Random Thoughts
on
Abstract Machines

Peter Hines

University of York (2006)

http://www-users.cs.york.ac.uk/~phines/AbstractMachine.ps
We want a ‘model of computation’ that is:

- **physically motivated** – the important point!
- as **abstract** as possible,
- but **concrete** enough to calculate with.
- **useful** — but we can’t have everything ...

We do not care about:

- computing as *calculating a result*, rather than as a *physical process*.
- the program / data distinction.

Ideally:

- we recover *familiar concepts* or *useful tools*.
- we can *generalise* or *restrict* to other settings
 — reversible, asynchronous, quantum, &c.
Physically, what is a computer?
i.e. how abstract can we go?

An **Abstract Computing Machine** is:

1. A set X of configurations.
2. An evolution rule \mathcal{R} that takes configurations to next configurations.

 and that's all ...

(For the moment) we also require

The ‘evolution rule’ \mathcal{R} is:

(i) **Deterministic**
(ii) **Possibly partial**
(iii) **Fixed — it does not change over time!**

If we want time-dependence, we need to build in a *clock*, by modifying both the configuration set X and the evolution rule \mathcal{R}.

For an Abstract Computing Machine $\mathcal{M} = (X, R)$, write "The next configuration of x is y" as either

- $R(x) = y$ (functional notation)
- $x \mapsto y$ (relational notation)

Mathematically: an ACM is trivial — is just a partial function acting on a set.

- Also known as a deterministic, unlabelled, state transition system
- However, we study it from a different perspective:
- ...as first a physical and then a computing system.
As a Physical System:

Possible problems

1. Partiality
 - what does it mean for a configuration to have no next configuration, under a physical evolution rule?

2. Irreversibility
 - How can physical time-evolution be irreversible?

Possible solutions

1. Partiality:
 - **Partial information**: The configuration set X is part of a larger set Y... but we can only observe the configurations in X.
 - **A Halting convention**: For example, we only consider evolutions that change configuration — we rule out
 $$x \rightarrow x \rightarrow x \rightarrow x \rightarrow x \rightarrow \ldots$$
 Alternatively, some subset $H \subseteq X$ is chosen as the halting subset, and we terminate the experiment when this subset is entered.

2. Irreversibility
 - **Classically**, this is fine — we can ‘dump information to the environment’ with no side-effects.
 - **Quantum-mechanically**, this is *not* the case!
As a Computational System

Motivating examples Turing Machines, Cellular automata, the von Neumann architecture, λ-terms (with fixed reduction strategies), finite state automata (with specified input string), Procedural subroutines, &c.

A natural operation

Given the Next relation \(x \mapsto y \), consider its transitive closure.

- \(x \mapsto y \) implies \(x \Rightarrow y \)
- \(a \Rightarrow b \) and \(b \Rightarrow c \) implies \(a \Rightarrow c \)

Call this the Leads To relation \(x \Rightarrow z \)

Important: unlike transition systems, we do not look at the reflexive transitive closure.

Interpretation

Given a machine \(M \) in configuration \(x \), with \(x \Rightarrow z \), then the machine \(M \) will at some later point be in configuration \(z \).

Unfortunately the ‘leads to’ relation contains strictly less information about a computation than the ‘next’ relation.
A trivial example

Wherever cycles may occur, the ‘leads to’ relation loses information about causal ordering (i.e. “p then q then r ...”)

Consider two distinct machines M_1 and M_2 with configuration set $X = \{a, b, c\}$

\[
\begin{align*}
 a &\rightarrow_1 b \rightarrow_1 c \rightarrow_1 a \\
 a &\rightarrow_2 c \rightarrow_2 b \rightarrow_2 a
\end{align*}
\]

‘Next’ relations for M_1, M_2

The ‘leads to’ relation is the same, universal, relation for M_1 and M_2. We can only recover information about ordering when there are no cycles!
Cycle-free machines

An Abstract Computing Machine $\mathcal{M} = (X, \rightarrow)$ is cycle-free when:

"There does not exist a configuration x such that $x \sim x$"

For finite configuration sets, this is equivalent to nilpotency:

$$\mathcal{R}^N = 0 \text{ for some } N \in \mathbb{N}$$

For infinite configuration sets, this is undecidable.

Advantages of cycle-free machines

- Termination (in the finite case) is guaranteed — the computer never gets stuck in an infinite loop.

- We can recover causal ordering and the Next relation from the ‘Leads to’ relation.

- the \sim relation is a strict partial order
 - Irreflexive: $x \not\sim x$ for any $x \in X$.
 - Transitive: $x \sim y$ and $y \sim z$ implies $x \sim z$.
 - Antisymmetric: $x \sim y$ implies $x \neq y$ and $y \not\sim x$.

- Hence, configurations form a Directed Acyclic Graph.
 We can induce a partial ordering by

$$x \leq y \iff x \sim y \text{ or } x = y$$

- and hope the order-preserving or monotonic functions may give an interesting theory!
Why not restrict ourselves ?

Should we take this approach ?

Disadvantages of cycle-free machines

- Cycle-freeness is undecidable in general.
- We rule out most interesting examples (Turing machines, von Neumann architecture, &c.)
- We lose any hope of compositionality
 - Any reasonable notion of ‘plugging one machine into another’ will allow for the creation of cycles by composing two cycle-free machines.
- The quantum case (pure states & unitary evolution) is long gone!

... in any case, cycle-freeness is less about machine evolution, and more about choice of halting scheme.

An alternative approach

We will work with, and order :

- partial functions on the configuration set,
- rather than configurations themselves.

Q : Why partial functions on configurations ?

A : Simply because the evolution rule R is a partial function.
Given $M = (X, \rightarrow)$, a **machine evolution** is a partial function $\eta : X \rightarrow X$ where
\[\eta(x) = y \Rightarrow x \sim y \]

Interpretation:
When M is in configuration x then *at some later point*, M will be in configuration y.

We study the set of all machine evolutions $[M]$, and call this the **machine semantics** of M.

What do we know about $[M]$?

At least some properties are immediate:

- $[M]$ is a **semigroup** *(by transitivity of \sim)*

- The semigroup $[M]$ contains a **zero element**
 - *(the nowhere-defined function $0_X : X \rightarrow X$)*

- The semigroup $[M]$ has a **partial summation**:
 - given η, μ with disjoint domains, then

\[
(\eta + \mu)(x) \begin{cases}
\eta(x) & x \in \text{dom}(\eta) \\
\mu(x) & x \in \text{dom}(\mu) \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

 - For category theorists, $[M]$ is enriched over partially additive monoids.
 - In this setting, addition is just ‘putting together bits of a jigsaw’. In other settings, we must be careful about interpretations!!
Comparing evolutions

Motivation: "Evolutions $\eta, \mu \in [\mathcal{M}]$ are simply ways of looking at the same machine, at different levels of abstractness."

An example: Recall motivation from von Neumann computers:

Let \mathcal{M} be a desktop P.C., running a JAVA program, that is compiled into Interpreted Byte Code, and executed as Intel 68000 machine code.

we can look at this in a number of different ways!
Comparing evolutions (cont.)

For $\eta, \mu \in [\mathcal{M}]$, say η is more primitive than μ when:

- When $\mu(c) = d$, there exists $K > 0$, with $\eta^K(c) = d$.

Write this as $\mu \prec \eta$

Interpretation

- μ is a (partial) description of the behaviour of \mathcal{M}.
- η is a more complete description of \mathcal{M}
 - because we can recover μ by restricting or iterating η.

Important! K is not a fixed integer:

- Each Virtual Machine instruction does not take the same number of clock cycles.

- Each Java language command does not take the same number of Virtual Machine instructions.

- The time a computer takes to terminate depends on the input.
What do we know about this relation?

In any Abstract Machine $\mathcal{M} = (X, \mathcal{R})$, we know that

- $\eta \prec \eta$, for all $\eta \in [\mathcal{M}]$
- $0_X \prec \eta \prec \mathcal{R}$.
- When $\eta + \mu$ exists, then $\eta \prec \eta + \mu$.

Q: Is ‘primitiveness’ a partial order?

A: No! (or, not yet!)

Counterexample:

In this case,

$$R \prec R^2, \quad R^2 \prec R$$

Taking the induced quotient does not help — we will identify everything!
What saves us?

Fact: Even when a machine \(M = (X, \rightarrow) \) contains cycles, it has cycle-free evolutions.

Cycle-free evolutions are those where:

\[
\eta^K(x) \neq x \quad \forall x \in X, \quad K \in \mathbb{N}
\]

We define \([M] \subseteq [\mathcal{M}]\), the **cycle-free semantics** for \(M \), to be the set of all cycle-free evolutions:

\[
[M] = \{ \eta \in [\mathcal{M}] : \eta^K(x) \neq x \quad \forall x \in X, \quad K \in \mathbb{N} \}
\]

Motivation: We think of these as restrictions of the machine evolution that actually compute something ... possibly by setting Starting & Halting criteria

— alternatively, these are the machine evolutions that give a well-behaved mathematical theory!
What do we know about cycle-free semantics?

Let $\mathcal{M} = (X, \mathcal{R} : X \rightarrow X)$ be an abstract machine.

When we consider the cycle-free semantics $[\mathcal{M}]$,

We gain:

- **(Reflexivity):** $\eta \prec \eta$ for all $\eta \in [\mathcal{M}]$.
 - **Proof:** by definition of \prec.

- **(Anti-symmetry):** $\eta \prec \mu$ and $\mu \prec \eta$ implies $\eta = \mu$.
 - **Proof:** a consequence of cycle-freeness.

- **(Transitivity):** $\eta \prec \mu$ and $\mu \prec \zeta$ implies $\eta \prec \zeta$.
 - **Proof:** by definition of \prec.

- **(Bottom element):** The nowhere-defined arrow 0_X is a bottom element, so $0_X \prec \eta$.
 - **Proof:** Trivial, by definition of 0_X.

- **(Additivity):** When $\eta + \mu$ is defined and is cycle-free, then $\eta \prec \eta + \mu$.
 - **Proof:** Trivial, by definition of summation of partial functions.
 - **Warning:** Even when defined, the sum of two cycle-free elements might not be cycle-free.

We lose:

- **Semigroup structure** $[\mathcal{M}]$ need not be closed under composition.
 - η and μ cycle-free does not imply that $\eta \mu$ is cycle-free.
 - although $\eta \in [\mathcal{M}]$ implies $\eta^2, \eta^3, \eta^4, \ldots \in [\mathcal{M}]$.

- **‘Top’ element** $[\mathcal{M}]$ might not contain \mathcal{R}
 - The ‘primitive evolution’ need not be cycle-free.
 - As a corollary, the partial order \prec need not have a top element.
What these posets look like – the simple case.

The special case where \(\mathcal{M} = (X, \mathcal{R} : X \to X) \) is cycle-free.

\[
\mathcal{R}^N(x) \neq x \quad \forall \ x \in X \quad N \in \mathbb{N}
\]

Trivially:

- Every evolution is cycle-free, so \([\mathcal{M}] = [\mathcal{M}]\).
- \([\mathcal{M}], \prec\) is a partially ordered semigroup, enriched over a partial addition, with top and bottom elements, \(\mathcal{R}\) and \(0_X\), and compatibility between the summation and the ordering.

How about Meets and Joins?

\([\mathcal{M}], \prec\) is closed under **finite meets**, and **arbitrary joins**.

Meets: For evolutions \(\eta, \mu \in [\mathcal{M}]\)

- \((\eta \land \mu)(x)\) is undefined when either \(\eta(x)\) or \(\mu(x)\) is undefined.

- Otherwise, there exists unique \(p, q > 0\) with

\[
\eta(x) = \mathcal{R}^p(x) \quad \text{and} \quad \mu(x) = \mathcal{R}^q(x)
\]

- In this case, define

\[
(\eta \land \mu)(x) = \mathcal{R}^{lcm(p,q)}(x)
\]
Joins: For evolutions, \(\{ \eta_i \}_{i \in I} \subseteq [\mathcal{M}] \)

- \(\left(\bigvee_{i \in I} \eta_i \right) (x) \) is undefined when \(\eta_i(x) \) is undefined for all \(i \in I \).

- Otherwise, consider the subset \(\{ \eta_j \}_{j \in I \subseteq I} \) of evolutions where \(\eta_j(x) \) is defined.
 - There exists unique \(\{ p_j > 0 \} \) with
 \[
 \eta_j(x) = R^{p_j}(x)
 \]
 - We then define \(\left(\bigvee_{i \in I} \eta_i \right) (x) = R^{gcd\{ p_j \}}(x) \)

Anything else?

Distributivity: Finite meets distribute over arbitrary joins.

\[
\mu \land \left(\bigvee_{i \in I} \eta_i \right) = \bigvee_{i \in I} (\mu \land \eta_i)
\]

— this follows from the definition of \(\land \), \(\lor \) and simple properties of \(gcd() \) and \(lcm() \)

Relative Pseudocomplements:

- For any element \(\eta, \mu \), the set \(\{ \zeta : \eta \land \mu \leq \zeta \} \) has a least upper bound, \(\eta \Rightarrow \mu \).

— this follows from distributivity & cycle-freeness.

We can identify \([\mathcal{M}], \prec\) as a Heyting Algebra

— these play the same rôle for intuitionistic logic that Boolean algebras play for classical logic.
Abstract Machines
Peter Hines - York University

What these posets look like – the complicated case!

The general case: \(\mathcal{M} \) is not cycle-free.

In \([\mathcal{M}]\), we no longer have:

- A semigroup structure — although integer powers of evolutions are well-defined.
- Meets and Joins: \(\eta \land \mu \) and \(\eta \lor \mu \) need not exist.
- Arbitrary suprema, relative pseudocomplements, &c.

We do still have:

- A partial ordering.
- A bottom element, \(0_X : X \to X \).
- Suprema of some sets.

Given a chain of evolutions

\[
C = \{ \ldots \prec \eta_i \prec \eta_{i+1} \prec \eta_{i+2} \prec \ldots \} \subseteq [\mathcal{M}]
\]

We claim this has a supremum, \(sup(C) \in [\mathcal{M}] \)

Consider \(\eta_i \) defined at a configuration \(x \in X \).

By definition, \(\eta_{i+1}, \eta_{i+2}, \ldots \) are all defined at \(x \).

— **Assume** that \(\eta_j(x) \neq \eta_{j+1}(x) \):

This interprets as

\[
\begin{align*}
\eta_i(x) & = \eta_{i+1}^{k_1}(x) \\
\eta_{i+1}(x) & = \eta_{i+2}^{k_2}(x) \\
\eta_{i+2}(x) & = \eta_{i+3}^{k_3}(x) \\
& \vdots
\end{align*}
\]

Where \(\{k_1, k_2, k_3 \ldots \} \) are all greater than 1.
This gives

\[\eta_i(x) = \eta_{i+1}^{N_1}(x) = \eta_{i+2}^{N_2}(x) = \eta_{i+3}^{N_3}(x) = \ldots \]

with

\[N_1 < N_2 < N_3 < \ldots \]

Can prove formally this contradicts cycle-freeness & the definition of an evolution!

— a graphical demonstration is more interesting:

Given discrete evolution and no repeated configurations we cannot infinitely subdivide a computational path

— Zeno’s paradox does not apply to discrete computation!

*(despite various proposed schemes for hypercomputation ... *)
Completeness of cycle-free semantics

We have seen, for any chain

\[C = \{ \ldots \prec \eta_i \prec \eta_{i+1} \prec \eta_{i+2} \prec \ldots \} \subseteq [\mathcal{M}] \]

and any configuration \(x \in X \), there exists some \(\eta_M \), with

\[\forall \eta_j, \exists N > 0, : \eta_j(x) = \eta_M^{N}(x) \]

Make the obvious definition :

\[\text{Sup}(C)(x) = \eta_M(x) \]

(not forgetting \(M \) is a function of \(x \)).

Small amount of extra work (to prove cycle-freeness, &c.), shows that this is the least upper bound of this chain.

Finally :

“A partially ordered set \(P \) is a DCPO if and only if each chain in \(P \) has a supremum”

— T. Iwamura (1944), using Axiom of Choice

— We can identify \([\mathcal{M}], \prec \) as a DCPO with a bottom element

— can do various things like ‘finding least fixed-points of monotone functions’, &c.
Why is this of interest to a category-theorist??

The ‘particle-style trace’ or ‘trace by iteration’:

The intuition of ‘eliminating a subspace by iteration’

A partial function $F : A \uplus U \rightarrow B \uplus U$ may be written as a matrix:

$$F = \begin{pmatrix}
 f_{11} & f_{12} \\
 f_{21} & f_{22}
\end{pmatrix}$$

where

$$f_{11} : A \rightarrow B \quad f_{12} : U \rightarrow B \quad f_{21} : A \rightarrow U \quad f_{22} : U \rightarrow U$$

The Particle-style Trace ‘eliminates the shared subobject U’

$$TrU \begin{pmatrix}
 f_{11} & f_{12} \\
 f_{21} & f_{22}
\end{pmatrix} = f_{11} + \sum_{i=0}^{\infty} f_{12} f_{22}^i f_{21} : A \rightarrow B$$
Given an abstract machine

\[\mathcal{M} = (X, \mathcal{R} \in \text{pFun}(X, X)) \]

assume \(X = A \cup U \)

Define the \textit{restriction} of \([\mathcal{M}]\) to \(A \subseteq X \) as

\[[\mathcal{M}]_A = \{ \mu \in [\mathcal{M}] : \text{dom}(\mu) = A = \text{im}(\mu) \} \]

similarly for the cycle-free semantics :

\[[\mathcal{M}]_A = \{ \mu \in [\mathcal{M}] : \text{dom}(\mu) = A = \text{im}(\mu) \} \]

For \textit{arbitrary} evolutions, \(\text{Tr}^U_{A,A}(\zeta) \prec \zeta \)

(\textit{up to the embedding} \(\text{pFun}(A, A) \hookrightarrow \text{pFun}(X, X) \)).

For a given \textit{cycle-free} evolution, \(\eta \in [\mathcal{M}] \), consider

\[\eta \downarrow_A = \{ \mu \in [\mathcal{M}]_A : \mu \prec \eta \} \]

Can show (up to an embedding of \(\text{pFun}(A, A) \) into \(\text{pFun}(X, X) \))

- Any \(\mu \in \eta \downarrow_A \) is cycle-free.

- \(\text{Tr}^U_{A,A}(\eta) \) is :
 1. cycle-free, and a member of \(\eta \downarrow_A \).
 2. the \textit{supremum} of \(\eta \downarrow_A \).
Finding cycle-free evolutions

Good programming practice: every program subroutine has well-defined **entry** and **exit** points — it is ‘bad manners’ to jump into, or break out of, a subroutine half way through!

Interpretation: Given an abstract machine $\mathcal{M} = (X, R)$, we chose distinct subsets, S, T
— the (**Starting** and **Terminal**) subsets of the configuration space:

$$S, T \subseteq X, \quad S \cap T = \emptyset$$

and consider all evolutions that take elements of S to elements of T:

$$[\mathcal{M}]_T^S = \{ \eta \in [\mathcal{M}] : \text{dom}(\eta) \subseteq S, \text{im}(\eta) \subseteq T \}$$

Trivially:

- $[\mathcal{M}]_T^S$ is a **flat semigroup**:
 - it is closed under composition
 - contains the zero arrow
 - $\eta \mu = 0 = \mu \eta$ for all $\eta, \mu \in [\mathcal{M}]_T^S$

- All evolutions in $[\mathcal{M}]_T^S$ are cycle-free
 - Nilpotency is very easy to prove!

- $[\mathcal{M}]_T^S$ has a top element, given by $Tr_{S,T}(R)$
 - again, up to some $pFun(S, T) \hookrightarrow pFun(X, X)$.

Interpretation:

We have specified (distinct) **starting** and **halting** subsets for the Abstract Machine \mathcal{M}
— we are now treating this as a ‘black box’, that takes inputs to outputs.
Further directions:

This is very much (!) work in progress!

‘To Do’ list:

- Learn some domain theory!
- Clarify relationship between trace and partial orders in the general case.
- Give concrete examples:
 - ‘Black Box’ semantics for computer programs,
 - Algebraic models for state machines (with feedback)
 - Geometry of Interaction -style systems.
- A study of compositionality.
- Apply in other categories:
 1. Restriction to partial reversible functions goes through without a problem
 — similar theory for reversible computations.
 2. Similarly for Relations
 — and hence non-determinism.
 3. A ‘particle-style’ trace exists for non-expansive maps on Hilbert space.
 — but preserving unitarity requires a global clock.

Questions:
- What is the correct notion of configuration, cycle-freeness or termination?
- What is the corresponding order theory, logic, or domain theory?