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Abstract - Functional verification is an important design 
method for verifying functional equivalence between a 
simplified quantum Boolean circuit and original one. During 
the design process, checking the equivalence of two quantum 
Boolean circuits is necessary. In this paper, we present an 
algorithm that can eficiently and easily verify two quantum 
Boolean circuits by using the hack propagation method. For 
a set of input vectors, the idea of the algorithm is to find the 
checking vectors that output vectors are different from input 
vectors by a backward tracking process. 

Index Terms - Back propagation, functional verification, 
quantum Boolean circuit. 

1. INTRODUCTION 

As the development of a VLSI design grows, the gate 
size becomes the bottleneck in the design process. 
Quantum computing gives another solution to conquer 
this kind of limitation. There are several quantum 
algorithms, such as Shor’s quantum factoring [l]  and 
Grover’s fast database search algorithm [2], have been 
introduced. They are much faster than their best classical 
counterparts. 

To implement a quantum computer, we need to 
construct quantum Boolean circuits with quantum gates 
[3]. In general, the classical Boolean circuits are 
assembled by NOT, OR, and AND gates. However, the 
quantum Boolean circuits are based on NOT, CN, and 
CCN gates. The only difference of the functionality 
between the two kinds of circuits is that the CN gate is 
substituted for the OR gate. 

Because the number of quantum bits which can be used 
to implement a quantum computer is still small. Therefore, 
constructing a quantum circuit is always limited by the 
number of quantum bits. This leads to the equivalence 
checking [4] of the two given design. A simplified 
quantum Boolean circuit is functionally equivalent to its 
original version. 

11. FUNCTIONAL VERLFICATION 

For most quantum Boolean circuits, functional 
verification involves proving that the circuit is 

functionally equivalent to other circuits. To prove that two 
given designs have the same functionality is called 
equivalence checking. This means that an optimized 
design is functionally equivalent to its earlier design. 

AAer observing the truth table of a circuit, we find part 
of input vectors keep unchanged, and these vectors can he 
discarded to reduce the complexity of the verification 
algorithm. For truth tables under verification, we only 
consider those that input vectors are different f?om 
corresponding output vectors. These vectors are called 
changed vectors, and checking vecfors are made up of all 
changed vectors. Those that input vectors are equal to 
corresponding output vectors are called unchanged 
vecfors, and the unchanged vectors don’t verify. 

Definition I: Let S be a universal gate set which 
consists of three kinds of the basic quantum gates, NOT, 
CN, and CCN gates, and the corresponding functions of 
these gates are NOT, XOR, and AND functions, 
respectively. 

For the CCN gate of the universal gate set, it can have 
more than one control qubits and only one target qubit. 

Defivifion 2: Let Q with n qubits be a quantum Boolean 
circuit which consists of m gates. ,$represents the i-th 
qubit of the j-th quantum gate. 

In Fig. 4, the gate { 1) has two control qubits, 1; and x: ,  
and a target quhit, xi .  

111. BACK PROPAGATION RULES 

The concept of the back propagation method is to 
determine a set of checking vectors by a backward 
tracking process starting 60m the primary output and 
tracking toward the primary input. 

Definition 3: Let the i-th qubit of a quantum Boolean 
circuit with n qubits be checked. x, and y, represent the 
input and output value of the i-th qubit, respectively. We 

vector of the i-th qubit if the output value of x,  is changed 
into i, in the case ofq=y, ,... ,x.lT,., ,... qn.=y,. 

In this section, several back propagation rules are 
defined for the functional verification. These rules are 
shown as follows: 

- 
call (x,,x2,..-r ,,... x , , ) = ( Y , , Y ~  ,... Y , J ~ , Y , + ~  ,... Y,) a checking 
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Rule I: There is no any target bit of the gates in a qubit 
from the primary output to the primary input. The qubit 
doesn't need to verify because the value of this qubit 
keeps unchanged. 

According to Rule 1, the qubit x, in Fig. 3 can he 
skipped in the operation of the verification algorithm. 

Rule 2: There are two CN gates, g and h, with the same 
target hit x, and control bit x, as shown in Fig. 2(a). These 
two CN gates can be skipped in the backward tracking. 

{s) {h) {S) {W 

X" - 
xi 6-1- : 
Xi w :  

(a) (b) 

Fig. 1. 
example for back propagation rule 3. 

(a) An example for back propagation rule 2 (b) An 

Primary input "1 {h) Primaryoutput 

Fig. 2. An example for back propagation rule 4 

Rule 3: The qubit xi is selected to generate the checking 
vectors as shown in Fig. 2(b). The control hit of the gate h 
lies on the qubit xj and there is only one target bit of other 
gate on the qubit xj between the gate h and the primary 
@put. The output value of the qubit xi can he changed into 
xi according to the following equation: 

(x;)=l 

>(X,pex:)=l 

>(x j  ex,) = 1 (1) 

Backword. ,rocking 

& c h d . r r . z M n a  

From (I),  we can get an equation, xjf3xk=I. If x,=l, xk 
=O or xJ=O, xk=l ,  the value of xi is changed intoxi. So the 
checking vectors of the qubit xi can be defmed as - - 

( X k , X j , X J  = (0,1,x~),(1,0,x>) (2) 
Rule 4: The quhit xi is selected to produce the checking 

vectors as shown in Fig. 3. The control bit of the gate h 
lies on the qubit xi and tbere are more than one target bit 
of other gates on the qubit xj between the gate h and the 
primary input, The output value of the qubit xi can he 
changed into xi according to the following equation: 

(x;)  = 1 

t((xp 8 xp) e4 x:) = 1 

>(xqex,")=I (3) Korhard~.7mkng 

(4) 
K m h o d -  rrockhp, 

a x ,  @x,)@x,)=1 (5)  Backword.rrmhg 

Note that the expressions of the gates p and g are 
combined hy using XOR function in (3) and (4). From (5), 
we can get a equation, x,@x@xk=l. The checking vectors 
of the qubit x, can be defined as 

(x,.x,,x,,x,) = ~0,0,1,~~~,~0,1,0,~~~,~1,0,0,~~~,~1,1,1,~~~ ( 6 )  

IV. ALGORITHM 

A .  Back Propagation 

(1) (2) {3) (4) (5 )  

XI XI 

X2 X2 

X, X3 

X4 F, 

Fig. 3. An example of back propagation 

In Fig. 3, we find the only qubit xg need to verify and 
other qubits keep unchanged. The first gate which can 
affect the value of x4 is the gate (4). If ,+ 1 and x," = I ,  
the value of x4 can be changed into x4 . Then we 
backwardly track the quantum circuit from the control 
qubits of the gate 14) toward the primary input. Steps of 
the hack propagation is as follows: 

(x:).(x:)=l 

>(x:).(x: ex;) = 1 

>(x; ex:, .(x: ex;) = 1 
,(XI e X,).(X] 8 x,) = 1 

Bochardrdfrurhng 

. .  Bvclvurd-rmcking 

(7) 
From (7), we can get two equations, x I @ x 2 = ~  and 
ax, = 1,  Note that these two equations are combined by 

using AND function. If ( x 1 4 ~ ~ ~ ) 5 1 , 0 , 0 )  or (O,l,l), then 
the qubit x4 can be changed into x4. We can get the first 
checking vectors: 

Kuclwrd.mckmg 

- 

(8) ( 1 1 ,  x2,x,,x4) = (1,O,O,x4) - 1 (XI ,I,, x3, x4) = (oJJ,x4 
After tracking the gate (4}, we find the gate {1} can 

also affect the value of x4. If x: = 1 , the value of x4 can be 
changed into x4. The backward tracking is as shown 
below: 

(9) 
From (9), we can get the equation, xl=l. If 

( ~ ~ q ~ & ~ ) = ( l & & ) ,  where x means xi=O or 1, then the qubit 
x4 can he changed into x4 , We can get the second 
checking vector: 

(x;) = 1 backward emking 
+(XJ = 1 

- 
(XI ,x2.x3 ,x4) = (1,x,x,x4) (10) 
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Then two checking vectors, (8) and (IO), can be 
combined by XOR function. If any input vectors exist 
simultaneously. in both checking vectors, these input 
vectors can he deleted because of XOR function. The 
checking vector ( x , , ~ ~ , x ~ , x ~ ) = ( ~ , O , O , ; ~ )  exists in (8) and 
(IO),  so it is deleted. Then (x , ,x , ,x3,x,)=(0,1,1,q)  
and(I,l,l,x4) can be combined into(x,,x,,x3,x4) = (x,l,l,x4) 
The final checking vectors are shown as follows: 

(x,, xz.x, ,x, = (x,l,l,x4) 
(11) 

- 
- 

(x ,  ,xi .x, ,x4) = (l20,1.xd) - i (x,,x,,x,,x,) = (LLO&) 

iEEEi X4 6 

U) (2) (3) (4) 

Fig. 4. An example of back propagation 

Then we check another circuit to generate its checking 
vectors. In Fig. 4, we find the only qubit xdneed to verify 
and other qubits keep unchanged. The gate ( 3 )  can affect 
the value of x4. Steps of the hack propagation are as 
follows: 

+ ( x z e + x , ) . ( x , ) = l  (12) 

(13) 

Bochumd. rmching (x:).(x:) = 1 
From (12), the first checking vectors are shown below: - 

(x, .x*.x, 4) = (”) - i (x,,xz.x,,.x1)=(1,~,O,x4) 
The gate { 1) can also modify the value of X4, the back 

>(x2). (x3) = 1 (14) 
From (14), the second checking vector is shown below: 

propagation is shown as follows: 
backword frocking (x;). (x;) = 1 

- 
(XI .xz ,xg,X4) = (x,l,l,x4) (15) 

Then both checking vectors, (13) and (15), are 
combined by using XOR function. The final checking 
vectors are shown in (1 I). Two set of the cbeckmg vectors 
are equal, so two quantum Boolean circuits (Fig. 3 and 
Fig. 4) have the same functionality. 

E. Algorithm 

Suppose that two quantum Boolean circuits with n 
qubits have m ,  and m2 quantum gates, respectively. The 
algorithm is described as follows: 

Step I .  Select an unmarked quantum Boolean circuit 

Step 2. Scan all of the gates and record the position of 
and then mark this circuit. 

the target bit of every gate. 

Step 3.  Select an unmarked qubit which has target bits 
of quantum gates on it and then mark this qubit. 

Step 4.  Apply the back propagation for this qubit, then a 
set of checking vectors can be obtained. 

Step 5 .  If there exist any unmarked qubits, go to Step 3 .  
Step 6. Combine all of checking vectors fiom Step 4 to 

get a fmal set of checking vectors of the circuit. 
Step 7. If there exists an unmarked quantum Boolean 

circuit, then go to Step 1. 
Step 8. Compare the two final sets of checking vectors 

from Step 6. If their checking vectors are equal, 
then two circuits are functionally equivalent. 

C. Complexity 

From the previous subsection, we propose an algorithm 
that can emciently verify the equivalence of two quantum 
Boolean circuits. Assume that two circuits with n qubits 
have ml and m2 quantum gates, respectively. Using our 
algorithm to verify the functional equivalence of two 
circuits, we need to scan the circuit to fmd the position of 
the target bit for every gate. If m is equal to (ml+m2)/2,  the 
complexity of the algorithm is O(nm) .  Therefore, our 
algorithm can apply the back propagation method to prove 
the functional equivalence in the polynomial time. 

V. CONCLUSION 

In this paper, we focus on a general approach using the 
hack propagation method to find all changed vectors for a 
quantum Boolean circuit. If two quantum Boolean circuits 
have the same changed vectors, then these two circuits are 
functionally equivalent to each other. If two circuits with 
n qubits have m l  and m2 quantum gates, the complexity of 
the algorithm is O(nm) .  
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