
Proceedings o f  1993 International Joint Conference on Neural Networks 

Quan tum Neurons and their Fluctuation 
Satoshi Matsuda 

Computer and Communication Research Center, 
Tokyo Electric Power Company 

1-3, Uchisaiwai-cho, 1-Chome, Chiyoda-ku, Tokyo, 100 Japan 

ABSTACT: A new model of symmetric neural networks is presented, where each neuron 
takes one of the quantized values (e.g. integers) rather than just a binary values 
(i.e. 0 or 1) or continuous values (i.e. real numbers). By applying this model to 
combinatorial optimization problems which take integers as solutions, the number of 
neurons and connections between neurons, and computation time decrease greatly as 
compared with the traditional counting method'6'. Therefore, i t  is possible to get 
better solutions in the same total computation time. The simulation of Hitchcock 
problem is made to show these advantages. It is also illustrated, by the simulation, 
that some fluctuation coming from this quantization makes it possible to get better 
or best solution more easily. This fluctuation suggests an effective way to escape 
from the local minimum. 

1. Introduction 
The symmetric neural networks, so 

called Hopf ield networks, have been widely 
applied to the combinatorial optimization 
problems such as travelling salesman prob- 
lem ('). Though neurons in symmetric neural 
networks take binary values ('' or continu- 
ous values"', the final values neurons 
converge are supposed to be binary"' ( ' I .  

Hence one makes efforts to design neural 
networks to represent and solve the target 
problems by using these binary values/neu- 
rons. In the previous paperc4', we pro- 
posed a new method suitable to combinato- 
rial optimization problems which take real 
numbers or very large integers as solu- 
tions. On the other hand, in combinatorial 
optimization problems taking integers as 
solutions such as Hitchcock problems, 
these integers are usually represented by 
the number of (binary) neurons finally 
fired, which is called as the counting 
method ( ' ) .  However, it generally requires 
a large number of neurons and connections 
between neurons, which also causes a large 
amount of memories and computation time. 

In this paper, a new model of the 
neuron is presented, which is suitable to 
combinatorial optimization problems taking 
integers as solutions. These neurons take 
one of the quantized values (e.g. integers) 
rather than just a binary values (i.e., 0 

or 1) or continuous values (i.e. real num- 
bers). These neurons are called as "quan- 
tum neurons", and the method representing 
integers of the solution by quantum neu- 
rons are called as "quantum method". By 
applying quantum method to combinatorial 
problems which take integers as solutions, 
it makes the number of neurons and connec- 
tions, and computation time decrease 
greatly as compared with the traditional 
counting method. Therefore it is possible 
to get better solutions in the same total 
computation time. The simulation of 
Hitchcock problem is made to show these 
advantages. It is also illustrated, by the 
simulation, that some fluctuation coming 
from this quantization makes it possible 
to get better or best solution more easily. 
This fluctuation suggests an effective way 
to escape from the local minima. 

2. Symmetric Neural Networks with 
Quantum Neurons (QSNN) 

In the symmetric neural networks, 
for any two of neurons, say neuron i and 
j ,  there can be two connections from i to 
j and from j to i ,  of which weights, wJ1 
and wlj, are equal, that is, wIJ=wJI. The 
symmetric neural networks with quantum 
neurons, abbreviated as QSNN, are the sym- 
metric neural networks where each neuron, 
for example, neuron k, takes one of inte- 
ger Values in (mk,mk+l, *", Mk-1, Mk}. At 
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each time one of the values of neurons is 
updated as follows: 

1 if CjWkjXj+hk+Wkk/2 >o  
and Xk<Mk 

-1 if jWkjXj+hk-Wkk/2 < o  
and Xk>mk 

0 otherwise 
and all the values of other neurons are 
not updated, that is, A x l = O  for all jfk, 
where xk is the value of neuron k, A x k  is 
the value to be added to the current value 
of neuron k, W k J  is the weight of connec- 
tion from neuron j to k, hk is the thresh- 
old of neuron k, and W k k f O  in general. 
Thus QSNN is asynchronous model and each 
neuron is updated in turn. Note that we 
can generalize the values neuron takes to 
be any quantized values, however, in the 
above definition the values are restricted 
to be integers, for simplicity. 

Same as an ordinary networks which 
take binary or continuous values'3', the 
energy of QSNN is defined as: 

E = - 1/2 Cij~ij~i~j - C ihixi 
Now the next theorem holds as same 

as ordinary symmetric neural networks. 
[THEOREM] QSNN converges to a local 
minimum of energy function E. 
[proof 1 
AE(t)= E(t+At) - E(t) 

= - I/Z CiCj~ij(~i+Axi>(~j+A~j> 
- C ihi(Xi+AXi) 
t 1/2 CiCj~ij~i~j + Xihixi 

= - 1/2 C i C j ~ i j ( ~ i A ~ j + x j A x i  

= - 1/2 
+Ax[Axj) - C i h i A ~ i  
C iAxi(C jwj ixj+C j ~ r j ~ j  

+Cj~ijAxj> - C ihiAXi 
= - CiA~i(Cj~ij~j + hi 

i- 1/2 Xjwi~Axj> 
( * e .  Wij =w11) 

Here we can assume that only one neuron, 
say neuron k, updates its value, that is, 
Axk#O. and Axj=O for all j#k. Hence, 
in this case, by denoting A E  as AkE, we 
have 

A k E  = -AX,( jWk jXj+hk+WkkAXk/2) 
Since, by the definition of QSNN, it is 

Ax, to take the opposite sign, we can say 
impossible for jWkjXj+hk+WkkAxk/2 and 

A &Ego. 

Hence the energy function always decreases 
and finally converges to one of the local 
minima. [Q. E. D. I 

3 .  Simulations 

problems with integers as solutions such 
as Hitchcock problem, the counting method 

lution by the number of neurons finally 
fired, is used. The quantum method cer- 
tainly requires less number of neurons and 
connections than the counting method. 
Therefore, it is possible to reduce the 
computation time, and is expected to get 
good solutions in the same total computa- 
tion time. Here we examine these by simula 
tions of Hitchcock problem. 
(1) Hitchcock Problem 

rial optimization problem with integers as 
solution. Formally stated as 

For combinatorial optimization 

, which represents integers of the so- ( 5 )  

Hitchcock problem is a combinato- 

ACi(Cjxij-~i)~ t BCj(Cixij-dj)' t 
C C  i l ~ i j ~ I l  - min 

where s i  is the number of products suppli- 
er i (i=l;-,m) has, and dl is the number 
of products consumer j (j=l, ..-, n) demands. 
c i J  is the unit cost of transportation 
from supplier i to consumer j. Hitchcock 
problem is to find a flow x r l  of products 
from supplier i to consumer j. A, B and C 
are weights of these constraints to be 
satisfied. 

Now, our simulations are made for 
the same Hitchcock problem as Takeda and 
Goodman , where the number of suppliers 
and consumers are 4 and 5 respectively, i. 
e., m=4 and n=5, and the minimum trans- 
portation cost is 3 8 .  Two kinds of simula- 
tions are made, one is by the traditional 
counting method of binary neurons (BSNN) 
and another by the quantum method (QSNN). 
Each flow xil is represented by one neuron 
in the quantum method, and by 7 neurons in 
the counting method since max(sr,di} =7 .  
Except for this, followings are same in 
two cases. The weights of constraints are 
set as A=B=80 and C = O . 2 3 .  The initial 
values of neurons are determined by using 
random number. Five hundred simulations 
are made by the counting method, and 5000 
by quantum method. The simulation results 
are shown in Table 1. 
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(2) Simulation Results 

11 hours to make 500 simulations by the 
counting method, but only about 5. 5 hours 
to make 5000 simulations by the quantum 
method. Thus, as average time per simula- 
tion also shows, the quantum method takes 
only 1/20 simulation time of the counting 
method. In either cases, the average 
transportation cost obtained, and the rate 
of obtaining solutions, which satisfy 
first two constraints, is also almost same. 
Hence we can say that there is no great 
differences in quality of the solutions 
obtained by these two methods. However the 
least transportation cost obtained in 
these methods is 4 1  or 44 respectively. 
The quantum method seems superior to the 
counting method. This superiority comes 
from 10 times trials of simulations (note 
that, as mentioned above, even 20 times 
trials are possible in the same computa- 
tion time), and the possibility of 10 or 
20 times trials comes from the less compu- 
tation time of quantum method. 

We first notice that it takes near 

4. Fluctuation 

method is superior to the counting method 
in the sense that it is possible to get 
better solutions in the same total compu- 
tation time. However, even the quantum 
method in the simulations above could not 
get the best solution (cost=38). In gener- 
al, one of the faults of symmetric neural 
network, including QSNN, is to be caught 
in a trap of the local minimum of energy 
function and not to get the best solution 
in many cases. So, there have been many 
trials to get better or best solutions by 
giving stochastic characteristics to the 
state transition of neurons such as 
Bo1 tzmann machine. However, in general, 
these models are not practical because 
they require a large amount of computation 
time. 

lation, that some fluctuation, which natu- 
rally comes from quntization, make it pos- 
sible to get better solutions or best so- 
lution more easily. 
(1) Quantum Fluctuation 

ral networks, the state transition of neu- 

We have shown that the quantum 

In this chapter we show, by simu- 

In the traditional symmetric neu- 

ron depends on the sign of CJWkJXj+hk. On 
the other hand, in QSNN, it depends on the 

state transition is presented as, in the 
case of Wkk<o, for c such that O<c<O.5. 

Sign of jWkjXj Shkf.0. 5wkk. Here new 

1 if CjWkjX~+hk+CWkk >o  
and Xk<Mk 

AX& = -1 if JWkJXj+hk-CWkk < o  
and Xk>mk i 0 otherwise 

and, in the case of Wk k > O t  for c such 
that 0.5<c<l, we can define same as 
above. 

Obviously, any state transition 
made in QSNN is also made in these net- 
works. On the other hand, there can be 
state transitions in these networks, which 
are impossible in QSNN, and these state 
transitions are called "quantum fluctua- 
tion". And these networks are called as 
FQSNN (Symmetric Neural Networks with 
Fluctuation t o  Quantum Neurons). 

In general, a light fluctuation (c 
%0.5) can not let the network escape from 
the local minimum and causes less effects. 
A heavy fluctuation (0.5>>c>O) can not 
let the network reach even the local mini- 
mum, and diverge, so causes a harm. 
(2) Simulations of FQSNN 

same Hitchcock Probelm above are made by 
FQSNN with c=1/3 fluctuation. For fair- 
ness, any of these simulations of FQSNN 
has the same initial values of neurons in 
that of QSNN. And, since FQSNN does not 
converge in general, we terminate the com- 
putation as convergence if the same energy 
value lasts for 5 rounds of updates of all 
the neurons. If such a condition does not 
occur until 50th round of updates, we stop 
the computation as no convergence. 

Also in Table 1, the results of 
these simulations are shown. The perform- 
ance of FQSNN increases greatly. Though 
5000 simulations of QSNN can not get best 
solution, 500 simulations of FQSNN get 
best solutions 141 times. The average 
transportation cost obtained decreases 
from 52. 9 to 40. 9 greatly. These phenomena 
suggests that "there exists best solution 
near the better solutions." Moreover, 99% 
of these simulations converge and get ap- 
proximate solutions, and the average num- 

Five hundred simulations of the 
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ber of iterations (computation time) of 
the simulation is only less than twice of 
that of QSNN. This good convergence of 
FQSNN also suggests that "the valley of 
energy surface with bad local minimum take 
the shape of a pan and the valley with 
good/gloval minimum a pot. " 

In the ordinary symmetric neural 
networks, the solutions depend on the ini- 
tial values of all the neurons (sensitivi- 
ty of initial values). Hence the choice of 
initial values is another target for the 
user or designer. These simulations show 
that the solutions obtained by FQSNN does 
not heavily depend on the initial values 
of the neurons. The quantum fluctuation 
make also user and designer free from the 
choice of initial values. 

best solutions, however, the simulations 
illustrate that it can get better or best 
solutions easily in a practical time. Sim- 
ulations of many other problems which are 
not shown in this paper, also present a 
similar performance. Moreover, the quantum 

Thus, FQSNN does not always get 

number of simulations 

number of simulations 
converges 

number of simulations 
obtaining solution 
least transportation 

cost obtained 
number of simulations 
obtaining best solution 
average transport at ion 

cost obtained 
average number of 

total time of simulations 

iterations / simulation 

average time / simulation 

average time / solution 

fluctuation is also effective for binary 
neurons. 

counting method quantum met hod 

BSNN QSNN FQSNN 

5 0 0  5000 5 0 0  

500 5000  493 

110 (22%) 1194 (24%) 493 (99%) 

38 
(best solution) 44 41 

0 (0%) 0 (0%) 141 (28. 2%) 

52. 9 52. 9 40. 9 

7. 8 6. 6 12. 6 

10H 44M 58s 5 H  35M 49s 59M 15s 

78s 4. os 7. 1s 

5M 52s 16. 9s 7. 2s 
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