
2004 4th IEEE Conference on Nanotechnology

An Efficient Functional Verification Method for Quantum Boolean
Circuits

Shiou-An Wang, Chin-Yung Lu, and Sy-Yen Kuo

Department of Electrical Engineering and Graduate Institute of Electronic Engineering
National Taiwan University, Taipei, sykuo@cc.ee.ntu.edu.tw, Taiwan

Abstract - Functional verification is an important design
method for verifying functional equivalence between a
simplified quantum Boolean circuit and original one. During
the design process, checking the equivalence of two quantum
Boolean circuits is necessary. In this paper, we present an
algorithm that can eficiently and easily verify two quantum
Boolean circuits by using the hack propagation method. For
a set of input vectors, the idea of the algorithm is to find the
checking vectors that output vectors are different from input
vectors by a backward tracking process.

Index Terms - Back propagation, functional verification,
quantum Boolean circuit.

1. INTRODUCTION

As the development of a VLSI design grows, the gate
size becomes the bottleneck in the design process.
Quantum computing gives another solution to conquer
this kind of limitation. There are several quantum
algorithms, such as Shor’s quantum factoring [l] and
Grover’s fast database search algorithm [2], have been
introduced. They are much faster than their best classical
counterparts.

To implement a quantum computer, we need to
construct quantum Boolean circuits with quantum gates
[3]. In general, the classical Boolean circuits are
assembled by NOT, OR, and AND gates. However, the
quantum Boolean circuits are based on NOT, CN, and
CCN gates. The only difference of the functionality
between the two kinds of circuits is that the CN gate is
substituted for the OR gate.

Because the number of quantum bits which can be used
to implement a quantum computer is still small. Therefore,
constructing a quantum circuit is always limited by the
number of quantum bits. This leads to the equivalence
checking [4] of the two given design. A simplified
quantum Boolean circuit is functionally equivalent to its
original version.

11. FUNCTIONAL VERLFICATION

For most quantum Boolean circuits, functional
verification involves proving that the circuit is

functionally equivalent to other circuits. To prove that two
given designs have the same functionality is called
equivalence checking. This means that an optimized
design is functionally equivalent to its earlier design.

AAer observing the truth table of a circuit, we find part
of input vectors keep unchanged, and these vectors can he
discarded to reduce the complexity of the verification
algorithm. For truth tables under verification, we only
consider those that input vectors are different f?om
corresponding output vectors. These vectors are called
changed vectors, and checking vecfors are made up of all
changed vectors. Those that input vectors are equal to
corresponding output vectors are called unchanged
vecfors, and the unchanged vectors don’t verify.

Definition I: Let S be a universal gate set which
consists of three kinds of the basic quantum gates, NOT,
CN, and CCN gates, and the corresponding functions of
these gates are NOT, XOR, and AND functions,
respectively.

For the CCN gate of the universal gate set, it can have
more than one control qubits and only one target qubit.

Defivifion 2: Let Q with n qubits be a quantum Boolean
circuit which consists of m gates. ,$represents the i-th
qubit of the j-th quantum gate.

In Fig. 4, the gate { 1) has two control qubits, 1; and x: ,
and a target quhit, xi .

111. BACK PROPAGATION RULES

The concept of the back propagation method is to
determine a set of checking vectors by a backward
tracking process starting 60m the primary output and
tracking toward the primary input.

Definition 3: Let the i-th qubit of a quantum Boolean
circuit with n qubits be checked. x, and y, represent the
input and output value of the i-th qubit, respectively. We

vector of the i-th qubit if the output value of x, is changed
into i, in the case ofq=y, ,... ,x.lT,., ,... qn.=y,.

In this section, several back propagation rules are
defined for the functional verification. These rules are
shown as follows:

-
call (x,,x2,..-r ,,... x , ,) = (Y , , Y ~ ,... Y , J ~ , Y , + ~ ,... Y,) a checking

0-7803-8536-5/04/$20.00 02004 IEEE 61 I

Rule I: There is no any target bit of the gates in a qubit
from the primary output to the primary input. The qubit
doesn't need to verify because the value of this qubit
keeps unchanged.

According to Rule 1, the qubit x, in Fig. 3 can he
skipped in the operation of the verification algorithm.

Rule 2: There are two CN gates, g and h, with the same
target hit x, and control bit x, as shown in Fig. 2(a). These
two CN gates can be skipped in the backward tracking.

{s) {h) {S) {W

X" -
xi 6-1- :
Xi w :

(a) (b)

Fig. 1.
example for back propagation rule 3.

(a) An example for back propagation rule 2 (b) An

Primary input "1 {h) Primaryoutput

Fig. 2. An example for back propagation rule 4

Rule 3: The qubit xi is selected to generate the checking
vectors as shown in Fig. 2(b). The control hit of the gate h
lies on the qubit xj and there is only one target bit of other
gate on the qubit xj between the gate h and the primary
@put. The output value of the qubit xi can he changed into
xi according to the following equation:

(x;)=l

>(X,pex:)=l

>(x j ex,) = 1 (1)

Backword. ,rocking

& c h d . r r . z M n a

From (I), we can get an equation, xjf3xk=I. If x,=l, xk
=O or xJ=O, xk=l , the value of xi is changed intoxi. So the
checking vectors of the qubit xi can be defmed as - -

(X k , X j , X J = (0,1,x~),(1,0,x>) (2)
Rule 4: The quhit xi is selected to produce the checking

vectors as shown in Fig. 3. The control bit of the gate h
lies on the qubit xi and tbere are more than one target bit
of other gates on the qubit xj between the gate h and the
primary input, The output value of the qubit xi can he
changed into xi according to the following equation:

(x;) = 1

t((xp 8 xp) e4 x:) = 1

>(xqex,")=I (3) Korhard~.7mkng

(4)
K m h o d - rrockhp,

a x , @x,)@x,)=1 (5) Backword.rrmhg

Note that the expressions of the gates p and g are
combined hy using XOR function in (3) and (4). From (5),
we can get a equation, x,@x@xk=l. The checking vectors
of the qubit x, can be defined as

(x,.x,,x,,x,) = ~0,0,1,~~~,~0,1,0,~~~,~1,0,0,~~~,~1,1,1,~~~ (6)

IV. ALGORITHM

A . Back Propagation

(1) (2) {3) (4) (5)

XI XI

X2 X2

X, X3

X4 F,

Fig. 3. An example of back propagation

In Fig. 3, we find the only qubit xg need to verify and
other qubits keep unchanged. The first gate which can
affect the value of x4 is the gate (4). If ,+ 1 and x," = I ,
the value of x4 can be changed into x4 . Then we
backwardly track the quantum circuit from the control
qubits of the gate 14) toward the primary input. Steps of
the hack propagation is as follows:

(x:).(x:)=l

>(x:).(x: ex;) = 1

>(x; ex:, .(x: ex;) = 1
,(XI e X,).(X] 8 x,) = 1

Bochardrdfrurhng

. . Bvclvurd-rmcking

(7)
From (7), we can get two equations, x I @ x 2 = ~ and
ax, = 1, Note that these two equations are combined by

using AND function. If (x 1 4 ~ ~ ~) 5 1 , 0 , 0) or (O,l,l), then
the qubit x4 can be changed into x4. We can get the first
checking vectors:

Kuclwrd.mckmg

-

(8) (1 1 , x2,x,,x4) = (1,O,O,x4) - 1 (XI ,I,, x3, x4) = (oJJ,x4
After tracking the gate (4}, we find the gate {1} can

also affect the value of x4. If x: = 1 , the value of x4 can be
changed into x4. The backward tracking is as shown
below:

(9)
From (9), we can get the equation, xl=l. If

(~ ~ q ~ & ~) = (l & &) , where x means xi=O or 1, then the qubit
x4 can he changed into x4 , We can get the second
checking vector:

(x;) = 1 backward emking
+(XJ = 1

-
(XI ,x2.x3 ,x4) = (1,x,x,x4) (10)

612

Then two checking vectors, (8) and (IO), can be
combined by XOR function. If any input vectors exist
simultaneously. in both checking vectors, these input
vectors can he deleted because of XOR function. The
checking vector (x , , ~ ~ , x ~ , x ~) = (~ , O , O , ; ~) exists in (8) and
(IO), so it is deleted. Then (x , ,x , ,x3,x,)=(0,1,1,q)
and(I,l,l,x4) can be combined into(x,,x,,x3,x4) = (x,l,l,x4)
The final checking vectors are shown as follows:

(x,, xz.x, ,x, = (x,l,l,x4)
(11)

-
-

(x , ,xi .x, ,x4) = (l20,1.xd) - i (x,,x,,x,,x,) = (LLO&)

iEEEi X4 6

U) (2) (3) (4)

Fig. 4. An example of back propagation

Then we check another circuit to generate its checking
vectors. In Fig. 4, we find the only qubit xdneed to verify
and other qubits keep unchanged. The gate (3) can affect
the value of x4. Steps of the hack propagation are as
follows:

+ (x z e + x ,) . (x ,) = l (12)

(13)

Bochumd. rmching (x:).(x:) = 1
From (12), the first checking vectors are shown below: -

(x, .x*.x, 4) = (”) - i (x,,xz.x,,.x1)=(1,~,O,x4)
The gate { 1) can also modify the value of X4, the back

>(x2). (x3) = 1 (14)
From (14), the second checking vector is shown below:

propagation is shown as follows:
backword frocking (x;). (x;) = 1

-
(XI .xz ,xg,X4) = (x,l,l,x4) (15)

Then both checking vectors, (13) and (15), are
combined by using XOR function. The final checking
vectors are shown in (1 I). Two set of the cbeckmg vectors
are equal, so two quantum Boolean circuits (Fig. 3 and
Fig. 4) have the same functionality.

E. Algorithm

Suppose that two quantum Boolean circuits with n
qubits have m , and m2 quantum gates, respectively. The
algorithm is described as follows:

Step I . Select an unmarked quantum Boolean circuit

Step 2. Scan all of the gates and record the position of
and then mark this circuit.

the target bit of every gate.

Step 3. Select an unmarked qubit which has target bits
of quantum gates on it and then mark this qubit.

Step 4. Apply the back propagation for this qubit, then a
set of checking vectors can be obtained.

Step 5 . If there exist any unmarked qubits, go to Step 3 .
Step 6. Combine all of checking vectors fiom Step 4 to

get a fmal set of checking vectors of the circuit.
Step 7. If there exists an unmarked quantum Boolean

circuit, then go to Step 1.
Step 8. Compare the two final sets of checking vectors

from Step 6. If their checking vectors are equal,
then two circuits are functionally equivalent.

C. Complexity

From the previous subsection, we propose an algorithm
that can emciently verify the equivalence of two quantum
Boolean circuits. Assume that two circuits with n qubits
have ml and m2 quantum gates, respectively. Using our
algorithm to verify the functional equivalence of two
circuits, we need to scan the circuit to fmd the position of
the target bit for every gate. If m is equal to (ml+m2)/2, the
complexity of the algorithm is O(nm) . Therefore, our
algorithm can apply the back propagation method to prove
the functional equivalence in the polynomial time.

V. CONCLUSION

In this paper, we focus on a general approach using the
hack propagation method to find all changed vectors for a
quantum Boolean circuit. If two quantum Boolean circuits
have the same changed vectors, then these two circuits are
functionally equivalent to each other. If two circuits with
n qubits have m l and m2 quantum gates, the complexity of
the algorithm is O(nm) .

REFERENCES

[I] P. Shor, “Algorithms for quantum computation: discrete
logarithms and factoring” Proc. of the 35th Annual IEEE
Symposium on the Foundations of Computer Science, pp.
124-134, 1994.

[2] L. Grover, “A fast quantum mechanical algorithm for
database search” Proc. of the 28lh Annual ACMsymposium
on the Theo?yofComputing, pp. 212-219, 1996.

[3] I-Ming Tsai and Sy-Yen Kuo, “Quantum Boolean Circuit
Construction and Layout under Locality Constraint” Proc.
of the 1st IEEE Conference on Nanotechnology, pp. 11 1-
116,2001.

[4] Shi-Yu Huang and Kwang-Ting(Tim) Cheng, Formal
equivalence checking and design debugging, Boston:
Kluwer Academic Publishen, 1998.

613

