
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 3, JUNE 1996 485 

walls to detect multiple echo pulses. The TOF determination as well 
as the detection of the echo pulses is accomplished by searching 
the correlation peaks of the matched filter output. The invariant 
spatial relationship between f he ultrasonic sensor and the reflectors 
in our method allows simple but robust matching between the echoes 
obtained at different sensor orientations. The multiple echo pulses are 
first collected as groups on the basis of their TOF’s, then the groups 
of echo pulses are tested for their physical validity. The distances 
to the reflectors are estimated from the mean times-of-flight of the 
groups of echo pulses, and tlhe directions are estimated by fitting 
the modeled echo amplitude p,attern to the magnitude patterns of the 
groups of echo pulses in least-square sense. 

In our method, the specular effect and the wide beam width are 
exploited positively. The former reduces the number of reflectors to a 
manageable size in typical indoor environments, and the latter allows 
large sampling step size in scanning. 

The validity as well as the performance of the proposed method 
was shown through the experiments to localize a mobile robot in real 
environment. We first extracted multiple acoustic landmarks whose 
positions were known with xespect to the world coordinate frame. 
Assuming that the spatial relationship between the mobile robot and 
its ultrasonic sensors was given, the mobile robot was localized to 
within 2 cm in distance and 0.1 degrees in direction from the true 
positions. 
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Pattern Recolwfiguration in Swarms-Convergence 
of a Distributed Asynchronous and 

Bounded Iterative Algorithm 

Gerard0 Beni and Ping Liang 

Abstruct- Swarms are physical realizations of self-organizinjg dis- 
tributed robotic systems (DRS). This paper provides a rigorous anialysis 
of swarm behavior and introduces a new methodology for using swarms 
to solve DRS pattern reconfiguration problems. We introduce the linear 
swarm model and show that it is an iterative method for asynchronously 
solving linear systems of equations under physically relevant constraints. 
The main result of tlhe paper is a proof of a sufficient condition for 
the asynchronous convergence of a linear swarm to a synchronously 
achievable Configuration. This is important since a large class of DRS 
self-organizing tasks can be mapped into reconfigurations of patterns in 
swarms. 

I. INTRODUCTION 

Advanced robotics applications require: 1) flexibility; 2) fault 
tolerance; and 3) intelligence. The traditional robot design strategy is 
to develop a single sophisticated robot with the above properties. In 
contrast, the distributed robotic systems (DRS) strategy is to develop 
a robotic system with the above properties via self-organization of 
multiple simpler autonomous agents. DRS research has accelerated 
recently because of 1) advances in computer and communication 
technologies; and 2) its relation to other fields such as decentralized 
autonomous systems, multiagent systems, self-organizing systems, 
distributed artificial intelligence, and artificial life. 

Swarms have been developed as models for the self-organization 
of distributed robotnc systems [1]-[3]. DRS [4] have pronusing 
applications in many fields, for example, in: 1) flexible manufac- 
turing and modularheconfigurable robotics [5] ;  2) the operation of 
groups of autonomous vehicles [6], [7 ] ;  3) distributed intelligence 
and distributed sensors [8]; and 4) distributed intelligent structures 
[9], [lo]. The objectives of a DRS include carrying out: 1) tasks 
impossible to single robots; and/or 2) tasks possible to single robots 
with the advantage of being more reliable, self-repairable and lower 
in cost due to their simplicity of construction. 

An advantage of the swarm models is the increased privajzy of 
the process, since information from a subset of units doe,$ not 
directly reveal the final configuration, even when the size a4 the 
swarm is known. Since swarms can model manufacturing, as well as 
defense/law-enforcement operation processes, the increased privacy 
results in increased security since the “capture” of a subset cif the 
swarm would not reveal the goal of the process. 

The basic DRS problem is to design a system that is capable of 
carrying out a useful task as a group, and only as such; is . ,  its 
component units are assumed incapable of the task if they do not form 
a group above a critical size. A special case is the problem of swarm 
intelligence [ l l ] ,  [12]. The main difficulty of such a problem, and of 
DRS in general (and, even more generally, of distributed computers 
systems), is the asynchronicity, of task execution. The asynchronicity 
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n. SWARM MOD 
CycIic boundary conditions were c 

uniformity of the swarm. Hence, from 
a swarm that generates patterns as solution 
with cyclic boundary conditions, is defined 

Definition 1-Cyclic Swarm: A set of M 
. . , iW) such that: 

if Gk > E then Y k  t y k  - 1; 

consbaint hstinguishes models of DRS behavior from e.g., the 
celIular automata models which were used originally for the self- 
organization (self-reproduction) of automata [13]. An example is the 
cellular robotic system (CRS) model [14] In the CRS model, besides 
the asynchronicity requirement, the physical constraint of “mass” 
conservation was introduced to distinguish models of groups of robots 
from models of groups of computers. The conservation requirement 
can apply to either the number of robotic umts themselves or to the 
amount of “material” exchanged between them [14]. The former case 
models the behavior of robots as self-organizing biomorphic entities, 
the latter case models the behavior of robots reorganizing patterns of 
material, e.g. on a manufactunng line. Both cases have been ihclu‘ded 
in a more general formulation than the CRS, i.e., the swarm model 
111. 

Swarms are defined as DRS capable of self-organization. Although 
the term “self-organization” has many different, and often vague, 
meanings in the technical literature, for the swarm problem it was 
unambiguously defined in [ l ]  via the concept of a synextask. A 
synextask is a “synchronously executable task,” i.e., a task subdivided 
into subtasks which can, but do not have to be necessarily, executed 
synchronously by the units of the DRS A self-organization task is 
a synextask which during execution conserves some property of the 
DRS, e g. the number of its units, or the total amount of “material” 
belonging to the DRS. 

Thus, we have seen that asynchronous and consewative execution 
of synchronously executable tasks is the fundamental and deJining 
characteristic of the swam. Mathematically, the task execution by 
the swarm can be modeled as set of N entities redistributing 
async$”ly among M states In other words, task execution is 
the asyncponous “distortion” (since N is conserved) of a pattern 
over the M states of the swarm 

This fundamental characteristic of the swarm (conservative and 
asynchronous execution of synextasks) has been used in [2] to solve 
a large class of swarm probl~ems, i e ,  the formation of pattems which 
are solutions to difference equations. One practical advantage of 
executing tasks according to this type of pattern formation in swarms, 
is the privacy of the process, since the final global pattern and even 
the final local state is unknown to the uruts executing the task. The 
method developed in [2] for f o m n g  pattems in swarms was based on 
the asynchronous execution of a system of equations generated by a 
low order difference equation with a conservatlon condibon. The low 
order choice reflected the modeling of local relations, in the sprit of 
DRS problems In fact, DR’S’s are typically modeled as evolving via 
local relations. If the relationships were global, the requxement of 
decentralization would be weakened On the other hand, the locality 
of the relation is not as essential as the locahty of interaction (e.g., 
sensing can be long range, but actuation must be local) which is a 
defining property of a DRS. This will be discussed more clearly after 
the model of a linear swarm is introduced below. 

The defining property of the swarm requires that the task be 
synchronously executable, hence the system of equations solved 
asynchronously must be solvable synchronously as well. For this 
requirement, in the uniforni swarm considered in [2], all umts act 
identically, except one. This “symmetry breaking umt” is necessary 
because each unit corresponds to a linear equation and the conser- 
vation requirement provide’s another linear equation. Thus, together 
there are N + 1 equations and only N vanables where N is the 
number of units Therefore, one unit must be made ’inactive to 
elimnate one equation so that the system of equations can be solved 
simultaneously with the conservation conhtion. The main objective 
of this paper is to provide a rigorous proof of the conditions for 
convergence of the swarm models. A second objective is to generalize 
the notion of cyclic swarm model given in the next section. 

It is clear that the “asyn 
of a s w a m  pattem rec 
definition of a cyclic swarm, which describes the elementary act of 
an asynchronouslconservative mechanism o f  reconfiguring a pattern 
Cyclic swarms as defined above have also been investigated in 1161, 
where an external input was considered. 

A linear swarm defined below is a generalization of Definition - 
1 (variations from the “cyclic” swarm definition are underlined for 
clarity): 

Definition 2-Linear Swarm: A set 
1 ,2 , .  . . , M )  such that: 

* if Gk < --E then y k  

The generalizations introduced in part 2 pertain to 
relation, and, as noted, to the uniformity. Locality 

a system of hnear eq 
we are seeking an a 
a swarm (i.e., its rec 

executable subtasks. Hence, any asynchronous soluhon to the recon- 
figuration problem must have a synchronous counterpart. Therefore, 
the linear relation Gk and the conservation condition form a system of 

This scheme may not be as efficient as the standard relaxation al’gonthms 
for solving systems of linear equations However, this is not the objective of 
the linear swarm which is a model of pattern formation in DRS 
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linear equations that must have ,a synchronous solution. The algorithm 
for the asynchronous solution is discussed next. 

III. DISTRIBIJrED ASYNCHRONOUS 
BOUNDED (DAB)( ITERATIVE ALGORITHM 
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Mathematically, a swarm imlplements an iterative scheme for solv- 
ing a linear system of equations under asynchronous, distributed, and 
quantized-hence “bounded”--updating. In most physically relevant 
cases, the additional constraint of conservation is also included in the 
updating. Since rule 3 is a local, asynchronous and “quantized” ex- 
change of resources, we call th~e algorithm Distributed Asynchronous 
Bounded iteration algorithm, or briefly DAB. The DAB technique 
and the convergence analysis of the swarm are presented in the next 
two sections. 

Standard iterative schemes 1171 are either synchronous (Jacobian 
and JOR) or sequential with a fixed order (Gauss-Seidel and SOR). 
It can be shown that the Jacohian (simultaneous) and Gauss-Seidel 
(sequential) iteration schemes E onverge under the same condition that 
the matrix norm is less than one, even when the updating is done 
asynchronously (without time (delay) and randomly in each iteration. 
Difficulty in convergence arises when time delay is present. 

In the following, we formulate the DAB algorithm. Given a linear 
system of equations 

A y  = s (1) 

where A is an M x M nonsingular matrix and y and s are M x 1 
vectors. Without loss of generality, assuming nonvanishing diagonal 
elements a k k ,  (1) can be written into 

y = B y + c  (2) 

where 

The constraints on the swarms defined in Section 11 translate into the 
following constraints on the iterative method. 

1) Distributed Asynchronicity: The self-activation of a unit 
occurs according to its internal probability distribution, and 
it is totally independent of the probability distribution of self- 
activation of other units. 

Since each sites self-activates for updating 
at each iteration according to an internal probability distribution 
0 < p t )  5 1, any subset of sites may be updated at an iteration. 

Unlike Gauss-Seidel, SOR, Jacobian, or JOR 
iterative schemes, where one unit must wait for all the others 
to be activated before being allowed to self-activate again, 
the DAB scheme allows for independent (possibly parallel), 
asynchronous updating of each unit. Physically, the DAB 
scheme is an iterative scheme that does not requires centralized 
supervision of the asynchronous updating process throughout 
the system. Hence the DAB scheme can model a “distributed 
asynchronous” process. 

Consequence: 

Signijicance: 

2) Synchronicity: No time delay between interacting sites. 
Consequence: The resource values on the units partici- 

pating in the updating, for sensing, communicating andor 
transferring resources, must be available synchronously to those 
units. This limits the asynchronicity of the swarm. 

Mathematically this contrasts with models of 
asynchronous distributed computing, where the asynchronicity 
is in fact due to delays in interactions between the units [18]; 
physically, this restriction on asynchronicity is very plausible 

SigniJicance: 

for swarms, which are intended to model systems interacting 
locally. On a local scale, synchrony is easily realized; the 
implausibility of the “no-time delay” restriction scales directly 
with the range of the interaction. 

3) Resource Conservation: The total resource is a constant, 
i.e., y k  = N .  

Consequence: This requires that if a unit is to increase its 
value by one, it must decrease the value of another unit by one, 
and vice versa. Note that yk may be allowed to be both positive 
and negative with a negative value indicating an unsatwfied 
request for resource. Alternatively, it may be enforced that yk 
be positive at all time, e.g., if a site attempts to increase by one 
and the value of its immediate neighbor is zero, the increment 
will not occur. In this case, convergence is possible only for a 
system which has a solution with positive values at all sites. 

SigniJcance: Mathematically, conservation comp1icatt:s the 
problem. The conserved resource is a global variable that 
controls the overall pattern. Physically, conservation is a very 
common occurrence since most real systems have finite total 
resources. 

A swann unit can deal with a finite 
number of resource quanta at a time. 

The resource value at a site can only increase 
or decrease by a discrete bounded amount at each update. 
Therefore, an exact solution with lgkJ = 0 may not be 
achieved and convergence should be considered as achieved 
when lgkl < E (in what follows we let E = 1). 

Mathematically this constraint does not re- 
duce the generality of the algorithm, but it is physically 
significant since it models realistically the fact that any physical 
system, e.g. a swarm unit, has bounds on the amount of 
resources that it can deal with. Standard iterative algorithms 
do not consider this physical restriction and allow for arbitrary 
update values. 

The previous four constraints can be cast mathematically as the 
following iterative scheme. Define 

4) Bounded Quantization: 

Consequence 

SigniJcance: 

(3) 
3 

The updating rule at two neighboring sites of the swarms is formu- 
lated as follows: 

where 

(6)  
1, i f z > O  1, i f z > O  

-1, if z < 0 sgn(z) = 

Equation (4) is referred to as the active updating rule, and (5) the 
passive updating rule. Each unit updates itself according to the active 
updating rule and updates the nearest neighbor according I O  the 
passive updating rule. Hence, the last unit (i.e., the symmetry break- 
ing unit) is only passively updated, to implement the conservation 
constraint. 

The above updating rule can be cast into a relaxation 

y ( z + l )  = B ( i ) y ( l )  + 4 i )  

where 

B ( i )  =: diag(w(”)B + (I - diag(w(‘)) 

c ( i )  =: diag(w(”)c. 
and 

ormulalion as 

(7) 
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diag(w(") in (8) consists of the variable relaxation parameters U( ' ) .  

Relaxation methods with vanable w has' been considered in the 
literature [17]. But w is the same for all vanables in a single iteration. 
In the formulation of our scheme, the vanable relaxation parameter is 
different for each vanable in the same iteration. Therefore, we have a 
vector U ( ' )  which can be found for each iteration from the updating 
rules in (4) and (5) 

On the surface, the DAB iteration (8) appears now as a discrete 
time-variant linear dynamic system. The problem of convergence of 
the DAB equation becomes the problem of finding the asymptotic 
fixed point of the time-vanant linear dynamc system in (8). However, 
the state transition matnx B(z) and the vector c(2) are nonlinear 
functions of the states A convergence proof of the swarm using 
updating rules in (4) and (5) is given below. 

where 

sgn(g(")) = [sgn ( g y  

By the definition of sw 

no updating takes pl 

I E ( ~ ) ~ ~ ~ ~  2 A, at the zth iteration. Since 

In this section, we provide a sufficient condihon for the conver- 
gence of DAB Also, methods to reduce the error of the converged 

and convergence speed for a special class of swarms are also 
investigated We first find /the convergence condition without the 
conservation constraint. 

A DAB Without Conservation 

therefore, if 

solution to the true solution are dwussed. The convergence condition (16) 

then &) 2 From (l 

(17) 

Therefore, if (16) is true 
If the conservation constraint is removed, there is no passive 

updating. That is, resources must be requested or dispensed at each 
site, there is no passing between sites. We prove the following 
theorem: 

Theorem 1 .  If the matnx norm 5 = l/Bllo. = m a x l s k t M  
E,"=, ibk31 < 1 and the probability of each site being selected 
for updating is nonzero, i.e., 0 < p t )  5 1 for all 7~ in P 
bj"', pi"', . . . p G l T  the DAB algonthm without conservation con- 
verges to the vicinity of the true solution of (2). After convergence, 
the maximum error is bounded by 

if the site with the maximum error is selected for updating and 
k(')Imax 2 A, its m a g ~ t u d e w i l l  be reduced by 1. 

' 

From (15)3 we that if 

E;) - > -1 (19) 

where y; is the true solution Convergence here means (9) is satisfied 
for all iterations after the nth iteration 

Remark The convergence condition in t h s  theorem is essentially 
identical with the standard iteration methods [16] The differences 
are in the asynchronicity of updating, and in the need of adaptation 
to bounded updating The theorem can be easily adapted to any 
quantized updating, i e ,  the updating term -sgn(gt))S(lgt)l - 1) 
in (4) and (5) can be replaced by -aksgn(gt))S(lg;)I - .Ok) where 
cuk and /3k are any positive real numbers 

Let the true solution vector be y* 

y* = By" + c.  (10) 

( 

gt) > -1. Then, either (18) is 

Therefore, the only case where the magnitud 
by 1 is when 

The error at a site where (21) is true satisfies t 
even with an increase of 1 

nequality 

(22) 

Next, consider E;)  < 0 Similar to (15), we 

Rewrite (10) as 

c = y* - By*. 

Define the error vector Simiiar analysis shows that the 'same c 
case hold for the ~ t )  < 0 case. 

Combining (18), (20), and (22), 
Id2) lmaX is selected for updating, we have 

(12) the site with the maximum error 
Y* ,(a) - - p - 

and substitute (1 1) into the expression of g ( ' ) ,  we have 

(13) l m a x  < I,(%) l m a x  g(t) - - y(t) - By(z) - y* + By* = - BE(Z) .  

Therefore, 
Since updatsng is asynchronous, at an 

y* - (g( ' )  (lg") 1 - maximum error may not be selected for 
the maximum error will stay the same, 

E ( z + I )  - y("+l) - y* = y(4 - - 

- - E ( ' )  - s g n ( ~ ' ~ )  - B E ( ~ ) ) S ( I ~ ( ~ )  I - 1) (14) 
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Therefore, if all sites have a nonzero probability of being selected for 
updating and IdZ)lmax 2 A, the maximum error will be reduced 
to below the bound after a sufficient number of iterations. Thus, the 
convergence is proved. 

That 1/(1 - 6) is actually ai bound for the maximum error after 
convergence can also be shown in another way. Consider the site with 
the maximum error Idn) Imax after convergence, i.e., after 1gr '  1 < 1 
is reached for all sites. Assume I E ( ~ ) ~ ~ ~ ~  occurs at site 1, then 

3=1  

Therefore, we have 

0 
This shows that the smaller the 6, the smaller the error bound. This 

is observed in the simulation. After the maximum error gets within 
the bound 1/(1 - 6), the maximum error may or may not further 
decrease, it may also oscillate within the bound. If the errors are 
reduced to (~( ,z) l  5 Id2)lmax :s $, all updating will definitely stop 
since necessarily Igt'l < 1 foir all sites as shown below: 

3 = 1  

Note that the condition for {convergence in the theorem is only 
a sufficient condition. Also, ithe error bound is loose due to the 
amplification used in deriving the inequalities in (15) and (25). In 
actual implementation, we observed that the error is often much 
smaller than the bound. In cases where the accuracy is insufficient 
since no updating takes place after lgt)  I < 1, the deficiency can be 
overcome by a scaling method shown below. 

Observe that if y* is a solution to (2), then y' = ay* is a-solution 
to 

y := By + ac. (28) 

If we apply our iteration scheme to (28), by Theorem 1, the error 
bound is 

Therefore 

By choosing a >> 1, an arbiltrarily accurate solution can be found 
for the original equation. The accuracy can also be improved by 
replacing the updating term - -sgn(g t ) )S( lg t ) (  - 1) in (4) and ( 5 )  
with -aksgn(gt ')S(l(gr))I  -- Pk) using small positive a k  and P k .  

These two methods can also be applied to the updating scheme with 
conservation constraint discussed in the next section. 

B. DAB with Conservation 
The theorem proved above assumes no conservation constraint, 

i.e., each site increases or decreases its value independently. If the 
conservation constraint is imposed, then passive updating will be 
present. Also, the last site can only be passively updated to implement 
the conservation constraint, or in other words, to break the symmetry. 

Once the conservation constraint is imposed by passive updating, 
general conditions of convergence with asynchronous updating are 

difficult to prove. Convergence conditions may be found if the 
updatings are not totally asynchronous. For asynchronous oper(ation 
of the swarm, we prove a convergence theorem under restrictive 
conditions for the DAB algorithm with the conservation constraint. 

Theorem 2: In the DAB algorithm with conservation conslraint 
C;l"=, yt) = N imposed by passive updating, if the restricted matrix 
norm 6 = maxlsksM-1 E,=, Jbk31 < 1, and the probability being 
selected for active updating is nonzero for sites where le(,z)l > 
61d') l m a x -  1 and zero for sites where ( E ; )  I 5 61d') l m a X  - 1, then the 
total absolute error defined as 1d2)I = cEl I E ~ ) I  is nonincreasing 
at each iteration, andl is guaranteed to decreases as the number of 
iterations increases. 

Proo$ From the proof of theorem 1 (see (19)), if the conditions 
in Theorem 2 are satisfied, active updatings will always reduce the 
magnitude of the errors. A passive updating may increase the error 
since it is not based on the reduction of the error at the site being 
passively updated. This is like transporting an error at one site to 
the next site. It may also decrease the error if the errors at the two 
neighboring sites e t )  and &til have the same sign. This latter case is 
not of concern. In the worst case, the passive updating increases the 
magnitude of the error by 1 at a neighboring site. However, since the 
magnitude of the error is reduced by 1 at the site of the corresporiding 
active updating, in the worst case, we have 

M 

(E (2+1)  I I I,(%)) (31) 

since 
M M M 

E:) I= cy: - cy,) = N - N = 0 (32) 

is always true for all i ,  at every iteration, there must be neighboring 
sites whose errors are of opposite signs such that both the active 
updating and the passive updating reduce the magnitude of Error. 
Therefore, I,(') I will be reduced as the number of iterations increases 

0 
The condition that only sites with I E ; ) ~  > 6lc('))lmaX - 1 have a 

nonzero probability of being selected for active updating guarantees 
that if a site is actively updated, the magnitude of error is reduced 
by 1. However, this condition is not satisfied in our implementation. 
Convergence is almost always observed in the simulation if 6 < 1. 
A general proof of convergence in this case is yet to be found. 

The convergence time with conservation constraint is normally 
significantly longer than the case without the conservation cons1 raint, 
depending on the initial error distribution. This is because errlors at 
one site may need to be transported over a number of sites to be 
canceled by errors with an opposite sign at other sites. The relative 
relations of the initial errors play an important role in determining 
the convergence time. Recall that the two methods mentioned in the 
last section may be applied here as well to achieve a better accuracy. 

k=l k = l  k=l 

and the theorem is proved. 

v. SIMULATION RESULTS 

In this section, we present some simulation examples to illustrate 
the results of the ]previous sections. All examples are with the 
conservation constraint. The equation we consider is the following: 

(33) 
1 

Y k  = &-%+a + 2 Y k + l ) .  

Equation (33) is the finite difference equation (with forward dif- 
ference) corresponding to the following second order differential 
equation: 

(34) 
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The number of sites M used is 4 in the three examples below. 
Only examples with four sites are presented for easy illustration. 
We have tested the algorithms with up to 100 sites. Simlar results 
are observed confirming the analysis in the previous sechons. The 
convergence time is counted as the number of active-passive updating 
pars  performed. In the simulation, only one site is randomly selected 
for active updating at each iteration, that is, p t )  = 1/M for all sites 
and all iterations. In a true parallel implementation, more than one 
site can self-activate for updating simultaneously. 

C = -10 When C = -10, S = 0.3. Since M = 4, 
there we three equations in the form of (33) and one conservation 
equation. Let N = 100 Choose initial distnbution as 

Example 1 

y y  0, y y  = 10, y p  = -10, y p  = 100. 

The accurate solution is 

9; = -5.485714285714285715, 

5 / :  = -23.08571428571428572, 

y; = 15.88571428571428571, 

y: = 112.6857142857142857. 

After 37 active-passive updates, the system converges to 

yi = -5, yz = 16, 1 ~ 3  = -22, y4 = 111. 

The maximum initial error is at site 3 equahng to 13.09 The 
convergence time is approximately 37/13 09 = 2.83 tmes the 
maximum initial error 

194 I is not shown since it corresponds to the conservation constraint 
which is not used in the iteration and is always satisfied by design. 

Example 2. C = -5. When C = -5.0, 6 = 0.6. Let N = 100 
The initial Qstribution is the same as Example 1: 

The 1gk/’s are 1gil = 0.1, 1921 = 0 5, ]g31 = 0.4 

The accurate solution is 

y; = -35, y; = 55, y; = -65, ya = 145. 

Since the probability for updating and the range of interachon remain 
the same with Example I, we mtmpate that the convergence time 
should also be about 2.83 times the maxmum imtial error. The 
maximum initial error in this case is 55. Therefore, the convergence 
time should be about 2.83 x 55 = 155 iterations. In expenment, 
convergence is achieved after 148 active-passive updates. The system 
converges to 

y1 = -35, yz = 54, 2/3 = -63, ~4 = 144. 

The I g k / ’ s  are: 1911 = 0.4, 1g21 = 0.6, jg3) = 0.6. 

100. The accurate solution is 

y; = 95.59214020180562932, 

yz = 47.26500265533722783, 

After over 5000 active-passive updates, the system did not converge 
and the errors are oscillating. This shows that when 6 > 1, the method 
may not converge However, 6 < 1 is not a necessary condition, and 
we have observed convergence for S > 1 

VI CONCLUSION 
As stated in the introduction, our m a n  objective was to make a 

ngorous analysis of swarm behavior, motivated by the indication [16] 
that cyclic swarms can reconfigure asynchronously to new patterns via 
a process that converges under rather general conhtions. The analysis 
carried out in this paper confirms this observation. A sufficient con- 
dition is proved for the convergence of a more general linear swarm 

Example 3: C = -1.6 When C = -1.6, S = 1.87. Let N = 

y; = -52.84121083377588954, 

y: = 9.984067976633032396. 

model to its synchronous configuration 
&e swann would achieve if it were to 
physical interpretation of the convergen 
swarm-converges to its synchronous so 
coupling of a unit to its connected neighbors is relatively “weak ” 

configuration that 
nchronously). The 
n 5 < 1 is that the 
ut not only if) the 
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