dispose of a method to adequately choosing which code to use when translating the
original flow table into an equivalent encoded flow table.

We may advance that the cube encoding depicted in Table 6.2 is a valid encoding for machine
A.

Table 6.2: A valid non-functional, non-injective assignment for example 6.1

state code

s 00
t 0-
u 01
v 10
x 11

The possibility of constructing valid non-injective, non-functional state encodings like the
one in Table 6.2 to allow the simultaneous consideration of the sm and sa problems is demon-
strated in Section 6.3. The next Section shows the state splitting techniques needed in those
demonstrations.

6.2 State Splitting and Equivalent fsms

State splitting is a technique counterpart of state reduction, in the sense that its objective is
to “unreduce” a sequential machine. Given an fsm, applying state splitting to it generates an
equivalent fsm with state set cardinality larger than the original machine. The concept has
frequently been used for the decomposition of state machines [121, 63].

Definition 6.2 (Augmentation) An fsm A∗ = 〈I, T,O, δ∗, λ∗〉 is said to be an augmentation

of an fsm A = 〈I, S,O, δ, λ〉 iff A∗ is simulated by A and |S |≤|T |.

In this Section, we shall propose a state splitting method to obtain, from a minimum closed
cover of compatibles κ of an fsm A, an augmentation A∗ of A, such that κ maps into κ∗, a
minimum closed cover of A∗ with the property of being a partition of the state set T of A∗. The
method developed herein will serve to demonstrate some important results in the next Section.

Method 6.1 (Partition–κ state splitting) Given an fsm A = 〈I, S,O, δ, λ〉 and a closed
cover of compatibles κ of A, construct a new machine A∗ = 〈I, T,O, δ∗, λ∗〉 as follows.

1. make T a set with cardinality
∑
s∈S

ns, where the integer values ns are chosen such that

ns =| {kl ∈ dom(κ) | s ∈ kl} |. In this way, each state s ∈ S is associated with ns states
in T , and ns is the number of distinct compatibles of dom(κ) containing s. Designate the
states in T as ts,l, with s ∈ S and l being an index of a compatible kl, such that s ∈ kl;

6.2. STATE SPLITTING AND EQUIVALENT FSMS 87

2. construct λ∗ such that for every input letter i ∈ I and for each ts,l ∈ T

λ∗(i, ts,l) = λ(i, s);

3. construct δ∗ as follows:

for every input letter i ∈ I, do:

for every kl ∈ dom(κ), do:

(a) compute the index b of some class of κ that contains the compatible implied
by kl under the input letter i, i.e. find a kb such that kb ⊇ δ(kl, i);

(b) for every s ∈ kl, make

δ∗(i, ts,l) = tδ(i,s),b.

The machine A∗ is called a partition augmentation of A.

Below we will demonstrate that the partition–κ method generates an augmentation of the
initial machine. Before doing so, let us illustrate the method through an example, to clarify its
inner workings.

Table 6.3: Flow table for original fsm in example 6.2

state \ input 0 1

a a,0 b,0
b b,0 c,-
c b,- c,1
d a,0 e,1
e a,1 d,1

Example 6.2 (Partition–κ application) Let A = 〈I, S,O, δ, λ〉 be a machine such that I =
O = B and S = {a, b, c, d, e}. Table 6.3 defines the next state and output functions δ and λ.

Let κ be a minimum closed cover of compatibles of A, such that dom(κ) = {k1 = {a, b}, k2 =
{b, c, d}, k3 = {c, e}}. The verification that this set corresponds to the domain of a cover verify-
ing minimality and closedness is straightforward. Let us now apply the partition–κ method to
this example, in order to generate a new machine, A∗ = 〈I, T,O, δ∗, λ∗〉. The first step begins
with the determination of the ns values which are

na = 1, nb = 2, nc = 2 nd = 1, ne = 1.

Considering the compatibles in dom(κ), we have T = {ta,1, tb,1, tb,2, tc,2, td,2, tc,3, te,3, }. The
construction of the output function λ∗ is simple, the result appearing in Table 6.4. The genera-
tion of δ∗ is a bit more complex. The flow table next state positions are generated one column
at a time based on a compatible of dom(κ) at a time. The implied compatibles are then used
to conduct the filling of the flow table entries. The result of the application of step 3 appears
also in Table 6.4.

88 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

Table 6.4: Flow table for the partition augmentation fsm in example 6.2

state \ input 0 1

ta,1 ta,1,0 tb,2,0
tb,1 tb,1,0 tc,2,-
tb,2 tb,1,0 tc,3,-
tc,2 tb,1,- tc,3,1
td,2 ta,1,0 te,3,1
tc,3 tb,1,- tc,2,1
te,3 ta,1,1 td,2,1

It is easy to inspect this Table to see that the sets of states {ts,1 |s ∈ k1}, {ts,2 |s ∈ k2} and
{ts,3 |s ∈ k3} are compatibles, and that they form a closed cover of compatibles.

Theorem 6.1 (Partition–κ) Let A = 〈I, S,O, δ, λ〉 be an fsm and A∗ = 〈I, T,O, δ∗, λ∗〉 be
another fsm, resulting from the application of the partition–κ state splitting method to A, given
a closed cover of compatibles κ of S. Then, A∗ is an augmentation of A.

Proof. To be an augmentation of A, the fsm A∗ has to fulfill two conditions:

1. |T |≥|S |;

2. A∗ is simulated by A.

According to step 1 of the partition–κ method, the cardinality of T is the sum, over all states
in S, of the number of times a state appears in some element of κ. Since κ is a cover of S, each
state belongs to at least one compatible in κ. Then, the first condition is fulfilled.

To show that A simulates A∗, note that each state s ∈ S is split into a set of states {ts,l}
by the partition–κ method. If this set is a compatible of A∗, and if the set of compatibles
represented by all such sets is the domain of a closed cover of A∗, the obtainment of the fsm
A from A∗ is evident by state minimization, showing that A simulates A∗.

Consider first the output function λ∗. Given a state s ∈ S, all output values λ∗(i, ts,l) are
identical, for each i ∈ I and every l, by step 2 of the method. Thus, no length 1 input sequence
can distinguish among states ts,l. Assume that a length 2 input sequence is applied to A∗, and
consider the next state function δ∗. Given s and i, every next state of a state ts,l, under the
input letter i, is in another set of the same form, {tm,l}, for some m. This occurs because in
step 3 of the method, δ∗ is computed by the expression δ∗(i, ts,l) = tδ(i,s),b. Thus, no distinct
output may occur with a length 2 input sequence. By induction on the sequence length, we
prove that, given a state s, every set of states of the form {ts,l | ts,l ∈ T} is a compatible. The
set of all such compatibles is the domain of a cover of T . This set is closed, due to the fact that
the set of next states of a set with the form {ts,l}, i.e. any implied compatible of {ts,l}, is a set
of the same form.

6.3. JUSTIFYING THE USE OF EXTENDED ASSIGNMENTS 89

Corollary 6.1 (Partition–κ augmentation) Every fsm has at least one augmentation that
is a partition augmentation. To each closed cover of compatibles of a machine corresponds a
partition augmentation.

Corollary 6.2 (Partition–κ closed cover) Every partition augmentation A∗ of an fsm A
has a closed cover κ∗ such that | κ∗ |=| κ |, where κ is the closed cover of A used to construct
A∗, and such that κ∗ is a partition of the state set of A∗.

The importance of Theorem 6.1 and its corollaries is that, given a closed cover of com-
patibles, they show that the partition-κ method allows to define an fsm that simulates the
original one, that has a closed cover of compatibles with same cardinality as the original closed
cover, and where all classes are disjoint. We may then draw a parallel between assignments
to the original machine and to the one obtained after applying the partition-κ method, which
simulates the original one. This is the objective of the next Section.

6.3 Justifying the Use of Extended Assignments

Example 6.1 in Section 6.1 showed that the use of functional injective assignments may pre-
vent minimum solutions of the sm/sa problem. The same Example suggested the use of less
restrictive assignments to deal with the problem. Intuitively, the functional characteristic of
an assignment is desirable to reduce the code length in sa constrained encoding problems, but
it prevents the participation of states in more than one compatibility class in an encoded ver-
sion of the original fsm. The injective characteristic avoids even the existence of compatibility
classes in the solution. We demonstrate in this Section that less restrained encodings may allow
the overcoming of these limitations, and yet generate valid state encodings.

Theorem 6.2 (Disjoint classes closed cover encoding) Let A = 〈I, S,O, δ, λ〉 be an fsm
and κ be a closed cover of compatibles of A such that its classes are disjoint. Construct an
encoding e of S as follows: for each state sk on a class k of κ, associate e(sk) = x with x being
a Boolean vector of the form x = xn−1 . . . x1x0 and n ≥ !log2 | κ |". Also, make the encoding
such that

∀k, l ∈ κ, k �= l⇒ e(sk) �= e(sl).

Then, e is a valid state encoding of A.

Proof. The encoding e is a functional encoding, but not necessarily injective. To see this, it
suffices to verify that κ is supposed to be a partition of S, and that e will be injective only in
the special case where the classes of κ are singletons.

Since κ is a closed cover of compatibles, there is a machine A′ that simulates A, and which,
by state reduction, has a state corresponding to each compatible k ∈ κ. Thus, e is associated
with a functional injective state assignment e′ of A′. Since by Theorem 5.1 any functional
injective assignment is a valid encoding of an fsm state set, e is a valid state encoding of A′.
Since A′ simulates A, e is a valid state encoding of A.

90 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

This Theorem ensures that functional non-injective encodings can be used to take advan-
tage of the existence of compatibility classes in a machine, provided that these classes do not
overlap. It can be applied to any closed cover of compatibles formed by disjoint compatibles,
and particularly to any cover that is additionally a minimum cover, if any exists. Thus, assign-
ments like e in Theorem 6.2 can simultaneously achieve state minimization. The next Theorem
generalizes this statement.

Theorem 6.3 (Closed cover encoding) Let A = 〈I, S,O, δ, λ〉 be an fsm and κ be a closed
cover of compatibles of A. Let us construct an encoding e of S as follows:

1. build a functional injective encoding ε : κ −→ Bn, with n ≥ !log2 |κ |".

2. build the encoding

e : S −→ P(Bn), such that ∀s ∈ S, e(s) = {ε(k) |k ∈ κ, s ∈ k}.

Then, e is a valid state encoding of A.

Proof. Encoding e need neither be functional nor injective. If some state s is in two distinct
classes of κ, e fails to be functional. If any compatible is not a singleton, e fails to be injective.

Consider the partition augmentation A∗ = 〈I, T,O, δ∗, λ∗〉 of A based on κ, as well as an
encoding of T as follows:

e∗ : T −→ Bn,

such that, for every s ∈ S and every kl ∈ κ

e∗(ts,l) = ε(kl).

This encoding is clearly one of the assignments that can be obtained by the state splitting
method, by distributing the multiple Boolean vectors associated by e with a state that is an
element of a set of compatibles in a one-to-one fashion to the states in T . In particular, this
encoding preserves the compatibility classes structure captured by the encoding e∗.

Let κ∗ be the closed cover of compatibles of A∗ corresponding to κ. From the definition of
e and e∗, the elements of a compatible k∗ ∈ κ∗ are all assigned the same single code, and every
compatible k∗ of κ∗ receives a distinct code. By Corollary 6.2, κ∗ is a partition. Then, we may
apply the results of Theorem 6.2 to A∗, and conclude that e∗ is a valid state encoding of A∗.
Since A∗ is an augmentation of A (by Theorem 6.1), and since the encoding e generates e∗, e
is a valid state encoding of A.

Let us illustrate the method proposed by the Theorem 6.3 through an example.

Example 6.3 (Non-functional, non-injective assignment) We refer here to the 5-state
fsm described in Table 6.1 during the presentation of Example 6.1 in page 85. There we
extracted the following 4-element closed cover of compatibles from the machine description:

κ = {{s, t}, {t, u}, {v}, {x}}.

6.4. VIOLATION OF SM CONSTRAINTS BY INPUT CONSTRAINTS 91

Table 6.5: A functional, injective assignment for closed cover κ of example 6.3

state code

{s,t} 00
{t,u} 01
{v} 10
{x} 11

Let us build an encoding for κ, ε : S −→ B2 according to step 1 of the theorem. One
possibility is presented in Table 6.5.

Note that this assignment is functional, injective, and has minimum length. After that, we
build the final assignment for S, the state set of the machine, according to the step 2 of the
Theorem. The result appears in Table 6.6.

Table 6.6: A non-functional, non-injective assignment for the state set S of example 6.3

state code

s 00
t 0-
u 01
v 10
x 11

This is a valid assignment of S according to Theorem 6.3, and the encoding is neither
functional nor injective.

Thus, from Theorem 6.3 we conclude that the use of non-functional, non-injective state
assignments allows the consideration of state minimization in its full extent.

6.4 Violation of sm Constraints by Input Constraints

In this Section and the next one, we will investigate the relationship between the sm constraints
and the input constraints. From the study of the relationship between these two kinds of
constraints we may draw important information concerning their feasibility, i.e. the possibility
or not of finding valid solutions of a constrained encoding problem by considering a given set
of constraints. The compatibility among constraints may be analyzed according to various
points of view. We are interested here in verifying the conditions under which some constraints
do not admit that other constraints be considered as well. Determining this relationship is
fundamental to generate a feasible set of constraints prior to looking for a solution of the
constrained encoding problem.

Before presenting the theorems, let us remember from Chapter 5 that a sa full input con-
straint ({si}, {sk}) is satisfied iff after encoding, the set of state codes for {si} is contained in
the satisfying set Ci of a cube and Ci does not intersect any code of some state in {sk}. This
fact is used in the proof of the theorems.

92 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

Theorem 6.4 (Incompatibility constraints non-violation) Given a finite state machine
A = 〈I, S,O, δ, λ〉, if two states s, t ∈ S are incompatible, any valid state encoding that re-
spects the whole set of full input constraints generated by symbolic minimization of a cube table
describing A assigns disjoint codes to s and t.

Proof. The result of the symbolic minimization process is a cube table that also represents A.
Thus, we know that every specified entry of a flow table describing A will be considered in some
row of the minimized cube table. To guarantee disjoint codes to s and t by respecting a set of
full input constraints, it suffices that one of these constraints contains only one of s, t. Since
(s, t) ∈ ι, the incompatibility relation of A, we know from the state compatibility definition
that

∃i ∈ I such that either δ(i, s), δ(i, t) are specified and

δ(i, s) �= δ(i, t)

or λ(i, s), λ(i, t) are specified and

λ(i, s) �= λ(i, t).

In either case, there is an impossible symbolic grouping of s and t in the i−th column of the
flow table. Thus, among the full input constraints that consider this column, there is at least
one where s and t do not appear simultaneously.

The intuitive interpretation of the above proof is quite easy. The proof of the Theorem arises
from the observation that there is only two flow table column configurations that make s and
t incompatible: either s and t assert distinct output values in a given column, or s and t assert
distinct, incompatible states in some column. Knowing that symbolic minimization groups
states only if they assert the same next state and/or output value, the proof is immediate.

The importance of theorem 6.4 is clear. It shows that symbolic minimization results cannot
violate either full or elementary incompatibility constraints derived from the structure of an
fsm. Hence, any encoding method that respects the whole set of input constraints derived from
symbolic minimization is guaranteed to respect all constraints in ι. Yet, some sa constrained
methods based on input constraints satisfaction explicitly include additional constraints to avoid
that distinct states be assigned identical codes [103, 26]. We call these injectivity constraints2,
since they ensure that the state assignment ξ is one-to-one or injective. These constraints have
the same form as face embedding constraints, i.e. ({si}, sk), but the first element of the pair
representing it is always a singleton.

A valid subset of covering constraints is always respected by any sa method generating valid
state encodings for fsms, since every state is assigned a code. Thus, covering constraints may
be disregarded during the use of a simultaneous strategy for solving the sm and sa problems.

Now, suppose that there is a set of face embedding constraints generated by symbolic
minimization, and leading to intersecting codes for two distinct states. After the presentation
of Theorem 6.4 and the observation about covering constraints in the last paragraph, the only
sm constraints that can be violated by this set as a whole are the compatibility constraints and
the closure constraints. Hence, we may already precise that if we consider machines without

2In [103], the authors call it uniqueness constraints, while in [26] the concept is modeled using the so-called
fundamental dichotomies.

6.5. VIOLATION OF INPUT CONSTRAINTS BY SM CONSTRAINTS 93

closure constraints, the addition of injectivity constraints can have only one consequence, which
is to avoid valid state minimization to occur automatically during the encoding process. Then,
we must look for a better technique to consider the injectivity constraints in our case, if this is
needed at all.

Any reasoning concerning the injectivity constraints must involve the analysis of the rela-
tionship between input and closure constraints, which we consider in the next theorem.

Theorem 6.5 (Closure constraints violation) Given an fsm A = 〈I, S,O, δ, λ〉, if two
states s, t ∈ S are conditionally compatible, any encoding that respects the whole set of full
input constraints generated by symbolic minimization of a cube table of A, assigns disjoint
codes to s and t.

Proof. To guarantee disjoint codes to s and t by respecting a set of input constraints, it suffices
that one of the constraints contains only one of these states. Since (s, t) is a conditionally
compatible pair, ∃u, v ∈ S, u �= v such that ({s, t}, {u, v}) ∈ σ, with σ being the closure
relation of A. In this case, symbolic minimization guarantees that

∃i ∈ I such that either δ(i, s) = u, δ(i, t) = v

or δ(i, s) = v, δ(i, t) = u.

Thus, no symbolic grouping of s and t is possible in the i−th column of the flow table. Obviously,
among the face embedding constraints associated with this column there must be at least one
constraint where s and t do not appear simultaneously.

Theorem 6.5 shows that the input constraints resulting from symbolic minimization can-
not violate any elementary closure constraint derived from the structure of an fsm either.
The extension of theorems 6.4 and 6.5 to non-elementary forms of incompatibility and closure
constraints is immediate and shall not be discussed here.

The conclusion we arrive at by the combination of the results of theorems 6.4 and 6.5 is that
the injectivity constraints are useless, as long as attention is restrained to methods that respect
all input constraints generated by disjoint minimization. We may even state that their use can
only worsen the quality of a state assignment, since they prevent valid state minimization to
occur. Another conclusion we may draw from these theorems is that we may get some state
minimization out of an encoding based only on input constraints satisfaction. In this case,
however, the merging derives from a particular type of relation, which is the total compatibility
between states. In this sense, the minimization we obtain is in fact a weaker form than that
obtainable by considering the full set of sm constraints.

6.5 Violation of Input Constraints by sm Constraints

We demonstrated in the last Section that a set of input constraints produced by disjoint mini-
mization violates neither incompatibility nor closure constraints. A question we want to answer
now is whether a similar condition holds in the opposite direction. In other words, we want to
verify if the sm constraints may violate some input constraint, thus destroying the certitude
of keeping the bounds derived from the latter. We will see that this is indeed the case. After

94 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

showing how this is possible, we delimit the conditions under which these violations may occur,
or conversely, describe how to avoid that the violations jeopardize the quality of state encoding
techniques.

We show that sm constraints may lead to violation of an initial set of input constraints
through the presentation of a small, yet significant example.

Example 6.4 (Input constraints violation) Let A = 〈I, S,O, δ, λ〉 be a finite state ma-
chine where I = O = B, S = {a, b, c, d}, and where δ and λ are given by the flow table in
Figure 6.2(a).

 0 1

 a d,1 c,0
 b d,- a,0
 c d,0 a,0
 d c,1 b,1

 (d)

 0 1

 a d,1 c,0
 b d,- a,0
 c d,0 a,0
 d c,1 b,1

 (a)

 Cube table

I dcba dcba O Minimized cube table

0 0001 1000 01 I dcba dcba O
0 0010 1000 11
0 0100 1000 10 0 0011 1000 01
0 1000 0100 01 0 0110 1000 10
1 0001 0100 10 0 1000 0100 01
1 0010 0001 10 1 0001 0100 10
1 0100 0001 10 1 0110 0001 10
1 1000 0010 01 1 1000 0010 01

 (b) (c)

Flow table Input constraints

Figure 6.2: Flow table, cube table, minimized cube table and full input constraints for fsm A

After transforming the flow table into a mixed binary and positional cube table (Fig-
ure 6.2(b)), we submitted the machine description to the program espresso-mv [99] for sym-
bolic minimization. The enumeration order used for the positional cube scheme encoding of the
state set in the second and third groups of columns in Figure 6.2(b) is the alphabetic order, from
right to left in each column. The result of the symbolic minimization appears in Figure 6.2(c),
where the second column contains a representation of the face embedding constraints. Each 1
in a Boolean vector in this column implies that the associated state is in the first coordinate
set of a pair ({si}, {sk}) representing the full input constraint.

The full input constraints

{({a, b}, {c, d}), ({b, c}, {a, d}), ({d}, {a, b, c}), ({a}, {b, c, d})},

are depicted again in Figure 6.2(d) as groups of flow table entries. Turning the attention
to the sm problem, we observe that there is only a single pair of compatible states in machine
A, namely b and c. A closed cover of compatibles is immediately extracted from the machine,
namely {C1 = {a}, C2 = {b, c}, C3 = {d}}. We may now build a minimization of A based on
this closed cover. This machine is A′ = 〈I, S ′, O, δ′, λ′〉, where S ′ = {a, bc, d}, and δ′ and λ′ are
given by the flow table in Figure 6.3(a).

The symbolic minimization procedure applied to machine A is repeated for A′, to gener-
ate its face embedding constraints. Figure 6.3 illustrates the process. Machines A and A′

have generated six and five full input constraints, respectively. We see that there is a direct
relationship between the two sets of constraints, conditioned only by the merging of states.

6.5. VIOLATION OF INPUT CONSTRAINTS BY SM CONSTRAINTS 95

 0 1

 a d,1 bc,0
 bc d,0 a,0
 d bc,1 bc,1

 (a)

 0 1

 a d,1 bc,0
 bc d,0 a,0
 d bc,1 bc,1

 (d)

 Cube table
 Minimized cube table
I dbca dbca O
 I dbca dbca
0 00 1 10 0 01
0 01 0 10 0 10 0 00 1 10 0 01
0 10 0 01 0 01 0 01 0 10 0 10
1 00 1 01 0 10 - 10 0 01 0 01
1 01 0 00 1 10 1 00 1 01 0 10
1 10 0 01 0 01 1 01 0 00 1 10

 (b) (c)

Flow table Input constraints

Figure 6.3: Flow table, cube table, minimized cube table and full input constraints for fsm A′

Intuitively, we note that all but two constraints have kept the same ‘amount of information’
about the original machine, changing only the form of presenting this information. The two
constraints whose information contents changed illustrate the two phenomena that state merg-
ing may cause, namely constraint splitting and constraint merging. As an example of constraint
splitting, let us observe the face embedding constraint in the first line of Figure 6.2(c). The
merging of states b and c has eliminated the output don’t care in one of the flow table entries,
preventing one of the original constraints to continue to exist. On the other hand, the same
state merging may allow constraints to merge, as is the case with the third and sixth lines of
Figure 6.2(c), which become the third line of Figure 6.3(c).

Both constraint merging and constraint splitting cause changes in the number and form of
the input constraints. Constraint merging constitutes a desirable condition, since it reduces
the bounds on the final size of the implementation. Constraint splitting, however, may cause
problems if their presence forces an increase in the cardinality of the initial set of face embedding
constraints. Once state merging necessarily reduces the size of the flow table, we could reason
that an increase in the number of input constraints after state minimization is an unlikely
situation. Nevertheless, the next example shows that this reasoning does not account for the
general situation.

Example 6.5 (Increase in input constraints) Let A = 〈I, S,O, δ, λ〉 be an fsm where I =
B2, S = {a, b, c}, O = B, and where δ and λ are given by the flow table in Figure 6.4(a).

We apply the same steps from example 6.4, transforming the flow table in a mixed binary
positional cube table (Figure 6.4(b)), submitting the machine description to espresso–mv for
disjoint minimization (Figure 6.4(c)), and depicting the face constraints in Figure 6.4(d).

Again, there is only a single pair of compatible states in machine A, namely (a, b). A closed
cover of compatibles is immediately extracted from the machine, namely {C1 = {a, b}, C2 =
{c}}. Based on this closed cover, we build a minimization of A. The new fsm is A′ =
〈I, S ′, O, δ′, λ′〉 where S ′ = {ab, c}, and δ′ and λ′ are given by the flow table in Figure 6.5(a).

Machine A′ undergoes the same symbolic minimization procedure as machine A, in order to
generate its face embedding constraints. Figure 6.5 illustrates the process. Machines A and A′

have thus generated five and six input constraints, respectively, showing that state reduction

96 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

 Cube table

I cba cba O

01 010 100 10
01 100 100 10
00 001 100 01 Minimized cube table
00 010 100 11
00 100 100 10 I cba cba O
10 001 100 01
10 010 100 01 10 100 001 10
10 100 001 10 11 100 010 01
11 001 010 10 11 011 010 10
11 010 010 10 -0 011 100 01
11 100 010 01 0- 110 100 10

 (b) (c)

 01 00 10 11

 a -,- c,1 c,1 b,0
 b c,0 c,- c,1 b,0
 c c,0 c,0 a,0 b,1

 (d)

Input constraints

 01 00 10 11

 a -,- c,1 c,1 b,0
 b c,0 c,- c,1 b,0
 c c,0 c,0 a,0 b,1

 (a)

Flow table

Figure 6.4: Flow table, cube table, minimized cube table and full input constraints for fsm A

Cube table

I cab cab O Minimized cube table

01 01 10 10 I cab cab O
01 10 10 10
00 01 10 01 11 10 01 01
00 10 10 10 01 11 10 10
10 01 10 01 10 10 01 10
10 10 01 10 11 01 01 10
11 01 01 10 -0 01 10 01
11 10 01 01 0- 10 10 10

 (b) (c)

 01 00 10 11

 ab c,0 c,1 c,1 ab,0
 c c,0 c,0 ab,0 ab,1

 (d)

Input constraints

Flow table

 01 00 10 11

 ab c,0 c,1 c,1 ab,0
 c c,0 c,0 ab,0 ab,1

 (a)

Figure 6.5: Flow table, cube table, minimized cube table and full input constraints for fsm A′

6.6. CONFLICTS WITHIN AND WITH OUTPUT CONSTRAINTS 97

can indeed increase the number of input constraints.

The result obtained in Example 6.5 is very important. It tells that performing state mini-
mization before state assignment may increase the number of input constraints derived from a
minimum cube table obtained with symbolic minimization. The method we propose in Chap-
ter 12 allows considering of the sm constraints without incurring in such violations.

6.6 Conflicts within and with Output Constraints

Symbolic minimization techniques generate a feasible set of full input constraints for an fsm
represented as a cube table. The sm constraints can all be obtained at once from the com-
patibility table method of Paull and Unger [91]. In this Section, we depict some relationships
between the output constraints and the other sm and sa constraints. De Micheli proposed a
method that automatically builds up a feasible set of input and dominance constraints in [40]
(see Section 5.4.2, for more details), but the method, although efficient, does not provide good
solutions. The alternatives for output constraints generation depicted in Chapter 5 produce
constraints that may conflict with the input and sm constraints. Indeed, all these methods
generate output constraints separately from the other constraints. Since none of the available
output constraints generation methods are adequate for our purposes, we treat the conflicts
related to output constraints differently from the conflicts between input constraints and sm
constraints. While the results of the previous Section regarded how a feasible set of full input
constraints interact with individual sm constraints, the discussion here focuses on the conflicts
between individual output constraints and individual input and sm constraints.

Another distinction between output constraints and the others is that the former ones are
sensitive to the particular values of the encoding, and not only to the fact that these values
are distinct or not. Any encoding Ξ of a set S respecting a feasible set of constraints F ,
and containing only input or sm constraints, can be exchanged by an encoding generating
exactly the complement of each code generated by Ξ, for each element of S. This new encoding
automatically respects all constraints in F , which is not necessarily true if output constraints
are part of F .

6.7 Conflicts among Output Constraints

It should be clear that output constraints may conflict among themselves. This never happens
with input constraints, for instance, where there is always an encoding satisfying a set of input
constraints, for a code length that is large enough.

Example 6.6 (Dominance constraints) Given an fsm A = 〈I, S,O, δ, λ〉, an encoding Ξ of
S, and two states s, t ∈ S, suppose that (s, t), (t, s) ∈ µ, i.e. the dominance relation on S under
Ξ. Then, if s and t are incompatible states, we see that the dominance relations cannot both
be satisfied by any valid encoding of S, since they imply that s and t must receive identical
codes under Ξ. If the states are compatible, on the other hand, this must be made explicit by
adding to the same set of constraints a pair (s, t) from θ, i.e. the compatibility relation of A.

98 CHAPTER 6. RELATIONSHIP AMONG SM AND SA CONSTRAINTS

Globally, this case implies also that any closed cover of compatibles considered in the encoding
must have states s and t either together, or both absent in every compatible. Otherwise they
risk receiving distinct codes, which would violate at least one of the dominance constraints.
Also, in order to satisfy the two dominance constraints at once, no input constraint separating
s and t may be satisfied. In general, admitting (s, t), (t, s) ∈ µ is not a good choice, because of
all the additional restrictions it implies.

Example 6.7 (Disjunctive constraints) Given an fsm A = 〈I, S,O, δ, λ〉, an encoding Ξ
of S and three states s, t, u ∈ S, suppose that (s, {t, u}), (t, {s, u}) ∈ χ, i.e. the disjunctive
relation on S under Ξ. Then, if s and t are incompatible states, we see that the disjunctive
relations cannot both be satisfied by any valid encoding of S, since they imply that s and t
must receive identical codes under Ξ. All other observations made in the previous example are
valid mutatis mutandis for disjunctive constraints. Again, admitting (s, {t, u}), (t, {s, u}) ∈ χ
is not generally a good choice, because of all the additional restrictions it implies.

The distinct output constraints may also conflict among them.

Example 6.8 (Dominance × disjunctive) Given an fsm A = 〈I, S,O, δ, λ〉, an encoding
Ξ of S, and three states s, t, u ∈ S, suppose that (t, s) ∈ µ and (s, {t, u}) ∈ χ. This implies
that s and t must receive identical codes under Ξ, just as in the Example 6.7. This situation
should accordingly be avoided. On the other hand, suppose that (s, t) ∈ µ and (s, {t, u}) ∈ χ.
The dominance constraint is then redundant, since respecting the disjunctive constraint implies
respecting it automatically.

Other less obvious incompatibilities among constraints may occur. Suppose a full input
constraint ({si}, {sk}) ∈ φ, an input relation with s, t ∈ {si}, u �∈ {si}, and a disjunctive
constraint (u, {s, t}) ∈ χ. These two constraints can never be satisfied simultaneously, since
any code assigned to u satisfying the disjunctive relation would cause the face generated by
{si} not to evaluate to 0 for the code of u, which violates the input constraint.

Given that not all constraints are obtained by a single unified method, the production of
a feasible set of constraints is a fundamental step prior to the constraints satisfaction phase of
the solution of the sm and sa problems using a simultaneous strategy. Additionally, a special
care has to be taken while considering the output constraints, due to the conflicts they may
insert in the constraint set.

Chapter 7

Conclusions on Constraint Nature and
Generation

The objective of Part II has been to introduce and discuss the constraints describing thoroughly
both the sm and sa problems, as well as the techniques available to generate these constraints.
None of the techniques showed here is new. What is original in the present work is the con-
straint interpretation proposed, which consists in decomposing constraints into its constituent
parts and modeling the sets of elementary constraints thus obtained as binary relations. Also,
the contents of Chapter 6 are fundamentally new, and provide the theoretical basis for the rest
of this thesis. At least one work has already suggested the use of non-functional, non-injective
encodings to account for state minimization and state assignment issues at once [6], but no
theoretical justification was available for this choice in the referred work. Finally, to the au-
thor knowledge, the partition-κ method of state splitting into disjoint compatible classes is an
original contribution as well.

From the presentation of constraint generation techniques in Chapters 4 and 5, we may
conclude that:

1. the elementary sm constraints generation relies on polynomial time/space complexity
algorithms, and it is thus considered an easy and cost-effective task;

2. the complex part of the sm problem, on the other hand, is the generation of a closed cover
of compatibles from the elementary constraints, where a non-polynomial time complexity
covering-closure problem has to be solved;

3. the sa constraints generation is intrinsically a hard task, whose time complexity is non-
polynomial in the worst case;

4. in practice, the sa input constraints can be efficiently generated by multiple-valued min-
imizers that, allied to the upper bounds they provide on the two-level cube table row
cardinality of a solution, gives an adequate starting point for the research of optimal
encodings;

5. no acceptable input/output constraints generation technique is available, and even the
ones available do not offer a degree of efficiency adequate to our requirements. The
search for such efficient techniques is considered out of the scope of this work, but the

99

100 CHAPTER 7. CONCLUSIONS ON CONSTRAINT NATURE AND GENERATION

developments we propose in the next Parts take output constraints into account, in hope
that efficient methods for their generation will be available in the future.

Theorem 6.3 showed that assigning codes that are sets of Boolean vectors to states in an
fsm allows the simultaneous consideration of sm and sa constraints in the scope of a state
encoding method. However, such an encoding is certainly incomplete from the point of view of
a hardware implementation, where only binary information is allowed to be treated. Thus, such
an encoding cannot be but an intermediate step before layout generation, where a complete
encoding is required. The solution of the problem posed by such incomplete encodings relies
on the combinational logic minimization step subsequent to encoding. We know [89] that
incompletely specified Boolean codes are treated since long by two-level, as well as multiple-
level minimizers, and that these tools are quite efficient nowadays. In fact, using codes that
are sets of Boolean vectors, and not only single Boolean vectors, to encode states increases
the degrees of freedom during logic minimization. Minimization tools can, in this case, pick
the Boolean vectors more adequate to solve the combinational problem. This is advantageous,
since the cost functions employed by these lower abstraction level tools model more realistically
the final implementation.

Example 6.5 demonstrated an important result, which is that executing state minimization
before state assignment may provoke an increase in the upper bound predicted by symbolic
minimization. We demonstrate, in Chapter 9, that it is possible to respect the original bound
and still consider state minimization. Later, in Chapter 12, we propose a method that respects
the demonstrated result.

In the specific case of this work, the encodings we are going to generate will consider
an optimal two-level implementation of an fsm. We have already discussed efficient two-
level representations of discrete functions in Chapter 3, all of them derived from the use of
cube functions. Accordingly, we will limit attention from now on to cube encodings. Cube
encodings, as stated in Definition 5.1, use codes that are satisfying sets of some switching cube
function. In this way, we limit attention to codes that can be represented by cubes. This choice
grants us with the possibility of relying on very effective combinational two-level minimization
programs to perform the final assignments from the cube encoding we generate. Examples of
such programs are mcboole [30] and espresso[16].

Part III

A Unified Framework for SM and SA
Constraints

101

Chapter 8

Pseudo-Dichotomies

The mathematical concept of partition has been associated to the synthesis of sequential ma-
chines for a long time. In Chapter 1, we have mentioned several works using partitions to
model sequential machines concepts. The structure theory of Hartmanis and Stearns, for in-
stance, relies mostly on the manipulation of partitions to encode, decompose and minimize the
number of states in sequential machines [63]. Tracey redefined the partition concept in [111],
to adapt it to his need of an algebraic structure to model the state assignment problem for
asynchronous machines. In order to avoid the conflict with the well-established mathematical
definition, Unger rebaptized the structure suggested by Tracey with the name partial state di-
chotomy [113]. The abbreviated form dichotomy is the term most generally accepted today to
describe this concept. In another work, Ciesielski and Davio suggested a terminology, which is
more consistent with the meaning of the word ‘dichotomy’ in the English language, and which
clearly expresses the relationship between dichotomies and partitions [25]. They call Unger’s
partial state dichotomies pseudo-dichotomies, and in the special case where a pseudo-dichotomy
is equivalent to a partition, it is called a dichotomy. This is the terminology we assume herein.

Several publications reported the use of dichotomies to model the state assignment problem
in both asynchronous [113, 60, 106] and synchronous [119, 26, 103, 106] fsms.

In this Chapter, we give a definition of the pseudo-dichotomy concept that is showed to
be more comprehensive than that in previous approaches. This extended concept is applied in
this work to the resolution of the sm and sa problems only. However, it was devised to allow
the application of the notion to the solution of more general problems, such as the Boolean
constrained encoding problem, to be stated in Part IV.

In the next Section, we discuss the extended pseudo-dichotomy definition. In Section 8.2,
we provide a first insight on the relationship between pseudo-dichotomies and the assignment
of binary codes to symbols, by means of an example.

8.1 The Pseudo-Dichotomy Definition

The definition of pseudo-dichotomies presented below has a close connection with the concept
of partition, as defined in Section 3.1. A pseudo-dichotomy is a concept useful to model
constraints in Boolean encoding problems. In general, these constraints consist on indications
to separate or not to separate codes of a set of symbols. Two-block partitions are adequate to

103

104 CHAPTER 8. PSEUDO-DICHOTOMIES

model such a behavior. A two-block partition may be interpreted as an indication to make bits
on one block distinct from the bits in the other block (thus separating the codes of symbols in
distinct blocks). However, the partition definition implies that all elements of the symbol set
be contained in some block. This can be relaxed by taking partitions of subsets of the symbol
set. On the other hand, the rules to use such partition-like structures may also vary from a
problem to another. An encoding constraint may tell that symbol codes have to be separated
in at least one bit position of the encoding, like the input constraints; they may require that
codes never be separated, like in the case of compatible states in an fsm, and so on.

We propose here the pseudo-dichotomy as a two-part structure: one two-block partition-
like structure, to model the symbol separation characteristic of the constraint, and a general
switching function to tell how to satisfy the requirements of specific constraints with a given
symbol separation characteristic. Follows the formal definition and a brief discussion of the
reasons to propose such a general concept. Section 8.2 will present an example to illustrate one
application of pseudo-dichotomies.

Definitions 8.1 (Pseudo-dichotomy) Let S = {s0, . . . , sn−1} be a set, the elements of which
are called symbols, and B = {0, 1}. A pseudo-dichotomy (pd) of S is an algebraic structure
∂ = 〈p, t〉 where p is the graph of a binary relation 〈B, S, p〉, with

p : B −→ S such that p(0) ∩ p(1) = ∅,

and t is a switching function

t : Bn −→ B.

Function t is called the satisfaction function of ∂. The sets p(0) and p(1) are called the
0–side and the 1–side of ∂, respectively.

A dichotomy of S is a pd ∂ = 〈p, t〉 such that

p(0) ∪ p(1) = S.

This binary relation with graph p is, in this case, a partition. A seed pseudo-dichotomy

(spd) is a pd ∂ = 〈p, t〉 where either

| p(0) | = 1 or | p(1) | = 1.

Given a Boolean vector x = xn−1 . . . x0, a pd ∂ is satisfied by x iff t(xn−1, . . . , x0) = 1. A
flexible pseudo-dichotomy is a pd where

∀xn−1 . . . x0 ∈ Bn, t(xn−1, . . . , x0) = t(xn−1, . . . , x0).

A fixed pseudo-dichotomy (fpd) is a pd ∂ = 〈p, t〉 where the satisfaction function t is the
cube function whose three-valued cube switching representation is as follows:

1. if si ∈ p(0), position xi of the cube representation is 0;

8.1. THE PSEUDO-DICHOTOMY DEFINITION 105

2. if si ∈ p(1), position xi is 1;

3. otherwise, position xi is -.

Two pds ∂1 = 〈p1, t1〉, ∂2 = 〈p2, t2〉 of S are compatible iff there is at least one Boolean
vector x = xn−1 . . . x0 such that t1(x) = t2(x) = 1. A set of pds is compatible if every two pds
in it are compatible. The pd ∂1 covers ∂2 iff

∀x ∈ Bn, t2(x) = 1⇒ t1(x) = 1.

A set of pds ∆ covers a pd ∂ iff it contains a pd that covers ∂.

We represent pds using the value vector notation presented in Chapter 3, which we employ
to characterize binary relation graphs, instead of discrete functions only. Given a pd ∂ = 〈p, t〉
on the set of symbols S, ∂ may be described by the value vector [p(0) p(1)], which contains the
images of the elements 0 and 1 by the binary relation whose graph is p.

Observe that in a dichotomy ∂ = 〈p, t〉, p is the graph of a partition. On the other hand,
the binary relation graph p of a pd ∂ = 〈p, t〉 is not necessarily the graph of a partition of S,
but instead the graph of a partition of a subset of S.

In most applications, useful pds have non-empty 0–sides and 1–sides. However, the defini-
tion does not impose this condition. In at least one application found in the literature [106],
the use of pds with one of the sides empty can be advantageous. This application arises in a
problem called constrained via minimization [1], an optimization problem found in multilayer
routing of integrated circuits and printed circuit boards.

8.1.1 Generality of the Pseudo-Dichotomy Definition

Consider an assignment of a set of symbols with sets of Boolean vectors. The constraints this
mapping must respect are relationships among the symbols, as pointed out in Part II. In this
way, they may be expressed as conditions to be respected among the symbols in some subset
of columns of the encoding. pds were defined to model a single one of these columns.

In view of this elementary character of pds, let us now examine the satisfaction function t of
a generic pd ∂ = 〈p, t〉 of a set S. Its interpretation is as follows. The domain of a satisfaction
function t is the set of all binary assignments of length 1 to symbols in S. Function t evaluates
to 1 for every binary assignment that satisfies the pd, otherwise it evaluates to 0. In this
way, pds with a same binary relation p can be satisfied in different ways, if their satisfaction
functions t are distinct. This fact allows that different kinds of constraints be accounted for
more easily.

We note that the satisfaction function is not present in previous definitions of the pd concept.
Actually, several of the first published applications dealt with just one kind of constraint at
a time [111, 119]. As the need to manipulate other constraint kinds arose, the proposal of
ad hoc frameworks took place to deal with the “anomalous” behavior of the new constraints
[60, 26, 103]. For example, Ciesielski et al [26] and Saldanha et al [103] independently proposed
the fixed pd extension to allow the modeling of the sa output constraints.

106 CHAPTER 8. PSEUDO-DICHOTOMIES

Our proposal breaks a pd into two parts: the encoding part, expressed by a partition-like
binary relation with graph p, and the satisfaction part, characterized by the switching function
t. This approach has the merit of being general. For instance, it allows the use fpds easily,
since they are a more general case, while flexible pds are a special case of the concept. More
examples of the enhanced malleability of our pd definition will appear in Chapter 9, during the
discussion of constraints representation with pds.

The consideration of future constraint kinds using the above pd definition is straightforward.
It suffices to define the conditions under which such a new constraint is satisfied, generating a
new type of function t for all pds of this kind.

Finally, we must point out that a distinction exists between pd satisfaction and constraint
satisfaction. Constraints are the components into which we decompose an encoding problem,
while pds are the elementary components into which we decompose the constraints. Constraint
satisfaction implies, in general, the simultaneous satisfaction of a set of pds. In Chapter 9, this
distinction will become clear as we discuss constraint representation and satisfaction using pds.
In Chapter 11, we will find a new general formulation of the encoding problem based on the
use of constraints. There, the terms constraint and constraint satisfaction are formally defined,
without connection with any specific encoding problem. Indeed, Chapter 11 will generalize the
constraint-based formulations advanced for the sm and sa problems in Part II.

8.2 Pseudo-Dichotomies and Encoding

In this section we provide a first illustration of the close relationship existing between pds and
encoding, by means of an example.

Fixed dichotomies may represent minterms, and fpds may represent cubes. As an example,
the solution of the sa problem is assumed here to be a cube encoding, whose domain is a
two-dimensional matrix, where rows correspond to state codes in the form of three-valued cube
representations, and columns correspond to encoding columns. One distinction between our
approach and all others constrained encoding methods we could find proposed in the literature
[26, 103, 105, 111, 113, 119] is that the cube matrix we generate contains unspecified (don’t
care) entries. In particular, all such constrained encoding methods obtain the solution matrix
by generating a set of fixed dichotomies, i.e. minterms. Our method generalizes the approach
by creating a set of fpds. Each fpd in our solution is mapped into a column of the solution
encoding as follows. States whose symbols appear on the 0–side (resp. 1–side) are assigned a 0
(resp. 1) value in the column associated to this fpd. States that do not appear in any side of
the fpd in question receive a don’t care - in the corresponding column. A justification for this
procedure, as well as a systematic method to convert cubes into pds and vice versa, is provided
in Chapter 12, during the presentation of the encoding method we propose.

Example 8.1 (Pseudo-dichotomies and encoding) To exemplify the mapping of final pds
into an encoding, we have used the prototype asstuce program, developed in the scope of the
present work, to generate a solution state assignment for machine lion9, one of the mcnc fsm
benchmark machines [118]. Table 8.1 reproduces the flow table for this machine.

8.2. PSEUDO-DICHOTOMIES AND ENCODING 107

Table 8.1: Flow table for machine lion9

state \ input 00 01 10 11

0 0,0 -,- 1,0 -,-
1 0,0 -,- 1,0 2,0
2 -,- 3,0 1,0 2,0
3 4,1 3,1 -,- 2,1
4 4,1 3,1 5,1 -,-
5 4,1 -,- 5,1 6,1
6 -,- 7,1 5,1 6,1
7 8,1 7,1 -,- 6,1
8 8,1 7,1 -,- -,-

The final fpds generated by the program, represented by their value vectors, are:

[{0,1,2,5,6,7,8},{3}], [{0,1,2},{3,4,5,6,7,8}], [{1,2,3,4,5},{7,8}],
[{1,2,3,4},{6,7,8}], [{1,2,3},{5}].

These value vectors represent the partition-like binary relations p of the pseudo-dichotomy
definition. Note indeed that in each of the value vectors above no symbol appears in both
sides of the vector. As for the t switching functions, they are determined here as follows, for
every pseudo-dichotomy. Consider each of the state symbols as Boolean variables. Then, the
functions t are simply switching cube functions with as many literals as there are symbols in the
corresponding value vector. Symbols on the 0-side are associated with complemented literals
and symbols on the 1-side to non-complemented literals. For instance, for the first value vector
we have t = 0 1 2 5 6 7 8 3 (satisfied by two distinct Boolean vectors from B9), and for the last
one, t = 1 2 3 5 (satisfied by thirty-two distinct Boolean vectors from B9).

State encoding PLA after minimization

 state code inputs outputs
 0 00--- 0---1-- 001100
 1 00001 01---0- 110000
 2 00001 11----0 010100
 3 11001 ---0--- 000010
 4 -100- -0-1--- 010001
 5 010-0 -1-1--- 000011
 6 01-1- -1---1- 011100
 7 0111-
 8 0111-

 (a) (b)

Figure 8.1: State encoding and final pla for machine lion9

The mapping describing the state assignment appears in Figure 8.1(a), under the form
of a truth table. Each output column corresponds to one of the fpds depicted above, and
are associated with the satisfying set of some function t represented as a three-valued vector.

108 CHAPTER 8. PSEUDO-DICHOTOMIES

Figure 8.1(b), on the other hand, shows the personality matrix of the pla that implements
the combinational part of lion9. This pla was obtained after encoding states in the original
machine description, extracting the resulting combinational part and submitting it to logic
minimization using the program espresso, tasks that can all be accomplished directly by our
prototype implementation, as it will be discussed in Chapter 14.

The personality matrix is described in Figure 8.1(b) by a binary cube table a format defined
in Section 3.3.1. This format is the output generated by espresso, except for the header lines,
which have been omitted. In fact, this is the default output format, called the fd espresso
format, as explained in Appendix A. Following the format conventions, the first bits to the
left in the input part correspond to primary input values (in our Example, the first two bits),
and the last to the present state value (the last five bits of the input part in Figure 8.1(b)).
Accordingly, the first bits to the left in the output part stand for next state values, and the
rightmost bits correspond to primary output values.

Chapter 9

Pseudo-Dichotomies and Constraint
Representation

Constraints describing both the sm and sa problems under the point of view of fsm encoding
were studied in Part II, together with the relationship among them. An algebraic structure
capable of modeling all these constraint kinds has been defined in Chapter 8, the pseudo-
dichotomies. The current Chapter is dedicated to show how each of the relevant constraint
kinds highlighted in Part II can be mapped into a set of pds. The objective of this mapping is
to reduce the separately formulated constraints to a unique representation that can be efficiently
manipulated. This representation is what we call the unified pseudo-dichotomy framework. The
framework we propose occupies a central place in this thesis, since its development allowed the
application of constrained encoding techniques to consider the two problems simultaneously.

In the rest of this Chapter, we consider given an fsm A = 〈I, S,O, δ, λ〉, as well as a set of
binary encoding relations defining all elementary constraints to be considered in a solution of
the sm and sa problems. References to the encoding Ξ, as stated in Chapter 7, imply the use
of cube encodings. Additionally, we assume that such cubes are noted using the three-valued
representation (Definition 3.22).

In Section 9.1 we will map each elementary constraint kind belonging to some relevant
relation into a set of pds carrying the same encoding data. After relating elementary constraints
to pds, we propose the unified pd framework. This proposition comprises the consideration
of how a feasible subset of elementary constraints is generated from the possibly conflicting
binary relations describing the sm and sa problems. By defining the unified framework below,
we will attain the integration of the sm and sa problems. As a matter of fact, the simultaneous
solution of both problems can be achieved by solving the problem posed by the pd framework.
This problem, which we call the two-level sm/sa problem, is stated formally in Chapter 11.

9.1 Representing Constraints with Pseudo-dichotomies

Consider all constraint kinds found during the search for a solution to the sm and sa problems.
These classes of constraints are as follows:

1. sm constraints:

109

110 CHAPTER 9. PSEUDO-DICHOTOMIES AND CONSTRAINT REPRESENTATION

(a) compatibility constraints and incompatibility constraints;

(b) closure constraints;

(c) covering constraints;

2. sa constraints:

(a) input constraints (or face embedding constraints);

(b) output constraints:

i. dominance constraints;

ii. disjunctive constraints;

The constraints above are sufficient to completely describe the sm and sa problems. We now
discuss their representation under elementary forms, using the pd concept. Each elementary
constraint kind is modeled by depicting the characteristics of the set of pds needed to represent
it, i.e. telling how to build the graph p of the binary relation and the satisfaction function t of
each pd ∂ = 〈p, t〉 in the set.

9.1.1 Representing sm Constraints

The modeling of the sm constraints is another of the original contributions of this thesis, since
to the authors knowledge, no application has ever devised their representation using pds for
synchronous implementations of fsms, even though this mapping is straightforward, as we will
see below.

First, compatibility and incompatibility constraints are complementary, and a choice can be
made to use one or the other, since using both is redundant. We have chosen to use compatibility
constraints, because in present machines the number of compatible states is typically much
smaller than the number of incompatible ones [118], with few exceptions. More important
than that, the compatibility constraints are needed anyway during the construction of the pd
framework, as we will see in Section 9.2.

Given a pair (a, b) ∈ θ, the state compatibility between a and b is modeled by one pd
∂ = 〈p, t〉, such that the graph p is represented by the value vector [{a}, {b}]. As for the
satisfaction function t, we know from the results of Chapter 6 that compatible states must be
encoded with intersecting codes, i.e. Ξ(a) ∩ Ξ(b) �= ∅. This corresponds to preventing that
in some encoding column we have either a 1 for the code of a and a 0 for the code of b, or
vice versa. For example, Ξ(a) = 010, Ξ(b) = 0− 0 is part of an encoding that satisfies the
compatibility constraint above, while Ξ(a) = 011, Ξ(b) = 0− 0 is not. Note that the function
t must ensure that the pseudo-dichotomy in this case is a flexible spd.

Solving the sa problem implies assigning a code to each state. In this way, the covering
constraints lose their relevance in a simultaneous strategy for solving the sm and sa problems.
They are accordingly ignored herein.

Closure constraints are similar in nature to the compatibility constraints. Consider a pair
({a, b}, {c, d}) ∈ σ. This elementary closure constraint is modeled by two flexible spds [{a}, {b}]
and [{c}, {d}] whose satisfaction functions are defined in the same way as for the elementary
compatibility constraint.

9.1. REPRESENTING CONSTRAINTS WITH PSEUDO-DICHOTOMIES 111

If a closed cover of compatibles is available, and it is expressed by a compatibility relation
and a closure relation, the closure relation is obviously redundant. Given a closed cover of
compatibles, decomposing its compatibles into elementary compatibility constraints is a trivial
task, and provides all necessary information about possible state merging situations. However,
our approach is to avoid the costly step of finding an optimal closed cover of compatibles. To
cope with this goal, the consideration of the closure constraints may be fundamental, as will
be discussed in Section 9.2.

9.1.2 Representing sa Constraints

The first sa constraints derived from synchronous fsms descriptions to be modeled with pds
were the input constraints [119]. Yang and Ciesielski showed in [119] that reinterpreting an
input constraint as a set of flexible spds is a natural way of allowing constrained encoding
techniques to be applied during the solution of the state assignment problem.

The input constraints generated by symbolic minimization are in the form of full input
constraints [43]. Let S = {0, 1, 2, 3, 4, 5, 6, 7, 8} be the state set of some finite state machine,
and let the pair ({0, 1, 2}, {3, 4, 5, 6, 7, 8}) be one such full input constraint extracted from a
symbolically minimized cube table of some fsm. To model this constraint with pds, we may
choose ∂ = 〈p, t〉 such that p = [{3, 4, 5, 6, 7, 8}, {0, 1, 2}] and t evaluating to 1 for column
encodings separating the codes of every two states in opposite sides of the pd. Notice that t
is the disjunction of the two minterms 111000000 and 000111111. This pd is satisfied iff one
of the two column encodings 111000000T or 000111111T appears in Ξ. It is clear that it takes
one whole column of Ξ to satisfy this pd alone. It is sufficient, but not necessary to satisfy
the full input constraint [119]. To alleviate the restrictions imposed on Ξ, we may instead use
the corresponding elementary input constraints in φ. In our example, the full input constraint
would then produce the following set of spds:

[{3}, {0, 1, 2}] [{4}, {0, 1, 2}] [{5}, {0, 1, 2}]
[{6}, {0, 1, 2}] [{7}, {0, 1, 2}] [{8}, {0, 1, 2}].

These spds may be satisfied separately, along several columns of the encoding. The satis-
faction function t is defined in the same way it was defined for the full input constraint, and
is the disjunction of a set of cubes which can be satisfied with more code possibilities than the
original satisfaction function. The construction of t is exemplified below.

Example 9.1 (The satisfaction function of input constraints) A full input constraint
can be represented by a pd having a satisfaction function equivalent to the disjunction of two
minterms. For an elementary input constraint, the satisfaction function becomes the disjunc-
tion of two cubes. The elementary input constraint ({0, 1, 2}, {7}), for example, corresponds
to a pd where p = [{7}, {0, 1, 2}], and where the satisfaction function t is the disjunction of
two cubes, which in the three-valued switching cube representation are 111 −−−−0− and
000 −−−−1−. The cube having xi = 1 if si ∈ p(1) is called the direct cube of t, while the
other is the reverse cube of t.

Ciesielski et al [26] and Saldanha et al [103] independently proposed similar approaches to

112 CHAPTER 9. PSEUDO-DICHOTOMIES AND CONSTRAINT REPRESENTATION

model output constraints with spds. They extended the basic flexible spd model presented in
[119] to allow the use of both fixed and flexible spds.

Output constraints, just as the fixed spds, are not “symmetric” with regard to the comple-
ment of Boolean vectors. Given two states a and b, a dominance relation a # b tells that the
code assigned to a must dominate the code assigned to b. Stated otherwise, in no column of
Ξ a can receive a value 0 if b receives a value 1. This can be translated into one single spd
∂ = 〈p, t〉, where p = [{a}, {b}], with the satisfaction function ensuring the dominance of Ξ(a)
over Ξ(b) in every valid encoding column. In [26, 103], the same constraints are modeled by
two fixed spds, one like we just explained, and another to ensure that the codes assigned to the
states a and b are distinct. In our case, this spd would have p = [{b}, {a}]. However, we have
showed through Theorems 6.4 and 6.5 that injective constraints are redundant in case all input
constraints are respected, and worse, they may prevent the obtainment of compatible codes.
Thus, we do not even need to generate them.

Given three states a, b and c, a disjunctive relation a = b ∨ c tells that the code assigned
to a must be the disjunction, or logic or of the codes assigned to b and c. As we did for the
dominance constraint, consider a bit by bit interpretation for this constraint type. In every
column where Ξ assigns 0 to the code of a, neither b nor c can be assigned 1, and in every
column where Ξ assigns 1 to the code of a, b and c cannot simultaneously be 0. Disjunctive
constraints can then be expressed by three distinct spds [{a}, {b}], [{a}, {c}] and [{b, c}, {a}].
The satisfaction function t must guarantee that the bit by bit interpretation is retained for
every valid encoding. Again, the same observation made about the injective constraints for
dominance relations may be applied here, mutatis mutandis.

9.2 The Pseudo-Dichotomy Framework

In Chapter 5 we stated the fsm assignment problem, of which sa is a part. The results of
Chapter 6 allowed us to extend the sa problem to consider the sm problem as well. The last
Section showed how to separately translate each relevant sm and sa constraint kind in terms
of pds. In order to solve simultaneously the sm and sa problems, two tasks are left to describe:

1. the selection of a compatible set of pds to be satisfied, which defines precisely the problem
to be solved;

2. the development of a pd satisfaction method to be applied to this compatible set.

The first task description is accomplished in this Section, while the second is the object of
Chapter 12.

We propose the organization of pds into a framework capable of representing all conditions
to be attained by the encoding. Some initial remarks are useful to explain the structure of this
framework. To satisfy one input constraint, one column of Ξ with the correct configuration
suffices. The other constraints, however, need to be verified across all columns of the encoding
simultaneously.

Definition 9.1 (pd framework) Consider an algebraic structure F = 〈Fl, Fg〉, where Fl, Fg

are sets of pds of a set S of symbols. An encoding Ξ of S satisfies F iff each element in Fl

9.2. THE PSEUDO-DICHOTOMY FRAMEWORK 113

is satisfied by at least one column of Ξ and each element in Fg is satisfied by every column of
Ξ. If an encoding that satisfies F exists, F is called a pd framework of S, and Fl and Fg are
called the local part and the global part of F , respectively.

From the definition of pd framework we see that the local part expresses conditions that
need to occur in some column of an encoding Ξ of S, while the global part collects conditions
that need to be verified by every column of Ξ. The definition is not dependent upon the specific
problem we are trying to solve, being applicable to a wide range of problems, as will be discussed
in Section 11.3. Assuming that we do not consider pds where the satisfaction function t(x) = 0
for every Boolean vector x, a special case of algebraic structure F = 〈Fl, Fg〉, where Fg = ∅,
is always a pd framework, because an encoding can always be found that satisfies the local
part alone. The reason for this statement is that pds in the local part need be satisfied by
one column of the encoding only. Thus, we can add columns to the encoding until all pds are
satisfied.

If it were guaranteed that no conflict could arise among the distinct constraints, the desti-
nation of the pds produced by the translation process of last Section into the framework would
be immediate to determine. The pds derived from the input constraints would go to the local
part, while all other constraints would be inserted in the global part. However, this is not the
general case, as can be deduced from the study of the relationships among constraint kinds in
Chapter 6. Thus, we need first a method to generate a feasible subset of constraints before
filling the local and global parts of the framework with the associated pds. Let us begin with
the local part.

9.2.1 Building the Local Part

The input constraints are fundamental, since they supply bounds on the product term cardi-
nality of the two-level hardware implementation solution of the sm and sa problems. However,
Theorem 6.5 demonstrated that the input constraints generated by symbolic minimization
may violate some of the closure constraints, preventing the occurrence of valid state merging
situations in the solution of the problem. If there is a way to keep the bounds of the solution,
while avoiding that compatible states be encoded disjointly, an ideal local part would then be
obtained. This is indeed the case if we use the following method.

Method 9.1 (Input constraints relaxation) Let A = 〈I, S,O, δ, λ〉 be an fsm, with θ be-
ing the compatibility relation graph of A, and φ the graph of an input relation on S. Then,

1 for each pair ({si}, sk) ∈ φ do
2 if there is (sl, sk) ∈ θ or (sk, sl) ∈ θ, such that sl ∈ {si}
3 then, eliminate sl from {si} in the pair ({si}, sk) ∈ φ;
4 if the resulting set {si} = ∅
5 then, eliminate the pair ({si}, sk) from φ;

Theorem 9.1 (Input constraints relaxation) Given an fsm A = 〈I, S,O, δ, λ〉, the com-
patibility relation graph θ of A, and an input relation graph φ on S, suppose that φ is the result
of the decomposition of the full face embedding constraints arising from symbolic minimization.

114 CHAPTER 9. PSEUDO-DICHOTOMIES AND CONSTRAINT REPRESENTATION

Apply the input constraints relaxation method to φ, obtaining a set of relaxed input constraints
φ′. Then, any state encoding Ξ′ of A that respects all relaxed input constraints in φ′ and all
compatibility constraints in θ, is a valid state assignment of A.

Proof. From Theorems 6.4 and 6.5, we know that respecting φ leads to an encoding Ξ that
assigns disjoint codes to incompatible states, as well as to conditionally compatible states.
We also know, from the same Theorems, that Ξ is a valid encoding. The input constraints
relaxation method eliminates all requirements to disjointly encode compatible states in φ, and
only these. The elimination of all such requirements is guaranteed by the use of the binary
relation graph θ in the method, which contains all information about compatible states. As for
the only part, suppose this is not true. Then, there must exist a pair ({si}, sk) ∈ φ such that
a state sj ∈ {si}, incompatible with sk, is eliminated in some step of the application of the
method. This would happen iff either (sj, sk) ∈ θ or (sk, sj) ∈ θ, which is impossible by the
construction of the compatibility relation graph θ.

Thus, only incompatible states are required to be separated by φ′, and assignment Ξ′ may
assign disjoint codes only to them, because it respects all compatibility constraints in θ. The
encoding Ξ′ thus assigns intersecting codes to every compatible in A. Also, the intersection
of codes of a set of states where at least one is not compatible with all others is the empty
set. This corresponds to an injective encoding of the set of maximal compatibles of A, a closed
cover of compatibles, which by Theorem 6.3 is a valid state encoding of A.

Corollary 9.1 (Bounds Preservation) The input constraints relaxation method does not in-
crease the upper bound on the row cardinality of the encoded cube table predicted by symbolic
minimization.

Proof. Bounds preservation is a direct consequence of the fact that requirements are suppressed
by the relaxation method, but no requirement is added to assign disjoint codes to states that
were present in the original face embedding constraints of φ. Input constraints may then be
changed or suppressed, but never created by the input constraint relaxation method.

The input constraints relaxation method corresponds to considering a closed cover of com-
patibles that is simple to determine, making a complex search for an optimal closed cover of
compatibles dispensable. Notice that not even the maximal compatibles generation needs to
take place. Also, since all compatible pairs are retained, the considered cover is automatically
closed, and the closure constraints may be ignored as well.

We could argue that better results might be obtained if the determination of an optimal
subset of closure constraints occurs during constraints generation. The following reasons may
be advanced against this statement. First, this would imply the search for an optimal closed
cover of compatibles, to furnish to the state assignment step. The immediate consequence of
such a choice is to greatly increase the complexity of the constraints generation step. Second,
this choice would be barely distinct of a serial strategy, where state minimization precedes
pure state assignment, since the final grouping of states would be predetermined before logic
minimization. In this thesis, on the other hand, we advocate the use of constraints derived
from sm to increase the degree of freedom of the subsequent logic minimization step. This

9.2. THE PSEUDO-DICHOTOMY FRAMEWORK 115

idea relies upon the fact that this step, being at a lower level of abstraction, works with more
realistic cost functions than state minimization, and may thus choose the grouping of states
more adequately. The benefits of considering simultaneously state minimization and assignment
derive thus, although only partly, from our simple choice of a trivially available closed cover of
compatibles.

A solution of intermediate complexity, not considered here, could be envisaged, which is to
devise heuristic techniques that start with all compatible pairs, and then try to eliminate “a
priori bad pairs” before applying the input constraints relaxation method, without violating
neither the “closedness” nor the “coverness” of the initial set of state pairs. In this case,
consideration of the compatibility relation graph θ and of the closure relation graph σ becomes
fundamental, because no compatible pair can be eliminated if some pair retained in the closed
cover implies it, otherwise the cover loses its closedness property. The generation of the local
part can be understood in practice with the help of an example.

Example 9.2 (Input constraints relaxation) Consider machine beecount, the fsm used
as case study in Chapter 2. There is a full input constraint in this fsm with the form
({0, 1, 3}, {2, 4, 5, 6}), according to Figure 2.2. Decomposing this constraint into the elementary
face embedding constraints of relation graph φ for this fsm, we obtain:

({0, 1, 3}, 2), ({0, 1, 3}, 4), ({0, 1, 3}, 5), ({0, 1, 3}, 6).

From the compatibility analysis for this machine, we know that the compatibility relation
graph θ is the set

{(0, 1), (1, 0), (0, 2), (2, 0), (3, 4), (4, 3), (5, 6), (6, 5)}.

The application of the input constraints relaxation method to the subset of elementary
constraints above gives us the relaxed set:

({1, 3}, 2), ({0, 1}, 4), ({0, 1, 3}, 5), ({0, 1, 3}, 6).

As for the practical aspects of the pseudo-dichotomy framework, we may devise two distinct
ways to build the local part Fl. After the application of the input constraints method and
the translation of the relaxed constraints into spds, we may directly consider every relaxed
constraint as part of Fl. Alternatively, we may include a previous step that eliminates the spds
covered by some other spd. In the case of input constraints, the general definition of covering
among pds may be specialized.

Definition 9.2 (Elementary input constraints spds covering) Consider two spds ∂1 =
〈p1, t1〉 and ∂2 = 〈p2, t2〉 obtained from the translation of a set of elementary input constraints.
Then, ∂1 covers ∂2 if either

p2(0) ⊆ p1(0) ∧ p2(1) ⊆ p1(1) or p2(0) ⊆ p1(1) ∧ p2(1) ⊆ p1(0)

This last technique allows the subsequent constraint satisfaction step to perform better and
faster, but it can be very expensive, since the covering step is np-complete.

116 CHAPTER 9. PSEUDO-DICHOTOMIES AND CONSTRAINT REPRESENTATION

9.2.2 Building the Global Part

We assume here that the initial set of output constraints is feasible internally, i.e. that they
can all be satisfied at once by some encoding, and also that they do not violate any input
constraint generated by symbolic minimization. The global part Fg is filled by inserting first
the pds corresponding to the compatibility and closure constraints (if any is needed) describing
the same closed cover of compatibles used to fill the local part. Then, the output constraints
are inserted one at a time, if they neither become redundant with regard to, nor create conflict
with the sm constraints, according to the discussions in Section 6.7.

The spds generated from the sm constraints were considered in both local and global parts
of the framework. We could ask why there is a need to keep them in the global part, since
they have already been used to relax the spds in the local part. The reason is that, after
constructing the framework, the procedure of constraint satisfaction tries to find an optimal
way of merging compatible spds, in order to obtain the smallest set of pds covering all spds
in both parts of the framework. Even if after relaxation no spd in the local part conflicts with
any spd in the global part, the merging of spds to form the pds of the solution may produce
violations of the global part spds. This may be prevented by verifying each merging of spds
in the local part against the spds in the global part.

Chapter 10

Conclusions on the Unified Framework

The objective of Part III was to provide a unified representation for the sm and sa problems
constraints studied in Part II. We have observed that pseudo-dichotomies provide an adequate
algebraic structure to represent every relevant constraint in each of the problems.

Chapter 8 proposed a new definition of the pseudo-dichotomy concept, which is more gen-
eral than previous approaches. pds constitute a useful way of modeling a single column of an
encoding. The basic innovation of the definition presented here is to allow that dichotomies
be represented by a pair 〈p, t〉, where p is a two-block partition of a subset of a set S, while t,
the satisfaction function, is a switching function defined over the set of Boolean vectors with
cardinality equal to |S |. In fact, the concept is more general than we need. For our purposes
of addressing two-level hardware implementations, we accordingly limit attention to pds where
the satisfaction function is a cube over B|S|. The separation of the partition p from the satisfac-
tion function t allows that several kinds of constraints be represented uniformly (for instance,
the sm and the sa constraints), with the behavior of the satisfaction function identifying the
kind of constraint under consideration. The extended concept allows the definition of pseudo-
dichotomies where the satisfaction function is not directly related to the partition p, although
this should normally be of little use in modeling encoding columns.

The identification of two markedly distinct kinds of behavior for the constraints led to the
proposition of a bipartite framework where pds representing constraints are inserted. Although
the whole development of the framework is directed to allow the simultaneous solution of the sm
and sa problems, its proposition was motivated by the insufficiencies of previously suggested
frameworks to model the sm constraints [103, 26, 106]. In this way, our pd framework generalizes
previous efforts, and can be applied as well to solve problems other than the one addressed in
this thesis. We provide examples of such problems in Part IV.

Although the proposed framework is general enough to be applied to other problems, as
will be discussed in Chapter 11, its construction is not. The mapping of constraints into a
compatible set of pds, derived in Chapter 9 is specific to the sm and sa problem. In general,
before using the framework, a problem dependent analysis of the involved constraints has to
be effectuated to determine how the constraints interact, after which a feasible set of them can
be generated and translated into a compatible set of pds.

In the scope of this thesis, the analysis of the constraints permitted to ignore the covering
constraints, since states are all encoded, anyway. The closure constraints could be ignored as

117

118 CHAPTER 10. CONCLUSIONS ON THE UNIFIED FRAMEWORK

well, due to the choice of considering the whole set of elementary compatibility constraints in
the framework.

Based on this set, we proposed an original method to relax the input constraints. This re-
laxation remains the fundamental step in the construction of the framework, because it allows
that the subsequent pd satisfaction step assign intersecting codes to compatible states, with-
out compromising neither the validity of the encoding nor the bounds derived from symbolic
minimization. Theorem 9.1 demonstrated the correctness of the relaxation method.

Notice that we defined the relaxation method grounded on the use of the whole compatibility
relation graph θ. However, Theorem 9.1 may be stated more generally, in terms of any subset
of θ that represents a closed cover of compatibles. Such a generalization gives support to
the intermediate complexity solutions suggested in Section 9.2.1. The importance of these
solutions relies on the fact that they may lead to reductions on the encoding length with
regard to the solutions obtained with the current approach. This happens because encoding
every compatible state with intersecting codes leads always to the most sparse codes, which
adds degrees of freedom to the logic minimization step, but may also add surface to the final
two-level implementation, which is an undesirable effect.

Another important benefit of the relaxation method is the preservation of the bounds pre-
dicted by symbolic minimization, as demonstrated by Corollary 9.1. Recall that this was not
the case when using the serial strategy to solve the sm and sa problems. In fact, Examples 6.4
and 6.5 showed that state minimization done before state assignment may increase the bounds
predicted by symbolic minimization.

The output constraints treatment proposed here suffers from the lack of an adequate gener-
ation method for them, as realized in Chapter 6. Our proposition for these issues is then limited
to some basic assumptions, together with the ad hoc analysis of their relationship in the same
Chapter. A more comprehensive set of heuristic techniques to deal with output constraints is
available in [26].

The final achievement of this part is the unification of the sm and sa problems within the
pd framework. In fact, the pd framework defines a problem by its construction. The next Part
of this thesis addresses the solution of this problem, after describing it formally.

Part IV

Encoding by Constraints Satisfaction

119

Chapter 11

The Boolean Constrained Encoding
Problem

The Boolean constrained encoding problem has a fairly general statement, which can be
matched with the requirements of numerous problems in vlsi design. Some general tech-
niques have been proposed to solve it [78, 106]. In this Chapter, we suggest a new statement of
the Boolean constrained encoding problem that is a generalization of previous attempts, e.g. of
those in [26, 105, 78, 103]. The goal of such a generalization is to include the problem defined by
the pd framework presented in Chapter 9 as one of the problems that can be matched with the
Boolean constrained encoding problem. In this way, the generalization of previous techniques
for solving the latter can be applied to the solution of our problem.

In Section 11.1 the Boolean constrained encoding problem is defined. Then, Section 11.2
states formally the problem which is the object of this thesis, the two-level sm/sa problem, and
show how its formulation can be mapped into an instance of the Boolean constrained encoding
problem. To this last Section follows a brief discussion of some works dealing with restricted
versions of the Boolean constrained encoding problem, in Section 11.3. In Chapter 12, we
provide a method to solve the two-level sm/sa problem as a version of the Boolean constrained
encoding problem.

11.1 Boolean Constrained Encoding - Statement

Problem Statement 11.1 (Boolean constrained encoding) Consider two finite sets

S = {s0, . . . , sn−1} and C = {f0, . . . , fm−1},

where the elements fi ∈ C are switching functions

fi : Bn −→ B.

Associate with each fi a positive real number c(fi) and a discrete function gi

gi : (Bk)n −→ B.

121

122 CHAPTER 11. THE BOOLEAN CONSTRAINED ENCODING PROBLEM

We call the elements of S symbols, and the elements of C encoding constraints on the
symbols of S. The number c(fi) is the gain of fi, while gi is the encoding constraint satisfaction

function of fi. A constraint fi is satisfied by a set E ⊆ (Bk)n iff there is an element e ∈ E such
that gi(e) = 1. The satisfaction of a constraint fi by E is indicated here, with a little notational
abuse by

gi(E) = 1.

The Boolean constrained encoding problem can then be stated as follows:

Find a function

h : S −→ P(Bk),

where P(Bk) is the powerset of Bk, and such that

1. k is minimized;

2. the gain c(h) is maximized, where c(h) is defined as

c(h) =
m−1∑
i=0

c(fi).gi(×n−1
j=0 (h(sj)))

Function h is denominated an encoding function or simply an encoding, while the integer value
k is called the encoding length.

This enunciate is intended as a general statement for several specific problems. The internal
structure of the problem can be best understood by mapping them to a practical instance of
the problem, which is done in the following Example.

Example 11.1 (fsm state assignment as input assignment) Consider the state assign-
ment problem proposed in Definitions 5.5, and suppose we approximate the solution of this
problem as the input assignment problem, i.e. by using the face embedding constraints gen-
erated by symbolic minimization only, and not considering output constraints nor any sm
constraints. This is in fact the approach used by the programs diet [119] and kiss [42], as well
as one of the approaches allowed by the program nova [116]. Let us express this problem as
an instance of the Boolean constrained encoding problem.

The set of symbols S is clearly the set of states of the fsm. The set of encoding constraints
C, on the other hand must be computed from the face embedding constraints obtained by
symbolic minimization. Consider, for instance, the machine of Example 6.4. The machine is
an fsm A = 〈I, T,O, δ, λ〉 where I = O = B, T = {a, b, c, d}, and where δ and λ are given by
the flow table in Figure 11.1. In the same Figure, we show the grouping of entries obtained
by symbolic minimization. To each grouping corresponds a full face embedding constraint,
according to definition of these constraints. Remember that these constraints are designed by
the present states associated with the entry group. We have thus six constraints, two of them
repeated twice. In our case, the four distinct full face embedding constraints are:

({a, b}, {c, d}), ({a}, {b, c, d}), ({b, c}, {a, d}), ({d}, {a, b, c}).

11.1. BOOLEAN CONSTRAINED ENCODING - STATEMENT 123

 0 1

 a d,1 c,0
 b d,- a,0
 c d,0 a,0
 d c,1 b,1

Flow table and face embedding constraints

Figure 11.1: Flow table and input constraints for fsm A

The last two constraints appear twice. Remember the interpretation of these constraints:
two symbols in opposite sides of these constraints must have codes differing in at least one
column of the final encoding. To compute the encoding constraints as switching functions,
we translate these into pseudo-dichotomies ∂〈p, t〉, as explained in Example 8.1. In our case,
representing the ps with the value vector notation, and using the state symbols as Boolean
variables to describe the functions t as a disjunction of cubes, the pseudo-dichotomies would
be, respectively:

∂1 = 〈p1 = [{c, d}{a, b}], t1 = abcd ∨ abcd〉;
∂2 = 〈p2 = [{b, c, d}{a}], t2 = abcd ∨ abcd〉;
∂3 = 〈p3 = [{a, d}{b, c}], t3 = abcd ∨ abcd〉;
∂4 = 〈p4 = [{a, b, c}{d}], t4 = abcd ∨ abcd〉.

The structure of the functions t derive from the nature of the face embedding constraints.
Indeed, suppose that states are encoded in the order abcd. To separate states c, d from states
a, b (according to the first constraint), we need to have a column in the encoding that is
either (0011)T or (1100)T . The functions t express that if they evaluate to 1, the constraint is
respected. Now, the set of encoding constraints C is simply the set of all t functions. Note that
there is an important step that has been skipped in the generation of encoding constraints,
namely the decomposition of the full input constraints into a set of elementary constraints. To
achieve an optimum state assignment, this step should be taken. However, since this would not
change the nature of the constraints, only their number and composition, we may disregard it
here.

Now, we tackle the modeling of the fi gain c(fi) and the satisfaction function gi. To compute
the gains we observe that some constraints are repeated in the cube table obtained by symbolic
minimization. We thus assign to each encoding constraint fi a value c(fi) that is equal to the
number of times the face embedding associated with fi appears in the symbolically minimized
cube table. This choice is justified by the fact that each entry set in the symbolically minimized
cube table is associated with one row in the final minimized two-level implementation, according
to Theorem 5.2. Then, satisfying a constraint guarantees that all groupings associated with
this constraint can be performed in the final implementation. If not all constraints are finally
satisfied, we had better choose to satisfy constraints that are repeated several times, since
this will hopefully lead to a greater percentage of possible groupings of all those predicted by
symbolic minimization.

The constraint satisfaction function gi, in this specific example, has an expression which

124 CHAPTER 11. THE BOOLEAN CONSTRAINED ENCODING PROBLEM

is identical to the corresponding function fi, but defined over a larger domain. This is a
consequence of the fact that face embedding constraints are satisfied by a single encoding
column of the result. However, this does not account for the general case. In some problems,
a constraint is satisfied if the corresponding function fi is respected in every column of the
constraint, like the compatibility constraints or the output constraints. There are even encoding
constraints where fi need to be satisfied in a specific number of columns [44]. That is why
the domain of the satisfaction functions gi are all possible encodings of length k. Given this
mapping, the state assignment problem can be stated just as the general Boolean encoding
problem, where we need to look for an optimum encoding h of the state set T , such that the
length is the minimum possible and the gain c(h) is maximum.

Given the above example on how to map a given encoding problem to the general statement
of the Boolean constrained encoding problem, we may give general interpretations for the
elements of the formulation.

First, note that the multiplier inside the summation in the expression for c(h), i.e. the
expression gi(×n−1

j=0 (h(sj))), evaluates to 1 iff the constraint fi is satisfied by the encoding
obtained under the usual interpretation given above. Otherwise, the multiplier evaluates to 0.

Let us interpret the meaning of the sets S and C above. S is a set of symbols to be encoded
according to the constraints in C. The encoding constraints fi, on the other hand, map a
Boolean vector with the same cardinality as the set of symbols into a binary digit. The most
frequent interpretation for this function is that it tells whether a bit configuration participates
in the satisfaction of the encoding constraint. To each fi the problem statement associates gi,
a function that characterizes the encoding constraint. It is through gi that the behavior of the
distinct encoding constraint kinds can be accounted for. The encoding constraint satisfaction
function gi tells, for every possible functional encoding of k bits, if the encoding constraint fi
is satisfied by it.

The encoding function h is the solution of the problem. It associates an arbitrary set of
binary k-tuples with each symbol, unlike previous propositions [78, 106], which associate a
single k-tuple with each symbol.

Another observation about the above stated problem is that its solution is not unique in
the general case. In most instances of the Boolean constrained encoding problem, the optimum
solution is found only when considering a trade-off between the goals of minimizing k and
maximizing the gain c(h).

All proposals the author could find in the available literature choose to solve restricted
versions of the Boolean constrained encoding problem. Two of these proposals are of major
importance [116], and we define them below.

Definitions 11.1 (Complete and partial constrained encoding) In the scope of Boolean
constrained encoding problems, choose to satisfy all encoding constraints unconditionally, thus
maximizing c(h). At the same time, look for an encoding that minimizes k. This restricted
version is called complete (Boolean) constrained encoding.

Another restricted version of the Boolean constrained encoding problem is obtained as fol-
lows: establish a value for k (often the minimum possible, but not necessarily), looking then

11.2. THE TWO-LEVEL SM/SA PROBLEM STATEMENT 125

for an encoding with length k that maximizes c(h). This problem is called partial (Boolean)

constrained encoding.

Encoding constraints were modeled in Problem Statement 11.1 as switching functions of
n variables. This choice is general enough to represent most kinds of constraints found in
encoding problems belonging to logic and low levels of abstraction in vlsi descriptions. Pseudo-
dichotomies ∂ = 〈p, t〉, as defined in Section 8.1, are as general as the definition of encoding
constraints, due to the form of the satisfaction function t, which is identical to the form of
an encoding constraint. However, the function g associated with an encoding constraint may
account for the satisfaction of the constraint across the whole set of columns of the encoding,
which was not possible with pds. That is one of the reasons why we needed to provide, in
Chapter 9, a framework where to consider the effect of constraints that influence the composition
of more than one column of the encoding. We are now able to state the sm/sa problem defined
by the pseudo-dichotomy unified framework of Chapter 9.

11.2 The Two-level sm/sa Problem Statement

Problem Statement 11.2 (Two-level sm/sa problem) Given a finite state machine A =
〈I, S,O, δ, λ〉, assume that the sm and sa constraints of A are obtained by the application of
adequate techniques, and that these constraints are translated into the binary relations stated in
Chapters 4 and 5. Assume also that a pd framework is constructed from these binary relations
according to the techniques described in Section 9.2. Then, the two-level sm/sa problem can be
stated as:

Find a minimum two-level implementation of A corresponding to a set of fpds Π
computed from the pd framework. Since this problem is computationally very hard,
consider two approximations of its solution:

The first is called complete two-level sm/sa problem, and it states that Π is such
that:

1. every pd in the local part of the framework is covered by at least one fpd in
Π;

2. every fpd in Π covers every pd in the global part of the framework.

The second is called partial two-level sm/sa problem, and it states that Π is such
that:

1. it has the minimum code length, no incompatible states in S have intersecting
codes, and the number of pds in the local part of the framework that are covered
by at least one fpd in Π is maximized;

2. every fpd in Π covers every pd in the global part of the framework.

Given Π, the three-valued representation of each cube corresponding to the satisfaction function
of an fpd in Π is a column of an optimal two-level encoding of A considering state minimization
and sate assignment simultaneously. The set of all such columns is the image Ξ(S) of the
optimal assignment.

126 CHAPTER 11. THE BOOLEAN CONSTRAINED ENCODING PROBLEM

The sm/sa problem have been converted in this way, into an equivalent pseudo-dichotomy
covering problem. As was expected, this is still an np-hard problem, since it is at least as
complex as an ordinary minimum cover problem [54].

11.2.1 Boolean Constrained Encoding and the pd Framework

The mapping of an instance of the Boolean constrained encoding problem into an instance of
the sm/sa problem can be obtained in a straightforward manner using the statement of the
latter in terms of pds, as done above.

To the set of symbols S of the general problem, associate the set of states of the fsm whose
sm/sa problem is to be solved. To the set of constraints C of the general problem, associate
the set of satisfaction functions ti of all pds inside a pd framework constructed for the fsm
from the binary relations describing its sm and sa constraints. The construction of functions
ti for the face embedding constraints has already been illustrated in Example 11.1. Now sup-
pose that two states s1, s2 are compatible in an fsm. This corresponds to the existence of a
compatibility constraint (s1, s2). A pseudo-dichotomy associated to this constraint, according
to the conventions of representing p by its value vector, and using the state symbols as Boolean
variables, is ∂c = 〈pc = [s1 s2], tc = s1 ⊕ s2〉, where s1 ⊕ s2 stands for the ‘Boolean equivalence’
function, meaning that the codes for s1 and s2 must not be disjoint. For a dominance constraint
(s1, s2), the pseudo-dichotomy would be ∂d = 〈pd = [s1 s2], td = s2 → s1〉, where → stands for
the ‘Boolean implication’ function, meaning that where s2 is encoded with a 1, s1 must also
be encoded with a 1. Finally, for a disjunctive constraint (s1, {s2, s3}), we would have three
pseudo-dichotomies ∂j1 = 〈pj1 = [s1 s2], tj1 = s2 → s1〉, ∂j2 = 〈pj2 = [s1 s3], tj2 = s3 → s1〉,
∂j3 = 〈pj3 = [s2s3 s1], tj3 = s1 → (s2∧s3)〉, with ∧ standing for the usual ‘Boolean conjunction’
function. The disjunctive constraint can of course be modeled as a single encoding constraint
function fi that is the conjunction of tj1, tj2 and tj3.

The behavior of a function gi to associate with each satisfaction function ti (which stands
from now on for an encoding constraint) depends on which part of the framework a pd ∂i is
located in, with ∂i = 〈pi, ti〉. If ∂i is in the local part, gi is made such that one single column
of some functional encoding Ξ satisfying ∂i causes gi(Ξ(S)) = 1, while ∂i in the global part
implies that we make gi(Ξ(S)) = 1 iff ∂i is satisfied by every column of the functional encoding.

As for the encoding function h, it is mapped to the state assignment Ξ mentioned before.

The weights c(fi) of encoding constraints fi are present in our approach as well, but their
characteristics will be discussed while presenting the implementation of our constrained encod-
ing method in Chapter 14.

Given this mapping, which can be verified against the definitions of the general problem as
well as of the special case we treat, the sm/sa problem can be treated as an ordinary Boolean
constrained encoding problem.

11.3 Solutions to Constrained Encoding Problems

In Chapter 1, we have found mentions to the programs diet [119] and nova [116], that use
complete and partial constrained encoding problem formulations, respectively, to solve the sa

11.3. SOLUTIONS TO CONSTRAINED ENCODING PROBLEMS 127

problem. The method we present in Chapter 12 can approximate the solution of any one of these
simplified problems, but not the general approach, which is more complex to solve automatically.
Indeed, the author could find no proposal of a method to exactly solve the general problem in
the available literature. Partial constrained encoding, often gives better results. This happens
because it generally correlates better with the minimum area cost function, most often the main
concern in vlsi design.

The solution of the sa problem in synchronous fsms is one of the most important appli-
cations of Boolean constrained encoding, but not the only one. Boolean constrained encoding
has already been used to provide solutions to problems such as:

1. input assignment in combinational circuits [42];

2. output assignment in combinational circuits [45];

3. input and output assignment in combinational circuits [26];

4. race-free state assignment for asynchronous sequential machines [111];

5. delay-free state assignment for asynchronous sequential machines [114];

6. two-way network partitioning [106];

7. two-layer constrained via minimization (in routing algorithms) [106];

8. state assignment guaranteeing a fully testable implementation of an fsm [44].

Given this broadness of applicability some works suggest general solutions for the Boolean
constrained encoding problem. Lin and Newton [78] for instance, proposed a generalized ap-
proach to solve the Boolean constrained encoding problem, which they call constrained cubical
embedding problem. Their framework relies upon a user-tunable general solver, implemented
using a probabilistic hill climbing algorithm [98]. The application specific constraints and cost
functions are not part of the solver, and may be supplied by the user to extend the function-
alities of the tool. User intervention for tuning is reinforced by the existence of an interactive
graphical interface. The user may in this case be an application designer that produces a tool
adequate to solve a given encoding problem. To tune the tool, however, such a user need a deep
knowledge of the problem he is trying to solve, so that the general solver can be adequately
parameterized.

Shi and Brzozowski [106] proposed another general approach to solve Boolean constrained
encoding, and applied it successfully to a number of apparently unrelated practical problems in
logic and low level vlsi design. They suggested an effective greedy approach to constraint sat-
isfaction based on pds, capable of solving problems using either complete or partial constrained
encoding.

Along the present thesis, we have seen how sm can be considered during sa, and how a
constraint formulation may guide the search for an optimal solution to both problems. We may
generalize this statement saying that constrained encoding can benefit from the consideration of
compatibility classes inside the problem to be solved. This is the main weakness of the works we
just cited. The approaches of Lin and Newton, and Shi and Brzozowski solve a restricted version
of the Boolean constrained encoding problem, where the encoding function h is injective and its

128 CHAPTER 11. THE BOOLEAN CONSTRAINED ENCODING PROBLEM

image is the subset of P(Bk) containing singletons only1. As a consequence, the encoding these
approaches generate cannot cope with compatibility classes and the associated compatibility
constraints, even if both can be captured from the initial problem specification.

The method we describe in the next Chapter does not solve the Boolean constrained en-
coding in its full extent either. However, it is less restrictive than any other method mentioned
in this Chapter. The restriction we impose is due to the search for a two-level solution of the
sm and sa problems. We limit the image set of function h to those elements of P(Bk) that
can be associated with cubes. Eventually, we intend to extend the present work to deal with
multiple level solutions of the problem. For instance, the use of Boolean relations [20] as codes
for symbols can be considered instead of cubes, which extends the applicability of the method.
Although no present constraint satisfaction proposal could be adapted to solve our version of
the sm and sa problems, the analysis of the various methods showed that the ideas advanced by
the work of Shi and Brzozowski in [106] are useful in our generalization efforts. Our constraint
satisfaction method resembles somewhat theirs, in the sense that it is also a greedy approach
using the column encoding technique to be explained in the next Chapter.

1Stating it in practical terms, these approaches assign completely specified functional codes (singletons of
P(Bk)) to the symbols in S, and no two symbols are assigned a same code (injective encoding).

Chapter 12

The ASSTUCE Encoding Method

In Chapter 9, we proposed a pd framework to integrate the sm and sa problems. The obtain-
ment of the framework resulted from the constraint formulation each of the problems received
in Chapters 4 and 5 respectively. The pd framework in fact poses a new problem, the two-level
sm/sa problem, which has been formally stated in the previous Chapter.

The next Section discusses the principles behind the method we propose, while Section 12.2
gives a detailed overview of the asstuce method.

12.1 Solving the sm/sa Problem

We call the method we developed the asstuce1 method. It is in fact a generalization of an
existing greedy heuristic technique proposed by Shi and Brzozowski in [105]. The original
method could not be used, since it is limited to functional encodings, the cube encodings we
need being thus impossible to obtain. The main differences between our method and the one
proposed in [105] are summarized in the next Chapter.

The idea of the method is to generate one column of the encoding at a time (identified
below by the vector ξ), so that the generated columns satisfy each a maximum number of pds
in the local part of the unified framework, and do not violate any pd in the global part. After
each column generation step, all satisfied pds in the local part are eliminated, and column
generation proceeds. There are two possible stop conditions, depending on what constrained
encoding approach is chosen, complete or partial. If complete constrained encoding is chosen,
the method execution stops only when the local part is empty. Otherwise, execution stops
when either the local part is empty, or when every two incompatible states are assigned disjoint
codes.

Column generation proceeds also in a step by step fashion. At each step, the method
computes a single bit to ‘move’, so as to increase the number of pds in the local part of the
framework that are satisfied by the current contents of the column under generation. A move is
a change of an initial value in the column under generation. Just one change is allowed in each
position of the column during column generation. Thus, the method evolves linearly, without

1The denomination comes from assign + reduce, and it is intended as a homophone of the French word
“astuce”, meaning trick or astuteness.

129

130 CHAPTER 12. THE ASSTUCE ENCODING METHOD

backtracking. The initial column configuration is usually a column vector of don’t cares, since
this is the most flexible configuration, due to the absence of backtracking in the algorithm. For
the same reason, any move is either a change to a 1 bit value or to a 0 bit value, never to a
don’t care value. After a change, a bit position is locked until the present column generation
ends.

At each bit move step, sparse matrices are used to compute how far we are from satisfying
each constraint in the local part, as well as to calculate how many constraints would be satisfied
with a change to 1 or to 0 of each of the bit positions that are not locked. Then, the change
leading to the greatest number of satisfied pds is taken, but only if it does not violate any pd
in the global part. This procedure is repeated until either all bit positions are locked or until
no valid moves are left, due to violations of the global part in all unlocked positions.

The final encoding is the collection of generated bit columns.

The asstuce method will be presented in three phases. First, we provide an overview of the
method through the presentation of an example. Next, we introduce the main data structures
used to speed up the execution time of a programmed version of the asstuce method. During
this phase we provide bounds for the time complexity implied by the operations in the method.
Finally, we introduce some heuristic techniques that can be used to accelerate processing.

In Chapter 14, we discuss an implementation of the method, and compare it with other
approaches to solve separately the sm and sa problems.

12.2 asstuce Method Overview

Consider a set of symbols S = {0, 1, 2, 3, 4} and F = 〈Fl, Fg〉, where Fl and Fg are sets of pds.
Assume that

Fl = {〈p0 = [∅, {1}], t0 = 1 ∨ 1〉,
〈p1 = [{1}, {3}], t1 = 1⊕ 3〉,
〈p2 = [{4}, {1, 2, 3}], t2 = 1 2 3 4 ∨ 1 2 3 4〉,
〈p3 = [{3, 4}, {0, 2}], t3 = 0 2 3 4 ∨ 0 2 3 4〉}.

Clearly, the satisfaction functions ti of the pds in Fl were defined as if they were derived from
elementary input constraints. Assume also that Fg = ∅. Since Fg is empty, F is guaranteed to
be a pd framework. There are two particularities in this framework that we need to explain.
First, there is a pd in Fl that has an empty 0-side. Such a pd is always trivial in the context of
our problem, but we have introduced it to facilitate the method’s presentation. pds with one
empty side are called unary pds, and have been used in other constrained encoding problems
[106]. Second, the global part of the framework is also empty. This was done to simplify the
discussion. While treating the example, we shall refer to the global part without taking into
account the fact that it is trivially satisfied.

In the following discussion, assume that the global part of the framework is stored some-
where, and that we may consult it to verify if a given pd belongs to it. In Section 12.3 we will
discuss data structures to represent Fg. The pds in Fl, on the other hand, will be represented
using a matrix formulation. The pd matrix P contains one row for each element of S, and one
column for each pd in Fl. The components pij are taken from the three-valued set {0, 1,−}, and

12.2. ASSTUCE METHOD OVERVIEW 131

each column pj corresponds to a three-valued switching cube representation of the direct cube
of the pd satisfaction function associated to the column. Stated more simply, each position i
of a column j of P contains a 1 if the element si is in the 1-side of a pd ∂j, contains a 0 if si is
in the 0-side of ∂j, and contains − otherwise. The − value is called by the usual denomination
of don’t care. The matrix P for our example is displayed below, together with the encoding
vector ξ, to be introduced next.

P ξ
p0 p1 p2 p3

0
1
2
3
4

− − − 1
1 0 1 −
− − 1 1
− 1 1 0
− − 0 0

−
−
−
−
−

Starting from the above matrix and vector, we depict one typical iteration of the algorithm.

12.2.1 The First Iteration

The encoding vector ξ is a column vector with length equal to the cardinality of S. It represents
a single column of the final encoding Ξ. The asstuce method accepts as input the initial
configuration of this vector. If none is given, it generates the all don’t cares vector above. This
is in fact the least restraining configuration that may be specified, since our approach is to
produce one column encoding at a time, through the execution of a series of “moves” on the ξ
vector. Each move is a change of the value of a component of ξ. The allowed changes depend
on the initial value of ξ, but at any given moment, no change can make the vector contain
more don’t cares than in any previous step. Stated otherwise, no change from 1 or 0 to − is
allowed. This justifies the statement that the all don’t cares version of ξ is the less restraining
initial configuration, and it is a consequence of the choice of a greedy constructive algorithm
that generates column encodings without backtracking.

The First Move - From matrix P and vector ξ we produce an evaluation matrix E, which
contains information about how far we are from satisfying the pds in P using vector ξ. E is
a matrix of pairs with the same row and column cardinalities as P , and the coordinate values
of each pair are taken from the same three-valued set used to construct P and ξ. The rules to
construct the components eij of E, given pij of P and ξi of ξ, appear in Table 12.1

Table 12.1: Rules for building the evaluation matrix E

ξi\pij 0 1 -

0 (1,-) (-,1) (-,-)
1 (-,0) (0,-) (-,-)
- (1,0) (0,1) (-,-)

Remember that a pd in Fl is satisfied if the direct or the reverse cubes of its satisfaction
function evaluate to 1 (cf. Section 9.2.1). In what follows, to satisfy a cube will mean to make

132 CHAPTER 12. THE ASSTUCE ENCODING METHOD

it to evaluate to 1. In a pair eij, the first coordinate refers to the reverse cube cj associated to
the satisfaction function of the pd represented in column j, while the second coordinate refers
to the direct cube cj. A value 0 in any coordinate of a pair eij means that a change of the
current value of the component ξi to 0 will make the encoding vector ξ closer to satisfy the
corresponding (reverse or direct) cube. A value 1 means that a change of the current value
of the component ξi to 1 will make the encoding vector ξ closer to satisfy the corresponding
(reverse or direct) cube, and a value − in any coordinate tells that it is not possible to get
closer to satisfy the cube, because it is already satisfied in position i by the current value ξi.

Now, the number of moves needed to satisfy each pd can be computed. Since there are two
ways to satisfy each pd, there are two such numbers, and they are gathered into a vector of
pairs of integers, which we call the distance vector ν. The components νj of ν are computed
by simply counting the number of non-don’t care values in a given column, and this for each
coordinate. The number of presently unsatisfied pds u is the number of components of ν where
no coordinate is 0. Matrix E, vector ν and u, which are generated by considering P and ξ
above are:

P (1) ξ(1) E(1)

− − − 1
1 0 1 −
− − 1 1
− 1 1 0
− − 0 0

−
−
−
−
−

(−,−) (−,−) (−,−) (0, 1)
(0, 1) (1, 0) (0, 1) (−,−)
(−,−) (−,−) (0, 1) (0, 1)
(−,−) (0, 1) (0, 1) (1, 0)
(−,−) (−,−) (1, 0) (1, 0)

ν(1)

u(1) = 4
(

(1, 1) (2, 2) (4, 4) (4, 4)
)
.

Since u �= 0, we have to choose a component of vector ξ to change, in order to get the as
close as possible to a column encoding that maximizes the number of satisfied pds. To do so,
we define a direction matrix D, which carries information about in which direction a single
change of a component in vector ξ can satisfy a pd from Fl. D is a pair matrix, just like E, but
with a distinct interpretation for its values, and a distinct generation method. The first and
second coordinates of a pair dij in D correspond to changes to 0 and to 1, respectively. The
values of the dij pairs are thus interpreted as follows:

(1, 1), if a change of ξi to either 1 or 0 satisfies one of cj, cj;
(0,−), if a change of ξi to 0 unsatisfies one of cj, cj;
(−, 0), if a change of ξi to 1 unsatisfies one of cj, cj;
(1,−), if a change of ξi to 0 satisfies one of cj, cj;
(−, 1), if a change of ξi to 1 satisfies one of cj, cj;
(−,−), otherwise.

The configurations not shown either never happen or represent trivial cases. The first
configuration arises only in a trivial case (from which the first pd in P is an example) and in
a special case. In fact, the trivial case pd of our example is irrelevant in practice [106]. In the
list above, unsatisfies means turns a satisfied cube into an unsatisfied one.

Matrix D can be obtained from an inspection of the distance vector ν and the evaluation
matrix E. There are various possible situations, but only five non-trivial ones. If we have

12.2. ASSTUCE METHOD OVERVIEW 133

νj = (0,≥ 2) (resp. νj = (≥ 2, 0)), the cube cj (resp. cj) is already satisfied, and any change of
a component ξi such that pij �= − can only increase u, the number of unsatisfied pds. If, on the
other hand, we have νj = (1,≥ 2) (resp. νj = (≥ 2, 1)), there is a component ξi that, if changed,
will satisfy the cube cj (resp. cj). Finally, there is the special case where νj = (1, 1) and the
direct and reverse cube associated to column j have only two non-don’t cares in their three-
valued representation. Then, there are exactly two possible single changes such that one can
lead to the satisfaction of cj and the other to the satisfaction of cj. Obviously, νj = (≥ 2,≥ 2)
implies that no single change of one component of ξ can satisfy any direct or reverse cube.

To accumulate the values of matrix D and determine the best move, we use a gain vector ω.
Vector ω is a column vector of pairs of integers. Its contents are obtained as a componentwise
sum of pairs over all columns of matrix D, for each D row. The sum is done as follows:

1. if a coordinate of a pair dij is 1, add 1 to the same coordinate of ωi;

2. if a coordinate of a pair dij is 0, add -1 to the same coordinate of ωi;

3. if a coordinate of a pair dij is -, add 0 to the same coordinate of ωi;

The direction matrix D and the gain vector ω resulting for our example are:

D(1) ω(1)

(−,−) (−,−) (−,−) (−,−)
(1, 1) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)

(0, 0)
(1, 1)
(0, 0)
(0, 0)
(0, 0)

select ξ1 → 0

The first coordinate of a component ωi of ω gives the gain of changing ξi to 0, while the
second coordinate gives the gain of a change to 1. The best choice is the one with the greatest
positive gain. In our example, there are two such best choices. Either we select a change of ξ1

to 0 or to 1. Suppose that one selection is made. At this point we must verify if the change
does not violate any of the global constraints. Suppose that a violation occurs. Then, the
change is discarded and a second choice is tried, and so on. If no feasible change exists, none
is performed, and the encoding column generated up to now is a column of the final encoding.
Our example has an empty global part, and thus such conflicts will not occur here. The first
choice is then arbitrarily taken, changing ξ. This is what we call the first move, indicated by
the exponent (1) on the denomination of the structures.

The Second Move - After the first move, the component ξ1 is locked (indicated by the
symbol × in the corresponding position of the gain vector ω), and cannot change anymore

134 CHAPTER 12. THE ASSTUCE ENCODING METHOD

during this column generation. The computations for the next move are summarized below.

ξ(2)

−
0
−
−
−

E(2) =

(−,−) (−,−) (−,−) (0, 1)
(−, 1) (1,−) (−, 1) (−,−)
(−,−) (−,−) (0, 1) (0, 1)
(−,−) (0, 1) (0, 1) (1, 0)
(−,−) (−,−) (1, 0) (1, 0)

ν(2) =
(

(0, 1) (2, 1) (3, 4) (4, 4)
)

u(2) = 3

ω(2)

D(2) =

(−,−) (−,−) (−,−) (−,−)
(−, 1) (−,−) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (−, 1) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)

(0, 0)
×

(0, 0)
(0, 1)
(0, 0)

select ξ3 → 1

The End of the Iteration - This process goes on until no more moves are possible. The
impossibility of making moves arises either:

1. when all positions of ξ are locked, or

2. when all possible moves violate a pd in the global part Fg, or

3. when only negative gains exist in ω for every non-locked position in ξ that does not violate
a pd in the global part Fg, indicating that any allowed change will decrease the number
of satisfied pds.

One heuristic choice that can be used is to make moves whenever one is possible, until all
positions of ξ are locked, retaining the configuration of ξ that satisfied most constraints, and
not necessarily the last one.

Suppose that after the second move, we make a third move, by selecting ξ2 → 0 and a fourth
move selecting ξ4 → 1. There is still room for another move in the example, which is:

ξ(5)

−
0
0
1
1

E(5) =

(−,−) (−,−) (−,−) (0, 1)
(−, 1) (1,−) (−, 1) (−,−)
(−,−) (−,−) (−, 1) (−, 1)
(−,−) (0,−) (0,−) (−, 0)
(−,−) (−,−) (−, 0) (−, 0)

ν(5) =
(

(0, 1) (2, 0) (1, 4) (1, 4)
)

u(5) = 2

ω(5)

D(5) =

(−,−) (−,−) (−,−) (1,−)
(−, 1) (−, 0) (−,−) (−,−)
(−,−) (−,−) (−,−) (−,−)
(−,−) (0,−) (1,−) (−,−)
(−,−) (−,−) (−,−) (−,−)

(1, 0)
×
×
×
×

 select ξ0 → 0

and stop.

12.2. ASSTUCE METHOD OVERVIEW 135

12.2.2 The Subsequent Iterations

After the fifth move, all positions in ξ are locked, a first column encoding has been generated,
namely 00011T , which satisfies three of the four pds describing the problem. A new iteration
is needed, since there are unsatisfied pds left. All satisfied pds are eliminated from matrix P ,
transforming it into a smaller pd matrix, which is the input of the new iteration, together with
the specified vector ξ. Note that the vector ξ need not be the same at each step. This is useful
if, for example, some symbol codes are to be preestablished. Assuming the starting ξ vector to
be the same as before, the start of the new iteration appears below.

ξ(1)

−
−
−
−
−

E(1) =

(−,−)
(0, 1)
(0, 1)
(0, 1)
(1, 0)

ν(1) =
(

(4, 4)
)

u(1) = 1

The associated direction matrix D would be an all don’t cares column vector, and the
weight vector would have only pairs of the type (0, 0). A danger arises in the situation where
the maximum gains are 0, given an all don’t cares initial encoding vector. Since no direction was
given about how to choose one of the to 0 or to 1 moves when they have identical weights, the
method may pick one arbitrarily. In the example, we have to make at least three moves before
obtaining a matrix D that contains anything except don’t cares. Suppose that the method
picks moves arbitrarily, but deterministically, and that the moves ξ2 → 1 and ξ3 → 0 are the
first and second ones. Then, there will be no further way of satisfying the pd. The encoding
column would be added to the encoding and the iteration would repeat the same procedure ad
infinitum, without never finding a satisfying vector for the pd. To avoid this, every time that
the maximum gains in the ω vector are zero, we choose to satisfy always the direct cubes. This
ensures that the column generation always stops. For our example, we would thus obtain a
vector ξ like −1110T satisfying the last pd, and the method would have come to the end.

The final encoding respecting all constraints would be obtained from the concatenation of
the two encoding columns, which gives

symbol code
0 0−
1 01
2 01
3 11
4 10.

Note that the encoding is neither functional, nor injective, what we wanted to be able to
do, and that it satisfies the framework.

136 CHAPTER 12. THE ASSTUCE ENCODING METHOD

12.2.3 asstuce Method Discussion

The above method is heuristic, with no backtracking. The main advantage of its application is
the execution speed. Indeed, our practical implementation, to be discussed in Part V, iterates
on encoding generation, not only on column encoding generation, without great expense in
computation time, even for big examples. However, some points should be pointed out about
the method:

1. several choices have to be made during the execution, like: which best move to take,
in which direction, and what to do when only null gains are computed, which happens
frequently in the initial steps of the iteration;

2. only locally optimal solutions can be obtained, even if iteration over a first solution is
possible and applied;

3. direct matrix computation may be substituted by sparse matrix techniques to accelerate
execution, as we discuss below.

The computational cost of the column encoding generation problem is influenced mainly by
four tasks:

1. Task 1: computation of the evaluation matrix E and of the distance vector ν;

2. Task 2: computation of the direction matrix D and of the gain vector ω;

3. Task 3: selection of the component in ω with the maximum gain;

4. Task 4: verification of the feasibility of performing a move on the selected component.

Suppose that n is the cardinality of the set of symbols S to encode, and that m is the
cardinality of the local part Fl of the framework. Suppose also that the number of operations
to verify if a move does not violate a pd in the global part Fg of the framework is constant.
Suppose finally that we use the natural choices, namely one-dimensional vectors for ν, ω and two-
dimensional arrays for E,D. A column encoding generation consists in an iteration repeated
at most n times where:

1. E, ν,D, ω are built with complexity bounded by O(n.m);

2. a best component to change is selected. Suppose that selection of the best component
takes a constant number of operations O(1); we will show later that this is possible. Each
move has to be verified against at most (n−1) positions in ξ, giving a complexity bounded
by O(n);

3. a move is made and the associated component of ξ is locked, using a constant number of
operations (O(1)).

The final bound on the complexity of column encoding generation is then O(n2.m).

The next Sections show that the use of special data structures may reduce this complexity,
so that it is a function of the number c of non-don’t care components in the initial pd matrix
P , instead of a function of m.n. Note that c is at most m.n, the total number of entries in
matrix P , and that in practice it is quite smaller, specially for large examples.

12.3. THE ASSTUCE METHOD DATA STRUCTURES 137

12.3 The asstuce Method Data Structures

The next two Sections describe the data structures used to accelerate the computation in the
asstuce method.

12.3.1 Data Structure for the Global Part

In the previous Section, we have not presented any structure for the global part Fg of the
framework. This part is constructed only once, before the execution of the method, and the only
operation performed on it during execution is to consult it to see if some move in ξ violates any
pd inside Fg. In order to perform consult operations efficiently, consider the pds inside Fg. Any
such pd corresponds to an elementary compatibility, dominance or disjunctive constraint, with
either two symbols (in the case of compatibility and dominance constraints) or three symbols
(in the case of disjunctive constraints) inside it. Internally, symbols are obviously converted to
integers to enhance ease of manipulation, according to some natural enumeration order defined
on S. We may then use a three-level hash array based on dynamic perfect hashing techniques
[46] to store all pds of the global part. Dynamic perfect hashing guarantees constant access
time to its contents. Since the number of access levels is bounded, the worst case complexity
of a consult operation is still O(1). Thus the above supposition holds, and the bounds above
can indeed be attained. Task 4 has thus a complexity of O(n) for a single move, and O(n2) for
a column generation.

12.3.2 Data Structures for the Local Part

We present below a set of data structures and a discussion on how to accelerate Tasks 1, 3 and
2 listed in the previous Section, in this order.

Task 1 - The main structure of the local part is the evaluation matrix E, since the pd matrix
P is used only once to build the first version of E. After that, the contents of E may be
incrementally updated, from the changes in the contents of the ξ vector. There are only two
types of operations done in E. One operation is to visit all non-don’t care components of a row
to change one or two of its coordinates. The other is to visit all non-don’t care components of a
column to verify its contribution to the associated component of the distance vector ν. For this
purpose, a data structure similar to the one suggested in [105] is used, which is bipartite. The
contents of E are duplicated and put into two sparse arrays: one efficient for row operations,
and the other efficient for column operations. These data structures are described below and
exemplified in Figure 12.1, with the contents they would display during the computation of the
first move in the previous example.

Symbol array Y - A one-dimensional array, where each entry corresponds to a symbol si of
S, and which contains a pointer to a linked list of pds relevant to si. Each element of the
list contains an index j of a pd that contains si in either its 1-side or its 0-side, and the
corresponding pair eij of E. A symbol array example is depicted in Figure 12.1(a);

pd array T - A one-dimensional array, where each entry corresponds to a pd pj of Fl, and
which contains two components: a pointer to a linked list of symbols in either side of

138 CHAPTER 12. THE ASSTUCE ENCODING METHOD

pj and a pair of integers representing the associated component of the distance vector
ν. Each element of the linked list contains an index i of a symbol in either the 1-side
or the 0-side of pj, and the corresponding pair eij of E. A pd array example appears in
Figure 12.1(b);

1

2

3

4

5

(0,1)2 /

(1,0)3 /

(1,0)1

(0,1)3 /

(0,1)2

(1,0)3 /

(0,1)3 /

(0,1)0

(0,1)2

(0,1)1

(1,0)2

(0,1)/ 1 (1,0) 1 (0,1) 1 (0,1) 0

(0,1) 3 (0,1) 2 (0,1) 2

(0,1) 3 (1,0) 3

(1,0) 4 (1,0) 4/ /

/

(1,1) (2,2) (4,4) (4,4)

1 2 3 4 5

(a) (b)

Figure 12.1: Symbol array and pd array during first move computation

We build the initial Y and T arrays from the set of pds in Fl and from ξ. P need not be
constructed, since all of its information are already inside Fl. For each element pij in some pd pj
Table 12.1 is consulted once to obtain the pair to fill both Y and T entries, and the constructed
entry is inserted in the beginning of list i of Y , and in the beginning of list j of T . At the
same time we use the pair obtained from the table look-up operation to determine values to
add to the coordinates of the corresponding component of the distance vector ν. All operations
take constant time, which gives complexity O(c) (recall that c is the number of non-don’t care
entries in the initial pd matrix P .) for the simultaneous construction of Y , T and ν.

To build the subsequent versions of Y , T and ν, total rebuilding is unnecessary, since only
one row change may occur for each move. The new contents of a row of Y and of the distance
vector ν after a move may be determined by using a look-up technique defined in Table 12.2.
This Table gives the new values of eij of E as a function of the move taken and of the previous
value of eij. Here, E stands for the matrix represented by the bipartite structure formed by
Y and T . In the same Table, we indicate the action to update the related vector ν entry
coordinates. The first coordinate of a pair in ν is denoted by x and the second by y. The signs
+ and − to the right of x and y indicate increment and decrement operations, respectively.

Table 12.2: Rules to build E and ν incrementally after a move

Move\eij (1,0) (0,1) (-,0) (0,-) (-,1) (1,-)

- → 1 (-,0),x− (0,-),y−
- → 0 (1,-),y− (-,1),x−
1 → 0 (1,-),x+,y− (-,1),x−,y+
0 → 1 (0,-),x+,y− (-,0),x−,y+

12.3. THE ASSTUCE METHOD DATA STRUCTURES 139

Suppose that the number of pds in Fl containing a symbol si in either 0-side or 1-side is hi.
Since there is at most n moves during a column generation, the maximum number of update
operations over Y , T and ν along an encoding column generation step is

∑n−1
i=0 hi = c. Then,

the total cost of Task 1 is bounded by O(c).

Task 3 - We will show that ω, just like E (represented by Y and T) and ν, can be com-
puted incrementally. There are five operations implied in the search of a best move candidate
component of ω:

1. to compute a gain coordinate of a component of ω, given its index;

2. to insert a component into ω;

3. to update a component of ω and sort it according to the best component criterion;

4. to find the next component of ω with a maximum gain given its index, if any exists;

5. to delete a component of ω;

An adequate data structure for these operations is used in bucket sort techniques [27], and
it is called bucket list. Figure 12.2 displays this data structure. The Bucket B is a list of
pointers to doubly linked lists with 2.k + 1 pointers, where k = max{hi, 0 ≤ i ≤ n}, where hi

is the number of non-don’t care entries in row i of the pd matrix P at each column generation
step. Stated in words, k is the cardinality of the largest subset of pds in Fl that contains
symbol si in either its 0-side or its 1-side. This gives the range of gains that can be achieved in
ω at any moment during encoding column generation. The linked lists contain only unlocked
components of ω.

(0,0)3(0,0)2(0,0)0

3

2

1

0

1

2

3

(1,1)1 /

(0,0)4 /

0 1 2 3 4

index-0

Bucket-0 Maxgain-0 Next-Max-0

Figure 12.2: Bucket list B0 before the first move

Each list comprises elements with the same coordinate gain. Since each gain is a pair, we
employ two bucket lists: one sorted by the gains of a change to 0 (B0), and the other sorted
by the gains of a change to 1 (B1). Figure 12.2 shows the state of B0 only. In this particular

140 CHAPTER 12. THE ASSTUCE ENCODING METHOD

state, namely before the first move, B1 contains exactly the same information. Each entry in
a linked list has the index i of the symbol si associated to a gain pair ωi and the contents of
the pair itself. There is an index array to allow direct access by index to the elements of B,
and two auxiliary pointers, namely Maxgain and Next-Max to keep track of the best move
component at any time.

Every time some component ξi is locked after a move, the entries corresponding to ωi in B0

and B1 (one in each of these) are eliminated, and the auxiliary pointers are updated, if needed.
The existence of two such pointers is due to the possibility that the best move is not taken
because it would violate a pd in the global part. To avoid discussing the bookkeeping details
between the two bucket lists, assume that at a given moment several best choices are in just
one of them. Then, if the absolute best gain is not possible to be taken, we use Next-Max to
navigate the bucket list, looking for the next best choice until a feasible one is found, without
deleting unfeasible choices. One could ask why not deleting these choices. The reason is that,
in the next move, such best choices may be allowed to be taken, because the just performed
move eliminated the violation implied in the previous partial encoding. That is why the pointer
Maxgain keeps track of the best of these choices. After each move, and after deleting the entry
associated to the move taken, Next-Max is reset to the same value as Maxgain.

As for the complexity of the operations, computing a gain coordinate of a given component
of ω takes a constant number of operations, using direct access through index; inserting a
component in ω is also done in O(1), since insertion can be done anywhere in the list (the
order of elements in the lists is immaterial), and because the eventual update of the auxiliary
pointers is done in constant time; the last two operations, i.e. finding the next best component
and deleting a component of ω, have the same worst-case complexity O(n), since they may
require a search based on either the index or the bucket. In practice, this happens only in
very big problems, where many empty bucket elements may arise. For instance, if the best
component is not the last element in some list, these operations will take always constant time.

Task 2 - The objective of this Task is to compute the direction matrix D, as well as the gain
vector ω. First, given the bucket list structure, we do not need to build the direction matrix
at all. We may simply accumulate the values directly in the respective positions of the bucket
lists B0 and B1. First, we will explain how to construct B0 and B1, based on the contents of
Table 12.3. Afterwards, we see how to incrementally update both bucket lists.

Table 12.3: Rules to build B0 and B1 from E and ν

eij\νj (1,≥ 2) (≥ 2, 1) (0,≥ 2) (≥ 2, 0) (1, 1)

(0,1) (1,0) (0,1)
(1,0) (0,1) (1,0)
(1,-) (0,1) (0,0) (0,-1) (0,1)
(-,1) (0,0) (0,1) (0,-1) (0,1)
(0,-) (1,0) (0,0) (-1,0) (1,0)
(-,0) (0,0) (1,0) (-1,0) (1,0)

Given an initial ξ, we have seen how to simultaneously obtain from the pds in Fl, a repre-
sentation of the evaluation matrix E and of the distance vector ν, using data structures Y and

12.4. ASSTUCE HEURISTIC IMPROVEMENTS AND EXTENSIONS 141

T . Given the interpretation of the matrix E components presented in Section 12.2.1, and the
rules for constructing ω based on it, we may use Table 12.3 for the incremental construction of
the bucket lists B0 and B1, from Y and T .

Each entry in Table 12.3 corresponds to a pair to sum coordinatewise with the contents of
a pair in ω, represented in both B0 and B1. Given this look-up table, the initial states of B0

and B1 are obtained by the following procedure, where a component νj = (xj, yj) is an element
of ν.

1 build bucket lists B0 and B1, and initialize them empty;
2 for each list li in the symbol array Y
3 do create a pair of integers b, and initialize it to (0,0);
4 for each element eij in li
5 do if (xj < 2 or yj < 2)
6 add the element in entry (eij, νj) of Table 12.3 to b;
7 insert (i, b) into B0 and B1, according to b value;

The addition of pairs in line 6 of the procedure is done coordinatewise. The execution of
the above procedure is O(c), since there is exactly c elements in Y , and since all operations
take constant time. The complexity of building the initial bucket lists is thus determined.

As for the updating of B0 and B1, notice that after a move in row i of ξ, not all columns of
D change. In fact, E is changed only in row i by this move. In general a row of E has much
less than the maximum m elements, since we use elementary constraints, which correspond to
sparse spds. Thus, the number of columns that may change in D, which is exactly the number
of elements hi in row i of E, is normally small. We may thus accelerate the average complexity
of updating B0 and B1 (which represent ω) by subtracting the old values of these columns and
adding the new values. The worst case complexity of the procedure, considered along the whole
column generation, is again O(c). Then, the complexity of Task 2 is bounded by O(c).

The total worst-case complexity of the asstuce method is then O(n2 + c).

12.4 asstuce Heuristic Improvements and Extensions

Some heuristic techniques may enhance the efficiency of the method exposed in the preceding
Sections. Also, the addition of some more information on the basic data structures may allow
more problems to be tackled with this method.

12.4.1 Improvements

If during a column encoding generation the algorithm does not stop when only negative gains
are available, it may escape from some local minima in the solution space. An additional copy
of a data structure is needed to keep the column that performed best up to the present moment,
i.e. the one that obtains the smallest possible value for u, which is the number of unsatisfied
pds. The worst case complexity of the algorithm does not change if we use this heuristic, but
processing will surely take additional time.

142 CHAPTER 12. THE ASSTUCE ENCODING METHOD

After generating a complete encoding, iterate using the last column generated in the previous
step as the first initial column of the problem. The reasoning behind this optimization is that
the last pds that have been satisfied are intrinsically “hard” to satisfy. Then, satisfying them
first may reduce the needs of the subsequent steps. This leads to the remark that all but the last
column generated in one encoding step may be redundant, since columns generated afterwards
may satisfy pds already satisfied. A post-verification can then be made to avoid redundant
columns.

Since the technique is fast, the encoding generation may be repeated several times with
various initial configurations for the initial vector ξ. This normally leads to a small number of
iterations until a local minimum is reached.

The use of balanced bit assignments may enhance significantly the method. Suppose a
Boolean vector x. The best way to separate the greatest number of elements in x is to have
the number of zeroes and ones in x closest to half the number of bits in the vector. In this way,
if we choose the moves so as to consider the balancing of the final codes, we may minimize the
number of columns to satisfy all pds.

12.4.2 Extensions

During the generation of the constraints for an fsm, we may identify that some constraints are
more important than others, and that if not all constraints are satisfied, it is better to satisfy
first the more important ones. This can be done by assigning weights to the constraints, and
changing the algorithm accordingly. The only important change is in the dimensioning of the
bucket lists, since the use of non-unit gains implies a change in its number of buckets. However,
this is trivial to consider.

One example of weighted constraints may be easily identified. After symbolic minimization,
we obtain a cube table from where the input constraints are extracted, as discussed for example,
in Chapter 2. Since some of the constraints may appear several times in the cube table, we
need to consider only the distinct ones, which we do in the encoding phase. However, suppose
that a partial sm/sa problem must be solved. Then, some constraints may remain unsatisfied
by the encoding. Since the cube table cardinality is the upper bound of the final cube table,
if we satisfy preferentially the constraints that appear several times in the table, we may stay
close to the bound, even if violating it. Thus, the number of times an input constraint appears
in the symbolically minimized cube table is a good measure for the weight of this constraint.

In some problems, maybe some symbol codes are known to be good in advance. Then the
problem may be specified with codes fixed for some states. This can be accommodated into
the method by imposing values on the successive configurations of the initial encoding vector
ξ, and using the possibility of locking elements from the beginning.

Chapter 13

Conclusions on Constraint Satisfaction

In the present Part, we proposed a new statement for the Boolean constrained encoding prob-
lem, to which several problems can be reduced. Our proposition generalizes previous ap-
proaches, so as to consider encodings that need neither be functional nor injective. Even the
previous formulation of the problem was already general enough to be useful to a significant
set of distinct applications, which can be realized from the applications list of Section 11.3.

The main objective of generalizing the statement of this problem was to make it comprise
the two-level sm/sa problem defined in Section 11.2. After showing informally that the two-
level sm/sa problem can be solved as a special case of Boolean constrained encoding problem,
we proposed a method to approximate the solution of the former that is a generalization of one
approach to the latter.

All previous methods to treat encoding problems using pds [26, 103, 111, 113, 119] rely
upon techniques to solve pd satisfaction that are similar to those used in logic minimization,
consisting of two phases: the generation of “prime pds”, and the solution of the associated
covering problem. However, some difficulties arise with these techniques. First, both phases
comprise the solution of np-complete problems, and second, prime-covering is adapted to solve
the complete two-level sm/sa problem only, because all codes are generated at the same time,
during the covering phase. These difficulties do not arise with the greedy column encoding
method proposed in [106], which makes it more adapted to the needs of this work.

The approach of Shi and Brzozowski [106] has the merit of being efficient, while obtaining
effective results. Also, their method was shown to be applicable to several constrained encoding
problems. However, this approach cannot be used to tackle the two-level sm/sa problem, since
it generates functional encodings only, although not necessarily injective.

The intent behind the asstuce method proposition is to verify the feasibility of the theoret-
ical findings of this thesis, and to allow experimentation of heuristic techniques to enhance the
practical results obtained with it. This has been achieved through the enhanced possibility of
parameterizing the basic greedy approach. Indeed, the method allows, for instance, that either
complete or partial constrained encoding approximations be employed, that the generation of
balanced codes (codes with approximately the same number of 0s and 1s) be favored, etc.

The generalization of the method proposed in [106], although not trivial, could ensure the
same worst case complexity as the original method. In [106], the authors computed the worst
case complexity as O(c), while in Chapter 12 we obtained a bound O(n2 + c) for the asstuce

143

144 CHAPTER 13. CONCLUSIONS ON CONSTRAINT SATISFACTION

method. The difference is immediately explained, if we consider that the work of Shi and
Brzozowski addresses no constraint imposing global conditions on the encoding, such as the
output or the sm constraints. They suggest techniques to treat the output constraints, but do
not account for them during the complexity analysis. Recall that the term n2 in the complexity
bound comes directly from the need of verifying column encodings against the pds in the global
part of the framework. Now, consider the simple case where the output constraints are ignored
and the problem fsm has no compatible pair of states. The verification step against the global
part can accordingly be dropped, because the global part is empty, and the complexity reduces
to O(c), as in the original method.

The main change that has been done in the original method is to allow that the encoding
vector ξ accept don’t care values, which implied extensive changes in the assumptions of Shi
and Brzozowski. The asstuce method can be used to tackle any of the problems listed in
Section 11.3, with one exception, discussed in Section 15.2. The verification of this fact can
be obtained by realizing that Shi and Brzozowski already demonstrated this possibility, and
that our method generalizes theirs. In addition, we extended the complexity analysis in [106]
to consider the output constraints influence.

Chapter 14 will present the characteristics of the program implementing the asstuce
method, together with a comparison with other programs addressing the sm and sa problems.

Part V

Implementation, Results and Final
Remarks

145

Chapter 14

Implementation and Benchmark
Results

This Chapter discusses the implementation of the asstuce method in the form of a computer
program, and the benchmark results obtained by comparing it with other approaches to the
solution of the sm and sa problems.

14.1 The asstuce Implementation

The asstuce program comprises five modules, which are responsible for the following tasks:

1. sm constraints generation;

2. input constraints generation;

3. input constraints relaxation and framework construction;

4. asstuce method application;

5. encoded fsm combinational part minimization.

The execution flow of the program is illustrated in Figure 14.1. In this Figure, rectangular
boxes stand for data repositories, rounded boxes stand for executable modules and the arrows
indicates the data flow. Processing transforms an fsm behavioral description into an encoded
fsm description.

The first two modules are straightforward implementations of well-known constraint gener-
ation techniques, namely the compatibility table of Paull and Unger [91], and symbolic min-
imization with the help of espresso [99, 43], respectively. The third module performs the
following steps:

1. breaks the constraints into their elementary forms, i.e. pairs of binary relations, cf. Chap-
ters 4 and 5;

2. performs the relaxation of the input constraints based on the sm constraints, according
to Method 9.1;

147

148 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

Input Constraints

FSM Behavioral
Description

Encoded FSM
Minimized

Combinational Part
Espresso

SM Constraints

Input Constraints
Generation

SM Constraints
Generation

Input Constraints Relaxation
and Framework Construction

PD Framework

Asstuce Method

State Encoding

Encoded FSM
Combinational Part

Minimization

Asstuce Program

Figure 14.1: Execution flow for the asstuce program

3. generates the local and global parts of the pd framework from the relaxed input con-
straints and from the sm constraints, according to the discussion of Section 9.2.

All processing in the first three modules is accomplished without major complex tasks being
performed, except if covered pds in the global part of the framework are required (by the user)
to be discarded during execution of the third module. The fourth task consists in the application
of the asstuce method to generate the state encoding, and the last task uses this encoding to
generate an encoded fsm, minimizes the combinational part of this fsm and outputs the result
of the minimization.

Note the use of the espresso program by asstuce in Figure 14.1. The dotted arrows in this
Figure indicate the calling of espresso in two situations: to perform symbolic minimization
of the original fsm next state and output functions, and to minimize the combinational part
of the encoded fsm.

We describe the program asstuce based on a pseudo-code that uses indentation as an
indication of the program block structures [27]. Routines are represented by small capital
characters, while pseudo-code keywords appear in boldface. In the pseudo-code, ← indicates
the assignment operation, + denotes concatenation of data structures and # stands for the
computation of the cardinality of a data structure. Assigning the empty set symbol ∅ to a
data structure means initializing it to contain conceptually no data. Parameters followed by
:ref in the header of a routine are passed by reference. Otherwise, they are passed by value.
Routines in the pseudo-code are called functions if they return a value, otherwise they are called
procedures.

14.1. THE ASSTUCE IMPLEMENTATION 149

Of the five tasks executed in sequence by the asstuce program, only one deserves detailed
attention, the application of the asstuce method, because it comprises the costliest step in
terms of global execution time, which is the column encoding performed by the function gen-
erate column. This function is called by a function named satisfy once, which controls
the generation of a complete valid state encoding. The main routine of the asstuce method
implementation, which is not shown here, iterates calling satisfy once until a local minimum
for the encoding length is achieved. The iteration relies upon heuristic ordering techniques.
One of these techniques has already been presented in Section 12.4, and consists in starting pd
satisfaction using the last column encoding found during the previous call to satisfy once.
Another technique is to alternate the order in which elements with the same best gain value
in the bucket lists B0 and B1 are considered. In practice, the number of iterations needed to
reach a local minimum is small.

Consider the pseudo-code for functions satisfy once and generate column. The vari-
ables of the pseudo-code are represented using the same terminology employed to describe the
data structures of the method in Chapter 12, with minor changes to enhance readability. In
this way, Ξ represents the encoding under construction. It is a two-dimensional array to which
columns are added during the execution of satisfy once. The symbol ξ represents the encod-
ing vector, while F stands for the pd framework. The variable Y T corresponds to the symbol
and pd arrays seen as a single entity, u keeps the current number of unsatisfied pds, and ω
refers to the bucket lists B0 and B1, which are used to represent the gain vector.

satisfy once(ξ,F :ref)
1 Ξ← ∅;
2 Y T ← initialize Y T (ξ,F);
3 Y T start ← Y T ;
4 u← compute u(Y T);
5 while u > 0
6 do (col,sat) ← generate column(ξ,F ,Y T);
7 Ξ← Ξ + col;
8 Y T ← Y T start;
9 Y T ← eliminate sat(Y T ,sat);
10 Y T start ← Y T ;
11 return Ξ;

In satisfy once, after initializing Ξ, Y T is created and filled with data computed from
the contents of ξ and of the F local part, as explained in Section 12.3.2. A copy of this value is
kept in an auxiliary data structure Y T start, which is of the same type as Y T . Recall that the
distance vector is kept within the pd array data structure. This is the reason why we use Y T
as parameter of the function compute u, which returns the starting number of unsatisfied pds
by consulting the distance vector. This information is tested as the stop condition of the loop
that controls encoding generation, in line 5 of the function. This loop consists in calling the
function generate column to compute a new encoding column, receiving as return value a
pair where the first coordinate, col, is the new column, and the second coordinate, sat, is the set
of pds satisfied by this column. The structure col is then concatenated with the other columns
in Ξ. The variable u is global. The last task in the loop is to obtain a new Y T data structure,
by eliminating from it the satisfied pds in sat. Since, for efficiency reasons, Y T was passed
by reference to generate column, it has possibly been changed. That is the reason why a

150 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

copy of it is kept in Y T start. After the updating of Y T , Y T start is accordingly transformed
into a copy of it for the next step. The last action of the function is to return Ξ, an encoding
satisfying all pds in F .

Some comments are needed on the above pseudo-code. It corresponds to an algorithm that
approximates the solution of the complete two-level sm/sa problem only, because the stop
condition for the loop, in line 5, is u ≤ 0, which means that the computation of columns stops
only after satisfying all pds. In fact, the user of asstuce may choose between this approxima-
tion and the partial constrained encoding approximation. The program can be parameterized
in various other aspects, but we overlook these details for ease of understanding of the basic
algorithm.

One relevant comment about parameterization is that the initial value of the encoding
vector ξ can be established in many ways. If, for example, an initial ξ is specified that contains
no don’t care values, a binary encoding is automatically generated, which is a useful choice to
encode machines without compatible states using minimum length codes. Finally, although not
implemented at present, the specification of fixed codes for states is an immediate extension.
It suffices to choose ξ as a vector of columns filled with the chosen fixed codes that are stored
initially locked in ξ.

We now present the pseudo-code of the function generate column.

generate column(ξ,F :ref,Y T :ref)
1 sat ← compute sat(ξ,Y T);
2 ω ← initialize ω(Y T);
3 compute gains(ω,Y T);
4 move ← next best move(ω)
5 ξ best ← ξ;
6 while move�= ∅ and u > 0
7 do if move valid(move,ξ,F)
8 lock symbol(move,ξ);
9 eliminate moved(move,ω);
10 update gains(move,Y T ,ω);
11 perform move(move,ξ);
12 sat aux ← compute sat(ξ,Y T);
13 if #(sat aux) ≥ #(sat)
14 sat ← sat aux;
15 ξ best ← ξ;
16 u← compute u(Y T);
17 move ← next best move (ω);
18 return (ξ best,sat);

The function begins by computing the set of satisfied pds in the local part of F by consulting
the ξ and Y T data structures. This routine is similar to compute u. In fact, both routines
perform just a look-up in Y T , since during its set-up all satisfied pds are identified. compute u
retrieve the number of unsatisfied pds and compute sat retrieve the satisfied pds themselves.
The routines initialize ω and compute gains build the initial bucket lists as described in
Section 12.3.2. The initialization phase ends with the computation of the first best move (in
line 4) and the copy of ξ to the auxiliary vector ξ best (in line 5).

14.1. THE ASSTUCE IMPLEMENTATION 151

The main loop extends from lines 6 through 17, and it is repeated while both a feasible move
is available and there are unsatisfied constraints. The objective of the loop is to generate the
best possible move in ξ at each iteration, if such a move is feasible. The whole loop execution
depends upon the function move valid, which returns a yes or no answer about the feasibility
of taking the move. The tests performed by this function can be controlled externally by the
user of the asstuce program, who may choose to accept negative gains for a move or not,
according to the first heuristic technique discussed in Section 12.4.1. If the move is not valid,
the next best moves are computed and the loop restart, until either a stop condition of the loop
is met or a feasible move is found. Suppose the last case occurs. Then, the associated symbol
of ξ is locked (line 8), the corresponding elements of the bucket lists in ω are eliminated (line
9), gains are updated in Y T and ω (line 10), and the move is taken (line 11). The last step
before computing the next best move and iterating again is to find out if the move just taken is
the best one up to now. In fact, this is useful only when the heuristic to accept negative gains
is activated, otherwise the move taken makes the test succeed in all cases. If this is indeed the
case, the return values ξ best and sat are updated in lines 14 and 15, respectively. These are
the values returned after the loop is finished.

One important observation about column encoding is that there is a heuristic technique to
reduce code length in asstuce. This technique consists in forcing the bit vectors generated to
be balanced, i.e. to contain as many 0s as 1s, as far as possible. This can assure that each bit
vector thus generated satisfies a maximum number of constraints, as described in Section 12.4.1.

14.1.1 The asstuce Program Implementation Environment

We programmed asstuce using the language C++ [108], under the UNIX operating system.
Additionally, we employed a class library called LEDA [88], developed at the Max-Planck-
Institut für Informatik at Saarbrücken, Germany, to help the implementation of programs
dealing with combinatorial computing. The compiler used was G++, developed at the Free
Software Foundation [110]. All these programming tools are freely available for non-profit use
and research work.

The choice of C++ as programming language was motivated by various reasons. First,
C++ is already the most widespread language that supports the object-oriented programming
paradigm. This paradigm is seen today as a powerful technique to build modular, maintainable
and portable software systems [84]. It allows reusable software to be more easily constructed
through various mechanisms such as encapsulation, information hiding, polymorphism and
inheritance [117]. One practical example of reusable software is the LEDA library, where data
structures like lists, dictionaries and graphs are available, which can not only be used as they
were originally designed, but most importantly, they can be adapted for particular applications
through the use of inheritance mechanisms. This means, for instance, that if some application
requires a special type of graph and the graph class of the LEDA library is insufficient to
model it, the user may create a new mygraph class that is a graph (and as such inherits all
characteristics of the LEDA graph class) but to which the user can add functionalities and
specific data structures. C++ is also a good compromise between runtime execution efficiency
and high-level programming, because it is derived from the very efficient language C [71], and
yet it allows programming at a high level of abstraction to take place.

As for the program design technique, we used the pragmatic approach proposed in [117] to

152 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

guarantee a modular implementation of the prototype. Such care was taken with the asstuce
program design because we devise the present prototype as the seed of an fsm exploratory envi-
ronment. A first requirements specification for such an environment is available in Appendix B.

14.2 Benchmark Tests

A widely available set of benchmark fsms has been used to compare the results of running
the asstuce program with other approaches. The present Section discusses the results of this
comparison. The tests were conducted in a single workstation, a Sun Sparcstation 10/40 with
a single processor, in a UNIX environment. All execution times mentioned in the comparisons
below will be stated in seconds of processing time on this workstation.

The main objective of implementing the program asstuce is to show that the simultaneous
strategy for solving the sm and sa problems can generate encodings of quality at least as high
as the serial strategy, and that in some cases it is the best choice. The available literature
[8, 6, 60, 75] has failed to demonstrate these possibilities. We hope that the greedy exploratory
implementation will be able to provide results leading to the proposal of a more specific method
to tackle the optimal generation of non-functional, non-injective encodings. In this way, the
objective of implementing asstuce has been to create an exploratory environment to test the
efficiency of the theoretical developments proposed in the thesis, while allowing a good amount
of user parameterization, to evaluate various alternative encoding schemes. That is why we call
asstuce an exploratory tool, in opposition to a “push-button” encoding program that works
more like a black box receiving an input description and furnishing an output description.

14.2.1 The Benchmark fsms

The fsm test set used is part of the mcnc benchmarks [118], distributed freely by the Microelec-
tronics Center of North Carolina, and comprising various sets of sequential and combinational
circuit descriptions. The mcnc fsm test set includes 53 synchronous machines, each identified
by a specific name.

The fsms are represented in the kiss2 format, described in Appendix A. This is the only
input format accepted by the current version of the asstuce program. The kiss2 format
assumes the fsms are to be implemented as synchronous machines and uses a cube table to
describe the next state and output functions. In this format, machines are presented with input
and outputs already binary encoded, while the state information is depicted symbolically.

From the 53 machines, we used only 47, because some machines have all states mutually
compatible, which implies that these can be implemented as a combinational circuit, and are
thus irrelevant for our purposes.

We divided the 47 machines into two groups, according to the presence or absence of non-
trivial compatible state pairs in the original description. Remember that a machine with only
trivial compatible pairs of states is already minimized, implying the uselessness of submitting
it to state minimization tools. The groups we have separated the machines into are:

1. the C-group of fsms, comprising descriptions where at least one non-trivial pair of com-
patible states exists (18 machines out of 47);

14.2. BENCHMARK TESTS 153

2. the I-group of fsms, comprising descriptions where only trivial pairs of compatible states
exists (29 machines out of 47).

The objective of dividing machines in two groups is that each group allows evaluating
distinct aspects of the two-level sm/sa problem solution proposed by asstuce. The C-group
permits accessing the benefits and drawbacks of using a simultaneous strategy in place of a
serial strategy. The I-group, on the other hand, is immune to state minimization. Thus, it only
allows us to evaluate the benefits and drawbacks of using non-functional encodings instead of
functional encodings.

The mcnc fsm benchmark test set input, output and state characteristics are presented in
Table 14.1 for the C-group, and Table 14.2 for the I-group.

Table 14.1: Characteristics of the mcnc fsm benchmark test set - C-group

FSM
s27
beecount
lion9
ex5
ex7
ex3
bbara
opus
train11
mark1
sse
bbsse
ex2
tma
ex1
tbk
scf
s298

i_b
4
3
2
2
2
2
4
5
2
5
7
7
2
7
9
6
27
3

i_p
19
7
4
4
4
4
6
12
4
11
23
23
4
12
48
49
45
13

st
6
7
9
9
10
10
10
10
11
15
16
16
19
20
20
32
121
218

o_b
1
4
1
2
2
2
2
6
1
16
7
7
2
6
19
3
56
6

o_p
2
4
2
2
2
4
3
8
2
9
15
15
2
20
60
5
39
5

st_tr
34
28
25
32
36
36
60
22
25
22
56
56
72
44
138
1569
166
1096

i_b : number of input bits
i_p : number of distinct input bit patterns in initial description
st : number of state in initial description
o_b : number of output bits
o_p : number of distinct output bit patterns in initial description

In these Tables, each row corresponds to an fsm, identified by a name in the first column.
Note that the fsms cover a wide range of machine sizes (from 4 to 218 states, from 1 to 27
input bits and from 1 to 56 output bits).

14.2.2 Benchmark Tests Strategy

The present version of asstuce can solve the complete constrained encoding problem ap-
proximation, and it can approach the solution of the partial constrained encoding problem

154 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

Table 14.2: Characteristics of the mcnc fsm benchmark test set - I-group

FSM
lion
train4
dk15
mc
tav
bbtas
dk27
dk14
shiftreg
dk17
ex6
s386
ex4
dk512
cse
kirkman
s208
s420
keyb
s1
pma
s820
s832
dk16
styr
sand
s510
s1494
s1488

i_b
2
2
3
3
4
2
1
3
1
2
5
7
6
1
7
12
11
19
7
8
8
18
18
2
9
11
19
8
8

i_p
7
4
8
7
22
4
2
8
2
4
24
39
11
2
32
65
53
52
77
67
28
119
128
4
40
122
37
124
123

st
4
4
4
4
4
6
7
7
8
8
8
13
14
15
16
16
18
18
19
20
24
25
25
27
30
32
47
48
48

o_b
1
1
5
5
4
2
2
5
1
3
8
7
9
3
7
6
2
2
2
6
8
19
19
3
10
9
7
19
19

o_p
2
2
11
8
12
4
3
12
2
5
12
11
11
4
14
32
4
4
4
20
24
22
22
5
28
36
13
64
64

st_tr
11
14
32
10
49
24
14
56
16
32
34
64
21
30
91
370
153
137
170
107
73
32
245
108
166
184
77
250
251

i_b : number of input bits
i_p : number of distinct input bit patterns in initial description
st : number of state in initial description
o_b : number of output bits
o_p : number of distinct output bit patterns in initial description

14.2. BENCHMARK TESTS 155

approximation. Accordingly, the strategy of the benchmark tests is to compare the results
obtained by asstuce with the results of two alternative serial strategies.

The tools we used to form the serial strategies to compare with asstuce are:

1. stamina [59], from the University of Colorado, at Boulder;

2. nova [116], version 3.2, developed at the University of California, at Berkeley;

3. diet [119], version 1.1, developed at the University of Massachussets at Amherst.

The first program, stamina, is a state minimization tool. The last two programs, nova
and diet are state assignment programs.

diet employs a complete constrained encoding approach to solve state assignment, while
nova employs a partial constrained encoding approach. None of these programs consider
state minimization, and both generate functional, binary encodings. We have correspondingly
performed two sets of benchmarks tests comparisons:

1. First set of comparisons - asstuce versus complete encoding serial strategy - each original
benchmark fsm is encoded with asstuce, which is parameterized to perform complete
encoding; the obtained results are compared with the following serial strategy:

(a) first, minimize the state cardinality of each original benchmark fsm using stamina;

(b) second, encode each state minimized fsm using diet.

2. Second set of comparisons - asstuce versus partial encoding serial strategy - each original
benchmark fsm is encoded with asstuce, which is parameterized to perform partial
encoding; the obtained results are compared with the following serial strategy:

(a) first, minimize the state cardinality of each original benchmark fsm using stamina;

(b) second, encode each state minimized fsm using nova.

Some fundamental comments about these tools are necessary before discussing the tests
results.

First, all comparison parameters are extracted from the minimized combinational part of the
encoded fsm. All three programs, diet, nova, and asstuce, rely on the espresso program
to perform the combinational part minimization after encoding. The same statement is true
for the input constraints generation step. In this way, the comparisons reflect the differences
arising from the encoding strategy alone, not from side effects originated from the use of distinct
minimization schemes.

Second, each of the tools compared with asstuce may be parameterized in some way.
Thus, we need to choose an adequate set of run-time options for each program, to allow a
fair comparison with the implemented asstuce capabilities. We refer below to the options
described in the tool manuals reproduced in Appendix C.

Both diet and nova can effectuate a post-processing of the generated encoding to choose
how to assign the all 0s code to a state. This post-processing is called code rotation, and the
advantage of using it is the possibility of obtaining enhanced results after the combinational

156 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

part minimization. Since this is not a capability implemented in asstuce, and since it is
independent of a particular encoding algorithm, we have chosen not to employ this option in
the tests (i.e. we include neither the option -z in diet nor -r in nova.).

diet has no other relevant run-time options. However, various state assignment algorithms
are available in nova (exact, greedy, hybrid, simulated annealing, etc.). We have chosen
to use the run-time option -e ih, which invokes a constrained encoding algorithm based on
the satisfaction of the input constraints only, and which, according to the tool manual “has
the best trade-off between quality of results versus computing time”. We avoided the use of
algorithms considering output constraints, to maintain a fair comparison with asstuce, since
these constraints are not considered in our implementation. Concerning the state minimization
tool stamina, we have opted for the run-time option -s 1, all other options being the default
choices. This invokes a tight upper bound heuristic algorithm for performing state minimization.
We avoided the exact minimization default option -s 0, since it may lead to an exponential
growth in the time to obtain a solution of the sm problem.

14.2.3 The Compared Parameters

Most logic level fsm synthesis programs consider area minimization as the primary concern.
We have already discussed in Chapter 2 the existence of other criteria to measure the quality
of an fsm implementation. In the benchmark tests, we shall consider a total of six distinct
criteria to evaluate the quality of a two-level implementation:

1. combinational part area estimate (pla);

2. number of product terms in pla;

3. fsm encoding length;

4. pla transistor cardinality;

5. pla sparsity;

6. program execution time.

The first three criteria are often present in comparisons, together with the last criterion.
Transistor cardinality and pla sparsity, on the other hand, are important in other logic or
layout level applications, such as multiple-level logic minimization and topological optimization,
respectively. The number of transistors can be associated with dissipated power, while sparsity
gives an idea of how easily topological optimization can be applied to the pla. At the logic
level, all six criteria can only be estimated, but their simultaneous consideration can tell much
about the quality of an fsm synthesis program.

The presentation of the benchmark tests results will take place in the next three Sections.
In Section 14.2.4, we provide information about running our program on the fsm benchmark
test set alone. Sections 14.2.5 and 14.2.6 provide a comparison between asstuce and the
complete and partial encoding serial strategies, respectively.

14.2. BENCHMARK TESTS 157

14.2.4 Benchmark Tests with asstuce

The raw data obtained from running asstuce on the mcnc fsm benchmark test set are
presented in Tables 14.3 and 14.4, for the C-group and I-group of machines, respectively. The
I-group Table has no column accounting for the number of non-trivial compatible pairs in the
machine (column cpt, since this value would always be zero for any machine in the group. All
other columns are present in both Tables. We highlight the fact that the data in these Tables
were obtained by running asstuce with an option to perform complete constrained encoding.
The other possibility would be to use the partial constrained encoding option, which in general
give better results. However this changes little the relationship between modules with regard
to the compared parameters.

The five modules comprising asstuce have been enumerated in Section 14.1. The bench-
mark data concerning each of these modules appear as contiguous column subsets in Tables 14.3
and 14.4, and are distributed as follows:

1. sm constraints generation - the first two columns in the C-group Table, and the first
column in the I-group Table;

2. input constraints generation - columns ict t through t ict;

3. input constraints relaxation and framework construction - columns lpd e through elim;

4. asstuce method application - columns pds it through t pds;

5. encoded fsm combinational part minimization - columns t min through a area.

Finally, the last column of Tables 14.2.4 and 14.2.4, a time, gives the total time taken to
run asstuce, i.e. executing the five modules, including the time for the two espresso calls.

The pla area estimate employed is the usual topological estimation for an unfolded pla [6],
i.e. considering it as a rectangle where the height is proportional to the number of product terms,
and where the width is proportional to the sum of the number of output bits and twice the
number of input bits. The factor 2 results from the fact that both direct and complemented
values of the input variables are present in the input plane of the pla. Using data from
Tables 14.1 through 14.4, we may compute the area estimate for each machine as

((i b + a cl f).2 + (a cl f + o b)).a pt.

14.2.4.1 asstuce Benchmark Tests Discussion

The first conclusion we may extract from the asstuce execution alone is that all mcnc bench-
marks could be successfully encoded, which will not the case for the diet program, for instance.
This is a direct consequence of the use of efficient heuristic techniques.

Second, we may draw a parallel between the total execution time taken by asstuce and
the predicted upper bound on it, established in Section 12.3.2. We may observe in Tables 14.3
and 14.4 that the dominant component of the a time value is the time taken to satisfy the
pds, t pds. Thus, it should be possible to approximate the asymptotic complexity of running
asstuce by using the asymptotic complexity of the associated pd satisfaction method. This

158 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

FS
M

s2
7

be
ec

ou
nt

lio
n9

ex
5

ex
7

ex
3

bb
ar

a
op

us
tr

ai
n1

1
m

ar
k1

ss
e

bb
ss

e
ex

2
tm

a
ex

1
tb

k
sc

f
s2

98

cp
t

1 4 9 26 32 37 6 1 25 20 36 36 12
9

12 2 16 70 15
65

t_
cp

t
0.

00
0.

02
0.

00
0.

03
0.

02
0.

05
0.

03
0.

02
0.

02
0.

07
0.

07
0.

07
0.

15
0.

03
0.

05
0.

32
13

.8
8

12
.4

3

ic
t_

t
17 12 10 25 23 24 34 19 15 19 30 30 42 32 44 17

3
15

1
69

7

ic
t_

d
11 12 10 14 14 14 14 11 13 12 18 18 27 27 27 10

6
10

7
18

1

t_
ic

t
0.

02
0.

02
0.

00
0.

02
0.

02
0.

03
0.

03
0.

03
0.

02
0.

03
0.

08
0.

08
0.

05
0.

07
0.

35
1.

78
1.

57
7.

48

lp
d_

e
16 16 31 11 9 7 20 32 30 61 51 51 23 14

0
69 67

6
56

23
41

81

t_
lp

d_
e

0.
03

0.
03

0.
07

0.
02

0.
03

0.
02

0.
08

0.
05

0.
03

0.
10

0.
18

0.
22

0.
12

0.
67

0.
63

24
.9

3
81

.6
8

19
14

.0
0

lp
d_

ne
35 40 57 17 19 9 59 60 58 10

7
12

2
12

2
66 31

7
29

2
22

54
84

84
27

55
7

t_
lp

d_
ne

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
05

0.
03

0.
07

0.
07

0.
15

0.
13

1.
17

10
.1

8
50

.2
8

el
im no no no ye
s

ye
s

no ye
s

ye
s

ye
s

no no no ye
s

no no ye
s

no no

pd
s_

it
4 5 3 5 5 3 3 3 3 3 4 4 3 3 3 5 7 6

cl
_i 3 3 5 4 4 4 5 4 4 5 6 6 11 9 8 24 9 19

a_
cl

_f
3 3 5 4 4 4 5 4 4 5 6 6 11 9 8 23 9 18

t_
pd

s
0.

18
0.

33
0.

32
0.

10
0.

12
0.

07
0.

30
0.

18
0.

22
0.

53
0.

87
0.

85
0.

38
2.

40
2.

38
38

.1
7

26
5.

23
47

10
.0

0

t_
m

in
0.

03
0.

05
0.

00
0.

02
0.

03
0.

03
0.

05
0.

02
0.

00
0.

05
0.

10
0.

10
0.

03
0.

08
0.

48
2.

23
1.

87
2.

53

a_
pt

11 10 7 9 9 8 24 19 5 18 27 27 21 34 42 94 13
3

30
0

a_
ar

ea
19

8
19

0
14

0
16

2
16

2
14

4
60

0
53

2
85 73

8
10

53
10

53
81

9
15

98
25

62
78

96
18

22
1

19
80

0

a_
tim

e
0.

28
0.

45
0.

38
0.

18
0.

25
0.

20
0.

42
0.

38
0.

33
0.

78
1.

27
1.

25
0.

85
2.

87
3.

92
68

.8
2

29
8.

17
48

28
.0

0

T
ab

le
 1

4.
3:

 R
aw

 d
at

a
fo

r
th

e
A

S
S
T

U
C

E
 r

u
n
 o

n
 t

h
e

C
-g

ro
u
p
 o

f
F
S
M

 b
en

ch
m

ar
k
s

cp
t :

 n
um

be
r

of
 n

on
-t

ri
vi

al
 c

om
pa

tib
le

 p
ai

rs
 in

 in
iti

al
 d

es
cr

ip
tio

n
t_

cp
t :

 ti
m

e
ne

ed
ed

 to
 g

en
er

at
e

al
l n

on
-t

ri
vi

al
 c

om
pa

tib
le

 p
ai

rs

ic
t_

t :
 to

ta
l n

um
be

r
of

 in
pu

t c
on

st
ra

in
ts

 a
ri

si
ng

 f
ro

m
 s

ym
bo

lic
 m

in
im

iz
at

io
n

ic
t_

d
: n

um
be

r
of

 d
is

tin
ct

 in
pu

t c
on

st
ra

in
ts

 a
ri

si
ng

 f
ro

m
 s

ym
bo

lic
 m

in
im

iz
at

io
n

t_
ic

t :
 ti

m
e

to
 g

en
er

at
e

in
pu

t c
on

st
ra

in
ts

 w
ith

 E
sp

re
ss

o

l_
pd

_e
 :

nu
m

be
r

of
 P

D
s

in
 th

e
fr

am
ew

or
k

lo
ca

l p
ar

t w
ith

 e
lim

in
at

io
n

t_
l_

pd
_e

 :
tim

e
to

 b
ui

ld
 lo

ca
l p

ar
t o

f
th

e
fr

am
ew

or
k

w
ith

 e
lim

in
at

io
n

l_
pd

_n
e

: n
um

be
r

of
 P

D
s

in
 th

e
fr

am
ew

or
k

lo
ca

l p
ar

t w
ith

ou
t e

lim
in

at
io

n
t_

l_
pd

_e
 :

tim
e

to
 b

ui
ld

 lo
ca

l p
ar

t o
f

th
e

fr
am

ew
or

k
w

ith
ou

t e
lim

in
at

io
n

el
im

 :
"y

es
",

 if
 e

lim
in

at
io

n
pr

od
uc

ed
 s

m
al

le
r

ar
ea

, o
th

er
w

is
e

"n
o"

pd
s_

it
: n

um
be

r
of

 it
er

at
io

ns
 o

f
en

co
di

ng
 g

en
er

at
io

n
to

 f
in

d
lo

ca
l m

in
im

um
cl

_i
 :

en
co

di
ng

 le
ng

th
 a

ft
er

 in
iti

al
 it

er
at

io
n

a_
cl

_f
 :

en
co

di
ng

 le
ng

th
 a

ft
er

 f
in

al
 it

er
at

io
n

t_
pd

s
: t

im
e

ne
ed

ed
 to

 g
en

er
at

e
en

co
di

ng
 s

at
is

fy
in

g
th

e
PD

 f
ra

m
ew

or
k

t_
m

in
 :

tim
e

to
 m

in
im

iz
e

th
e

en
co

de
d

FS
M

 c
om

bi
na

tio
na

l p
ar

t
a_

pt
 :

nu
m

be
r

of
 p

ro
du

ct
 te

rm
s

in
 th

e
m

in
im

iz
ed

 c
om

bi
na

tio
na

l p
ar

t

a_
ar

ea
 :

ar
ea

 e
st

im
at

e
of

 th
e

m
in

im
iz

ed
 c

om
bi

na
tio

na
l p

ar
t f

or
 th

e
en

co
de

d
FS

M
a_

tim
e

: t
im

e
to

 e
xe

cu
te

 th
e

A
SS

T
U

C
E

 r
un

14.2. BENCHMARK TESTS 159

FS
M

lio
n

tr
ai

n4
dk

15
m

c
ta

v
bb

ta
s

dk
27

dk
14

sh
if

tr
eg

dk
17

ex
6

s3
86

ex
4

dk
51

2
cs

e
ki

rk
m

an
s2

08
s4

20
ke

yb
s1 pm

a
s8

20
s8

32
dk

16
st

yr
sa

nd
s5

10
s1

49
4

s1
48

8

t_
cp

t
0.

00
0.

00
0.

02
0.

02
0.

00
0.

00
0.

00
0.

00
0.

00
0.

02
0.

02
0.

05
0.

03
0.

03
0.

05
0.

15
0.

10
0.

08
0.

08
0.

05
0.

07
0.

10
0.

13
0.

10
0.

18
1.

00
0.

57
1.

20
0.

75

ic
t_

t
9 10 17 10 12 16 10 25 9 20 23 32 21 21 57 58 25 25 78 92 43 89 89 55 11

1
11

4
75 12

1
12

1

ic
t_

d
6 6 10 4 5 7 9 12 5 14 16 18 14 19 24 23 23 23 35 25 31 35 35 35 46 37 47 67 67

t_
ic

t
0.

02
0.

02
0.

03
0.

02
0.

03
0.

02
0.

02
0.

08
0.

03
0.

02
0.

05
0.

10
0.

02
0.

03
0.

17
0.

62
0.

23
0.

37
0.

20
0.

23
0.

45
1.

52
1.

37
0.

12
1.

68
1.

25
0.

53
7.

95
7.

70

lp
d_

e
6 4 8 6 6 9 21 27 28 31 22 51 91 10

6
59 50 81 81 79 13

1
25

2
17

6
17

6
37

4
19

3
36

3
10

81
76

6
85

0

t_
lp

d_
e

0.
00

0.
02

0.
00

0.
00

0.
00

0.
02

0.
02

0.
05

0.
02

0.
10

0.
10

0.
20

0.
10

0.
30

0.
47

0.
27

0.
42

0.
50

1.
45

0.
52

1.
48

1.
33

1.
27

2.
32

3.
67

1.
90

3.
45

20
.2

5
22

.3
5

lp
d_

ne
10 10 17 6 6 18 39 54 28 67 74 11

6
91 20

7
23

2
16

8
21

0
21

0
40

2
27

9
52

1
50

6
50

6
80

5
85

4
64

3
10

81
20

88
20

95

t_
lp

d_
ne

0.
00

0.
00

0.
00

0.
00

0.
02

0.
00

0.
02

0.
02

0.
00

0.
02

0.
02

0.
05

0.
05

0.
07

0.
08

0.
08

0.
12

0.
08

0.
13

0.
17

0.
22

0.
23

0.
22

0.
27

0.
48

0.
37

0.
83

1.
30

1.
23

el
im ye
s

ye
s

no ye
s

no ye
s

no ye
s

ye
s

no no ye
s

ye
s

no ye
s

ye
s

no no ye
s

no ye
s

ye
s

no ye
s

no ye
s

no ye
s

no

pd
s_

it
3 3 3 3 3 4 7 5 5 6 3 4 5 3 3 5 3 3 3 4 3 8 5 3 4 4 3 7 6

cl
_i 2 2 4 2 2 3 4 6 4 4 5 7 4 6 7 6 7 7 9 5 10 7 8 12 9 6 6 18 19

a_
cl

_f
2 2 4 2 2 3 4 6 4 4 5 7 4 6 7 6 7 7 9 5 10 7 7 12 8 6 6 18 17

t_
pd

s
0.

05
0.

02
0.

08
0.

03
0.

03
0.

10
0.

38
0.

30
0.

23
0.

58
0.

37
0.

53
0.

65
1.

03
0.

60
0.

85
1.

37
1.

43
1.

20
1.

80
2.

93
4.

67
4.

72
4.

35
8.

18
3.

25
8.

20
81

.2
5

81
.5

2

t_
m

in
0.

00
0.

00
0.

03
0.

00
0.

03
0.

02
0.

02
0.

07
0.

02
0.

05
0.

10
0.

10
0.

05
0.

03
0.

17
0.

62
0.

27
0.

43
0.

23
0.

18
0.

13
1.

10
1.

12
0.

07
0.

35
0.

52
0.

25
1.

20
1.

12

a_
pt 7 6 16 8 11 10 8 23 5 18 23 26 19 19 52 52 22 22 68 90 41 71 68 54 99 10
5

68 11
7

11
8

a_
ar

ea
77 66 36

8
13

6
19

8
15

0
12

8
66

7
75 34

2
75

9
10

92
62

7
43

7
21

84
24

96
99

0
13

42
29

24
33

30
22

14
53

96
51

68
23

22
51

48
51

45
42

84
10

41
3

10
14

8

a_
tim

e
0.

10
0.

05
0.

23
0.

07
0.

15
0.

18
0.

47
0.

60
0.

33
0.

72
0.

62
1.

15
0.

88
1.

22
1.

67
3.

20
2.

42
2.

82
3.

65
2.

97
5.

28
10

.2
3

9.
33

7.
10

11
.3

2
9.

02
10

.9
7

11
6.

63
94

.1
2

T
ab

le
 1

4.
4:

 R
aw

 d
at

a
fo

r
th

e
A

S
S
T

U
C

E
 r

u
n
 o

n
 t

h
e

I-
gr

ou
p
 o

f
F
S
M

 b
en

ch
m

ar
k
s

t_
cp

t :
 ti

m
e

ne
ed

ed
 to

 g
en

er
at

e
al

l n
on

-t
ri

vi
al

 c
om

pa
tib

le
 p

ai
rs

ic
t_

t :
 to

ta
l n

um
be

r
of

 in
pu

t c
on

st
ra

in
ts

 a
ri

si
ng

 f
ro

m
 s

ym
bo

lic
 m

in
im

iz
at

io
n

ic
t_

d
: n

um
be

r
of

 d
is

tin
ct

 in
pu

t c
on

st
ra

in
ts

 a
ri

si
ng

 f
ro

m
 s

ym
bo

lic
 m

in
im

iz
at

io
n

t_
ic

t :
 ti

m
e

to
 g

en
er

at
e

in
pu

t c
on

st
ra

in
ts

 w
ith

 E
sp

re
ss

o

l_
pd

_e
 :

nu
m

be
r

of
 P

D
s

in
 th

e
fr

am
ew

or
k

lo
ca

l p
ar

t w
ith

 e
lim

in
at

io
n

t_
l_

pd
_e

 :
tim

e
to

 b
ui

ld
 lo

ca
l p

ar
t o

f
th

e
fr

am
ew

or
k

w
ith

 e
lim

in
at

io
n

l_
pd

_n
e

: n
um

be
r

of
 P

D
s

in
 th

e
fr

am
ew

or
k

lo
ca

l p
ar

t w
ith

ou
t e

lim
in

at
io

n
t_

l_
pd

_e
 :

tim
e

to
 b

ui
ld

 lo
ca

l p
ar

t o
f

th
e

fr
am

ew
or

k
w

ith
ou

t e
lim

in
at

io
n

el
im

 :
"y

es
",

 if
 e

lim
in

at
io

n
pr

od
uc

ed
 s

m
al

le
r

ar
ea

, o
th

er
w

is
e

"n
o"

pd
s_

it
: n

um
be

r
of

 it
er

at
io

ns
 o

f
en

co
di

ng
 g

en
er

at
io

n
to

 f
in

d
lo

ca
l m

in
im

um
cl

_i
 :

en
co

di
ng

 le
ng

th
 a

ft
er

 in
iti

al
 it

er
at

io
n

a_
cl

_f
 :

en
co

di
ng

 le
ng

th
 a

ft
er

 f
in

al
 it

er
at

io
n

t_
pd

s
: t

im
e

ne
ed

ed
 to

 g
en

er
at

e
en

co
di

ng
 s

at
is

fy
in

g
th

e
PD

 f
ra

m
ew

or
k

t_
m

in
 :

tim
e

to
 m

in
im

iz
e

th
e

en
co

de
d

FS
M

 c
om

bi
na

tio
na

l p
ar

t
a_

pt
 :

nu
m

be
r

of
 p

ro
du

ct
 te

rm
s

in
 th

e
m

in
im

iz
ed

 c
om

bi
na

tio
na

l p
ar

t

a_
ar

ea
 :

ar
ea

 e
st

im
at

e
of

 th
e

m
in

im
iz

ed
 c

om
bi

na
tio

na
l p

ar
t f

or
 th

e
en

co
de

d
FS

M
a_

tim
e

: t
im

e
to

 e
xe

cu
te

 th
e

A
SS

T
U

C
E

 r
un

160 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

complexity has been computed in Section 12.3.2 as bounded by O(n2 + c). In this bound, n is
the number of symbols (i.e. states of the fsm) and c is the number of non-don’t care components
in the initial pd matrix P , which we know to be bounded by the product of the number of
symbols by the cardinality of the initial set of pds.

We have compared the expected upper bound with the measured values. The result is
depicted in the chart of Figure 14.2. The horizontal axis of the Figure corresponds to the
benchmark fsms ordered by size. The curve representing the upper bound was obtained from
each machine using the formula

(st2 + st.lpd ne)/250,

which approximates the predicted bound. The divisor 250 is the constant experimentally
found that normalizes the formula with regard to the time unit.

0.01

0.1

1

10

100

1000

10000

100000

1 6 11 16 21 26 31 36 41 46

E
xe

cu
tio

n
T

im
e

(s
)

FSMs Ordered by Ascending Theoretical Bound Values

Asstuce

Theoretical Upper Bound

Figure 14.2: Theoretical bound versus measured execution time for asstuce

In the chart the curve representing the measured time closely follows the predicted upper
bound.

As a qualitative remark, we consider that the mcnc benchmarks are not very well adapted
to measure the behavior of programs considering state minimization issues, since most of its
machines have either no or only some compatible states, with a few exceptions.

14.2.5 asstuce versus Complete Encoding Serial Strategy

The raw data derived from the comparison of asstuce with the complete encoding serial
strategy based on the stamina and diet programs is depicted in Table 14.5 for the C-group
of machines and in Table 14.6, for the I-group.

Columns are grouped by comparison parameter, and there are four of these groups in each
Table. Two comparison parameters, the number of transistors in the final pla and the pla

14.2. BENCHMARK TESTS 161

Table 14.5: asstuce versus complete encoding strategy for the C-group of fsms

FSM
s27
beecount
lion9
ex5
ex7
ex3
bbara
opus
train11
mark1
sse
bbsse
ex2
tma
ex1
tbk
scf
s298

a_area
198
190
140
162
162
144
600
532
85
738
1053
1053
819
1598
2562
7896

18221
19800

d_area
234
264
153
414
414
414
600
448
280
738
1092
1092
1080
1271
2262

ƒ
ƒ
ƒ

sd_area
234
171
84
132
120
144
418
448
110
697
1092
1092
288
1312
2146
3591

ƒ
ƒ

a_pt
11
10
7
9
9
8
24
19
5
18
27
27
21
34
42
94
133
300

d_pt
13
12
9
23
23
23
24
16
14
18
28
28
40
31
39
ƒ
ƒ
ƒ

sd_pt
13
9
6
11
10
12
19
16
10
17
28
28
16
32
37
63
ƒ
ƒ

a_cl_f
3
3
5
4
4
4
5
4
4
5
6
6
11
9
8
23
9
18

d_cl_f
3
4
4
4
4
4
5
4
5
5
6
6
7
7
7
ƒ
ƒ
ƒ

sd_cl_f
3
3
3
2
2
2
4
4
2
5
6
6
4
7
7
14
ƒ
ƒ

a_time
0.28
0.45
0.38
0.18
0.25
0.20
0.42
0.38
0.33
0.78
1.27
1.25
0.85
2.87
3.92
68.82
298.17
4828.00

d_time
0.10
0.20
0.40
0.40
0.60
0.50
0.50
0.40
1.00
1.50
1.50
1.50
7.40
8.30
8.00

ƒ
ƒ
ƒ

sd_time
0.10
0.10
0.10
0.10
0.00
0.10
0.20
0.30
0.00
1.00
1.40
1.40
1.10
5.10
5.60
15.1

ƒ
ƒ

Prefixes:
a_ : results obtained by running ASSTUCE
d_ : results obtained by running DIET alone
sd_ : results obtained by running STAMINA followed by DIET

Suffixes:
area : area estimate of the minimized combinational part for the encoded FSM
pt : number of product terms in the encoded FSM minimized combinational part
cl_f : encoding length
time : total execution time

Obs: the appearance of the symbol ƒ in some entry of the table indicates that the
 program failed to process the associated FSM

162 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

Table 14.6: asstuce versus complete encoding strategy for the I-group of fsms

FSM
lion
train4
dk15
mc
tav
bbtas
dk27
dk14
shiftreg
dk17
ex6
s386
ex4
dk512
cse
kirkman
s208
s420
keyb
s1
pma
s820
s832
dk16
styr
sand
s510
s1494
s1488

a_area
77
66
368
136
198
150
128
667
75
342
759
1092
627
437
2184
2496
990
1342
2924
3330
2214
5396
5168
2322
5148
5145
4284
10413
10148

d_area
99
99
391
153
198
195
144
529
72
323
759
1092
594
360
1620
2544
882
1218
2886
2738
1968
3942
3953
1643
4900
4949

ƒ
ƒ
ƒ

a_pt
7
6
16
8
11
10
8
23
5
18
23
26
19
19
52
52
22
22
68
90
41
71
68
54
99
105
68
117
118

d_pt
9
9
17
9
11
13
9
23
6
17
23
28
18
18
45
53
21
21
78
74
41
54
59
53
100
101
ƒ
ƒ
ƒ

a_cl_f
2
2
4
2
2
3
4
6
4
4
5
7
4
6
7
6
7
7
9
5
10
7
7
12
8
6
6
18
17

d_cl_f
2
2
4
2
2
3
4
4
3
4
5
6
4
5
5
6
6
6
7
5
8
6
6
8
7
6
ƒ
ƒ
ƒ

a_time
0.10
0.05
0.23
0.07
0.15
0.18
0.47
0.60
0.33
0.72
0.62
1.15
0.88
1.22
1.67
3.20
2.42
2.82
3.65
2.97
5.28
10.23
9.33
7.10
11.32
9.02
10.97
116.63
94.12

d_time
0.10
0.10
0.20
0.00
0.00
0.10
0.20
0.30
0.20
0.40
0.40
1.40
1.50
2.40
2.60
4.80
3.50
3.60
7.90
5.30
24.40
8.10
9.60
51.20
19.00
32.70

ƒ
ƒ
ƒ

Prefixes:
a_ : results obtained by running ASSTUCE
d_ : results obtained by running DIET alone

Suffixes:
area : area estimate of the minimized combinational part for the encoded FSM
pt : number of product terms in the encoded FSM minimized combinational part
cl_f : encoding length
time : total execution time

Obs: the appearance of the symbol ƒ in some entry of the table indicates that the
 program failed to process the associated FSM

14.2. BENCHMARK TESTS 163

sparsity could not be easily computed from the output format of the diet program. Accord-
ingly, we will only use such parameters during the discussion of the partial encoding strategies
comparison.

There is a difference between column groups in Table 14.5 and Table 14.6, namely the C-
group Table has three columns per parameter, while the I-group Table has only two columns
per parameter. This happens because we consider a third value as a reference for the C-group
comparisons, which is the result of running the state assignment program alone, without the
previous state minimization step with stamina1. Thus, we may better evaluate the influence of
state minimization in the encoding results. For the I-group, the columns corresponding to the
serial strategy are identical to the columns associated to the state assignment run alone, except
for the time taken to find that there are no compatible pairs in the machine other than the
trivial ones. We accordingly use the pure state assignment columns, even though this gives a
little unfair time advantage to the serial strategy with regard to asstuce, which always makes
a compatibility analysis. This choice is maintained throughout the rest of this Chapter.

We now consider each of the compared parameters in some detail. Figures 14.3 and 14.4
are plots of the area values for the C-group and the I-group of fsms, respectively. The order
of the machines is the same as the one used in the raw data Tables, i.e. machines are plot in
ascending order of the number of states in the original description. This will be true in all
subsequent plots in this Chapter.

70
100

1000

10000

21000

1 3 5 7 9 11 13 15 17

A
re

a
E

st
im

at
e

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Stamina + DIET

Figure 14.3: asstuce versus complete encoding - area - C-group

We note in Figure 14.3 that the line depicting the asstuce results is mostly below the pure
state assignment results and above the serial strategy. In some cases, like machines 1 and 9
(corresponding to machines s27 and train11 in the Tables), asstuce obtains the best result,
but some machines pose a problem when asstuce forces the satisfaction of all constraints
in it. This is the case of machine 13, i.e. tbk, which has too many constraints. Concerning

1Recall that asstuce is a state assignment method.

164 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

60

100

1000

10000
15000

1 5 9 13 17 21 25 29

A
re

a
E

st
im

at
e

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Figure 14.4: asstuce versus complete encoding - area - I-group

the I-group area results, we see that both the serial strategy and asstuce give very similar
results, with asstuce performing slightly better for smaller machines, and the serial strategy
performing better for fsms of intermediate size. In both groups, diet failed to encode the
biggest machines.

Figures 14.5 and 14.6 compare graphically the product term counts for the C-group and the
I-group of fsms, respectively.

The situation for the product terms is a little different from that for the area parameter.
asstuce performs better, obtaining the best absolute results in a good percentage of the
machines in the C-group, and increasing the best result counts for the I-group. This indicates
that the weak point in the complete constrained encoding in asstuce is really the generated
encoding length (big area with few product terms implies large code length). The pd covering
formulation implemented by diet often obtains shorter codes.

The complexity of the diet tool algorithms are evident from the execution time plots of
Figures 14.7 and 14.8.

These plots clearly show that, as the size of the fsms increases, the execution time of
asstuce becomes comparable to and next smaller than the time taken by the serial strategy.
Even if state minimization can cause a dramatical reduction on the execution time taken by
diet to perform state assignment, this has marked effects only for smaller machines. For
the I-group, the increasing size of machines (from machine sse on) causes a steadily growing
difference between the execution times of asstuce and diet.

14.2. BENCHMARK TESTS 165

4

10

100

400

1 3 5 7 9 11 13 15 17

N
um

be
r

of
 P

ro
du

ct
 T

er
m

s

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Stamina + DIET

Figure 14.5: asstuce versus complete encoding - product terms - C-group

5

10

100

200

1 5 9 13 17 21 25 29

N
um

be
r

of
 P

ro
du

ct
 T

er
m

s

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Figure 14.6: asstuce versus complete encoding - product terms - I-group

166 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

0.01

0.1

1

10

100

1000

5000

1 3 5 7 9 11 13 15 17

E
xe

cu
tio

n
T

im
e

(s
)

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Stamina + DIET

Figure 14.7: asstuce versus complete encoding - execution time - C-group

0.01

0.1

1

10

100
200

1 5 9 13 17 21 25 29

E
xe

cu
tio

n
T

im
e

(s
)

FSMs Ordered by Ascending Number of States

Asstuce

DIET

Figure 14.8: asstuce versus complete encoding - execution time - I-group

14.2. BENCHMARK TESTS 167

14.2.5.1 asstuce versus Complete Serial Strategy - Discussion

The main result of the comparison of asstuce versus the complete encoding serial strategy
based on diet is that most results are rather close to each other, with a small advantage to
the serial strategy, except on the execution time parameter. In fact, diet gets shorter codes
than asstuce at the expense of an algorithm with higher complexity than our simple greedy
encoding. This has the drawback of limiting the use of the serial strategy to intermediate size
examples, even if the previous state minimization step can significantly reduce the processing
needs of the original fsm. As an illustration, diet alone failed to encode three out of eighteen
machines in the C-group. After minimizing the state cardinality of these fsms, only one of the
three could then be encoded successfully.

The relative advantage obtained by asstuce in the product term cardinality is a conse-
quence of using non-functional, non-injective encodings. The generation of incompletely spec-
ified binary codes happens even if the original fsm contains only trivial compatible pair of
states. In this way, cube merging is facilitated during the logic minimization step. Besides, the
consideration of state minimization by asstuce is guaranteed to respect the bounds predicted
by symbolic minimization for the original fsm (cf. Corollary 9.1), not for the minimized one,
which can be bigger than the original (cf. Example 6.5).

A last conclusion is that asstuce does not control the encoding length as well as diet.
This is one bad consequence of using a heuristic technique with many degrees of freedom.
However, asstuce is in its first steps of refinement, and our approach can maybe be much
enhanced. More important, the main weakness of asstuce when parameterized to perform
complete encoding is reduced when parameterizing the program to do partial encoding. Since
complete encoding results are often inferior to those of partial encoding results, we consider
more important to compare asstuce with a partial encoding serial strategy.

14.2.6 asstuce versus Partial Encoding Serial Strategy

The raw data that results from comparing asstuce and the partial encoding serial strategy
based on the stamina and nova programs is depicted in Table 14.7 for the C-group of machines
and in Table 14.8, for the I-group.

Let us consider each of the compared parameters in some detail. Figures 14.9 and 14.10 are
plots of the area values for the C-group and the I-group of fsms, respectively.

We note in Figure 14.9 that again, the line depicting the asstuce results is again between
the pure state assignment results and above the serial strategy. For the I-group, in Figure 14.10,
the area results are almost identical, with sometimes asstuce obtaining the best absolute
result, sometimes the serial strategy being best.

Figures 14.11 and 14.12 compare graphically the product term counts for the C-group and
the I-group of fsms, respectively.

The situation for the product terms is a quite different from that for the area parameter.
asstuce performs almost always better than both nova alone and stamina followed by nova,
and this for both C-group and I-group machines. This indicates again that asstuce necessarily
computes a code length that is greater, in general, than the serial strategy. But the area estimate
is not the only important parameter in this comparison.

168 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

FS
M

s2
7

be
ec

ou
nt

lio
n9

ex
5

ex
7

ex
3

bb
ar

a
op

us
tr

ai
n1

1
m

ar
k1

ss
e

bb
ss

e
ex

2
tm

a
ex

1
tb

k
sc

f
s2

98

a_
ar

ea
19

8
14

4
10

2
12

0
12

0
14

4
38

0
50

4
85 69

7
97

2
97

2
59

4
12

30
22

88
16

80
17

42
0

16
63

2

n_
ar

ea
23

4
24

7
13

6
25

2
30

6
32

4
55

0
44

8
15

3
68

4
99

0
99

0
60

9
11

55
24

96
46

20
18

47
1

22
46

4

sn
_a

re
a

21
6

16
0

77 96 96 96 38
0

44
8

66 64
6

10
23

10
23

19
5

12
95

21
32

14
31

16
24

4
10

33
2

a_
tim

e
0.

28
0.

23
0.

43
0.

25
0.

27
0.

18
0.

78
1.

05
0.

37
0.

93
1.

67
1.

62
1.

28
5.

97
5.

37
10

3.
22

60
3.

68
10

63
7.

90

n_
tim

e
0.

10
0.

10
0.

30
0.

50
0.

30
0.

20
0.

20
0.

20
0.

60
5.

10
0.

50
0.

40
0.

50
6.

60
6.

50
14

0.
7

10
5.

8
82

8.
8

sn
_t

im
e

0.
10

0.
10

0.
10

0.
00

0.
10

0.
10

0.
20

0.
10

0.
10

4.
30

1.
10

1.
20

1.
00

13
.5

0
5.

00
24

.5
59

.8
26

6.
6

a_
pt

11 9 6 8 8 8 20 18 5 17 27 27 18 30 44 56 13
0

30
8

n_
pt

13 13 8 14 17 18 25 16 9 18 30 30 29 33 48 15
4

14
1

62
4

sn
_p

t
12 10 7 8 8 8 20 16 6 17 31 31 13 37 41 53 12

4
28

7

a_
cl

_f
3 2 4 3 3 4 3 4 4 5 5 5 9 7 5 5 8 14

n_
cl

_f
3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 7 8

sn
_c

l_
f

3 2 2 2 2 2 3 4 2 4 4 4 3 5 5 4 7 8

a_
tr

43 50 24 34 38 33 94 13
9

26 14
5

19
6

19
6

91 24
1

39
9

61
4

15
41

38
24

n_
tr

62 68 35 88 10
7

10
3

12
9

12
8

47 11
5

19
1

19
1

17
1

23
0

42
2

14
23

14
69

67
83

sn
_t

r
51 54 24 34 36 35 94 12

3
24 11

7
20

6
20

6
66 25

7
33

0
55

3
13

83
25

86

a_
sp

ty
78

.2
8

65
.2

8
76

.4
7

71
.6

7
68

.3
3

77
.0

8
75

.2
6

72
.4

2
69

.4
1

79
.2

0
79

.8
4

79
.8

4
84

.6
8

80
.4

1
82

.5
6

63
.4

5
91

.1
5

77
.0

1

n_
sp

ty
73

.5
72

.4
7

74
.2

6
65

.0
8

65
.0

3
68

.2
1

76
.5

5
71

.4
3

69
.2

8
83

.1
9

80
.7

1
80

.7
1

71
.9

2
80

.0
9

83
.0

9
69

.2
92

.0
4

69
.8

1

sn
_s

pt
y

76
.3

9
66

.2
5

68
.8

3
64

.5
8

62
.5

63
.5

4
75

.2
6

72
.5

4
63

.6
4

81
.7

3
79

.8
6

79
.8

6
66

.1
5

80
.1

5
84

.5
2

61
.3

6
91

.4
9

74
.9

6

T
ab

le
 1

4.
7:

 A
S
S
T

U
C

E
 v

er
su

s
p
ar

ti
al

 e
n
co

d
in

g
se

ri
al

 s
tr

at
eg

y
 f
or

 t
h
e

C
-g

ro
u
p
 o

f
F
S
M

s

Pr
ef

ix
es

:
a_

 :
re

su
lts

 o
bt

ai
ne

d
by

 r
un

ni
ng

 A
SS

T
U

C
E

n_
 :

re
su

lts
 o

bt
ai

ne
d

by
 r

un
ni

ng
 N

O
V

A
 a

lo
ne

sn
_

: r
es

ul
ts

 o
bt

ai
ne

d
by

 r
un

ni
ng

 S
T

A
M

IN
A

 f
ol

lo
w

ed
 b

y
N

O
V

A

Su
ff

ix
es

:
ar

ea
 :

ar
ea

 e
st

im
at

e
of

 th
e

m
in

im
iz

ed
 c

om
bi

na
tio

na
l p

ar
t f

or
 th

e
en

co
de

d
FS

M
pt

 :
nu

m
be

r
of

 p
ro

du
ct

 te
rm

s
in

 t
he

 m
in

im
iz

ed
 c

om
bi

na
tio

na
l p

ar
t o

f
th

e
en

co
de

d
FS

M
cl

_f
 :

en
co

di
ng

 le
ng

th
tim

e
: t

ot
al

 e
xe

cu
tio

n
tim

e
tr

 :
nu

m
be

r
of

 tr
an

si
st

or
s

in
 th

e
m

in
im

iz
ed

 c
om

bi
na

tio
na

l p
ar

t o
f

th
e

en
co

de
d

FS
M

sp
ty

 :
pe

rc
en

tu
al

 s
pa

rs
ity

 o
f

th
e

m
in

im
iz

ed
 c

om
bi

na
tio

na
l p

ar
t f

or
 th

e
en

co
de

d
FS

M

14.2. BENCHMARK TESTS 169

Table 14.8: asstuce versus partial encoding strategy for the I-group of fsms

FSM
lion
train4
dk15
mc
tav
bbtas
dk27
dk14
shiftreg
dk17
ex6
s386
ex4
dk512
cse
kirkman
s208
s420
keyb
s1
pma
s820
s832
dk16
styr
sand
s510
s1494
s1488

a_area
66
66
323
136
180
150
91
506
48
320
690
1056
627
360
1656
2475
882
1218
1519
3071
1848
5016
5037
1650
4462
4949
3843
7788
7788

n_area
66
66
323
153
198
135
117
580
48
304
675
1056
627
306
1518
2745
975
1375
1488
2960
1755
5320
5040
1298
4042
4646
4284
7367
7049

a_time
0.08
0.12
0.17
0.07
0.17
0.20
0.42
0.50
0.28
0.40
0.95
2.37
1.92
4.65
1.97
3.20
2.67
2.78
7.32
2.53
12.52
9.70
11.22
7.06
14.18
12.92
13.15
94.03
172.57

n_time
0.10
0.00
0.10
0.00
0.10
0.00
0.10
0.30
0.10
0.10
0.20
0.30
0.10
4.10
2.30
11.10
3.60
3.80
4.10
1.20
18.70
3.40
3.00
29.20
11.70
6.60
1.4
66.8
70.7

a_pt
6
6
19
8
10
10
7
22
4
20
23
32
19
18
46
55
21
21
49
83
44
66
69
66
97
105
61
132
132

n_pt
6
6
19
9
11
9
9
29
4
19
25
32
19
18
46
61
25
25
48
80
45
76
72
59
94
101
68
139
133

a_cl_f
2
2
2
2
2
3
3
4
3
3
4
4
4
5
5
5
6
6
5
5
6
7
6
6
6
6
6
8
8

n_cl_f
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
6
6
6

a_tr
24
26
115
40
42
42
31
138
8

101
173
218
128
92
407
310
112
112
524
730
301
511
541
466
966
999
426
1166
1138

n_tr
24
26
115
49
46
40
46
182
8

104
211
220
145
96
392
344
154
154
488
741
376
577
547
392
1007
1028
582
1254
1123

a_spty
63.64
60.61
64.40
70.59
76.67
72.00
65.93
72.73
83.33
68.44
74.92
79.36
79.59
74.44
75.42
87.47
87.30
90.80
65.50
76.23
83.71
89.81
89.30
71.76
78.35
79.81
88.91
85.03
85.39

n_spty
63.64
60.61
64.4
67.97
76.77
70.37
60.68
68.62
83.33
65.79
68.74
79.17
76.87
68.63
74.18
87.47
84.2
88.8
67.2
74.97
78.58
89.15
89.15
69.8
75.09
77.87
86.41
82.98
84.08

Prefixes:
a_ : results obtained by running ASSTUCE
n_ : results obtained by running NOVA alone

Suffixes:
area : area estimate of the minimized combinational part for the encoded FSM
pt : number of product terms in the minimized combinational part of the encoded FSM
cl_f : encoding length
time : total execution time
tr : number of transistors in the minimized combinational part of the encoded FSM
spty : percentual sparsity of the minimized combinational part for the encoded FSM

170 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

60

100

1000

10000

22000

1 3 5 7 9 11 13 15 17

A
re

a
E

st
im

at
e

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Stamina + NOVA

Figure 14.9: asstuce versus partial encoding - area - C-group

40

100

1000

10000

1 5 9 13 17 21 25 29

A
re

a
E

st
im

at
e

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Figure 14.10: asstuce versus partial encoding - area - I-group

14.2. BENCHMARK TESTS 171

5

10

100

700

1 3 5 7 9 11 13 15 17

P
ro

du
ct

 T
er

m
s

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Stamina + NOVA

Figure 14.11: asstuce versus partial encoding - product terms - C-group

4

10

100

150

1 5 9 13 17 21 25 29

P
ro

du
ct

 T
er

m
s

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Figure 14.12: asstuce versus partial encoding - product terms - I-group

172 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

Consider the final pla sparsity parameter comparison showed in Figures 14.13 and 14.14.

60

100

1 3 5 7 9 11 13 15 17

F
S

M
 C

om
bi

na
tio

na
l P

ar
t S

pa
rs

ity
 (

%
)

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Stamina + NOVA

Figure 14.13: asstuce versus partial encoding - sparsity - C-group

60

100

1 5 9 13 17 21 25 29

F
S

M
 C

om
bi

na
tio

na
l P

ar
t S

pa
rs

ity
 (

%
)

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Figure 14.14: asstuce versus partial encoding - sparsity - I-group

14.2. BENCHMARK TESTS 173

20

100

1000

10000

1 3 5 7 9 11 13 15 17

F
S

M
 T

ra
ns

is
to

r
C

ar
di

na
lit

y

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Stamina + NOVA

Figure 14.15: asstuce versus partial encoding - transistor cardinality - C-group

7
10

100

1000

1500

1 5 9 13 17 21 25 29

F
S

M
 T

ra
ns

is
to

r
C

ar
di

na
lit

y

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Figure 14.16: asstuce versus partial encoding - transistor cardinality - I-group

174 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

0.001

0.01

0.1

1

10

100

1000

10000

1 3 5 7 9 11 13 15 17

E
xe

cu
tio

n
T

im
e

(s
)

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Stamina + NOVA

Figure 14.17: asstuce versus partial encoding - time - C-group

0.01

0.1

1

10

100
200

1 5 9 13 17 21 25 29

E
xe

cu
tio

n
T

im
e

(s
)

FSMs Ordered by Ascending Number of States

Asstuce

NOVA

Figure 14.18: asstuce versus partial encoding - time - I-group

14.2. BENCHMARK TESTS 175

These plots clearly show that asstuce trades-off an increase in area against enhanced
sparsity in the final pla. An unusual situation arises here, since we remark that in more than
40% of the benchmark tests, asstuce presents the greater sparsity without having the greatest
pla area (9 out of 18 machines in the C-group and 10 out of 29 in the I-group). To add interest
to these observations, let us take into account the transistor cardinality comparison plots in
Figures 14.15 and 14.16.

Here we see that asstuce generates a pla with approximately the same number of tran-
sistors as the serial strategy with nova for most machines in the C-group. For the I-group,
asstuce obtains transistor counts which are most often smaller than that obtained by nova.

Finally, we present the execution time comparison in Figures 14.17 and 14.18.

For both, the C-group and the I-group, the serial strategy gives better time results than
asstuce for most smaller machines, but the relationship becomes more complex for bigger
fsms, the best execution time being obtained by either asstuce or nova.

14.2.6.1 asstuce versus Partial Serial Strategy - Discussion

asstuce and the partial encoding serial strategy based on nova are comparable for most pa-
rameters, with the serial strategy obtaining slightly better area results and asstuce obtaining
slightly sparser machines but with reduced number of transistors in it, and less product terms.
The consequences of these differences is that we judge the asstuce results more adapted to
consider power dissipation issues in big plas, because of the combined effect of smaller areas
corresponding to sparser plas. Besides, we know that sparser plas favor the use of topological
optimization tools during the low level synthesis of the fsm.

The advantages related to asstuce are a consequence of using non-functional, non-injective
encodings. Cube merging is favored during the logic minimization step, and even if the encoding
length increases, the final result may combine smaller areas with less dissipated power.

14.2.7 Benchmark Tests - Conclusions

In both benchmark test sets complete and partial encoding, asstuce performed significantly
better than pure state assignment approaches for machines with high potential for state reduc-
tion, reflected by an important number of compatibility classes in the original description. This
situation indicates that the asstuce method is in effect capable of capturing state minimization
characteristics in fsms, even if only partially, in the present prototype version.

As a general conclusion, we state that the asstuce program, in its initial development
stage is already competitive with the best serial strategies we could find. The consideration
of sm constraints during the assignment adds complexity to the problem, but is not a lim-
itation, since even machines that are larger than would be feasible to implement with plas
could be assigned by it, e.g. the s298 fsm. The program is suited to the treatment of both
machines with or without a considerable number of compatibility classes. We consider that the
efficiency of the program can be considerably increased in future versions, by either enhancing
the implementation2 or by refining the techniques of constraint satisfaction.

2The present version resulted from an effort of just five man-months for design, implementation and test.

176 CHAPTER 14. IMPLEMENTATION AND BENCHMARK RESULTS

Chapter 15

Overall Conclusions and Future Work

Let us start by restating the questions posed in Section 2.2, after the discussion of the case
study.

Given an fsm symbolic specification, how can we assign codes to its states such
that we achieve:

1. the least number of distinct codes, which allows for extensive state minimiza-
tion, and reduces the final pla size?

2. the most sparse codes, to permit the greatest possibility of minimization of the
final combinational part, allowing for enhanced topological minimization, and
reduced power consumption?

3. codes with the least length in bits, to obtain small plas, and to generate the
least number of outputs for the combinational part of the machine?

This is the set of specific questions we have tried to answer in this work. Section 15.1
establishes how close we have got to answer each of them, while Section 15.2 depicts which
further efforts need to be made to approach still existing problems for the elucidation of these
questions.

15.1 Overall Conclusions

We provide an overview of the work done in this thesis in Figure 15.1.

In the theoretical part of this work, we accomplished the integration of the sm and sa
problems. This integration occurred in three phases. The first phase was the analysis of both
problems, from a more or less precise initial statement, producing a set of constraints, which
describes thoroughly, but separately, each problem. A second phase consisted in modeling each
constraint kind as a distinct binary relation, reducing the original sets of constraints to sets
of elementary constraints. At the end of the second phase the problems were still separately
described, but they were now in a form amenable to unified treatment. The last phase was
the study of the relationships arising among the constraint kinds, based on their elementary
form. This study led to a set of theoretical findings relating the constraints classes with one

177

178 CHAPTER 15. OVERALL CONCLUSIONS AND FUTURE WORK

Unified PD Framework

SA
Problem

SA Constraints

SA
Bynary Relations

Modeling

SM
Bynary Relations

Modeling

SM Constraints

SM
Problem

SM Constraints
Analysis

SA Constraints
Analysis

Pseudo-Dichotomy
Satisfaction Method

FSM Encoding

Constraints Relationships
Study

Translation to
Pseudo-Dichotomies

Elementary
SM Constraints

Elementary
SA Constraints

FSM

Figure 15.1: The asstuce approach

15.1. OVERALL CONCLUSIONS 179

another. The results found here are in no way complete, and the exploitation of the constraints
relationship may still lead to unsuspected consequences, specially in the scope of the output
constraints influence.

The resulting unification of the sm and sa problems occurred with the intervention of
the pseudo-dichotomy concept, which provided an efficient way for uniformly representing the
elementary constraints binary relations. The pseudo-dichotomy concept, after extended, served
as the basis to the proposition of a unified framework adapted to solve approximations of the
sm and sa problems.

We have generalized the statement of the Boolean constrained encoding problem, and we
have congregated the original sm and sa problems into a single one, the two-level sm/sa prob-
lem. After this, we showed that the sm/sa problem can be reduced to the Boolean constrained
encoding problem. Each of these is too complex to be treated exactly with existing techniques.
Thus, the complete and partial approximations for each of them were proposed and shown to
be easier to solve. The proposed framework supports techniques to tackle the solution of both
approximations of the two-level sm/sa problem, which are also approximations to the optimal
solution of both the original sm and sa problems.

Finally, we proposed the asstuce method, based on our unified framework, to solve the
above mentioned problem approximations. This method has been implemented as a computer
program, and its results were extensively compared with existing serial strategies, revealing itself
to be a promising approach. Despite the early development stage of the program asstuce its
results are already competitive with some well established assignment tools.

After analyzing the experimental results obtained with the asstuce program, we are con-
vinced that the refinement of the method implemented in it may render the use of the serial
strategy dispensable for most practical cases of fsm assignment. The advantage of an approach
like the one proposed here is twofold. First, it avoids the use of one tool in the design cycle
of fsms. More importantly, the simultaneous strategy seems more suited to find globally opti-
mal implementations, because state minimization is carried out by the logic minimization tool,
which is then allowed to employ less abstract cost functions to perform the merging of states.
However, demonstrating this advantage still depends upon the results of the asstuce method
enhancement activities, presently under way.

In a recent work, Perkowski and Brown [92] mentioned that present circuit descriptions
do not have as many don’t care conditions as it would be possible to extract from the initial
specification. They proposed a method to automatically generate don’t cares from a high level
description of the problem. The asstuce method exploits the characteristics of problems
defined at the logic level in order to do the same, i.e. to allow the generation of additional don’t
cares in the encoding of an fsm to permit greater freedom at lower abstractions levels, where
more realistic cost functions can take advantage of these don’t cares to further the quality of
the final implementation.

Finally, of the three questions posed in the beginning of this Chapter, the asstuce method
allows that the answer to the first one be given by the logic minimization step. This happens
because the present version of asstuce generates an encoding where every compatible pair of
states may be implemented as such or not by the logic minimizer. In this way, the first question
can be best answered than in the case of a serial strategy, where less degrees of freedom are
given to lower level abstraction tools. Instead of trying to minimize the number of states,
the logic level tools are allowed to merge codes of states if this leads to an optimization of

180 CHAPTER 15. OVERALL CONCLUSIONS AND FUTURE WORK

less abstract parameters such as area of a two-level implementation, propagation delay time,
dissipated power, literal count, etc.

As for the second question, within the asstuce method, the encoding sparsity is traded off
against code length, but since no compatible pair of states receive disjoint codes, the maximum
desirable sparsity is attained. Thus, the second question has also received a convenient answer.

The third question is today the main point that makes asstuce perform less well than it
could. In fact, our experiments showed that the excessive code length that the present version of
the method sometimes obtains can prevent that logic minimization be performed conveniently.
A study on how to trade-off smaller code length while keeping the benefits of increased sparsity
and low transistor count is a necessary step in the evolution of the asstuce method.

15.2 Future Work

The immediate future of the asstuce method has already been made clear in the last Section.
It consists in rendering the prototype implementation more efficient by refining data structures
and proposing new enhancements to the algorithm.

In the long term, however, many possibilities for further work were devised for the contin-
uation of the research work started here. We will now discuss some of these possibilities.

The first possibility of future research results from the realization that the unified framework
developed here is more general than previous similar propositions. These latter could already be
applied to solve several distinct problems in vlsi design, and so does our framework. The task
implied here is the modeling of the constraints describing several of these problems, followed
by their formulation using pds and their solution with the program asstuce. One expected
practical consequence of this work is the need for generalization of the asstuce program
structure to allow other problems’ idiosyncrasies to be described.

What is still more interesting is to look for new applications where the unified framework
proposed here can be applied, and which previous frameworks are prevented to deal with due
to the limitations imposed by the use of functional and/or injective encodings. The two-
level sm/sa problem has been the first one to take advantage of non-functional, non-injective
encodings, to our knowledge.

A list of problems that have been treated using pds (and which are thus amenable to be
solved by our approach) is enumerated in Section 11.3 and comprises works about various logic
and low-level vlsi design [42, 45, 26, 111, 114, 106, 44]. We have briefly studied these problems
to verify their conformity with our pd framework. The result of this study was that the pd
framework proposed here can be used to model all constraints considered in any of the previous
works, with one exception, which is the work of Devadas et al in [44]. In this work, a state
assignment method to implement fully testable sequential machines is proposed. In this method
appears a kind of constraint where codes of states need to be at an exact Hamming distance
of two from each other. The Hamming distance between two Boolean vectors is the number of
positions in which the bits of the vectors differ. The pd framework can model constraints as
long as they are required to be satisfied by one or by all codes. Thus, the present formulation of
our framework cannot cope with this problem. However, the generalization needed to account
for the constraint defined in [44] within our pd framework is quite simple. Let us associate a

15.2. FUTURE WORK 181

counter to each pd in the local part. Whenever a pd is satisfied during the encoding column
construction, its counter is decremented and tested. If its value is zero, the pd is discarded,
since it has been satisfied “completely”. In this way, a constraint may be “persistent” to any
degree. In this scope, the persistence of a pd in the global part is conceptually infinite.

Another important extension of the present work is to devise the generality of the method
with regard to the design style choices, i.e. to investigate the possibility of using the framework
to tackle problems in encoding of sequential circuits implemented with architectures other than
two-level, such as multiple-level logic implementations, programmable devices implementations,
asynchronous implementations, etc. The general definition of dichotomy was proposed here to
account for these future needs.

To cope with the problems discussed in the previous paragraphs, the general statement of
the Boolean constrained encoding problem stated in Section 11.1 is fundamental, because we
may start from it to look for reductions of problems to this formulation, and from there to a
pd formulation of the problem’s constraints.

The generalization of the approach proposed here must be followed by the generalization of
the implementation as well. A first requirements specification for an exploratory environment
is included in Appendix B. The asstuce program was devised with this environment in mind.
Further specification and implementation refinements are still required to set-up the general
aspects of such an environment.

182 CHAPTER 15. OVERALL CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Keumog Ahn and Sartaj Sahni. Constrained via minimization. IEEE Transactions on
Computer-Aided Design, 12(2):273–282, February 1993.

[2] S. B. Akers Jr. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509–
516, June 1978.

[3] R. Amann and U. G. Baitinger. Optimal state chains and state codes in finite state
machines. IEEE Transactions on Computer-Aided Design, 8(2):153–170, February 1989.

[4] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequential
machines. IRE Transactions on Electronic Computers, EC-11:466–472, August 1962.

[5] P. Ashar, S. Devadas, and A. R. Newton. Sequential Logic Synthesis. The Kluwer Inter-
national Series in Engineering and Computer Science. Kluwer Academic, Norwell, MA,
1992.

[6] M. J. Avedillo. Una aproximación al diseño óptimo de máquinas de estados finitos. PhD
thesis, Universidad de Sevilla, Facultad de F́ısica, Sevilla, Spain, 1992. (In Spanish).

[7] M. J. Avedillo, J. M. Quintana, and J. L. Huertas. State reduction of incompletely
specified finite sequential machines. In Proceedings of the IFIP Working Conference
on Logic and Architecture Synthesis, pages 107–115, Paris, May-Jun 1990. International
Federation for Information Processing.

[8] M. J. Avedillo, J. M. Quintana, and J. L. Huertas. smas: a program for concurrent
state reduction and state assignment of finite state machines. In Proceedings of the IEEE
International Symposium on Circuits and Systems - ISCAS, pages 1781–1784, Singapore,
June 1991. The Institute of Electrical and Electronics Engineers.

[9] R. G. Bennetts, J. L. Washington, and D. W. Lewin. A computer algorithm for state
table reduction. The Radio and Electronic Engineer, 42(11):513–520, November 1972.

[10] C. Berthet, O. Coudert, and J. C. Madre. New ideas on symbolic manipulation of finite
state machines. In Proceedings of the International Conference on Computer Design:
VLSI in Computers and Processors - ICCD, Cambridge, MA, September 1990. The In-
stitute of Electrical and Electronics Engineers.

[11] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Morrison, and
D. Ravenscroft. The Boulder optimal logic design system. In Proceedings of the IEEE
International Conference on Computer-Aided Design - ICCAD, pages 62–65, Santa Clara,
CA, November 1987. The Institute of Electrical and Electronics Engineers.

183

184 BIBLIOGRAPHY

[12] R. K. Brayton. Multi-level logic synthesis. In Proceedings of the IEEE International
Conference on Computer-Aided Design - ICCAD, Santa Clara, CA, November 1989. The
Institute of Electrical and Electronics Engineers. Tutorial Section, 60 pages.

[13] R. K. Brayton, R. Camposano, G. de Micheli, R. H. J. M. Otten, and J. van Eijndhoven.
Silicon Compilation, chapter 7: The Yorktown silicon compiler system. Addison-Wesley
Publishing Company, Reading, MA, 1988. Daniel D. Gajski, editor.

[14] R. K. Brayton, J. D. Cohen, G. D. Hachtel, B. M. Tragger, and D. Y. Y. Yun. Fast
recursive boolean function manipulation. In Proceedings of the IEEE International Sym-
posium on Circuits and Systems - ISCAS, pages 58–62, Rome, May 1982. The Institute
of Electrical and Electronics Engineers.

[15] R. K. Brayton, G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and A. L. M.
Sangiovanni-Vincentelli. A comparison of logic minimization using ESPRESSO: An APL
package for partitioned logic minimization. In Proceedings of the IEEE International Sym-
posium on Circuits and Systems - ISCAS, pages 42–48, Rome, May 1982. The Institute
of Electrical and Electronics Engineers.

[16] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. L. M. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic, Hingham, MA, 1984.

[17] R. K. Brayton, G. D. Hachtel, and A. L. M. Sangiovanni-Vincentelli. Multilevel logic
synthesis. Proceedings of the IEEE, 78(2):264–300, February 1990.

[18] R. K. Brayton and C. McMullen. The decomposition and factorization of boolean ex-
pressions. In Proceedings of the IEEE International Symposium on Circuits and Systems
- ISCAS, pages 49–54, Rome, May 1982. The Institute of Electrical and Electronics En-
gineers.

[19] R. K. Brayton, R. Rudell, A. L. M. Sangiovanni-Vincentelli, and A. Wang. MIS: A
multiple level logic optimization system. IEEE Transactions on Computer-Aided Design,
CAD-6(6):1062–1081, November 1987.

[20] R. K. Brayton and F. Somenzi. Boolean relations. In Proceedings of the International
Workshop on Logic Synthesis, Research Triangle Park, NC, May 1989. 9 pages.

[21] D. W. Brown. A state-machine synthesizer - sms. In Proceedings of the ACM/IEEE
Design Automation Conference - DAC, pages 301–304, Nashville, June 1981.

[22] F. M. Brown. Boolean Reasoning: the logic of Boolean equations. Kluwer Academic,
Norwell, MA, 1990.

[23] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8):677–691, August 1986.

[24] N. L. V. Calazans, R. P. Jacobi, Q. Zhang, and C. Trullemans. Improving bdds ma-
nipulation through incremental reduction and enhanced heuristics. In Proceedings of the
Custom Integrated Circuits Conference, pages 11.3.1–11.3.5, San Diego, CA, May 1991.
The Institute of Electrical and Electronics Engineers.

BIBLIOGRAPHY 185

[25] M. Ciesielski and Marc Davio. fsm assignment. Unpublished note, Philips Research
Laboratory, Belgium, Summer, 1990.

[26] M. J. Ciesielski, J.-J. Shen, and M. Davio. A unified approach to input-output encoding
for fsm state assignment. In Proceedings of the ACM/IEEE Design Automation Confer-
ence - DAC, pages 176–181, San Francisco, CA, June 1991.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. The
MIT Electrical Engineering and Computer Science Series. McGraw-Hill Book Company,
Cambridge, MA, 1990.

[28] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using
Boolean functional vectors. In IMEC-IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, pages 111–128, Leuven, Belgium, November 1989.
International Federation for Information Processing.

[29] F. Crowet, M. Davio, J Durieu, G. Louis, and C. Ykman. Boolean recursive algorithms.
Philips Journal of Research, 43(3-4):324–345, August 1988.

[30] M. R. Dagenais. mcboole: a new procedure for exact logic minimization. IEEE Trans-
actions on Computer-Aided Design, CAD-5(1):229–238, January 1986.

[31] M. Damiani and G. de Micheli. Synthesis and optimization of synchronous logic cir-
cuits from recurrence equations. In Proceedings of the European Conference on Design
Automation - EDAC, pages 226–231, Brussels, March 1992.

[32] J. A. Darringer, D. Brand, J. V. Gerbi, W. H. Joyner, Jr., and L. Trevillyan. LSS:
A system for production logic synthesis. IBM Journal of Research and Development,
28(5):537–545, September 1984.

[33] M. Davio. Reduced dependence state assignment. Unpublished Letter, 1989.

[34] M. Davio and G. Bioul. Representation of lattice functions. Philips Reasearch Reports,
25:370–388, 1970.

[35] M. Davio, J.-P. Deschamps, and A. Thayse. Discrete and Switching Functions. Editions
Georgi - McGraw-Hill, St-Saphorin - Switzerland, 1978.

[36] M. Davio, J.-P. Deschamps, and A. Thayse. Digital Systems with Algorithm Implemen-
tation. John Wiley & Sons, Chichester, 1983.

[37] Marc Davio, J.-P. Deschamps, and André Thayse. Discrete and Switching Functions,
chapter 8: The Optimal Covering Problem. Editions Georgi - McGraw-Hill, St-Saphorin
- Switzerland, 1978.

[38] G. de Micheli. Computer-aided synthesis of pla-based systems. PhD thesis, University of
California, Berkeley, CA, April 1984. Memorandum No. UCB/ERL M84/31.

[39] G. de Micheli. Symbolic minimization of logic functions. In Proceedings of the IEEE
International Conference on Computer-Aided Design - ICCAD, pages 293–295, Santa
Clara, CA, November 1985. The Institute of Electrical and Electronics Engineers.

186 BIBLIOGRAPHY

[40] G. de Micheli. Symbolic design of combinational and sequential logic circuits implemented
by two-level logic macros. IEEE Transactions on Computer-Aided Design, CAD-5(4):597–
616, October 1986.

[41] G. de Micheli. Synchronous logic synthesis: algorithms for cycle time minimization. IEEE
Transactions on Computer-Aided Design, 10(1):63–73, January 1991.

[42] G. de Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. kiss: a program for
optimal state assignment of finite state machines. In Proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design - ICCAD, pages 209–211, Santa Clara, CA,
November 1984. The Institute of Electrical and Electronics Engineers.

[43] G. de Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment
for finite state machines. IEEE Transactions on Computer-Aided Design, CAD-4(3):269–
284, July 1985.

[44] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. A synthesis and
optimization procedure for fully and easily testable sequential machines. IEEE Transac-
tions on Computer-Aided Design, 8(10):1100–1107, October 1989.

[45] S. Devadas and A. R. Newton. Exact algorithms for output encoding, state assignment,
and four-level Boolean minimization. IEEE Transactions on Computer-Aided Design,
10(1):13–27, January 1991.

[46] M. Dietzfelbinger, A. Karlin, F. Mehlhorn, Meyer auf der Heide, H. Rohnert, and R. Tar-
jan. Upper and lower bounds for the dictionary problems. In Proceedings of the 29th
Annual IEEE Symposium on Foundations of Computer Science, 1988.

[47] T. A. Dolotta and E. J. McCluskey. The coding of internal states of sequential machines.
IEEE Transactions on Electronic Computers, EC-13(5):549–562, October 1964.

[48] Electronics Research Laboratory - University of California, Berkeley. Octtools Distribution
3.0. Volume 2B:Tool Man Pages, March 1989.

[49] H. Fleisher and L. I. Maissel. An introduction to array logic. IBM Journal of Research
and Development, 19(2):98–109, March 1975.

[50] S. J. Friedman and K. J. Supowit. Finding the optimal variable ordering for binary
decision diagrams. In Proceedings of the ACM/IEEE Design Automation Conference -
DAC, Jun-Jul 1987.

[51] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of boolean compar-
ison method based on binary decision diagrams. In Proceedings of the IEEE International
Conference on Computer-Aided Design - ICCAD, pages 2–5, Santa Clara, CA, November
1988. The Institute of Electrical and Electronics Engineers.

[52] D. D. Gajski and R. H. Kuhn. New vlsi tools. Computer, 16(12):11–14, December 1983.

[53] C. Gane and T. Sarson. Structured systems analysis: tools and techniques. Prentice-Hall,
Englewood Cliffs, NJ, 1979.

BIBLIOGRAPHY 187

[54] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

[55] S. Ginsburg. On the reduction of superfluous states in a sequential machine. Journal of
the Association for Computing Machinery, 6:259–282, April 1959.

[56] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in
incompletely specified sequential networks. IRE Transactions on Electronic Computers,
EC-14:350–359, June 1965.

[57] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. socrates: a system for automati-
cally synthesizing and optimizing combinational logic. In Proceedings of the ACM/IEEE
Design Automation Conference - DAC, June 1986.

[58] G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-Vincentelli. Techniques for pro-
grammable logic arrays folding. In Proceedings of the ACM/IEEE Design Automation
Conference - DAC, pages 147–152, Las Vegas, June 1982.

[59] G. D. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for
the minimization of incompletely specified state machines. In Proceedings of the European
Conference on Design Automation - EDAC, pages 184–191, Amsterdam, February 1991.

[60] G. Hallbauer. Procedures of state reduction and assignment in one step in synthesis of
asynchronous sequential circuits. In Proceedings of the International IFAC Symposium
on Discrete Systems, pages 272–282, 1974.

[61] D. R. Haring. Sequential-Circuit Synthesis: state assignment aspects, volume 31 of Re-
search Monograph Series. Thr M.I.T. Press, Cambridge, MA, 1966.

[62] J. Hartmanis and R. E. Stearns. Some dangers in state reduction of sequential machines.
Information and Control, 5:252–260, September 1962.

[63] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice-Hall International Series in Applied Mathematics. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1966.

[64] F. Hill and G. Peterson. Computer aided logical design with emphasis on vlsi, chapter 10
- Synthesis of clock-mode sequential circuits. John Wiley & Sons, Inc, New York, fourth
edition, 1993.

[65] S. J. Hong, R. G. Cain, and D. L. Ostapko. mini: A heuristic approach for logic mini-
mization. IBM Journal of Research and Development, 18:443–458, September 1974.

[66] J. Hopcroft. Theory of machines and computations, chapter An n log n algorithm for
minimizing states in a finite automaton. Academic Press, New York, NY, 1971. Z.
Kohavi and A. Paz, eds.

[67] W. S. Humphrey, Jr. Switching circuits with computer applications. McGraw-Hill Book
Company, Inc, York, PA, 1958.

[68] Sungho Kang. Automated synthesis of pla based systems. PhD thesis, Stanford Univer-
sity, Stanford, CA, 1981.

188 BIBLIOGRAPHY

[69] L. N. Kannan and D. Sarma. Fast heuristic algorithms for finite state machine minimiza-
tion. In Proceedings of the European Conference on Design Automation - EDAC, pages
192–196, Amsterdam, February 1991.

[70] R. M. Karp. Some techniques of state assignment for synchronous sequential machines.
IEEE Transactions on Electronic Computers, EC-13(5):507–518, October 1964.

[71] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[72] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill Computer Science
Series. McGraw-Hill Book Company, New Delhi, second edition, 1978.

[73] T. J. Kowalski. Silicon Compilation, chapter 5: The vlsi design automation assistant: an
architecture compiler. Addison-Wesley Publishing Company, Reading, MA, 1988. Daniel
D. Gajski, editor.

[74] K. B. Krohn and J. L. Rhodes. Algebraic theory of machines. In Symposium on Mathe-
matical Theory of Automata, New York, NY, April 1962. Microwave Research Institute,
Polytechnic Press.

[75] E. B. Lee and M. Perkowski. Concurrent minimization and state assignment of finite
state machines. In Proceedings of the 1984 International Conference on Systems Man
and Cybernetics, pages 248–260, Halifax, October 1984.

[76] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuits by retiming. In Third
Caltech Conference on VLSI, pages 87–116. Computer Science, 1983.

[77] B. Lin. Restructuring of synchronous logic circuits. In Proceedings of the European
Conference on Design Automation - EDAC, pages 205–209, Paris, February 1993. The
Institute of Electrical and Electronics Engineers, IEEE Computer Society Press.

[78] Bill Lin and A. Richard Newton. A generalized approach to the constrained cubical
embedding problem. In Proceedings of the International Conference on Computer Design:
VLSI in Computers and Processors - ICCD, pages 400–403. The Institute of Electrical
and Electronics Engineers, October 1989.

[79] C. N. Liu. A state variable assignment method for asynchronous sequential switching
circuits. Journal of the Association for Computing Machinery, 10:209–216, April 1963.

[80] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming
and resynthesis: optimizing sequential networks with combinational techniques. IEEE
Transactions on Computer-Aided Design, 10(1):74–84, January 1991.

[81] Sharad Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic veri-
fication using binary decision diagrams in a logic synthesis environment. In Proceedings
of the IEEE International Conference on Computer-Aided Design - ICCAD, pages 6–9,
Santa Clara, CA, November 1988. The Institute of Electrical and Electronics Engineers.

[82] E. J. McCluskey. Minimization of Boolean functions. Bell Laboratories Technical Journal,
35:1417–1444, November 1956.

BIBLIOGRAPHY 189

[83] G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Technical
Journal, 34:1045–1079, September 1955.

[84] Bertrand Meyer. Reusability: the case for object-oriented design. IEEE Software, 4(2):50–
64, March 1987.

[85] E. F. Moore. Gedanken experiments on sequential machines. Automata Studies, pages
129–153, 1956.

[86] Eugenio Morreale. Computational complexity of partitioned list algorithms. IEEE Trans-
actions on Computers, C-19(5):421–427, May 1970.

[87] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method - de-
sign of logic networks based on permissible functions. IEEE Transactions on Computers,
C-38(10):1404–1423, October 1989.

[88] Stefan Näher. LEDA User Manual - Version 3.0. Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 1992.

[89] A. R. Newton and A. L. Sangiovanni-Vincentelli. cad tools for asic design. Proceedings
of the IEEE, 75(6):765–775, June 1987.

[90] C. A. Papachristou and Debabrata Sarma. An approach to sequential circuit construction
in lsi programmable arrays. IEE Proceedings, 130(5):159–164, September 1983.

[91] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely specified
sequential switching functions. IRE Transactions on Electronic Computers, EC-8:356–
367, September 1959.

[92] M. A. Perkowski and J. E. Brown. Automatic generation of don’t cares for the controlling
finite state machine from the corresponding behavioral description. In Proceedings of the
IEEE International Symposium on Circuits and Systems - ISCAS, pages 1143–1146, New
Orleans, LA, May 1990. The Institute of Electrical and Electronics Engineers. volume 2.

[93] M. A. Perkowski and J. Liu. Generation of finite state machines from parallel program
graphs in diades. In Proceedings of the IEEE International Symposium on Circuits and
Systems - ISCAS, pages 1139–1142. The Institute of Electrical and Electronics Engineers,
1990.

[94] M. A. Perkowski and N. Nguyen. Minimization of finite state machines in SuperPeg.
In The Proceedings of the Midwest Symposium on Circuits and Systems, pages 139–147,
Lusville, Kentucky, August 1985.

[95] C. P. Pfleeger. State reduction in incompletely specified finite-state machines. IEEE
Transactions on Computers, C-22(12):1099–1102, December 1973.

[96] J. Rabaey, H. de Man, J. Vanhoof, and F. Goossens, G.and Catthoor. Silicon Compilation,
chapter 8: cathedral-ii: a synthesis system for multiprocessor dsp systems. Addison-
Wesley Publishing Company, Reading, MA, 1988. Daniel D. Gajski, editor.

[97] B. Reusch and W. Merzenich. Minimal coverings for incompletely specified sequential
machines. Acta Informatica, 22:663–678, 1986.

190 BIBLIOGRAPHY

[98] F. Romeo and A. Sangiovanni-Vincentelli. Probabilistic hill-climbing algorithms: prop-
erties and applications. In Chapel Hill Conference on Very Large Scale Integration, 1985.

[99] R. Rudell and A. Sangiovanni-Vincentelli. espresso-mv: algorithms for multiple-valued
logic minimization. In Proceedings of the Custom Integrated Circuits Conference, pages
230–234, June 1985.

[100] R. Rudell and A. Sangiovanni-Vincentelli. Exact minimization of multiple-valued func-
tions for pla optimization. In Proceedings of the IEEE International Conference on
Computer-Aided Design - ICCAD, pages 352–355, Santa Clara, CA, November 1986.
The Institute of Electrical and Electronics Engineers.

[101] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for pla opti-
mization. IEEE Transactions on Computer-Aided Design, CAD-6(5):727–750, September
1987.

[102] D. E. Rutherford. Introduction to lattice theory, volume 2 of University Mathematical
Monographs. Oliver & Boyd, Edinburgh, Scotland, 1965.

[103] Alexander Saldanha, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A
framework for satisfying input and output encoding constraints. In Proceedings of the
ACM/IEEE Design Automation Conference - DAC, pages 170–175, San Francisco, CA,
June 1991.

[104] G. Saucier, M. C. de Paulet, and P. Sicard. ASYL: A rule-based system for controller syn-
thesis. IEEE Transactions on Computer-Aided Design, CAD-6(6):1088–1097, November
1987.

[105] C.-J. Shi and J. A. Brzozowski. An efficient algorithm for constrained encoding and
its applications. Technical Report CS-92-20, University of Waterloo, Waterloo, Canada,
April 1992.

[106] C.-J. Shi and J. A. Brzozowski. Efficient constrained encoding for vlsi sequential logic
synthesis. In Proceedings of the European Design Automation Conference - EURO-DAC,
pages 266–271, Hamburg, Germany, September 1992. IEEE Computer Society Press.

[107] Jay R. Southard. Silicon Compilation, chapter 6: Algorithmic system compilation: silicon
compilation for system designers. Addison-Wesley Publishing Company, Reading, MA,
1988. Daniel D. Gajski, editor.

[108] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Com-
pany, Reading, MA, second edition, 1991.

[109] S. Su and P. Cheung. Computer minimization of multivalued switching functions. IEEE
Transactions on Computers, C-21(9):995–1003, September 1972.

[110] Michael Tiemann. User’s Guide to GNU C++. Free Software Foundation, Inc., Cam-
bridge, MA, March 1990. Version 2.4.5.

[111] James H. Tracey. Internal state assignment for asynchronous sequential machines. IEEE
Transactions on Electronic Computers, EC-15(4):551–560, August 1966.

BIBLIOGRAPHY 191

[112] C.-J. Tseng, A. M. Prabhu, C. Li, Z. Mehmood, and M. M. Tong. A versatile finite state
machine synthesizer. In Proceedings of the IEEE International Conference on Computer-
Aided Design - ICCAD, pages 206–209, Santa Clara, CA, November 1986. The Institute
of Electrical and Electronics Engineers.

[113] S. H. Unger. A row assignment for delay-free realizations of flow tables without essential
hazards. IEEE Transactions on Computers, C-17(2):146–158, February 1968.

[114] S. H. Unger. Asynchronous sequential switching circuits. Wiley-Interscience – John Wiley
& Sons, New York, NY, 1969.

[115] T. Villa and A. Sangiovanni-Vincentelli. nova: state assignment of finite state machines
for optimal two-level logic implementation. In Proceedings of the ACM/IEEE Design
Automation Conference - DAC, pages 327–332, Las Vegas, June 1989.

[116] T. Villa and A. Sangiovanni-Vincentelli. nova: state assignment of finite state machines
for optimal two-level logic implementation. IEEE Transactions on Computer-Aided De-
sign, 9(9):905–924, September 1990.

[117] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[118] Saeyang Yang. Logic synthesis and optimization benchmarks. Technical report, Micro-
electronics center of North Carolina, Research Triangle Park, NC, January 1991. Version
3.0.

[119] Saeyang Yang and Maciej J. Ciesielski. Optimum and suboptimum algorithms for input
encoding and its relationship to logic minimization. IEEE Transactions on Computer-
Aided Design, 10(1):4–12, January 1991.

[120] C. Ykman-Couvreur and C. Duff. Logic and architecture synthesis for silicon compilers,
chapter 1: Two level and multilevel synthesis. Article: Multi-level Boolean optimization
for incompletely specified Boolean functions in phifact. Elsevier Science Publishers B.
V., Amsterdam, 1989.

[121] M. Yoeli. Decomposition of finite automata. IRE Transactions on Electronic Computers,
EC-12(3):322–324, June 1963.

[122] Jacques Zahnd. Machines Séquentielles, volume XI of Traité d’Électricité. Editions
Georgi, St-Saphorin - Switzerland, second edition, 1980. (In French).

[123] Jacques Zahnd. Private letter to the author. (in French), September, 1993.

192 BIBLIOGRAPHY

Appendices

193

Appendix A

I/O Formats for FSM and Discrete
Function Descriptions

211

212APPENDIX A. I/O FORMATS FOR FSM AND DISCRETE FUNCTION DESCRIPTIONS

Appendix B

Requirements for an FSM
Exploratory Environment

213

214 APPENDIX B. REQUIREMENTS FOR AN FSM EXPLORATORY ENVIRONMENT

Appendix C

Manual Pages for ESPRESSO, DIET,
NOVA and STAMINA

215

216 APPENDIX C. MANUAL PAGES FOR ESPRESSO, DIET, NOVA AND STAMINA

Appendix D

Manual Pages for ESPRESSO, DIET,
NOVA and STAMINA

217

