Sunday, October 28, 2001

IEEE-NANO 2001

S$3.1 Nanocircuits and Architectures

Quantum Boolean Circuit Construction and Layout
under Locality Constraint

I-Ming Tsai

and Sy-Yen Kuo

Department of Electrical Engineering
National Tatwan University, Taipei, Tatwan
tsai@lion.ee.ntu.edu.tw ; sykuo@cc.ee.ntu.edu.tw

Abstract

The discovery of Shor’s prime factorization and
Grover’s fast database search algorithm have made
quantum computing the most rapidly expanding
research field recently. Nanotechnology, in par-
ticular silicon-based nanoscale device, has been
proposed as one of the candidates that can be used
to implement a quantum computer. In this paper,
we have derived a systematic procedure to realize
any general m-to-n bit combinational boolean logic
using elementary quantum gates. The quantum
circuit layout under the locality constraint is then
formulated, together with the gate count evaluation
function, to reduce the total number of quantum
gates required to implement the circuit.

1 Introduction

Since Feynman [1) and Deutsch [2] introduced the
idea and theoretical model of quantum computer in
the early 1980’s, a great deal of research effort has
been focused on the topic of quantum information
science. The discovery of Shor’s prime factorization
[3] and Grover’s fast database search algorithm [4]
have made quantum computing the most rapidly
expanding research field recently. For a quantum
algorithm to be useful, it is essential that the
algorithm can be implemented using elementary
quantum gates. Not long after Deutsch proposed
his theoretical model of quantum computer, he
showed that a three-bit quantum gate is universal
and capable of realizing any unitary operation [5].
A few years later, it was shown [6, 7] that two-bit

0-7803-7215-8/01/$10.00©2001 IEEE.

gates are sufficient to implement any unitary
operation. Furthermore, Yao [8] showed that any
function computable in polynomial time by a
quantum Turing machine has a polynomial-gize
quantum circuit. All these results make experi-
mental implementation of quantum circuits more

practical.

A straightforward realization of quantum boolean
logic is to use auxiliary qubits as intermediate
storage. This inefficient implementation causes a
large number of auxiliary qubits to be used. In
this paper, we have derived a systematic procedure
to realize any general m-to-n bit combinational
boolean logic using elementary quantum gates.
QOur approach transforms the m-to-n bit classical
mapping into a ¢-bit unitary quantum operation
with minimum number of auxiliary qubits, then the
unitary operation can be decomposed into one-bit
rotation and two-bit control-U gates. Finally,
the circuit layout under the locality constraint is
formulated, together with the gate count evaluation
function, to reduce the total number of quantum
gates required to implement the circuit. Our
approach can be applied to most silicon-based
quantum computer.

2 Quantum Boolean Circuit Con-
struction

2.1 Problem Description

Since the time evolution of any quantum transfor-
mation is a unitary and logically reversible process,

IEEE-NANO 2001

thus any quantum boolean logic can be represented
using a permutation. The problem of transforming
any m-to-n bit combinational boolean logic into a
permutation can be formulated as follows:

Problem 1: Given a classical m-to-n bit combina-
tional boolean logic

C: A({0,1}™) - B({0,1}"), (1)

and an integer p (0 < p < m), construct a t-bit
permutation

Q: ({0,1}) —» ¥({0,1}") - (2
such that for each classical mapping
a = o -p-1 € A (a; € {0,1}) and

B8 = C(a) = Bobi - Bn-1 (Bi € {0,1}), there exist
two states ¥ = tothr- Ym_1---Pi-1 € ¥ and
&= o1~ ¢r1 € T satisfying:

(1) ¥; = a4, fori =0,1,...,m -1

(2) ; =0, fori=m,m+1,...,t~1

3 Q) =9

(4) ¢ =a;, fori =0,1,...,p—1

(5) ¢; = Bi_p, fori=p,p+1,...,p+n-1

The construction process is described in the follow-
ing sections.

2.2 Building the Quantum Transformation
Table

For any combinational boolean logic, a Classical
Transformation Table can be used to describe the
behavior of the circuits. In this section, for the
purpose of description, we will use the notation
A[é][*] to denote the i-th row and the notation
Ali][m : n] to denote the i-th row with column
index starting from m to n. Similar notations are
used to denote a column block.

Taking an m-to-n bit circuit as an example, a
classical transformation table consists of two parts,
a 2™-by-m « table for input, and a 2™-by-n B
table for output. Each row of the o table, afi][*],
contains an m-bit input pattern, while the same
row of the 8 table, B[i][*], holds the corresponding

0-7803-7215-8/01/$10.00©2001 IEEE.

112

Sunday, October 28, 2001
S3.1 Nanocircuits and Architectures

n-bit output.

As in the classical case, a Quantum Transformation
Table is used to describe a ¢-bit quantum boolean
logic. A quantum transformation table consists
of two parts, a 2t-by-t ¢ table for input, and a
¢ table of the same size for output. Each row of
the 1 table, ¥[¢][*], contains a #-bit input pattern,
while the same row of the ¢ table, ¢[¢][*], holds the
corresponding t-bit output. Because the quantum
operation is a reversible unitary transformation,
the 2! rows in the ¢ table are simply a permutation
of the input patterns.

The steps to build the quantum transformation
table based on the classical circuits is shown below:

Step 1. Preserve the input qubits.

We define the preserved qubits to be the input
qubits that have to stay unchanged after the
operation, while the wolatile qubits are the input
qubits that can be over-written by the output
qubits. Preserved qubits can be used as inputs for
other circuits again. Without loss of generality,
assume qubits 0 to p— 1 (0 < p < m) are the qubits
to be preserved and qubits p to m — 1 are volatile
qubits. Note that p can be zero, in which case no
input qubit is preserved. Now prepare two empty
tables, 1 and ¢, which are both of size 2™-by-m.
For each row i (0 < i < 2™ —1), copy ¢[i][0 : m—1]
to 9[i][0 : m — 1]. If p # 0, also copy the preserved
qubits from a[é][0 : p — 1] to @[E][0: p — 1].

Step II. Assign the output qubits.
Since qubits 0 to p — 1 are used to preserve the
input qubits, assign qubits p to p + n — 1 to hold
the output qubits. Expand the width of the ¢ table
whenever needed. For each row i (0 <¢ < 2™ —1),
copy B[e][0: n—1] to P[i][p: p+n —1].

Step IIL. Distinguish each output state.

For a unitary quantum evolution, the quantum
transformation table needs to be one-to-one and
onto. If for every a,b € {0,1}?*™ in ¢, a # b, then
set d = 0, go to next step. Otherwise, set

d = [log, M (3)

Sunday, October 28, 2001

IEEE-NANO 2001

S3.1 Nanocircuits and Architectures

where M is the maximum number of occurrences for
a repeat pattern. Add extra d columns (numbering
from ¢[*][p + n] to ¢[x][p + n + d — 1]) to the ¢
table. Expand the width of the ¢ table whenever
needed.

Step IV. Add auxiliary qubits

If m = p+ n + d, no auxiliary qubit is needed. The
total number of qubits, ¢, equals m, go to next step.
Otherwise, f m <p+n+d,letz=(p+n+d)—-m
and add z auxiliary qubits to the 9 table (number-
ing from ¥ [*][m] to ¢[*][m + = — 1]). Assign these
qubits to be all 0’s. The total number of qubits, ¢,
equals p+n+d. :

Step V. Expand the quantum transformation
table

If auxiliary qubits are used, expand both ¢ and
¢ tables to be 2t rows in length. For the 1 table,
repeat the original block 2* times and, for each
block, fill in the auxiliary qubits with a unique
z-bit pattern. For the ¢ table, leave the new entries
blank.

Based on the constraints derived from the classical
boolean circuit, the quantum transformation table
is now partially constructed. The permutation can
be completed simply by filling in the blanks to make
it a one-to-one and onto mapping. To do this, we
construct a quantum state transformation digraph
G = (V, E), where

Vo= {oilv=9fM)
E = (o) v = vl ve= glil) @)

and 0 < i < 2 — 1. The digraph has 2¢ vertices,
corresponding to each of the 2¢ rows in the 1 table.
An edge is defined from v, to vq if it is possible for
@ to map v, to v4. The notation vg = @[i][*] is used
to denote, when only u (u < t) qubits are specified
in @[i][¥], all states that are compatible to the
entry. This results in 2°~* edges to be generated
for each of the possible (vs,v4) pairs. Filling in the
t — u blank qubits in the ¢ table selects one of the
possible edges and delete others.

jl

Using the digraph G, the problem is equivalent to

0-7803-7215-8/01/$10.00©2001 {EEE.

finding a set of disjoint cycles that cover all the
vertices in V, the problem is formulated as follows:

Problem 2: Given a digraph G = (V,E),
find a family of sets S = {S; | S =
{vé,vi,...,v5_;},v¢ € V} and corresponding
cycles C = {Ci | Ci = (v§,vi,...,v},_4),v} € V}
such that | Jg,c5S: =V and g, 5 S = 0.

This is clearly a set partitioning problem, with each
partition being a cycle. The problem has been ex-
tensively studied in graph theory and can be used
to construct the permutation . An example of
Boolean logic X = A+ B and Y = A + AB without
preserved qubit is shown in Fig.(1).

Figure 1: Set covering a digraph with disjoint cycles

2.3 Implement the Permutation using Ele-
mentary Quantum Gates

A permutation can be implemented using elemen-
tary quantum gates by the following propositions.

Proposition I. A permutation consists of one
or multiple disjoint cycles.
commute, each cycle in the permutation can be
implemented individually.

Since disjoint cycles

Proposition II. Given a general cycle
¢ = (po,p;,p2,-.-,Pn1), C can be con-
structed using n — 1 transpositions, i.e.

C = (po, p1)(P1,P2) - - (Pn—3,Pn—2)(Prn—2,Pn—1)-

Proposition III. Given any two general states
p and ¢, with A(p,q) = d, the transposition
U = (p,q) can be decomposed into 2d ~ 1 adjacent
state transpositions.

IEEE-NANO 2001

Sunday, October 28, 2001

To further implement an adjacent state transposi-
tion, we introduce the generalized n-bit Toffoli gate.
Assuming S, R, I € {0,1}"*, SAR=RAI=SAl =
0, and the Hamming distance between I and {0}"
is 1, an n-bit Toffoli gate can be represented by
T(S,R,I). In this notation, S and R, if expressed
in binary digits, mark the positions of control bits.
The bits that are set in S specify the control bits
that have to be 1’s to activate the logic. Similarly,
the bits that are set in R specify the bits that have
to be 0’s to activate the logic. I simply represents
the target bit to be inverted when the conditions
of § and R are satisfied. Those bits that are not
specified in either S, R, or I are don’t care bits.
The operation of a T'(S, R, I') gate is summarized as
follows: assuming an input X =z, 12,2 - 2120,
the target bit z, is simply the bit that is set in I,
and

(/\?;01((8,' A .’Bi) \ (’I‘,‘ A fi) \% (3—1 A Fz))) @Dz,
z;, 1=0,...,r—1L,r+1,...,n-1 (5)
Using this notation, we have the following proposi-
tion:

Proposition I'V. Given any two states p and q with

A(p,q) = 1, the transposition U = (p,q) can be

implemented using a T'(S, R, I) gate with
S=pAg, R=pANg,

I=pdgq. (6)

Note that the T'(S, R, I) gate can be further decom-
posed into one-bit rotation and two-bit control-U
gates [9]. This completes our quantum boolean
circuit construction.

3 Quantum Boolean Circuit Layout

In Kane’s Si:P quantum system [10], spins asso-
ciated with donors in silicon function as qubits.
Quantum operations are performed using a combi-
nation of voltage applied to gates adjacent to the
spins and magnetic fields applied resonant with spin
transitions. In this proposal, the SWAP operation
in combination with single qubit rotation can be

used as universal quantum operations. Similarly,

0-7803-7215-8/01/$10.00©2001 IEEE.

114

S3.1 Nanocircuits and Architectures

Loss and DiVincenzo [11] have proposed an imple-
mentation of a universal set of one- and two-qubit
gates using spin states of coupled single-electron
quantum dots. The one-bit rotation, SWAP and
XOR gate can be implemented by gating of the
tunneling barrier between neighboring quantum
dots.

Although previous work [9] has shown that for
any unitary 2 x 2 matrix U, a A;(U) gate can be
simulated by six basic gates, there is no locality
restriction imposed on the qubits. Note that in
the implementation described above and most
silicon-based system, spins can only interact with
their neighbors. If the locality constrains is taken
into consideration, all elementary gates with
non-adjacent inputs should be further decomposed
using quantum gates between two adjacent qubits,
as shown in Fig.(2).

3

L

=

—e

Y74

Figure 2: Adjacent control-not gate implementation

From the decomposition of non-adjacent XOR gate,
we see the total number of adjacent XOR’s depends
linearly on the distance between the control bit and
the target bit. Assume the distance between the
control bit and the target bit is d, then 4(d - 1)
adjacent gates are required. This suggests that we
can arrange the layout (i.e. position) of the qubits
to get a more efficient circuit. This problem is
formulated as follows:

Problem 3: Given a weighted graph G(V,E),
assume the weight w(v1,v2) be the number of
XOR operations to be performed between v; and
vg, find a distinct integer assignment I, for each
v € V, such that 37, .vep(w(vi,v2) * Lo, — In,))
is minimized.

The problem suggested above can be taken as the
gate count evaluation function when the total num-

Sunday, October 28, 2001

IEEE-NANO 2001

S3.1 Nanocircuits and Architectures

ber of gate count is to be reduced. This transforms
the set partitioning problem into the following form:

Problem 4: Given a digraph G = (V,E) and
the gate count cost ¢, associated with each cy-
cle C;, find a family of sets S = {S; | §; =
{v6, v}, ,vp1},v} € V} and corresponding cy-
cles C = {C; | C; = (v§,v},...,v},_,),vi € V} to
reduce
Qp= Y (7)
CieC

subject to:

1) Usies Si=V

(2) Ns;esSi =0

The problem is essentially a constrained set parti-
tioning problem, with each partition being a cycle.
The solution can be found using a combinatorial
programming approach [12], as we demonstrated in
the following section.

4 Gate Count Evaluation Process

A simple but effective algorithm is described in this
section to demonstrate how the elementary gate
count is reduced.

Step I. Enumerate all cycles.

Given the digraph G(V, E) described in the quan-
tum transformation table, list all cycles C; (i =
0,1,2,...) in the digraph. This can be done in the
following way:

(i) Select a target edge (vy,vs), and list all cycles
containing the edge. To find all cycles contain-
ing (vy,ve), just list all paths from v, to vy,
then cycles can be found by concatenating any
path from vy to vy with the edge (vy,vyp).

(ii) Delete the target edge in (i). If there is any
edge left in G, go to (i), otherwise all cycles are
found.

Step II. Initialization.

(i) Let X = {z;} be a matrix of size n x 1 with
z; = 1 if C; is included in the solution, and
z; = —1 if it has been excluded. Initially set
z; = 0 for each i.

0-7803-7215-8/01/$10.00©2001 |EEE.

(i) Let A= {a;;} be an m x n matrix with a;; = 1
if v; € Cj, and a;; =0 if v; & Cj.

(iii) For each cycle C;, calculate the elementary gate
count Q¢,.

Step III. Reduction (optional).

The optional reduction process makes the optimiza-
tion task easier. Although there are many effective
rules, only three reductions are described here. Let
S be an n x 1 matrix with all elements set to 1’s and
R = {r;} = AS be the m x 1 matrix that describes
the coverage of the vertices.

(i) If r; = 0 for any %, no solution exists.

(i) For any ¢, if r; = 1 and a;; = 1, then mark C;
as included.

(iii) If C; denotes any cycle that has been included,
then all C with Cy N C; # 0 must be marked
as excluded.

The reduction rules can be applied over again until
no further reduction is possible.

Step IV. Search the optimal solution.
A depth-first search algorithm is used here to search
the optimal solution.

(i) Let M = oo be the initial elementary gate
count.

(ii) If all vertices are covered, update M and record
X in case Qp < M, return. Otherwise, for each
C; that has not been marked, update X to in-
clude C};, apply the reduction rules as described
in Step III, then recursively call step (ii) with
the parameter X.

After these steps are done, the selected cycles are
recorded in X and the gate count is M.

5 Conclusions

There are two reasons that we propose such an anal-
ysis on quantum circuit construction. First of all,
since the conventional device architecture will even-
tually reach its physical limit, we have to take ad-
vantage of the quantum physics at nanometer scale

IEEE-NANO 2001

Sunday, October 28, 2001

if we want to continue the computer hardware evo-
lution. Secondly, since the time evolution of any
quantum transformation is a thermodynamically re-
versible process, a general-purpose computer imple-
mented using nanoscale devices and quantum oper-
ations can theoretically operate with arbitrary little
energy [13, 14], which is an attractive feature be-
yond today’s technology. In this paper, we have
derived a systematic procedure to transform any
general boolean logic into its quantum version. At
the same time, the circuit layout under the locality
constraint is analyzed to reduce the total number
of gate count. This method can be applied to most
silicon-based quantum computer system.

References

[1] R.P. Feynman. Int. J. Theor. Phys. 21, 467
(1982).

(2] D. Deutsch. Proc. Roy. Soc. Lond. A 400, 97
(1985).

[3] P.W. Shor. Proc. of the 35th Annual Sympo-
sium on the Foundations of Computer Science,
IEEE, Computer Society Press, New York,
1994, p.124; SIAM J. Comput., vol 26, no. 5,
1484-1509 (Oct. 1997).

[4] L.K. Grover. Proc. of the 28th Annual ACM
Symposium on the Theory of Computing, 1996,
p.212.

[5] D. Deutsch. Proc. Roy. Soc. Lond. A 425, 73
(1989).

[6] A. Barenco. University of Oxford preprint: A
Universal Two-Bit Gate for Quantum Compu-
tation.

[7] D. P. DiVincenzo. Phys. Rev. A 50, 1015
(1995).

[8] A. Yao. Proc. of the 34th Annual Symposium
on the Foundation of Computer Science, IEEE,
Computer Society Press, Los Alamitos, 1993,
p-352.

[9] A. Barenco, C. H. Bennett, R. Cleve, D. P.
DiVincenzo, N. Margolus, P. Shor, T. Sleator,

0-7803-7215-8/01/$10.00©2001 |EEE.

116

S3.1 Nanocircuits and Architectures

J. H. Smolin, and H. Weinfurter. Phys. Rev. A
52, 3457 (1995).

[10] B.E. Kane. Nature 393, 133 (1998).

(11] D. Loss, D.P. DiVincenzo. Phys. Rev. A 57,
120 (1998).

[12] C. Berge. Alternating chain methods: A survey,
in Graph Theory and Computing, Ed R. Read,
Academic Press, New York, (1972).

[13] R. Landauer. IBM. J. Res. Develop. 3, 183
(1961).

[14] C. Bennett. IBM. J. Res. Develop. 17, 525
(1973).

