
A Framework for Component-based Construction
Extended Abstract

Joseph Sifakis
VERIMAG Laboratory

Centre Equation
2 avenue de Vignate, 38610 GIERES, France

Joseph.Sifakis@imag.fr

Abstract

We present an overview of results developed mainly at
Verimag, by the author and his colleagues, on a framework
for component-based construction, characterized by the fol-
lowing:
• The behavior of atomic components is represented by
transition systems;
• Components are built from a set of atomic components by
using ”glue” operators;
• For each component, it is possible to separate its behavior
from its structure, due to specific properties of glue opera-
tors.

We show an instance of this framework, which com-
bines two independent classes of glue operators, Interaction
Models and Priorities.

The combination of interaction models and priorities
is expressive enough to encompass heterogeneous inter-
action and execution. We show that separation between
behavior and structure is instrumental for correctness-by-
construction. Finally, we discuss new research problems
related to a structure-dependent notion of expressiveness.

1. Introduction and Key issues

1.1. Brief Overview

A central idea in systems engineering is that com-
plex systems are built by assembling components (building
blocks). Components are systems characterized by their in-
terface, an abstraction that is adequate for composition and
re-use. It is possible to get large components by ”gluing”
together simpler ones. ”Gluing” can be considered as an
operation on sets of components.

Component-based engineering is widely used in VLSI
circuit design methodologies, supported by a large number

of tools. Software and system component-based techniques
have seen significant development, especially through the
use of object technologies supported by languages such as
C++, Java, and standards such as UML and CORBA. How-
ever, these techniques have not yet achieved the same level
of maturity as has been the case for hardware. There exists
a large body of literature dealing with components and their
use for different purposes and in different contexts.

The following deal, one way or another, with issues re-
lated to component-based engineering:

• Software Design Description Languages such as [6, 5]
and Architecture Description Languages focusing on
non-functional aspects such as [18, 1];

• System modeling languages such as UML [17], as
well as languages and notations specific to tools such
as Simulink/Stateflow, SystemC [15], Metropolis[3],
Ptolemy [13], IF-toolset [4];

• Coordination languages extensions of programming
languages such as Linda, Javaspaces, TSpaces, Con-
current Fortran;

• Middleware standards such as IDL, Corba, Javabeans,
.NET;

• Software development environments such as PCTE,
SWbus, Softbench, Eclipse;

• Theoretical frameworks based on process algebras
e.g., the Pi-Calculus [14] or based on automata e.g.,
[16].

An assessment of the above is beyond the scope of the
paper. Nevertheless, each fails to satisfy at least one of the
following:

• Be founded on rigorous semantics and provide con-
cepts supporting separation of concerns e.g., decou-

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

pling between behavior and interaction. This is par-
ticularly the case for modeling, as well as for middle-
ware and software development standards. These use
ad hoc mechanisms for building systems from compo-
nents and offer syntax-level concepts only.

• Encompass heterogeneous description, as they support
only specific interaction mechanisms and computation
models. For instance, software design frameworks are
based on interaction by method call and do not al-
low direct modeling of synchronous interaction mech-
anisms. On the contrary, other frameworks such as
SystemC and Matlab/Simulink have built-in mecha-
nisms for synchronous execution, and are not adequate
for describing asynchronous systems.

• Encompass the description of timing and resource
management, which are essential for non-functional
properties. For instance, standards such as UML or
AADL offer only syntactic sugar for time and schedul-
ing policies. The lack of adequate semantic frame-
works does not allow checking for inconsistency in
timing requirements, or the meaningful composition of
scheduling policies.

• Consider architectures as first class entities. For exam-
ple, existing theoretical frameworks are too low-level,
since they only emphasize behavioral aspects.

1.2. System Construction

The system construction problem can be formulated as
follows.

Build a component C satisfying a given property P , from
a given set of atomic components Ca and a set GL of oper-
ators on these components.

The component C to be constructed, can be considered
to be a term of the algebra generated from Ca and GL.
There exist only a few algebraic frameworks for formalizing
system construction problems, such as boolean algebra for
logical circuits, Hoare logic for programs, process algebras
with modal logic. At the same time, most of the existing
results on protocols and distributed algorithms define solu-
tions to construction problems for meeting specific proper-
ties in component-based systems. For example, a token-ring
protocol guarantees mutual exclusion between interacting
components. As a rule, construction problems can be for-
mulated as highly intractable synthesis problems.

Existing frameworks for studying component-based con-
struction fail to adequately treat at least one of the following
important requirements:

• Encompass heterogeneous composition to ensure in-
teroperability of components, as explained in the next
sub-section 1.3;

• Provide results guaranteeing correctness-by-
construction for essential system properties such
as deadlock-freedom, progress and liveness, in order
to minimize a posteriori validation, as explained in 2.2

1.3. Heterogeneity

System designers deal with a large variety of compo-
nents, each having different characteristics. A central prob-
lem is ”meaningful” composition of such components to
ensure that they interoperate correctly. We need seman-
tic frameworks encompassing heterogeneous composition.
There exist three specific sources of heterogeneity: interac-
tion, execution and abstraction.

Heterogeneity of Interaction Interactions are combina-
tions of actions performed by system components to achieve
a desired global behavior. Interactions can be atomic or non
atomic. For atomic interactions, the state change induced
in the participating components cannot be altered through
interference with other interactions. As a rule, synchronous
languages and hardware description languages use atomic
interactions. On the contrary, languages with buffered
communication (SDL) or multi-threaded languages (Java,
UML), generally use non-atomic interactions.

Both types of interactions may involve strong or weak
synchronization. Interactions involving strong synchro-
nization can occur only if all the participating compo-
nents agree, for instance interaction via rendezvous involves
strong synchronization (and is atomic). Interactions using
weak synchronization are asymmetric and require only the
participation of an initiating action, that may synchronize
with other actions, such as ”outputs” in synchronous lan-
guages.

Heterogeneity of Execution Currently, there exists no
formalism encompassing both synchronous and asyn-
chronous execution. Synchronous execution is typi-
cally used in hardware, synchronous languages and time-
triggered systems. It considers that a system’s execution is
a sequence of global steps. It assumes synchrony, mean-
ing that the environment does not change during a step, or
equivalently ”that the system is infinitely faster than its en-
vironment”. In each execution step, all the system com-
ponents contribute by executing some ”quantum” compu-
tation. The synchronous execution paradigm has a built-in
strong assumption of fairness: in each step all components
can move forward.

Asynchronous execution does not use any notion of a
global computation step. It has been adopted in most dis-
tributed system description languages such as SDL and
UML and programming languages such as ADA and Java.
The lack of built-in mechanisms for sharing computation

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

between components can be compensated through schedul-
ing. This paradigm is also common to all execution plat-
forms supporting multiple threads and tasks.

Heterogeneity of Abstraction System development in-
volves the use of languages, models and physical imple-
mentations representing a system and its components at dif-
ferent abstraction levels. For heterogeneity, a key abstrac-
tion is the one relating an application software to its imple-
mentation on a given platform.

Application software is untimed in the sense that it ab-
stracts out physical time. The only references to physical
time are time parameters of real-time statements, such as
timeouts and watchdogs. The expiration of watchdogs or
timeouts is treated at the semantic level as an external event.

An application software running on a given platform, is
a timed system. The set of its state variables includes not
only the variables of the application software but also all
the variables needed to characterize its dynamic behavior
such as time, quantity of resources e.g., memory and power.

We need abstractions and theory relating application
software to its implementations. In particular, such abstrac-
tions should guarantee the preservation of functional prop-
erties.

In section 2, we present a framework intented to meet the
above requirements for the following particular instance of
the construction problem:

For a given a set of atomic deadlock-free components
from Ca, find ”glue” such that the resulting system is
deadlock-free and meets a given safety property P .

In subsection 2.1, we introduce glue operators which
transform sets of components into new components. We
present an overview of results about two independent
classes of such operators and their combined use.

• Interaction models providing a general mechanism for
modeling the interactions between a set of compo-
nents.

• Priorities providing a general mechanism for restrict-
ing the behavior of a set of components by preserving
deadlock-freedom.

In subsection 2.2, we describe an approach for
correctness-by-construction, and provide an overview of ex-
isting results. Finally, in section 3, we discuss open prob-
lems and future research directions.

2. The Framework

2.1. Glue Operators and their Properties

Components For a given vocabulary of actions A, we
denote by B a set of transition systems B = {Bi}i with

disjoint sets of of actions Ai ⊂ A. A transition system Bi

is defined as a set of transitions of the form (s, a, s′) where
a ∈ Ai and s, s′ ∈ Si, the set of the states of Bi.

The set of the components C defined from a given set
of transition systems B and a set of glue operators GL =
{glj}j , is the set of the terms of the form gl(U) where U is
any non empty set such that U ⊆C∪B.

Furthermore, we require for terms representing compo-
nents gl(U) = glue({U1, .., Un}), to have disjoint sets
actions(Ui), where actions is a function defined by:

• actions(glue({U1, .., Un})) = actions(U1) ∪ . . .∪
actions(Un)

• actions(Bi) = Ai.

The definition of glue operators for sets makes simpler
the treatment of their specific properties given below.

To simplify notation, we write gl{U1, .., Un} where the
Ui are components or transition systems.

Components are characterized by their behavior and
their structure. A term of the form gl{B1, .., Bn} repre-
sents a component in ”flattened” form where structure is
separated from behavior.

Glue operators are characterized by the possibility to put
any component represented as a term of C into flattened
form. This is achieved by,

• Introducing an idempotent composition operation ⊕ on
GL such that (GL,⊕) is a commutative monoid.

• Assuming that C is equipped with a congruence re-
lation ∼= such that the following characteristic property is
satisfied:

For any term of the form t′ = gl(U ∪ gl′(U ′)) there
exists a term of the form t′′ = gl ⊕ gl′′(U ∪ U ′), such that
t′ ∼= t′′.

This property allows separation between behavior and
structure, by reducing any component into a term of the
form gl{B1, . . . , Bn}. Such a separation is instrumental
for considering structure as first class entity.

The behavior of components is defined by considering
that glue operators transform sets of transition systems into
transition systems e.g., by using operational semantics.

We present results related to two classes of glue opera-
tors: interaction models and priorities.

Interaction Models and their properties Consider as in
the previous paragraph, a vocabulary of actions A and a
set of transition systems B. Interaction models are a class
of glue operators characterizing the interactions of compo-
nents.

An interaction on A is any non empty subset of A. In-
teractions correspond to sets of actions which may synchro-

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

nize. Two interactions are non comparable if none of them
is contained in the other.

An interaction model im on A, is a pair im = (Γ, ∆)
where:

• Γ is a set of non comparable interactions of A called
connectors of im;

• ∆ is a set of non comparable interactions of A such
that any interaction of ∆ is contained in some interaction of
Γ. ∆ is the set of the minimal complete interactions of im.

The interactions α defined by an interaction model im
satisfy the following:
• they are contained in some connector of Γ, that is ∃γ ∈ Γ.
α ⊆ γ
• either they contain some interaction of ∆ or they are
maximal, that is ∃δ ∈ ∆. δ ⊆ α or ∃γ ∈ Γ. α = γ.

Interaction models provide a powerful means to describe
both strong and weak synchronization.

For strong synchronization, only the interactions corre-
sponding to connectors are possible. For example, the in-
teraction model forΓ = {{a1, a2, a3}} and ∆ = ∅ contains
only the interaction {a1, a2, a3} which means that the ac-
tions a1, a2, a3 must synchronize.

For weak (asymmetric) synchronization, minimal
possible interactions are defined by elements of ∆. For ex-
ample, the interaction model with Γ = {{a1, a2, a3}} and
∆ = {{a1}} consists of all the interactions that contain a1.
It can be used to characterize asymmetric synchronization
where for example, an output a1 is broadcast to two inputs
a2 and a3.

To define the operational semantics of terms, we con-
sider that interaction models are operators on transition sys-
tems. The term im{B1,. . ., Bn} defines a transition system
such that if there exists a set of indices J

∃{aj}j∈J ∈ im and ∀j ∈ J . (sj , aj , s
′
j) ∈ Bj , then

((s1,. . ., sn), {aj}j∈J , (s′1,. . ., s
′
n)) ∈ im{B1,. . ., Bn}

where ∀i
∈ J . si = s′i.

Given interaction models imi = (Γi, ∆i) for i = 1, 2,
the operation ⊕ is defined by

im1 ⊕ im2 = (Γ, ∆) such that
Γ = max(Γ1∪Γ2) and ∆ = min(∆1∪∆2) where max

and min are respectively the functions giving the set of the
maximal and minimal elements of their arguments.

Clearly, the operation is associative. The set of the con-
nectors of the resulting interaction model contains all the
connectors except those contained in some connector of the
union of the connector sets. The dual operation is applied
for minimal complete interactions.

In the rest of this paragraph, we present properties of in-
teraction models and their use for incremental construction

of systems.

Let im = (Γ, ∆) by an interaction model on A. It is
possible to find decompositions of im with respect to a
set of disjoint action vocabularies {A1,. . ., An} such that
Ai ⊆ A, for 1 ≤ i ≤ n. We need the following two
definitions:

• The interaction model im[Ai] = (Γi, ∆i) includes ex-
actly all the interactions of im involving only actions from
Ai. It is defined by

Γi = {γ′|∃γ ∈ Γ.γ′ = γ ∩ Ai},
∆i = {δ ∈ ∆|∃γ ∈ Γi. δ ⊆ γ}.

• The interaction model im[A1,. . ., An] = (Γ′, ∆′) con-
tains all the interactions of im[A1 ∪. . .∪An] which are not
interactions of im[A′] for any set A′ union of n−1 elements
of {A1,. . ., An}. It is defined by

Γ′ = {γ′ = ∪1≤i≤nγi|γi ∈ Γi ∧ ∃γ ∈ Γ . γ′ =
γ ∩ ∪1≤i≤nAi}

∆′ = {δ′ ∈ ∆|∃γ′ ∈ Γ′. δ′ ⊆ γ′}
We provide instances of general results presented in

[10, 8].

• im[A1 ∪ A2] = im[A1] ⊕ im[A2] ⊕ im[A1, A2]
This equality gives the interaction model on the union of

two action vocabularies as a the decomposition of the inter-
action models on each action vocabulary and im[A1, A2].
The latter includes the connectors of im[A1 ∪ A2] which
are obtained by ”gluing together” connectors from im[A1]
and im[A2].

• The above equality can be generalized to obtain a de-
composition of im with respect to the set {A1,. . ., An} by
using the property

im[A1 ∪ A2, A3] = im[A1, A3] ⊕ im[A2, A3] ⊕
im[A1, A2, A3].
For instance, the decomposition with respect to
{A1, A2, A3} is given by:
im[A1 ∪ A2 ∪ A3] = im[A1] ⊕ im[A2] ⊕ im[A3] ⊕
im[A1, A2]⊕ im[A2, A3]⊕ im[A1, A3]⊕ im[A1, A2, A3].

These results allow incremental construction of compo-
nents by using binary glue operators which play the role of
parallel composition operators, as shown below.

Consider a component im(U) obtained by gluing to-
gether elements of U such that actions(U) = A and
{U1,. . ., Un} is a set of subsets of U with disjoint action
vocabularies Ai = actions(Ui) for 1 ≤ i ≤ n.

• im[A1, A2]{im[A1](U1), im[A2](U2)} =
im[A1, A2] ⊕ im[A1] ⊕ im[A1](U1 ∪ U2) =
im[A1 ∪ A2](U1 ∪ U2).

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

The operator im[A1, A2] can be considered as a par-
allel composition operator between im[A1](U1) and
im[A2](U2) parameterized by the interaction model includ-
ing all the interactions involving actions from both A1 and
A2

The results on the decomposition of interaction models
can be used to show that im(U) can be constructed from
its atomic components by using only binary glue operators
depending on the chosen decomposition path. For example,
if {U1, U2, U3} is a partition of U , im(U) can be obtained
by applying im[A1 ∪ A2, A3] to
{im[A1, A2]{im[A1](U1), im[A2](U2)}, im[A3](U3))}
or by applying im[A1, A2 ∪ A3] to
{im[A1](U1), im[A2, A3]{im[A2](U2), im[A3](B3)}}.

Priority Operators and their Properties Priorities are a
class of glue operators PR restricting the behavior of com-
ponents. For pr ∈ PR, the meaning of pr{U1, . . . , Un} is
defined as follows:

• Assume that the behaviors of Ui, are represented by a
transition system Bi on a vocabulary Ai with set of states
Si. Let B be the product transition system on the vocab-
ulary A = ∪1≤i≤nAi with set of states S = ×1≤i≤nSi.
That is (si, ai, s

′
i) ∈ Si for some i, 1 ≤ i ≤ n, implies

((s1, .., si, .., sn), ai, (s1, .., s
′
i, .., sn)).

• A priority pr is a function associating with each state
s ∈ S a strict partial order pr(s) on A.

The behavior of pr{U1, . . . , Un} is represented by a
transition system B′ such that (s, a′, s′) ∈ B′ if (s, a′, s′) ∈
B and
 ∃a′′, s′′. (s, a′′, s′′) ∈ B and a′pr(s)a′′.

As B′ ⊆ B, priority operators simply restrict the
behavior of the components of their arguments.

Given two priority operators pr1 and pr2, we de-
fine a composition operator ⊕ such that for any state
s ∈ S pr1(s) ⊕ pr2(s) is the least partial order such that
pr1(s) ∪ pr2(s) ⊆ pr1(s) ⊕ pr2(s), if such a partial order
exists.

We have extensively studied the use of priority operators
as a means to restrict the behavior of a set of components, so
as to meet a given property P . In [2] we show that priorities
provide a general framework for modeling and composing
scheduling policies. In [9] we generalize these results in the
following manner.

Given a system consisting of a set of interacting com-
ponents and a global safety property P of this system, it is
possible to define controllers (e.g., by fixpoint characteriza-
tion) which interact with the system so that the controlled
system satisfies P and is deadlock-free. We have charac-
terized the behavior of the controlled system by a class of
functions that restrict the enabling conditions of the interac-
tions of the initial system. The main result is that priority

operators characterize exactly the class of the restrictions
induced by safe and deadlock-free controllers. That is, they
are expressive enough to describe any solution to the sys-
tem construction problem for safety and deadlock-freedom.
A consequence of this result is that mutual exclusion prop-
erties can be modeled by using priorities, if they preserve
deadlock-freedom.

Another class of results deals with composability of re-
strictions induced by priorities. It can be shown that in gen-
eral, pr1{pr2{B}}
= pr2{pr1{B}}, that is the transition
system obtained by successive application of pr1 and pr2,
depends on the order of application.

Furthermore, pr1 ⊕pr2{B} ⊆ pr1{pr2{B}} and equal-
ity holds equality holds if and only if pr1∪pr2 = pr1⊕pr2.

As we consider priorities to be glue operators, we use
the axiom pr1⊕pr2{B} = pr1{pr2{B}} by assuming that
only flattened terms represent transition systems.

The Layered Component Model

We have developed a modeling methodology which con-
siders that components consist of three distinct layers [10].
The bottom layer includes a set of transition systems model-
ing behavior. The intermediate layer is an interaction model
and the upper layer is a priority.

Layered components can be represented by using com-
posite glue operators of the form <pr, im>. If U is a set of
components we take <pr, im> (U) = pr(im(U)). That is,
pr is used to filter the interactions of im(U). The principle
of layered construction is applied by the simulation kernel
in the IF toolset [4].

We extend the composition operation ⊕:
<pr1, im1 >⊕ <pr2, im2 >=<pr1 ⊕ pr2, im1 ⊕ im2 >.

The combined use of interaction models and priorities
confers numerous advantages. It can be shown through
examples, using only interaction models to describe com-
ponents’ coordination may lead to cumbersome solutions.
There are coordination problems for which priorities are
more appropriate e.g., scheduling problems, while for other
problems the use of interactions is instrumental for getting
simple solutions e.g., data flow problems. Another advan-
tage is the existence of results guaranteeing, by construc-
tion, generic properties (see next paragraph).

2.2. Correctness-by-Construction

In principle, component-based frameworks should allow
inferring system properties from properties of their struc-
ture. Currently, most of the existing validation techniques
e.g., model-checking, need the construction of global mod-
els. Other techniques exist, using properties of a system’s
structure e.g., axiomatic verification techniques [12] and

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

assume-guarantee techniques [11]. These are developed for
correctness with respect to general properties. They are of
limited practical interest, since they make use of inference
rules whose premises involve ”oracles”, unknown predi-
cates, which in general, are non-computable.

We need theory, methods and tools for establishing, by
construction, overall system correctness from component
properties. The idea of building systems that are correct-
by-construction is much more common than one would be-
lieve. All proven algorithms, protocols and architectures
provide recipes for building correct systems. Neverthe-
less, these are for very specific properties such as lossless
message transmission, clock synchronization etc. and they
involve more or less sophisticated construction principles.
We need lightweight theory for establishing generic system
properties such as deadlock-freedom or progress of inte-
grated components.

Two types of rules are necessary for correctness-by-
construction:

• Compositionality rules which allow inferring global
system properties from component properties. That
is, if for i = 1,. . ., n a set of components Ui sat-
isfy properties Pi, then it is possible to guarantee that
the component gl(U1,. . ., Un) satisfies some property
g̃l(U1,. . ., Un) where g̃l is an operator on properties
depending on gl.

• Composability rules which allow inferring that a com-
ponent’s properties are not affected when its structure
is modified. That is, if components gl{U1,. . ., Un} and
gl′{U1,. . ., Un} respectively satisfy the properties P
and P ′, then the component gl ⊕ gl′{U1,. . ., Un} sat-
isfies P ∧ P ′. Composability means stability of com-
ponent properties across integration. Property insta-
bility phenomena are currently poorly understood e.g.,
feature interaction in telecommunications, or non com-
posability of scheduling algorithms.

In [7], we provide sufficient conditions for deadlock-
freedom of a layered component of the form < pr, im >
{B1,. . ., Bn} from deadlock-free atomic components. We
assume that for the behavior Bi of each atomic component,
a deadlock-free invariant is given. That is, a set of states
from which the component can be blocked only because of
its environment. The conditions relate deadlock-free invari-
ants of the atomic components to the enabling conditions of
the interactions of <pr, im>. These are computed by anal-
ysis of the structure of the operator <pr, im>, represented
as a bipartite dependency graph relating actions of atomic
components to interactions of im.

We also provide composability results, sufficient condi-
tions for individual deadlock-freedom and liveness of the
atomic components which are integrated in < pr, im >

{B1,. . ., Bn}. The atomic component im{Bi} is individ-
ually deadlock-free (respectively live) if it is always possi-
ble (respectively always inevitable) to perform some action
of Ai in < pr, im > {B1,. . ., Bn}. The conditions require
that atomic components have a set of states from which they
are both deadlock-free and it is possible (respectively in-
evitable) to enable interactions with other components.

3. Perspectives for Future Work

The framework developed and the underlying system
construction methodology have been successfully applied.
We believe that the existing results and their application
provide evidence that they adequately address many key is-
sues in component-based systems modeling. We plan to
continue this work in the following directions.

• Provide an algebraic formalization of component al-
gebras. As suggested in 2.1, these can be defined as
structures of the form CA = (B, GL,⊕,∼=) where B
is a set of atomic behaviors, (GL,⊕) is a commuta-
tive monoid and ∼= is compatible with the structure-
behavior separation property described in 2.1. Such a
formalization should be based on sufficiently general
semantics for glue operators, and focus on properties
relating the operator ⊕ and the relation ∼=.

• Find classes of glue operators different from interac-
tion models and priorities. For instance, one can con-
sider glue operators expressing mutual exclusion con-
straints e.g., characterized as sets of mutually exclu-
sive actions. We have shown that such constraints can
be expressed for deadlock-free systems, by using pri-
orities.

• An interesting theoretical question is the definition of
a notion of expressiveness for component algebras tak-
ing into account component structure. Consider two
component algebras CAi = (B, GLi,⊕i,∼=i) for i =
1, 2 with the same set of atomic behaviors.

We say CA1 is more expressive than CA2, if for any
global property P on the product behavior of a set of
atomic behaviors {B1, . . . , Bn} from B, for each com-
ponent gl2{B1, . . . , Bn} ∈ CA2 satisfying P there
exists a component gl1{B1, . . . , Bn} ∈ CA1 satisfy-
ing P . Notice the difference with existing notions of
expressiveness which either completely ignore struc-
ture e.g. by considering that all the languages describ-
ing finite state systems are equivalent or compare lan-
guages of terms where separation between structure
and behavior seems problematic. This is probably the
case for process algebras which combine parallel com-
position operators with hiding and restriction. For in-
stance, the expressive equivalence between SCCS and

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

CCS, may not be valid with respect this new notion of
expressiveness.

The proposed notion of expressiveness can provide a
basis for comparing frameworks for the construction
of distributed systems. The property P can be the
specification of a coordination problem between com-
ponents e.g., mutual exclusion, clock synchronization
etc. Typical questions to be addressed are whether a
problem can be solved by using a given component al-
gebra. For instance, is a component algebra built only
from binary connectors with weak synchronization as
expressive as component algebras using n − ary con-
nectors with rendezvous? Which coordination prob-
lems can be solved by using only static priorities (and
no interactions at all)?

• Study techniques for correctness-by-construction es-
pecially to make their application more incremental
and general. Their extension in order to deal with
any safety property is in principle, possible. We
need tractable techniques adapted to specific classes of
properties e.g., mutual exclusion.

• Compare the layered component framework against
existing ones in Ptolemy and Metropolis. A proto-
type implementation for this framework is currently
under evaluation at Verimag. The prototype supports
any kind of interaction model and dynamic priorities.
The objective is to show that the framework can serve
as a general ”semantic middleware” for the execution
of system description languages.

Aknowledgements: Most of the technical results have
been developed in collaboration with Gregor Gößler from
INRIA. Marius Bozga and Susanne Graf contributed
through constructive discussions.

References

[1] R. Allen, S. Vestal, D. Cornhill, and B. Lewis. Using an ar-
chitecture description language for quantitative analysis of
real-time systems. In Workshop on Software and Perfor-
mance, pages 203–210, 2002.

[2] K. Altisen, G. Gößler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Journal of Real-
Time Systems, special issue on Control Approaches to Real-
Time Computing, 23(1-2):55–84, 2002.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. Sangiovanni-Vincentelli. Metropolis:
An integrated electronic system design environment. IEEE
Computer, Apr 2003.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF
toolset. In 4th International School on Formal Methods for
the Design of Computer, Communication and Software Sys-
tems: Real Time, SFM-04:RT, Bologna, Sept. 2004, LNCS
Tutorials, Springer, 2004.

[5] R. Bruni, J. L. Fiadeiro, I. Lanese, A. Lopes, and U. Monta-
nari. New insights on architectural connectors. In IFIP TCS,
pages 367–380, 2004.

[6] D. Garlan and B. R. Schmerl. Using architectural models
at runtime: Research challenges. In EWSA, pages 200–205,
2004.

[7] G. Gößler and J. Sifakis. Component-based construction
of deadlock-free systems: Extended abstract. In FSTTCS,
pages 420–433, 2003.

[8] G. Gössler and J. Sifakis. Composition for component-based
modeling. In 1st Symposium on Formal Methods for Com-
ponents and Objects, revised lectures, volume 2852 of LNCS
Tutorials, 2003.

[9] G. Gössler and J. Sifakis. Priority systems. In proceedings
of FMCO’03, LNCS 3188, pages 314–329, 2004.

[10] G. Gössler and J. Sifakis. Composition for component-based
modeling. Sci. Comput. Program., 55(1-3):161–183, 2005.

[11] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decompos-
ing refinement proofs using assume-guarantee reasoning. In
ICCAD, pages 245–252, 2000.

[12] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[13] E. Lee. Overview of the Ptolemy Project, Technical Memo-
randum UCB/ERL M03/25, July 2003.

[14] R. Milner. The pi calculus and its applications (keynote ad-
dress). In IJCSLP, pages 3–4, 1998.

[15] W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and
W. Rosenstiehl. The simulation semantics of systemc, 2001.

[16] A. Ray and R. Cleaveland. Architectural interaction dia-
grams: Aids for system modeling. In ICSE, pages 396–407,
2003.

[17] B. Selic. Tutorial: An overview of uml 2.0. In ICSE, pages
741–742, 2004.

[18] J. Vera, L. Perrochon, and D. C. Luckham. Event-based
execution architectures for dynamic software systems. In
WICSA, pages 303–318, 1999.

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

