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Abstract

Finite State Machine (FSM) synthesis traditionally startswith
state minimization and state encoding, which provide codes
of minimal length to the FSM with minimal number of states.
Recently, there have been studies on encoding with non-
minimal length and synthesis on non-minimized FSM. In
this paper, we propose the framework of FSM re-engineering,
which starts with synthesizing the original FSM, followed by
re-constructing a functionally equivalent but topologically
different FSM, and ends with another round of FSM synthe-
sis on the newly constructed FSM. This gives us a larger so-
lution space that consists of synthesis solutions to any of the
functionally equivalent FSMs rather than the original FSM
only. Guided by the result of the first round FSM synthe-
sis, the solution space exploration process is rapid and cost-
efficient. This framework enables us to find better synthesis
solutions, sometimes even better than the optimal ones in the
original FSM.

We demonstrate this framework on low power state en-
coding, where we first use POW3 to assign code to each
FSM benchmark, then we re-construct the FSM by intro-
ducing new states selectively, the re-constructed FSM is en-
coded again by POW3. Experiments on MCNC benchmarks
show that we are able to reduce the FSM’s switching activity
by 6.0% on average. This results in an average 9.4% energy
reduction at the cost of 1.3% area increase in SIS simulation,
which is better than other non-minimal length low power en-
coding techniques on comparable cases. More interestingly,
when we obtain the optimal coding via an integer linear pro-
gramming formulation on small size benchmarks, we find
that POW3-encoded original FSMs are 27.0% worse than
the optimal, but this number drops to 10.1% when we apply
POW3 to the re-engineered FSMs.

1 Introduction

Finite state machine (FSM) is the most commonly used model
for system’s sequential components. Logic synthesis, which
has the goal of converting the symbolic description of the
FSM to a hardware implementation, traditionally starts with
FSM state minimization and state encoding in order to opti-
mize design objectives such as area, delay, and testability.
For example, De Micheli et al. [14] formulate the mini-
mum area state encoding problem as generating a minimum
(multi-valued) symbolic cover of the FSM and propose a
heuristic row encoding technique in [15]. Villa et al. [23]

use the notion of face-posets to tackle this problem and pro-
pose a state encoding technique for two-level implementa-
tion. State encoding techniques for multi-level logic mini-
mization have been studied in [4] and [13] where the goal is
to reduce the number of literals in the Boolean output and
next-state functions.

With the increasing popularity of portable computing and
personal communication applications in early 90’s, power
dissipation has become critical in the design of microelec-
tronic circuits. Research on low power circuit design is wide-
spread and ranges from high-level approaches such as power
efficient instruction set design and dynamic voltage scaling
to low-level techniques like clock gating. Low power state
encoding techniques have also been proposed at that time
reflecting this system design shift from high performance
to low power. In light of the well-known fact that digi-
tal CMOS circuit’s power dissipation is proportional to the
switching activity, state encoding is then re-formulated to
minimize the number of state bit switches per transition for
low power FSM synthesis. This problem is NP-hard and
many heuristic algorithms have been proposed mainly based
on the idea of assigning codes with small Hamming distance
to pairs of states that have a high transition probability. Such
techniques include state encoding with minimal code length
[2, 18, 21], non-minimal code length [12, 16] and variable
code length [20]; state re-encoding approaches [5, 22] and
techniques that try to minimize power and area simultane-
ously [9, 17].

However, these work all start with the minimized FSM
and seek for the best encoding for the existing states to re-
duce switching activity. On the other hand, there is a much
longer history on the study of conducting state minimization
and assignment at one step (see, for example, [1, 7, 11]), but
reducing switching activity or power has never been the goal
for any of these approaches.

We present the concept ofFSM re-engineering for logic
synthesis. It is based on the observation that the best synthe-
sis solution does not necessarily come from the minimized
FSM, as we will see in the following motivational exam-
ple, or coding with the minimal length, as has already been
demonstrated earlier [12, 16, 20]. In this approach, we first
apply any FSM synthesis technique to obtain a synthesis so-
lution; we then identify the structure of the FSM that might
prevent us from getting better solutions and re-construct the
FSM accordingly; the re-engineered FSM will be synthe-
sized again to generate new solution.

In the rest of this section, we first use an example to
show that we might lose the optimal solution if we restrict



the synthesis on minimized FSM. Then we explain why the
proposed FSM re-engineering framework is different from
existing approaches and why we believe that it can guide
us, both theoretically and practically, to better solutions. We
mention that, although we restrict our discussion to low power
encoding in the rest of the paper for simplicity, the proposed
framework is generic and can be applied for the optimization
of other design objectives such as area and testability.

1.1 A Motivational Example

We take the example from a recent paper on power-driven
FSM state encoding [8] to show the potential of the proposed
FSM re-engineering approach. The state transition graph
(STG) in Figure 1(a) represents a 2-input 2-output FSM with
five states{S1,S2,S3,S4, S5}. Each edge represents a tran-
sition with the input and output pair shown along the edge.
The FSM has already been minimized.

We re-construct this FSM by introducing stateS6as shown
in Figure 1(b). One can easily verify that these two STGs
are functionally equivalent. In fact, stateS6 is an equiva-
lent state ofS1. We then exhaustively check all the possible
state encoding schemes for both FSMs and report the one
that minimizeds total switching activity in Figure 1 as shown
next to each state.
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Figure 1. A 5-state FSM and a functionally
equivalent 6-state FSM.

We now calculate the switching activity, an indicator of
power efficiency of the encoding scheme. We observe a
7.9% reduction in the re-constructed 6-state FSM over the
original 5-state FSM. Note that the encoding in the original
5-state FSM is optimal, which implies that we lose the most
energy-efficient encoding for this FSM (and its functionally
equivalent FSMs) once it is minimized!

FSM re-engineering not only gives the theoretical oppor-
tunity to build FSM with better energy efficiency, it can also
be applied to existing low-power encoding algorithms. For
example, when we use POW3 [2] instead of the exhaustive
search to encode the original 5-state FSM, it gives a cod-
ing with switching activity 18.9% higher than the optimal.

However, when we use POW3 to encode the equivalent 6-
state FSM, it successfully finds a coding that is only 5.4%
away from the optimal.

1.2 What Is New

FSM re-engineering refers to the procedure of re-constructing
an FSM that is functionally equivalent to a given FSM such
that one can obtain a better synthesis solution from the newly
built FSM. In the context of low power state encoding, it
takes an encoded FSM as input and outputs a functionally
equivalent FSM with reduced switching activity. The nov-
elty of this approach, which separates it from the state re-
encoding techniques, is that we are exploring the equivalent
FSMs rather than restricting ourselves to encoding (or re-
encoding) of the same minimized FSM.

Traditionally, state encoding (and re-encoding) is per-
formed after state minimization. Minimizing FSM first nor-
mally results in simplier function implementation, less hard-
ware, and shorter delay. However, this is not necessary from
the point view of power efficiency because power is pro-
portional to the switching activity, not the number of states.
Leaving redundancy such as equivalent states in the FSM
can be helpful. For example, stateS1 in Figure 1(a) origi-
nally has four edges and contributes a lot to the total switch-
ing activity because statesS1 andS4 have the largest Ham-
ming distance. Duplicating stateS1 solves this problem.
Furthermore, implementing non-minimized FSM does not
always mean increased hardware. For example, a 36-state
FSM and a 42-state FSM need the same number of latches
(flip flops, or state registers).

Besides proposing the FSM re-engineering framework
and applying it to low power state encoding, we also report
the following findings:

• The FSM re-engineering problem is NP-hard.
• FSM re-engineering technique enhances the performan-

ce of low power state encoding techniques. For exam-
ple, POW3’s efficiency in reducing switching activity
is almost doubled when combined with our FSM re-
engineering technique.

• The potential of FSM re-engineering in low power state
encoding is analyzed by comparing to the optimal en-
coding obtained from an integer linear programming
formulation of the state encoding problem.

2 Related Work

In this section, we survey the most relevant work on FSM
low power state encoding and show their difference from the
proposed FSM re-engineering framework.

Dynamic power dissipation in CMOS circuits is com-
posed of power consumed in sequential logic and combi-
national logic. Power dissipated in the combinational logic
mainly depends on the complexity of the Boolean logic func-
tions and their gate level implementation. Power dissipation
in sequential logic is due to capacitance charging and dis-
charging in state registers caused by the state bits switching,
which is often described as

P =
1

2
V 2

ddf
∑

i∈sb

C(i)E(i) (1)



whereVdd is supply voltage,f is clock frequency,C(i) is the
capacitance of the register storing theith state bit, andE(i)
is the expected switching activity of theith register.C(i) is
technology dependent and remains, in general, constant for
all the state bits.

There have been a number of power-driven state encod-
ing algorithms to reduce the switching activityE(i) and here-
by power. Roy and Prasad propose a simulated annealing
based algorithm to improve any given state encoding scheme
[18]. Washabaugh et al. suggest to first obtain state transi-
tion probability, then build a weighted state transition graph,
and finally apply branch and bound for state encoding [24].
Olson and Kang present a genetic algorithm, where in ad-
dition to the state transition probability, they also consider
area while encoding in order to achieve different area-power
trade-offs [17]. Benini and De Micheli present POW3, a
greedy algorithm that assigns code bit by bit. At each step,
the codes are selected to minimize the number of states with
different partial codes [2]. Iman and Pedram developed a
power synthesis methodology and created a complete and
unified framework for design and analysis of low power dig-
ital circuits [10].

Unlike these power-driven state encoding algorithms, low
power state re-encoding techniques start from an encoded
FSM and seek for a better coding scheme to reduce switch-
ing activity. Hachtel et al. recursively use weighted match-
ing and mincut bi-partitioning methods to re-assign codes
[5]. Veeramachaneni et al. propose to perform code ex-
change locally to improve the coding scheme’s power effi-
ciency [22]. Our FSM re-engineering approach is conceptu-
ally different from re-encoding in that we look to change the
topology of the FSM, not only re-assign codes to the existing
states.

The above work takes two common assumptions, 1) they
look for codes with the minimal length, that is, the number of
bits to represent a state will be⌈log n⌉ for any n-state FSM;
2) their encoding (or re-encoding) algorithms are applied af-
ter state minimization is done. There are a couple of recent
work on non-minimal length encoding algorithms showing
that power may be improved with code length longer than
this bound [12, 16]. These methods require extra state reg-
ister(s) in the FSM implementation which will add to the
hardware cost and cause area increase. However, none of
the papers have reported the area overhead. Our approach
is essentially different from theirs in that we do not intro-
duce extra state bits (when the number of states is not2k).
Therefore, the area overhead in our approach expects to be
much less. Besides, as we have mentioned earlier, our tech-
nique is a stand-alone FSM encoding enhancement. FSM
re-engineering can also be applied to non-minimal length
encoding algorithms to find better solutions.

Finally, we mention the one-bit hot encoding where each
state in an n-state FSM receives an n-bit code with exactly
one bit to be 1. This encoding scheme can greatly simplify
the logic implementation of the FSM and could also reduce
the switching activity because now every pair of states will
have a Hamming distance equal to two. However, it requires
a code of length the same as the number of states and this
makes it impractical for FSMs of large size.

3 Preliminary

We consider the standard state transition graph (STG) rep-
resentation of an encoded FSMG = (V, E), where a node
vi ∈ V represents a statesi with codeCi in the FSMM ,
and a directed edge(vi, vj) ∈ E represents a transition
from statesi to statesj with transition probabilityPij . We
simplify this directed weighted graphG to an undirected
weighted graph̃G = (V, Ẽ, {Ci}, {pij}):

• V , the set of states, which is the same as inG;

• Ẽ, the set of edges. An edge(vi, vj) ∈ Ẽ if and only
if (vi, vj) ∈ E, or (vj , vi) ∈ E, or both;

• Ci, the weight of nodevi ∈ V , which is the code of
statesi;

• pij , the weight of edge(vi, vj) ∈ Ẽ, pij = Pij + Pji.

DenoteH(vi, vj) as the Hamming distance between the
codes, two bitstreamsCi andCj , of statessi andsj under
the given encoding scheme. The total switching activity of
the encoded FSM can be calculated as

∑

(vi,vj)∈Ẽ

pijH(vi, vj) (2)

Recall that two FSMs,M andM ′, are equivalent if and
only if they always produce the same sequence of outputs on
the same sequence of inputs, regardless of the topological
structure of their STGs. We formally formulate the FSM re-
engineering problem as:

Given an encoded FSMM and its correspond-
ing graphG̃ = (V, Ẽ, {Ci}, {pij}), construct an
equivalent FSMM ′ and encode it such that in the
corresponding graph̃G′ = (V ′, Ẽ′, {C′

i}, {p
′
ij}),

we maximize the total switching activity reduc-
tion:

∑

(vi,vj)∈Ẽ

pijH(vi, vj) −
∑

(ui,uj)∈Ẽ′

p′ijH(ui, uj) (3)

The FSM re-engineering problem targets the re-construc-
tion and encoding of a functionally equivalent FSM for low
power FSM implementation. Clearly, it is NP-hard because
it requires the best state encoding for the re-constructed FSM
M ′, which is an NP-complete problem. Furthermore, when
we restrictM ′ to be the same asM , the problem becomes
“determining a new encoding scheme to minimize the total
switching activity”, which is the existing FSM re-encoding
problem.

The novel contribution of the FSM re-engineering prob-
lem is that it re-constructs the original (minimized and en-
coded) FSM to allow us explore a larger design space for
power-efficient FSM encoding. In this paper, we focus on
the FSM re-construction and defer the state encoding prob-
lem to existing algorithms. We give an example on how
to re-engineer an FSM and explain why it can reduce the
switching activity.

Figure 2 illustrates one way to change the topology of the
STG without altering the FSM’s functionality. We see that a
new state,S′, is added as a duplicate of stateS as follows:
S′ goes to the same next state under the same transition con-
dition as stateS; the transitions from other states to stateS



in the original STG will be split such that some of them still
go to stateS while the rest go to the new stateS′. Suppose
that stateSpj andS have a large Hamming distance in the
original encoding and contribute a lot to the total switching
activity, now we can redirect this transition toS′ and assign
S′ a code of a small Hamming distance fromSpj .
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Figure 2. Re-constructing an FSM by dupli-
cating a stateS.

4 Power-Driven FSM Re-Engineering Approach

Figure 3 outlines the proposed low power state encoding ap-
proach by FSM re-engineering. We first compute the orig-
inal FSM’s total switching activity for a reference. Then
we re-construct a functionally equivalent FSM and encode
it for reduced switching activity. We will use the state du-
plication technique as an example to illustrate this approach.
Figure 3 outlines the three key steps in the state duplication
method: 1) select the best candidate state for duplication;2)
decide how to duplicate the selected state; 3) estimate the
(maximum) switching activity reduction after the state du-
plication.

Yes

compute total switching activity (SW)

estimate the maximum
SW reduction

FSM_Reconstruct()

select a state S duplicate S

encode reconstructed FSM

Encoded FSM

if maximum SW
reduction > δ %

No

Output FSM

Figure 3. FSM re-engineering for low power
state encoding.

We now elaborate on how to compute an encoded FSM’s
switching activity and the pseudocode of state duplication
based FSM re-engineering technique (Figure 4).

4.0 Compute FSM’s Switching Activity

According to Equation (2), the state transition probability of
each edge and the Hamming distance between the two states
of each edge must be determined before the calculation of to-
tal switching activity. The former measures how frequently
each transition occurs and the latter gives the amount that
each transition contributes to the total switching activity.

To compute the transition probability, it is necessary to
have the input distribution at each state, which can be ob-
tained by simulating the FSM at a higher level of abstrac-
tion [24]. This gives uspj|i, the conditional probability that
the next state issj if the current state issi. Then we build
a Markov chain based on these conditional probabilities to
model the FSM. The Markov chain is a stochastic process
whose dynamic behavior depends only on the present state
and not on how the present state is reached [6]. We now can
obtain the steady probabilityPi of each statesi correspond-
ing to the stationary distribution of the Markov chain. The
state transition probabilityPij for the transitionsi → sj is
given by

Pij = pj|iPi (4)

The Hamming distance between the two states of each
transition can be conveniently determined after state encod-
ing is performed. As we have mentioned earlier, it is not
our goal to develop any power efficient encoding scheme.
The proposed FSM re-engineering method seeks for a func-
tionally equivalent FSM in order to provide opportunities for
any encoding scheme to reduce the switching activity. This
strength is shown in Figure 3 as we use the same algorithm
to encode the original FSM and the re-constructed FSM. In
our simulation, POW3 developed by Benini and De Micheli
[2] is used as the state encoding scheme.

Algorithm: FSM Reconstruction
/* Step I: selection of state for duplication. */
1. for each statesi in the FSM
2. computer(si) as defined in Equation (5);
3. sort the states by theirr-values in descending order;
4. if tie, the one with less number of previous states first;
5. if still tie, the one with less number of next states first;
6. if still tie, break it randomly;
7. do
8. select states, the first one in the list, for duplication;
/* Step II: state duplication. */
9. for each pairsi andsj in PS, the previous states ofs
10. compute the Hamming distanceH(si, sj);
11. picks1 ands2 s.t.H(s1, s2) = max

si,sj∈PS
{H(si, sj)};

12. PT1 = {s1};PT2 = {s2};
13. c1 = s1; c2 = s2;
14. for each statet ∈ PS
15. if (H(t, c1) < H(t, c2))
16. PT1 = PT1 ∪ {t};
17. elsePT2 = PT2 ∪ {t};
18. re-computec1 andc2, the centers ofPT1 andPT2;
19. Htotal =

∑

t∈PT1

H(t, c1) +
∑

t∈PT2

H(t, c2);

20. if (Htotal decreases) goto line 14;
21. for each statet ∈ PT1

22. addt as a previous state of states;
23. for each statet ∈ PT2

24. addt as a previous state of states′;
25. for each statet ∈ NS, the next state ofs
26. addt as a next state of states′;
/* Step III: estimate the gain in switching activity reduction. */
27. determine the ideal codes for statess ands′;
28. compute the total switching activity locally ats ands′;
29. for each statet ∈ PT1 ∪ PT2 ∪ {s, s′}
30. computer(t) and insert statet back to the list;
31. while(gain in the total (local) switching activity exceedsδ%)

Figure 4. Pseudocode: FSM reconstruction by
state duplication.



4.1 Selection of States for Duplication

By duplicating a state, we make it possible to assign the
same state more than one codes, one for the original state
and the rest for the duplicate(s). As we have seen from Fig-
ure 2, states with large (average) Hamming distance from its
previous states will benefit because they will have less pre-
vious states in the re-constructed FSM, which allows the en-
coding scheme to find a better code to reduce the Hamming
distance. Outgoing edges to the next states and the codes
of the next states do not have the same importance because
each duplicate state will be connected to the same set of next
states to preserve the correct functionality.

For each statesi, we define:

r(si) =
∑

(vj ,vi)∈E

H(vi, vj)/indgree(vi) (5)

where nodevi represents statesi in the STG and the sum is
taken over the number of all the incoming edges(vj , vi) at
nodevi.

This value measures the average Hamming distance be-
tween statesi and all its previous states. We duplicate one
state at a time and each time we select the state with the
largestr-value. If there is a tie, we select the state with
fewer previous and/or next states to reduce the size of the
re-constructed FSM. This could eventually help the encod-
ing algorithm to find a better encoding scheme. If there is
still a tie, we break the tie by selecting one state randomly.

4.2 Heuristics for State Duplication

Step II of the algorithm will actually duplicate the selected
state. Ideally, we want to duplicate the state in such a way
that the new FSM will maximally reduce the switching activ-
ity when encoded optimally. Apparently, this requires solv-
ing the NP-hard state encoding problem optimally. Instead,
we focus on how to duplicate a state to minimize switching
activity locally.

More specificly, lets be the state we select for dupli-
cation,PS andNS be the sets of previous states and next
states ofs respectively in the original FSM. The state dupli-
cation procedure 1) creates a states′ that also hasNS as its
next states, and 2) splitsPS into PT1 andPT2 and make
them as the previous states fors ands′ in the new FSM. The
goal of such local state duplication is to minimize

∑

t∈PT1

PtsH(t, s) +
∑

t∈NS

PstH(t, s) +

∑

t∈PT2

Pts′H(t, s′) +
∑

t∈NS

Ps′tH(t, s′)

wherePts is the transition probability from statet to states
andH(t, s) is the Hamming distance between the two states.

The challenge is how to partition the previous statesPS
into two subsets. Our solution, as shown at Step II in Fig-
ure 4, is based on the fact that the two states inPS with the
largest Hamming distance should belong to different parti-
tions. We find, in line 11, statesvk and vl that have the
largest Hamming distance and put them intoPT1 andPT2
as their respective centers (lines 12-13). For each of the other
statest ∈ PS, we include it to the subset whose center is
closer tot (lines 14-17). After we finish the partition, we

re-compute the centersc1 andc2 of the two subsets (line 18)
following the method described in Lemma 1 below. We then
re-partition setPS based on these new centers and continue
if the new partition results in reduced total Hamming dis-
tance (line 20).

The following lemmas show the correctness of this ap-
proach.

Lemma 1. In any optimal partition, states and its duplicate
s will have the codes of the two centers.

[Proof]. Suppose that one partition hask states with
codes{xi1xi2 · · ·xin : i = 1, 2, · · · , k} and they will have
states as their next state in the re-constructed FSM. We want
to find the codec1c2 · · · cn for states to minimize the total
Hamming distance

k
∑

i=1

H(s, xi) =

k
∑

i=1

n
∑

j=1

|xij − cj| =

n
∑

j=1

(

k
∑

i=1

|xij − cj |)

Because each bit is independent, the above is minimized
if and only if

∑k

i=1 |xij − cj | is minimized for eachj =
1, 2, · · · , n. Leta be the number of 1’s in{xij : i = 1, 2, · · · , k}

andb be the number of 0’s.
∑k

i=1 |xij − cj | = b if cj = 1

and
∑k

i=1 |xij − cj | = a if cj = 0. Clearly, it is minimized
whencj is defined as the majority of{xij : i = 1, 2, · · · , k}.

Lemma 2. The optimal partition is reached in time linear to
the size of setPS, i.e., the number of previous states of state
s.

[Proof]. Because of its discrete nature, every time the
loop (lines 14-20) is repeated, the total Hamming distance is
reduced by at least 1. Therefore, this loop will stop after be-
ing repeated finite times. Furthermore, the largest Hamming
distance froms (or its duplicates′) to any state inPS is n.
If there arek states inPS, then the loop will not be executed
more thankn times.

4.3 Estimate the Switching Activity Reduction

The goal of duplicating state is to reduce the total switch-
ing activity. After we construct the duplicated states′ of
the selected states, it becomes possible to estimate/evaluate
whether this goal is achieved. Based on this, we make the
decision whether more states will be selected for duplication
or not.

One way is to encode the re-constructed FSM and com-
pute the total switching activity using Equation (2). This
gives us the actual gain in switching activity reduction by
duplicating states. When it is expensive to apply the state
encoding algorithm on the entire FSM, we use the following
alternative to estimate the maximum gain locally at statess
ands′ by assigning them the best codes.

Lemma 3. Let {xi : (xi1xi2 · · ·xin)} be the set of states
that have transition to/from states andpxis is the transition
probability between statexi ands, then the switching ac-
tivity is minimized at states when it has codec1c2 · · · cn,
where

cj =

{

1 if
∑

xi
pxis(1 − 2xij) < 0

0 otherwise

[Proof]. Similar to the proof of Lemma 1 but note that
now the transition probabilitypxis is available. The switch-
ing activity at thej-th bit will be

∑

xi
pxisxij if cj = 0,



and
∑

xi
pxis(1 − xij) if cj = 1. Comparing these two val-

ues gives the assignment tocj as above. The code for the
duplicated states′ can be determined in the same way.

As described in the Step III of Figure 4, only when the
estimated (or calculated if encoding is performed) gain ex-
ceeds a threshold, do we actually duplicate states, compute
ther-value fors and its duplicates′, update ther-values for
their next states, and select the next candidate state for du-
plication.

4.4 Determine the Minimum Switching Activity

There are two reasons for us to determine the optimal en-
coding scheme for a given FSM. First, it allows us to test
the quality of low power state encoding heuristics. Second,
comparing the minimum switching activity of the original
FSM with that of the re-constructed FSM provides us in-
sight of FSM re-engineering approach’s potential power ef-
ficiency.

The power-driven state encoding problem can be formu-
lated as follows: finding a codexi1xi2 · · ·xin for each state
xi of ak-state FSM, such that

n
∑

l=1

|xil − xjl| ≥ 1 (6)

and the following (total switching activity) is minimized

∑

1≤i≤j≤k

pij

n
∑

l=1

|xil − xjl| (7)

wherepij = Pij + Pji is the total transition probability
between statesxi andxj as we have defined earlier.

Equation (6) enforces that no two states can have the
same code. Expression (7) is the same as the switching
activity given in Equation (2) because the Hamming dis-
tance between statesxi andxj is defined asH(xi, xj) =
∑n

l=1 |xil − xjl|.

We introduce (Boolean) variablesd(l)
ij = |xil − xjl| and

dl
ii = 0 for 1 ≤ i < j ≤ k and1 ≤ l ≤ n. Equations (6)

and (7) can be re-written in the following linear form:
n

∑

l=1

d
(l)
ij ≥ 1 (8)

∑

0<i≤j≤k

pij

n
∑

l=1

d
(l)
ij (9)

The definition ofd(l)
ij is equivalent to the following:

xil + xjl + (1 − d
(l)
ij ) ≥ 1

xil + (1 − xjl) + d
(l)
ij ≥ 1

(1 − xil) + xjl + d
(l)
ij ≥ 1

(1 − xil) + (1 − xjl) + (1 − d
(l)
ij ) ≥ 1

The problem then becomes a (0-1) integer linear program-
ming (ILP) problem and we can use the off-the-shelf ILP
solver to solve it and thus determine the minimum switching
activity.

5 Experimental Results

We simulate the FSM re-engineering framework on MCNC
benchmark suite using POW3 as the low-power state encod-
ing algorithm. For simplicity, we control the state duplica-
tion technique such that the encoding bits remains minimal.
Therefore, no state will be duplicated for FSMs with exactly
2k states. The 26 applicable benchmarks have states from
5 to 48. Our simulation is designed to compare POW3’s
performance before and after FSM re-engineering using the
following metrics: switching activity (calculated from Equa-
tion (2)), power and area (simulated using SIS), overhead
over the optimal (from solving the ILP problem).

Switching Activity Comparison
Table 1 reports the switching activity of the original FSMs

and the re-engineered FSMs, both encoded by POW3. The
second column is the length of the code, the third column
lists the number of states in the original FSM, the fourth col-
umn gives the number of states duplicated by our approach,
the next two columns are the switching activities before and
after state duplication, the last column shows the reduction.

In the 26 benchmarks, POW3 is able to reduce the switch-
ing activity on 17 re-constructed FSMs with an average 9.4%
reduction (6.0% if we take average over all 26 benchmarks).
We mention that this improvement is significant. First, it
is achieved over the encoding by POW3, a state-of-the-art
low power encoding algorithm. Second, POW3 itself can
achieve an average 12% switching activity reduction over
area-driven encoding algorithms [2]. Finally, although a 13%
improvement over POW3 has been reported in [16]. this im-
provement is based on the better one of two different encod-
ing schemes. Moreover, their improvement is achieved at the
cost of increased code length (or equivalently, the number of
state registers) and the area change is not reported.

Seven benchmarks have no improvement after re-construc-
ting the FSMs. In five of them, the encoding on the original
FSM are very close to or have already achieved the mini-
mum switching activity. For example, POW3 generates a
Gray code forbbtas, which is the optimum in switching ac-
tivity. In these cases, our algorithm correctly chooses notto
duplicate any state because further improvement is unlikely
to achieve. In the other four benchmarks, our algorithm du-
plicates one or more states but results in either no gain or
negative gain in switching activity reduction. This is due to
the inaccurate estimation of switching activity reductionin
step III of the proposed algorithm (Figure 4). We mention
that this problem can be avoided if we run POW3 every time
to decide whether a state should be duplicate.

Power and Area Comparison
As one may observe from Table 1, although the code

length does not increase, we do duplicate 1.7 states on av-
erage. What is the impact of this to area and power when
we implement the re-constructed FSM? Table 2 reports this
on the circuit implementation obtained by SIS package. We
use the standardscript.ruggedto simplify the circuits and
lib2 library for technology mapping. The area is obtained by
map -scommand. The power is measured inµW using the
sequential power estimation package in SIS, assuming a 5V
power supply and 20MHz clock frequency.

We are able to get the area and power information from
SIS on 14 benchmarks as reported in Table 2. We see that
an average 9.4% power reduction is achieved at the cost of
only 1.3% area increase. Interestingly, more than one third



Table 1. Total switching activity reduction on
re-constructed FSMs.

POW3 Swg. reductionFSM Bits States Dup
orig. re-eng. (%)

example 3 5 3 1.5229 1.2703 16.6
s8 3 5 1 0.2128 0.1553 27
ex3 3 5 3 1.2 1.075 10.4
ex5 4 9 2 1.1972 1.0442 12.8

lion9 4 9 2 0.5626 0.4571 18.8
ex7 4 10 1 1.0085 0.9487 6

train11 4 11 1 0.5540 0.5087 8.2
modulo12 4 12 2 0.5833 0.5 14.3

mark1 4 12 1 0.9493 0.9342 1.58
dk512 4 15 1 1.6012 1.4167 11.5

s1 5 20 1 1.2535 1.1986 4.4
ex1 5 20 2 0.9823 0.9366 4.7

donfile 5 24 3 1.5208 1.3906 8.6
dk16 5 27 2 1.9169 1.849 3.5
styr 5 30 2 0.5302 0.5239 1.2
s510 6 47 1 0.9245 0.8868 4.1
planet 6 48 1 1.5268 1.4375 5.8
switching activity reduction over the above benchmarks: 9.4%

beecount 3 7 0 0.5027 0.5027 0
dk14 3 7 0 1.1671 1.1671 0
bbara 4 10 0 0.3 0.3 0
pma 5 24 0 0.9112 0.9112 0

s1488 5 48 0 0.3462 0.3462 0
s27 3 6 1 0.8866 0.8866 0
s208 5 18 13 0.4751 0.4751 0
bbtas 3 6 1 0.4435 0.4565 -2.9
ex4 4 14 1 0.5921 0.6074 -2.6

switching activity reduction over all 26 benchmarks: 6.0%

of the circuits have area reduced after state duplication. The
negative power reduction occurs when the power increase in
the combinational part of the circuits exceeds the reduction
in the sequential part.

We also compared our power-saving results with one of
the existing non-minimal length encoding algorithms reported
in [16]. The comparison is made based on the improvement
in dynamic power consumption over POW3. We copied their
results from [16] and listed in column 8 and 9. An asterisk in
a cell means the power improvement data is not reported in
the paper for that benchmark. We see that our methods can
achieve greater power-saving improvements over POW3 in
almost all the benchmarks than both approaches presented
in [16].
Comparison with Optimal Encodings

For a subset of benchmarks, we are able to find the opti-
mal encodings for both the original and the re-constructed
FSMs. This allows us to quantitatively judge the quality
of the encodings obtained by POW3. Figure 5 depicts the
switching activity of optimally encoded new FSM, POW3’s
encoding on the new FSM, and POW3’s encoding on the
original FSM (from bottom to top). These numbers are all
normalized to the switching activity of the original FSM
with the optimal encoding.

We see that although FSM re-engineering has the po-
tential to reduce the minimum switching activity by only
2.5% on average, the power efficiency of POW3 is greatly
enhanced. From Figure 5, POW3 finds codes for the origi-
nal FSMs that have switching activity from 11.6% to 48.6%
higher than the optimal with average 27.0%. However, when
we encode the new FSMs using POW3, the average over-
head drops to 10.4%. It even finds an coding that achieves

the optimal inex3and codings better than the original opti-
mal in benchmarksexampleandlion9.
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Figure 5. Switching activity of POW3’s
encoding schemes on the original and re-
constructed FSMs and the optimal encoding
(Opt) on the new FSMs. Normalized to the op-
timal encoding on the original FSMs.

6 Conclusions

The concept of FSM re-engineering is introduced in this
paper. It is a generic framework for FSM synthesis based
on the observation that minimizing the number of states in
an FSM may lose the optimal solutions, or make it harder
to find such solutions, for many FSM related optimization
problems. To keep the discussion concrete, we study the
low power state encoding problem by using a state dupli-
cation based FSM re-engineering technique. Our technique
does not necessarily provide a power efficient state encoding
scheme. Instead, we demonstrate its strength in enhancing
the performance of any given power-driven encoding algo-
rithms. We apply this on MCNC benchmark using POW3 as
the encoding tool. Experimental results show that POW3’s
power in reducing circuit’s total switching activity has al-
most been doubled by the proposed FSM re-engineering ap-
proach. Simulation on SIS indicates that an average 9.4%
power reduction is achievable with only 1.3% area increase
and no additional state registers. We further use an integer
linear programming formulation to identify the optimal cod-
ing that achieves the minimum switching activity, where we
find that the re-engineered FSMs have better optimal codes.
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