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Abstract

This paper presents a methodology to transfer 
self-timed circuit specifications into sequential quantum 
Boolean circuits (SQBCs) and composable SQBCs 
(CQBCs). State graphs (SGs) are used to describe the 
behaviors of self-timed circuits and then are translated 
into SQBCs based on Toffoli gates. The concept of IP 
(Intellectual Property) reuse is applied to the 
constructed SQBCs to produce reusable and composable 
quantum Boolean circuits (CQBCs). Therefore, these 
reusable CQBCs as basic modular components can be 
exploited to construct more complicated quantum 
Boolean circuits. 

A set of self-timed components is successfully and 
automatically synthesized into CQBCs by our 
methodology. These CQBCs can be used as building 
blocks to compose control-path components of self-timed 
systems.  

Keywords: Quantum Boolean circuits, Sequential 
circuits, Asynchronous circuits, State graph, Synthesis. 

1. Introduction 

Due to the discovery of Shor’s prime factorization 
and Grover’s fast database search algorithm [12, 13] 
quantum computing becomes one of the most rapidly 
expanding research fields. To perform quantum 
algorithms, required unitary operations should be 
expressed as a sequence of basic operations which can 
be implemented by a quantum computer. To implement 
a quantum computer, quantum Boolean circuits need to 
be constructed first [1]. 

The major differences between conventional 
circuits and quantum ones are their logic gates and wires 
[6]. Firstly, conventional circuits are based on AND, OR 
and NOT gates and quantum Boolean circuits are based 
on NOT, Controlled-Not and Controlled-Controlled-Not 
gates (i.e. Toffoli gates) [8]. Secondly, the wires in 
conventional circuits are used to connect components. 
This is very different in quantum Boolean circuits 
because wires represent time evolution. 

Due to the above differences, a completely different 
methodology to synthesize quantum Boolean circuits 
must be investigated and proposed. Tsai and Kuo [1] 
propose a methodology to synthesize combinational 
quantum Boolean circuits based on transformation tables. 
Any general m-to-n bit combinational Boolean logic can 
be synthesized by using Toffoli gates. Iwama et al. [6] 
propose transformation rules for optimize 
Controlled-Not-based combinational quantum Boolean 
circuits and point out a design theory for a sequential 
quantum circuit is very interesting. Miller et al. [15] 
propose a transformation based algorithm for 
synthesizing the combinational circuits and reduction 
rules for optimizing the synthesized circuits. Younes and 
Miller [17] propose an automated method to build 

CNOT based quantum circuits for Boolean functions. To 
the best of our knowledge there are no related works on 
synthesizing sequential circuit behaviors into quantum 
Boolean circuits yet. 

This paper presents a novel methodology to transfer 
self-timed circuit specifications into composable 
sequential quantum Boolean circuits. State graphs [4, 9] 
are used to describe the behaviors of self-timed circuits 
and then are translated into SQBCs based on Toffoli 
gates by our synthesis tool. 

A set of self-timed components [7, 14] is 
successfully and automatically synthesized into CQBCs 
by our methodolgy. These CQBCs can be used as 
building blocks to compose control-path components of 
self-timed systems. 

The rest of this paper is organized as follows: 
Section 2 introduces basic knowledge on quantum 
systems and self-timed systems. Section 3 and 4 present 
our methodologies to synthesize SQBCs and reusable 
CQBCs based on state graph specifications, respectively. 
The experimental results of SQBCs and CQBCs 
synthesis are given in section 5. Section 6 concludes this 
paper as a whole and provides some suggestions for 
future work. 

2. Background 

This section provides the background knowledge 
on quantum systems and self-timed systems. For 
quantum systems quantum bits, quantum gates and 
quantum circuits are briefly described and for self-timed 
system, state graphs are presented and used in this paper. 

2.1. Fundamental of quantum systems 

Circuit design and data representation in 
conventional computers and quantum ones are different 
in nature. In classical computers data are represented by 
bits and circuits are networks of logic gates while in 
quantum computers data are represented by quantum 
bits (Qubits) and quantum circuits are made of a 
sequence of unitary operations which are represented by 
quantum gates and quantum wires [2, 6, 8, 11]. 

2.1.1. Quantum gates 

In classical gates, any function can be realized by 
NAND gates alone, which is thus known as a universal
gate. In quantum Boolean circuits, any multiple qubit 
logic can be composed from controlled-NOT (CNOT) 
type logic gates.  

In order to construct quantum Boolean circuits, any 
classical circuit can be replaced by an equivalent circuit 
of only reversible element, by making use of a reversible
gate known as the Toffoli gate [8, 12, 13]. 

The Toffoli gate, shown in Fig. 1(a), has three 
qubits. The third qubit is the target qubit which is 
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flipped when both control qubits (i.e. the first two qubits) 
are set to 1. 

The action of the Toffoli gate can be summarized as 
|a, b, c  |a, b, c ab . Furthermore, applying the 
Toffoli gate twice has the effect |a, b, c  |a, b, c ab

 |a, b, c , and thus the Toffoli gate is reversible. 

(a)     (b)   

Figure 1: (a)Toffoli gate and (b)a quantum Boolean circuit 

2.1.2. Quantum Boolean circuits 

In quantum computing the behaviors of a quantum 
circuit are represented by a sequence of unitary
operations applied to the qubits of the quantum circuit. 
The results can be read out by measuring the quantum 
states of the qubits. That is quantum circuits consist of a 
sequence of unitary operations represented by quantum 
gates and quantum wires. 

Fig. 1(b) shows a QBC with N qubits, denoted by 
| 1 | 2 …| N . The sequence of unitary operations are 
applied from left to right to corresponding qubits | 1  to 
| N . | 1 | 2 …| N  on the left-head-side is regarded as 
the input to the quantum circuit, and the states on the 
right-head-side side keep the final result. A quantum 
Boolean circuit can use any finite number of auxiliary 
qubits for storing intermediate states [6]. 

There are three different kinds of logic gates in 
Toffoli gates: one-controlled gates (denoted by closed 
circles), zero-controlled gates (denoted by open circles) 
and target gates which are similar to sum (mod 2). When 
all controlled gates in the same wire (i.e. quantum 
operation) are active, the target gate flips [8]. 

2.2. Self-timed systems 

The operations of a quantum Boolean circuit are 
quite different from those of a classical synchronous 
circuit which are controlled by a global clock. In 
quantum Boolean circuits, a sequence of operations are 
applied to the qubits and are not controlled by a global 
clock. Furthermore, a quantum operation cannot be 
applied to a QBC unless the previous one is complete 
and the quantum system is stable. This behavior is 
similar to the fundamental mode of asynchronous 
circuits [9, 10, 16]. 

In the fundamental mode of asynchronous circuits, 
when the inputs of logic block are triggered, outputs are 
changed by the inputs and current states, and the next 
states of circuits are stored in the latches. The changes in 
inputs are forbidden until the system is stable. 

Because the operations of a quantum Boolean 
circuit are similar to asynchronous circuit behaviors in 
the fundamental mode [9, 16], we exploit the 
specifications of asynchronous circuit design to 
construct sequential quantum Boolean circuits. Note that 
asynchronous circuits can also operate in input-output 
mode. For more information on this topic please refer to 
[9, 10]. 

2.2.1. State graph 

State graphs (SGs) [3, 4] can be used to specify the 

behaviors of circuits. State graphs are directed binary 
coded graphs containing states (or nodes) and directed 
edges. An edge in SGs is labeled with input or output 
signal transitions. Each signal transition can be 
represented as xi  or xi  for the rising (0 1) or falling 
(1 0) transition of signal xi.

A node in SGs represents one state of the circuit. 
Each state s S is labeled with binary code s(1), 
s(2), …, s(n) , and the value of s(i) is 0 or 1. The state 
binary code is formed by an input binary code and an 
output binary code. Suppose the circuit has m-bits input 
and n-bits output. The input and output binary codes of 
node i are defined as follows: 

ib(i)  {0, 1}m is the input binary code function,
ob(i)  {0, 1}n is the output binary code function.
The state binary code of node i, sbc(i), can be 

defined as ib(i) + ob(i) where the symbol ‘+’ denotes the 
concatenation. And, the k-th state bit of node i is denoted 
as sbc(i, k).

For example, a modulo-3 element [7] has one input 
a and two outputs, Y (yes) and N (no). The specification 
of the module-3 in prefix-closure form is
Pref(a?N!a?N!a?Y!)*. That is output Y is triggered when 
input a is triggered three times. Valid partial behaviors 
are: a, a N, a N a, a N a N, a N a N a, a N a N a Y, …. A 
possible implementation of the modulo-3 element using 
XOR and toggle elements is shown in Fig. 2(a). 

(a)     (b)  

Figure 2: The (a) classical circuit and (b) SG of modulo-3 

The SG of the modulo-3, shown in Fig. 2(b), has 6 
states and 6 edges. The state binary code of node 1 is 
“000” since the ib(1) is ‘0’ (i.e. a=0) and ob(1) is “00” 
(i.e. Y=0, N=0).

2.2.2. Unique state coding 

An unambiguous state assignment is required for 
deriving logic. An SG has the Unique State Coding
(USC) [3, 18] property if no two distinct states in the 
state graph have identical binary codes. A state graph is 
USC-conflict if any two states in the state graph have 
the same state binary code. To be synthesizable, a state 
graph specification of a circuit must satisfy the USC 
requirement. 

3. Synthesis of sequential QBCs 

For synthesizing SQBCs state graphs are used to 
specify the behaviors of circuits and are transferred to 
SQBCs automatically. The complete synthesis flow of 
our synthesis methodology, shown in Fig. 3, consists of 
five main steps. 

First, SGs (i.e. classic circuit specifications) are 
transformed to USC reversible state graphs (USCRSGs) 
by using unique state encoding. Second, USCRSGs are 
transformed to self-timed transformation graphs (STTGs) 
which are quantum circuit specifications. Third, STTGs 
are transformed to decomposed STTGs (DSTTGs). Then, 
the DSTTGs can be optionally transformed into composable 
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and thus reusable STTGs. Fourth, DSTTGs are synthesized 
into SQBCs based on Toffoli gates. Finally, the SQBCs 
are optimized based on reduction rules [1]. 

 Figure 3: Synthesis flow of SQBCs 

3.1. Perform reversible checking and unique 
state encoding 

To be synthesizable, USC property is required for 
both classic and quantum circuits. Quantum circuits 
must consist of only reversible gates; therefore, to be 
synthesizable for QBCs, a SG must have reversible 
property. Here we define reversible SG without proof as 
follows: a SG is irreversible if for any node j in the SG 
either the indegree(j)=1 or indegree(j)>1 and for all 
source nodes of j, i1, i2,…, ik, ob(i1)=ob(i2)=…=ob(ik). 
The USGSG shown in Fig. 2(b) is reversible since the 
indegree of all nodes in USCRSG is equal to one. 

Figure 4 illustrates an irreversible SG which is the 
circuit specification of a call module [16]. This SG 
cannot be synthesized since node 10 has two source 
nodes, node 7 and node 8 and ob(node 7 ob(node 8). 

Figure 4: The irreversible SG of call module 

Since an unambiguous state assignment is needed 
to construct both classic circuits and SQBCs, unique 
state encoding algorithm is applied first to avoid USC 
conflict. To satisfy the USC requirement, different 
auxiliary state bits are appended to the original state 
binary code to distinguish states in SGs. Two states 
(nodes) are called USC-conflict states if and only if their 
state binary codes are the same. If there are s states in 
the SG and the number of USC-conflict states for each 
state binary code is di (0 i s), then the number of 
auxiliary state bits needed is k = log max(di) .

For example, the states 1, 3 and states 4, 6 in the 
RSG of modulo-3 of Fig. 5, have the same state binary 

codes. Thus one auxiliary state bit is appended to each 
node in the USCRSG. The auxiliary state bit appended to 
states 1 and 6 is ‘0’ and to states 3 and 4 is ‘1’. The 
USCRSG for modulo-3 is shown in Fig. 5(a). Note that 
there are some other ways to form a USC. [3, 18] 

   
Figure 5: (a) The USCRSG and (b) STTG of modulo-3 

3.2. Construct ST transformation graphs 

For a USC reversible state graph (USCRSG) 
specifying a sequential circuit with m-bit input, n-bit 
output and e edges (i.e. e next-state functions), the 
corresponding self-timed transformation graph (STTG) 
is a hyper-graph which consists of e transformation 
sub-graphs (TSG) and each TSG consists of two nodes 
connecting to each other by two direct edges. If the 
nodes in a TSG have the same state binary code, such a 
sub-graph degenerates into a self-loop sub-graph. A 
USCRSG is transformed into a STTG which is the 
specification for constructing QBC. 

Each edge in a STTG represents a transition from 
one state to another. For each edge e with source node i
and target node j in a USCRSG, a corresponding 
transformation sub-graph (TSG) is formed for the target 
node j. The TSG consists of two new nodes source and 
target connecting to each other by two directed edges 
(i.e. source target, target source). These two direct 
edges are called quantum links and are marked in dashed 
lines. 

The quantum states for the source node and target 
node in each TSG are reversible due to the quantum 
links while applying quantum operations. 
The state binary codes of the source and target nodes are 
labeled with ib(j) + ob(i) + ab(i) and ib(j) + ob(j) + ab(j), 
respectively. The function ab(i) is the binary code 
function of auxiliary state bits which is similar to ib(i)
and ob(i) in section 2.2.1.  

For example, the USCRSG of modulo-3, shown in 
Fig. 5(a), can be transferred to the STTG, shown in Fig. 
5(b). The STTG contains 6 TSGs. The dashed line 
connected two nodes in a TSG are the quantum links.

3.3. Perform state decomposition 

To construct SQBCs based on Toffoli gates, the 
state binary codes of adjacent nodes in the TSGs must 
differ in only one bit [1]. This property can be retained 
by performing state decomposition. 

If two nodes in a TSG have Hamming distances 
more than one, they have to be decomposed and some 
appropriate states are added between them so that any 
adjacent states differ only one bit. Furthermore, the 
added states must be never used in the STTG. 

Taking the STTG of modulo-3, shown in Fig. 5(b), 
as an example, the states of the 3rd and 6th TSGs have to 
be decomposed. The possible state decompositions for 
the states, (0010, 0001), of the 3rd TSG are (0010, 0000, 
0001) and (0010, 0011, 0001). The first transposition is 
illegal since the state 0000 is used in 1st TSG. In the 

Proceedings of the 2005 International Conference on Computer Design (ICCD’05) 
0-7695-2451-6/05 $20.00 © 2005 IEEE 



same way, the possible state decompositions for the 
states, (1111, 1100), of the 6th TSG are (1111, 1101, 1100) 
and (1111, 1110, 1100). The first transposition is illegal 
since the state 1101 is used in the 4th TSG. Therefore, the 
state decomposition of (0010, 0001) and (1111, 1100) 
becomes (0010, 0011, 0001) and (1111, 1110, 1100), 
respectively. The complete STTG of modulo-3 is shown 
in Fig. 6. 

Figure 6: The decomposed STTG of modulo-3 

3.4. Construct quantum Boolean circuits 

Once a STTG is decomposed, the corresponding 
quantum circuit based on Toffoli gates can be 
constructed. Quantum wires (i.e. quantum operations) 
based on Toffoli gates can be generated by each state 
transposition of TSGs.  

Taking the first TSG (labeled as 2) of the STTG, 
shown in Fig. 6, as an example, the states in the TSG are 
1000 and 1010. S=1000 1010=1000 so the 1st qubit uses 
the one-controlled-gate. Similarly, since 
R= (1000 1010) =0101, the 2nd and 4th qubits use the 
zero-controlled-gate. Finally, I=1000 1010=0010 so 
the 3rd qubit uses the target gate. Therefore a quantum 
operation can be formed by the above Toffoli gates in 
the QBC. 

The SQBC of modulo-3 is constructed and shown 
in Fig.7, where the qubit a is the input, the qubits Y and 
N are the outputs and the qubit s0 is the auxiliary qubit 
for assisting in the work of circuits. 

0   1   2   3    4   5   6   7   8   9 

Figure 7: The SQBC of modulo-3 

3.5. Optimize quantum Boolean circuits 

The optimization of QBCs is to simplify and merge 
the Toffoli gates and wires in QBCs and thus reduce the 
complexity of circuits. Two reduction rules [1] are used 
to optimize QBCs: 
(1) For any two quantum operations in a QBC, if they 

are identical then they can be removed from the 
QBC.

(2) For any two quantum operations in a QBC, if they 
are identical except one qubit in which one of the 
logic gates is one-controlled gate and the other is 
zero-controlled gate then the different logic gates 
can be removed and these two operations can be 
merged into one. 
For example, the SQBC of the modulo-3, shown in 

Fig. 7, has 10 quantum operations (labeling from left to 
right with 0 to 9). Applying the above reduction rules, 
the 0th and 7th and the 2nd and 5th quantum operations can 

be merged. Thus the number of quantum operations and 
gates are optimized from 10 to 8 and 40 to 30, 
respectively. The optimized SQBC of the modulo-3 is 
shown in Fig. 8. 

Figure 8: The optimized SQBC of modulo-3 

4. Synthesis of Composable QBCs 

In the classical domain, the large circuit can be 
constructed by several reusable IP components. Hence, 
if the synthesized SQBCs are reusable and composable 
like IPs, they can be exploited to construct a large and 
more complicated QBC rapidly. 

Unfortunately, the SQBCs cannot be exploited 
immediately to construct QBCs as the circuit 
specifications will be violated by the reversible 
characteristic if SQBCs are composed together. 

The composable problems and a new methodology 
for synthesizing composable QBCs (CQBCs) are 
proposed and described in the following sections. 

4.1. Composibility problems of CQBCs 

For classical circuits, an input change may cause 
some output and state changes. When a circuit is stable, 
the same input pattern reapplying again to the circuit can 
change neither output nor state signals. 

This is not true in quantum circuits. Applying the 
same input pattern twice in quantum circuits may result 
in the different or wrong state as quantum operations are 
reversible and the states are always changed according 
to the matched patterns. This makes QBCs not reusable 
and large quantum Boolean circuits cannot be composed 
by basic QBCs like classical circuits. 

Figure 9: The (a) SG and (b) STTG of toggle 

For example, a toggle [7, 10] has one input t and 
two outputs a and b. The circuit specification of a toggle 
is Pref(t?a!t?b!). The first transition on t triggers the 
output signal a and the second transition on t triggers the 
output signal b. Thus a toggle element can trigger two 
transition signals alternatively. 

The state graph of the toggle is shown in Fig. 9(a). 
Initially the toggle is in the target node of state 1 with 
the state code “000.” If t is turned on then it goes to the 
target node of state 2 with the state code “110.” Now if 
t=1 is applied again then it goes to the source node of 
state 2 with state code “100.” The state sequence is 100, 
110, 100, 110, … by applying the same input pattern 
more than once. 

To make QBCs composable and reusable, only one 
extra auxiliary qubit added to QBCs is sufficient. The 
idea is to reset the auxiliary qubit before applying 
operations so that the quantum system will not go to the 
un-expected state. 
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In the Fig. 10(a), the state is changed between the 
source node (state code “100”) and target node (state 
code “110”) which is the expected state in this circuit 
specification. The expected state has to be hold while 
applying operations more than once. 

Figure 10: TSG (a) without and (b) with an auxiliary qubit 

To solve the above problem, an extra auxiliary 
qubit has to be exploited. If an extra auxiliary qubit is 
added, an auxiliary state copied from the state of the 
target node (the auxiliary qubit is set to one) can be 
added into the TSG to keep the state staying in the 
expected one. In order to do so, the extra auxiliary qubit 
has to be reset before applying any operation. 

The TSG with an extra auxiliary qubit is shown in 
Fig. 10(b). The dash line is the state transition without 
resetting the auxiliary qubit; the states are always 
changed between 1000 and 1101. The solid line is the 
modified state transition with resetting the auxiliary 
qubit; the state will be changed from 1000 to 1100 and 
then always from 1100 to 1101. As the pattern “1101” 
will be changed to 1100 by resetting the auxiliary qubit 
before applying this operation, the state transition 
“1101 1000” will become to “1100 1101". The new 
state sequence is: 1000, 1100, 1101, 1101, … and that 
follows the circuit behavior. 

Therefore, the composable problem can be solved 
by adding only one extra auxiliary qubit. 

4.2. Construction of CQBCs 

To synthesize CQBCs, the composable STTGs are 
transferred from decomposed STTGs. An auxiliary qubit 
with initial value 0’s is appended to each state binary 
code of all nodes in STTGs. An auxiliary node with 
sbc(the corresponding target node) is added for each 
TSG in a STTG and then set the auxiliary bit of the 
auxiliary node to 1. The new STTGs are called 
composable STTGs. 

The composable STTGs contains two operation 
blocks: a core operation block representing the same 
circuit behavior of non-composable QBCs and a 
composable operation block preventing going to a 
wrong state if repeated operations are applied. The core 
operation block is made by the quantum operations 
constructed with the source and target nodes and the 
composable operation block is made by the quantum 
operations with the target and auxiliary nodes. 

Figure 11: The composable STTG of toggle 

The STTG of a toggle is transferred by the 
composable synthesis methodology proposed in the 
section 4.1 and the resulting composable STTG is shown 
in Fig. 11. The CSTTG consists of a core operation 
block STTG (STTG0) which is composed by the source 
and target nodes and a composable operation block 

STTG (STTG1) which is composed by the target and 
auxiliary nodes. A composable QBC is generated by 
cascading STTG1 with STTG0. The resulting CQBC of 
the toggle through optimizations is shown in Fig. 12 and 
the composable operation block and core operation 
block are from the 0th to 3rd and 4th to 5th quantum 
operations, respectively. 

Figure 12: The CQBC of toggle 

The composable operation block is used to prevent 
going to the wrong state when an input is applied to a 
QBC more than once. For the CQBC in Fig. 12, initially 
all input, output and auxiliary qubits are set to zero. 
Suppose the input t is turned on, the system will go to 
the state with state binary code “1101.” If “1101” is 
applied again, the system will go to the state with state 
binary code “1000.” Now if the input t is turned off, the 
system ends up with the state with state binary code 
“0001” which is a wrong state. Since the auxiliary qubit 
is to prevent the system going to the wrong state, the 
correct operation is to reset the auxiliary qubits when 
applying any input pattern to the system. Thus the 
correct input for the system is “1100” (by resetting the 
fourth qubit) and the system stays in the state with state 
binary code “1101.” 

4.3. Composition of composable QBCs 

Once CQBCs are synthesized by the above 
methodology they can be exploited to construct a larger 
quantum Boolean circuit rapidly like classic circuits. 

For example, the circuit implementation of classic 
mod-4 counter can be directly composed by two toggle 
elements, shown in Fig. 13(a). The quantum version of 
mod-4 counter can be constructed similarly, shown in 
Fig. 13(b).  

Figure 13: The (a) classical and (b) quantum circuit 
implementation of mod-4 counter 

Figure 14: The QBC of mod-4 counter 

Figure 14 shows the QBC of mod-4 counter. If the 
output (i.e. b0) of the first toggle element connects to the 
input (i.e. t1) of the second toggle element, they share 
the same qubit (i.e. b0/t1) in the QBC. The QBC of the 
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mod-4 counter has 7 qubits, 12 quantum operations and 
44 logic gates. Furthermore, mod-4 counter is 
composable since the toggle element is composable. 

5. Experimental results 

A set of self-timed components [14] is used to test 
QCAD and the circuit specifications of these self-timed 
components are shown in Table 1. These components 
can be used as building blocks to compose control-path 
components of self-timed systems. 

The synthesis results are shown in Table 1. 
Columns 2 and 3 (i.e. #N and #E) are the numbers of 
nodes (states) and edges (transitions) of SGs, 
respectively. Column 4 shows the number of total qubits 
required for the QBC containing input, output and 
auxiliary state qubits. Column 5 and 6 show the number 
of quantum operations and logic gates for the 
synthesized QBC and the optimized QBC, respectively. 
The modulo-3 example is also shown in the row 6 of 
Table 1. 

The results of Table 1 show that the optimization 
algorithm can significantly reduce the numbers of 
quantum operations and logic gates for the self-timed 
components. And Table 2 shows the results of 
composable QBC synthesis. 

Table 1: The result of SQBC synthesis 

Qubits 
Quantum

Operations 
Logic 
gatesCircuit #N #E 

I O aux org. opt. org. opt.
Fork 2 2 1 1 0 2 1 4 1 
Merge 4 8 2 1 0 4 1 12 1 
Join 6 12 2 1 1 2 2 8 8 
Toggle 4 4 1 2 0 4 2 12 4 
Modulo-3 6 6 1 2 1 10 8 40 30
If-Else 16 20 5 4 0 16 16 144 144
Call 12 16 Non-synthesizable 
2P-4P 6 6 2 2 1 10 10 50 50
4P-2P 6 6 2 2 1 10 10 50 50

Table 2: The result of CQBC synthesis 

Qubits 
Quantum

Operations 
Logic 
gatesCircuit 

I O aux org. opt. org. opt.
Fork 1 1 1 4 3 12 8 
Merge 2 1 1 8 5 32 18
Join 2 1 2 4 4 20 20
Toggle 1 2 1 8 6 32 22
Modulo-3 1 2 2 14 10 70 46
Modulo-4 1 2 2 12 12 44 44
If-Else 5 4 1 32 32 320 320
Call Non-synthesizable 
2P-4P Convertor 2 2 2 32 192 32 192
4P-2P Convertor 2 2 2 32 192 32 192

Since CQBCs have an additional composable 
operation block, the number of quantum operations of 
CQBCs is much larger than the non reusable QBCs. This 
is because the optimization algorithm can not reduce any 
operations or logic gates in the composable operation 
block. 

6. Conclusions and future works 

This paper presents a novel methodology to transfer 
self-timed circuit specifications into sequential quantum 
Boolean circuits (SQBCs) and Composable SQBCs 
(CQBCs). State graphs (SGs) used for self-timed system 
design are exploited to describe the behaviors of circuits 
and then are automatically translated into SQBCs based 
on Toffoli gates. 

The concept of IP reuse is also applied to the 
constructed SQBCs to produce reusable and composable 
quantum Boolean circuits (CQBCs). These reusable 

CQBCs as building blocks can be exploited to construct 
more complicated quantum Boolean circuits. 

To the best of our knowledge there are no related 
works on synthesizing sequential circuit behaviors into 
quantum Boolean circuits. 

A set of self-timed components is successfully 
synthesized into CQBCs by our methodology. These 
CQBCs can be used as building blocks to compose 
control-path components of self-timed systems. 

Our future work will focus on synthesizing 
data-path components and translating Quantum 
algorithms into QBCs. 
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