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Abstrnd-Karnaugh map is an efficient method of minimization 
for conventional logic design. Unfortunately, it is usually used for 
3 or  4 variables, at most 6 variables. In this paper, we modify the 
Karnaugh map and propose a set of  reduction rules for quantum 
Boolean circuit optimization. By applying these rules, we can 
efficiently simplify a quantum Boolean circuit that has an 
arbitrary number of input variables. In terms of  the space 
consumption, we use only one auxiliary qubit as the output qubit, 
and keep all the input qubits unchanged. 

Keyworrls-quantum Boolean circuits; Karnaugh mnp: logic 
minimimion 

I. INTRODUCTION 
Quantum computing is one of the most rapidly expanding 

research fields recently. Over the last few years, several 
quantum algorithms, such as Shor's quantum factoring [SI and 
Grover's fast database search algorithm [7] have emerged. 
They are much faster than their best classical counterparts. To 
implement a quantum computer, we need to construct quantum 
Boolean circuits which consist of quantum gates. Unlike 
conventional AND-OR-NOT-based circuits, quantum Boolean 
circuits are based on NOT, CN, and CCN gates. Although with 
different building blocks, they can still be synthesized by the 
classical AND, XOR, and NOT functions. 

Up to date, the number of quantum bits that can be used to 
implement a quantum computer is still small. It is not feasible 
now to build a large circuit for the general application. 
Therefore, constructing a quantum circuit is always limited by 
the number of quantum bits, and so quantum logic circuits need 
to be reduced into a simpler format. Several simplification 
methods have been proposed [2-61. However, some methods 
are complex and others can not be applicable to large circuits 
easily. Developing a simple and easy simplification method is 
very important for the implementation of quantum circuits. 

Kamaugh map is an efficient method of minimization for 
conventional logic design. However, using a Kamaugh map to 
simplify quantum logic circuits is not easy because the XOR 
functions are substituted for the OR functions in a quantum 
logic design. It makes a little bit difference between the 
classical and the quantum logic circuits by using the Kamaugh 
map to simplify logic functions. Moreover, Kamaugh map can 
be used manually only for a few variables. It is not a good 
method when there are a large number of variables, e.g. over 6 

variables. In this paper, we modify the form of a Kamaugh 
map, and we propose an algorithm to simplify logic functions 
with any number of variables by using the modified Kamaugh 
map. 

11. MODIFIED ~ARNAUGH MAP 

In classical computation, Kamaugh map is used as a 
method for minimizing a Boolean expression. It is usually 
aided by a rectangular map of the values of the expression for 
all possible input combinations. Input values are arranged in a 
Gray code, which is an ordering of 2" binary numbers such that 
only one bit changes from one enhy to the next. Maximal 
rectangular groups that cover the inputs where the expression is 
true give a minimum implementation. Kamaugh map can be 
used to fmd the most efficient quantum logic circuit [4], but it 
is useful only for a circuit of binary function with at most 3 or 
4 inputs. It is difficult to use the Kamaugh map when more 
input variables are involved. In the following sections, it is 
explained how a modified Kamaugh map can be used to 
simplify a quantum Boolean circuit. 

De 1iz1110n 1. Let M be a map with m input variables with size 
2 x2 (m is even) or 2(m1ykz(.rr'n (m is odd). We defme 
E(M) as the Boolean expression of M with variables vl, v2, ... , 
v,. v, represents the i-tb variable of M. 

d - i  

Figure 1 Map partitioning 

Without loss of generality, we assume that the number of 
in ut variables n is an even number. We can consttuct a 
2 h d  modified Kamaugh map from the truth table. Unliie 
the original design of Kamaugh map we label each row and 
column a binary number from 0 to 2&-l, and fill in the blanks 
with 0, 1, or X (don't care). In OUT algorithm, a modified 
Kamaugb map can be equally divided into 4 square parts ( a 
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where "+" denotes OR Because Mll, MI2, M2,, M2, are disjoint 
with each other, so we can rewrite Eq. ( I )  as 

E(M) =;lv.,wE(M,,) @v,vm,2+lE(M,,) eG,v,,,,E(M,,) Bv,v,,,,E(M,,) (2 )  

where "W denotes XOR. For example, M is the square with 
bold border as shown in Fig. I. Then the Boolean expression of 
the square can be written as x,x2xn/2+lxn,2+~.E(M),  where 
E(M) is the Boolean expression of M with variables xg, ..., xd2, 
X&+3, ..., X". 

Theorem 1. If there is a modified Kamaugh map with n input 
variables xI x2, .__ , x, , and Mis  a square part of it. The size of 
M is 2"2x2'n. Let vI,  v2, ...., v, be the variables ofM, where v, 
represents the i-th variable of M. Then 

_ _ _  _ 

v~ =p.ml/z+, 9 1 s i s r d 2  
X".,,, , r d 2 + 1 <  i <  rn 

Proof: Let a modified Kamaugh map with n input variables be 
divided into 4 square parts. Each part of them has the same xl 
value and the same x&+~ value. For example, the values of xI 
and x&+, in the upper left part are all 0. So we can take out the 
variables xI and xd2+l, and leave x2, ... , xfl ,  ~ f i + ~ ,  ... , x,. After 
the k-th division, the number of variables rn becomes n-2k, i.e. 
k==n-m)R. The first (n-m)/2 variables are fixed and can be 
excluded, therefore vI = x(,~+~, v2 = x+,y~+~. ... , and v, = x(". 
mp+,, where 1 S i S mR. Similarly, x&+,, ... , X&+(~,,,~Z can be 
excluded, vmrrtl = x,~+,,  vmi2+2 = xdt2, ... , and v, = x,,,,+,. 
where rn/2+1 5 i S rn. 

Rule2. If My and Mu (where i=k or j=r) have common 
submap M, that is, two square parts on the same row or 
on the same column have common submap M', then they 
are reduced to X .E(A4') c' "denotes AND), where 

- 
X ~ - ~ , ~ + I  , i =  k = 1 

x =I- xn .m/2+ l  , i =  k = 2 . 

X ( ~ - ~ ) I ~ + I  , j = 1 = 1 
X(.-.)/2+1 , j = l = 2  

Proof: In the case of i = k = 1. The two upper square parts 
MI, and M12 have common submap M! Then 

111. REDUCTION RULES 
In this section, we introduce a set of reduction rules. By 

applying these rules, we can transform the modified Kamaugh 

Proof: In the case of i = k = 1. The two upper square parts 
MII and M12 are complement to each other. Then 

._ map into a simplified quantum Boolean circuit. 

Definition 2. Let M be a modified Kamaugh map which 

- E(M) = V I V ~ ~ + I E ( M J  bv,~mmtE(MJ @;Iv,J(M~J ~ V ~ ~ , , ~ + ~ E ( M ~ ~ )  _ _  -~ 
. = V I V ~ ~ + I E ( M ~ , )  b v ,  v.i,+iE(M, J b E(M") 

= L*&E(M,J b",E(M,,)) @E(M.f') 

= Yrnl2.l ' ( V I  @E(M,J)@E(W) 

consists of 2"%ld2. squares. V, represents the Boolean value 
of the square on the i-th row and j-th column of M. We call Icp - 
a submap of M and M" the remainder of M if M' and M" have - 
thesamesizeasMandY,=V'~~V': , .  =xnnn++l b E ( h f J ) b E ( M ' )  

Rule 1. If MI,, MI,, M21, M22 have common submap M', then 

Proof: By Eq. (Z), 

F~~ other cases, they can he shown similarly. 

Rule4 If M, and Mu (where i#k and j#r) have common 
they are reduced to E(M'). 

submap M: then they are reduced to Z . E(M') , where 
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Proof: Suppose MI, and Mzl have common submap M', then 

k 

Similarly, if MI, and Mz2 have common submap M', then we 
can show 

1 2 3 4 5  2 6  

- - 
RuleS. (x, ... x ,.__ x ,... x,)@(x, ... x ,___ x I . . . x q ) = x p . . . ( x ,  a x , )  ... X, 

Proof: (x ,  ... x ,.._ x ,... x q ) @ ( x  p. . .x  ,.._ x, ... x,) 
- ~ 

- - 
= x  D... (x,xl  @x,x,) ... x, 

= x, ... (x, @ XI) ... xq 

Now we give a concrete example using the truth table of a 
full adder. The truth table of a full adder is shown in Fig. 2. It 
has 3 input variables x l ,  q ,C,n, and 2 output bits S, Con,. The 
modified Kamaugh map of the sum bit is shown in Fig. 3(a). 
We can divide the map M into two equal square parts, left part 
MI and right part M2. Then we can find that MI and M2 are 
complement to each other. By applying Rule 3, we obtain 
E(M)=xl@E(Ml). In this example, the variable X in Rule 3 is 
useless because the number of input variables' is an odd 
number. E(MJ can be simplified to x2 @ C,. by Rule 4. If it is 
not necessary to keep Cin unchanged, we don't even need an 
auxiliary qubit as the output qubit. The quantum circuit is also 
shown in Fig. 3(a). The modified Kamaugh map of the cany 
out bit is shown in Fig. 3@). It can be divided into two square 
parts too. The left part MI and the right part Mz have common 
submap circled by solid line. By applying Rule 2, they can be 
reduced to .xZC,". In addition, the submap circled by the dotted 
line can be simplified to x l ( x z @  C,) by Rule 4. Thus the cany 
out bit can be represented as xzC,, 6B (xl.(x2 @ C,& The last 
CN gate in the circuit (Fig. 3@)) is used to restore the value of 
Cn. Fig. 3(c) shows the fmal circuit of a full adder. 

IV. ALGORITHM 
In this section, we propose an algorithm that shows how to 

apply the reduction rules we presented in the previous section 
to get an optimal circuit. Based on the rules, we can conshuct a 
series of steps to fmd the best solution. The more squares can 
be grouped, the simpler the logic function will be. Unlike 
general Kamaugh map, the XOR functions is substituted for 
the OR functions, so few 0's can be grouped with 1's if it is 
helpful. After applying the reduction rule, we change 1's into 

0's and 0's into l's, and repeat the steps of simplification until 
all 1's on the map disappear. 

0 0 0 0 0  j 
1 0 1 0 1  

1 0 0 1  

Figure 2. The truth table of a full adder 

Figure 3. The modified Kamaugh map andthe circuit of a full adder 

It is possible that more than one reduction rules can be 
applied at the same time, so we need a mechanism to estimate 
the cost of each selection. Our cost function is based on [l]. 
The arbitrary 2-bit gate is taken as the basic operation for 
convenience. Cost ( k )  means the number of basic operations 
used to produce a Toffoli gate with k control bits. The cost 
function is defmed as below: 
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Step 1. Construct a modified Kamaugh map with size 
2Lfi!x2rfi’ 6om the buth table. Partition the modified 
Kamaugh map recursively. 

Step2. Find the possible groups that can be simplified by 
applying reduction rules. A group shall include as 
many 1’s as possible. 

Step 3. Select a group that is the largest in size 

Step4. Apply the reduction rules to the selected group and 
simplify it recursively. Then change 1’s into 0’s and 0’s 
into 1’s in the selected group. If there is any 1 on the 
map, go to step 2. 

Step 5. Calculate the total cost of the expression. If there are 
other possible solutions, restore the modified Kamaugh 
map and go to step 2. 

Step 6. Select the expression with minimum cost as our fmal 
solution. 

Figure 4 A momlied Kamagh map wth 6 variables 

As an example, a modified Kamaugh map is shown in Fig. 
4. From the truth tahle, the original expression can he 
implemented using 18 7-hit Toffoli gates if no reduction is 
applied. It is too costly to realize this circuit due to the numher 
of quhits involved in a single quantum gate. Our algorithm can 
be used to simplify the original circuits. There are two possible 
solutions after going through our algorithm. The fmt logic 
expression is (x2x,,)@((x3 @xs)x4x6)fB(x1x2x3x4), and the cost 
of this expression is 49. The second logic expression is 
(x2i4x6)@((x2@x3 ~xs)x,x,)~(ix,x,x,)  with cost 59. SO we 
select the former logic expression as OUT final result. With this 
expression, the fmal circuit can he derived easily. It consists of 
only 2 CN gates and 3 Toffoli gates. The circuit is shown in 
Fig 5. 

V. CONCLUSION 
In this paper, we have proposed an algorithm that 

transforms an original truth tahle into a quantum Boolean 
circuit. With our algorithm, we can reduce not only the number 
of quantum gates hut also the basic operations of the circuit. 
Barence et al. [l] have shown that any n-qubit gate with n-1 
control bits can he sirnukted in terms of O(n2) basic 
operations. However, an n-qubit gate with n-2 control bits can 
be simulated by only @(n) basic operations for n27. In our 
circuit, there is at most one quantum gate with n-1 control hits. 
Thus, we can reduce the total gate count and the numher of 
basic operations effectively with OUT method. In addition, we 
use only one qubit as the output quhit, and keep all the input 
variables unchanged. No other auxiliary quhits or intermediate 
storage are needed. Thus, it is efficient in terms of both space 
and time. 

XI 

x2 

x3 

1 4  

1 5  

x6 

10) 

Figure 5. The final circuit 
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