
State merging and state splitting via state 
assignment: a new FSM synthesis algorithm 

M.J. Avedillo 
J.M. Quintana 
J.L. Huertas 

Indexing terms: FSM synthesis, State assignment, State reduction, Design automation 

Abstract: In the paper the authors describe a state 
assignment algorithm for FSMs which produces 
an assignment of non-necessarily distinct, and 
eventually, incompletely specified codes. In this 
new approach, state reduction and state assign- 
ment are dealt with concurrently, and a restricted 
state splitting technique is explored. The algo- 
rithm is particularly appropriate for machines 
with compatibility relations among its states 
because the potentials of state merging are 
exploited during the state assignment step. The 
input to SMAS, the program implementing the 
algorithm, is a symbolic cover of the FSM. The 
output is a Boolean representation of both next 
state and output functions suitable to minimise 
with ESPRESSO. The machines in the MCNC 
benchmark set are used to test the new algorithm 
and to compare it with a well known state assign- 
ment program. 

1 Introduction 

Computer-aided synthesis of sequential circuits is an 
active area of research as many modern CAD VLSI 
systems treat the control unit of the designed circuit as a 
finite state machine (FSM) realised with some regular 
structure. Two main problems encountered in the 
optimal synthesis of a sequential circuit are the mini- 
misation of the number of the machine’s internal states 
and their assignment. The optimal solution to each of 
these problems is very complex and, classically, they have 
received independent treatment. State reduction of com- 
pletely specified FSM can be achieved in O(n log n) steps 
[l] whereas state minimisation of incompletely specified 
FSM is already NP-complete [2]. This means that most 
probably there will never be an algorithm of less than 
exponential complexity and therefore heuristic techniques 
must be used. This problem has received renewed atten- 
tion in the past few years and very efficient approaches 
have been developed to cope with it [3-51. In order to 
realise the behaviour of a sequential machine it is neces- 
sary to represent the states by binary sequences. The 
complexity of the required circuits often strongly depends 

0 IEE, 1994 
Paper 1228E (C2, E3), first received 26th July 1993 and in revised form 
22nd February 1994 
The authors are with the Departamento de Diseiio Anal6gico, Centro 
Nacional de Microelectronica, Edii CICA, Avd. Reina Mercedes s/n, 
41012 - Sevilla, Spain and the Departamento de Electrbnica y Electro- 
magnetimo, Universidad de W l a  

IEE hac.-Cornput. Digit. Tech., Vol. 141, No. 4, July 1994 

on the binary encoding chosen. The problem of assigning 
a binary representation to the control states is referred to 
as state assignment or state encoding. There are many 
approaches for solving this problem, the heuristic ones 
being the most promising [6]. It is well known that state 
reduction and state assignment are intimately related. 
Reducing the number of states corresponds to decreasing 
the number of transitions of the sequencing functions and 
eventually to reducing the number of prime implicants in 
a minimal Boolean cover of a two-level logic realisation 
or reducing the number of literals in a multilevel one. 
Moreover, a reduction of the number of states may 
correspond to a reduction of the number of bits that are 
needed for the state encoding. Consequently, the first 
phase in a traditional design system has been to obtain a 
minimal FSM and the second one its optimal design. 

More recently, it has been stated that the classical 
assumption of considering each problem in a separated 
way is no longer valid for modern technologies [7]. The 
recommendation [7] is not to seek an FSM with the 
minimum number of states but to replace the stages of 
state minimisation and state assignment with one stage of 
joint minimisation and state assignment. The previously 
mentioned work describes an approach based on parti- 
tion theory in which the classical constraint of state 
assignment using partitions (the product partition is the 
zero partition) is removed. The method has important 
limitations like the treatment of incompletely specified 
machines. In Reference 8 a state assignment algorithm 
using the degree of freedom that two or more equivalent 
states can be given the same code is sketched. Also, the 
need for a more general transformation of the FSM 
aimed at obtaining an equivalent machine that is easier 
to build has been pointed out [SI. 

In this paper, a novel approach to the concurrent state 
minimisation and state assignment is described. A 
restricted state splitting technique is also explored. The 
need for state splitting for optimal state assignment was 
pointed out as early as the 1960s. In Reference 10 state 
splitting is introduced to increase the possibilities of 
finding good assignments. Reference 11 relates the exist- 
ence of a type of sequentially redundant faults with the 
use of state assignment algorithms which do not take 
into account state splitting. 

2 Preliminaries 

2.1 Background 
For the sake of completeness some basic concepts in 
FSM synthesis will be briefly reviewed in this Section 
[12, 131. An FSM can be formally defined as a quintuple 
M = (I, S, 0, 6, A) where I is a finite set of inputs, S is a 

229 



finite, non-empty set of states, 0 is a finite set of outputs, 
6:f x S-+S is the next state function, and 
1: f x S + O(k S + 0) is the output function for a Mealy 
(Moore) machine. Either of these functions may be 
incompletely specified (i.e. the value of the function need 
not be defined for all possible inputs). We can represent 
any deterministic sequential function with this model. 
The FSM can be separated into two components: a com- 
binational circuit and a memory. The memory stores the 
(binary) representation of the FSM state throughout 
computation whereas the combinational circuit generates 
machineoutput andnext state representation as a func- 
tion of the inputs and the present state. 

Two internal states, Si and S,, of a machine M are 
compatible if and only if, for every input sequence applic- 
able to both Si and S,, the same output sequence will be 
produced whenever both outputs are specified regardless 
of whether the initial state is Si or S,. A compatibility 
class or compatible C, is a set of states such that 
members of the set are pairwise compatible. If there is an 
input such that S, is the next state of Si and SI is the next 
state of S, and ( S k ,  SJ # (Si, S,) then we say that ( S k ,  SI) 
is implied by (Si, S,). A set of compatibles covers all states 
of a state table if every state is contained in at least one 
compatible in the set. A set of compatibles is closed if for 
each compatibility class in it, Ci = {Sil, S,,, . .., Sh} and 
any input i,, the set {6(ik, Sil), 6(ik, Siz), ..., 6(ik,  Si,,,)} is 
contained in at least one compatible of the collection. A 
fundamental theorem states that, given an incompletely 
specified state table, another state table specifying the 
same external behaviour corresponds to each closed set 
of compatibility classes which covers all internal states of 
the given table [14]. 

2.1 Previous examples 
In th is  Section two simple examples are given. Both 
examples will illustrate several useful considerations. The 
first example shows a way of assigning the machine’s 
states which is equivalent to the assignment of the pre- 
viously reduced machine. The second describes a way of 
assigning the states which is equivalent to the assignment 
of the machine after having split some states. The use of 
D type memory elements is assumed in both examples. 

Example I: Fig. la depicts the state table of an FSM. 
The closed covering and the reduced state table obtained 
by the application of a state reduction algorithm to the 
symbolic description in Fig. l a  are shown in Fig. lb. Fig. 
le depicts the state transition table and the state encod- 
ing. This result can also be reached assigning the same 
code to states s1 and s2, and to the state s, and s5 in the 
original machine. Fig. 2 shows the transition table. Note 
that there are input-present state combinations which 
belong both to the DC-set and ON-set (OFF-set) of one 
or several next state and/or output functions. There is no 
input-present state combination belonging simultan- 
eously to the ON-set and to the OFF-set. Specifying 
those combinations simultaneously in the DC-set and 
ON-set (OFF-set) as part of the ON-set (OFF-set), the 
transition table in Fig. 2 becomes identical to the one in 
Fig. le that was obtained with the conventional two step 
synthesis approach: state reduction and state assignment. 

Example 2: The state table of another FSM is shown in 
Fig. 3a. An encoding Fig. 3b, the transition table Fig. 3c 
and the excitation and output functions requiring five 
product terms Fig. 3d are also shown. 

230 

We can split the state s3 into two states called si and 
d’ with 

6(x, s;) = 6(x, s;) = 6(x, s3) 

qx, si) = qx, s;) = A(x, s3) 
and 

00 
X P 2  

01 1 1  10 

SZI 0 
s l .  0 
s l ,  1 
s-, - 
s-, - 

a 

XIX2 
00 01 1 1  

NS. z 
b 

s3, - 
s-, 0 
s-. 0 
s2. - 
S, .  1 - 

10 

s2. 0 
s-, 0 
s,, 1 

10 

0 0 m  01 
1 1  

Y1YZ.Z 
C 

Fig. 1 
NS: next state, z: output 
a state table 
b closed covering C and reduced state table 
e state assignment and transition tabk 

FSM design with state reduction 

XIX2 
y , y z  00 01 1 1  10 

s, -00 00 
sz-rOO 00 
s, + 01 01 
se-11 1 1  
s p 1 1  1 1  

01, - 
--, 0 
--, 0 
00. - 
00.1 

a Y , Y z . z  
b 

Fig. 2 
a state assignment 
b transition tabk 

FSM assignment with repeated codes 

for each input value (x = 0 and x = 1). Fig. 4a shows the 
resulting state table. Both si and s’; appear in those cells 
corresponding to input-present state combinations with 
s3 as next state in the original description (Fig. 34. This 
means that any of them can be used to describe the 
behaviour of the machine. The state transition for the 
encoding of Fig. 4b is depicted in Fig. 4c. Excitations and 
output functions (Fig. 4d) requires only four product 
terms. The logic minimiser takes advantage of the extra 
degree of freedom introduced by the state splitting. That 
is, choosing 6(0, 00) = 10 and 41, 00) = 11 produces a 
cheaper implementation. 

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 



The above examples illustrate the state reduction and 
state assignment can be dealt with concurrently and 

X 

0 1 

S2 

s3 s,.o s,.o 

NS, z 
a 

s, -00 
s, - 01 
s,-10 

b 

X 

Y1Y2 0 1 

01 
1 1  
10 00.0 01.0 

Y , Y , , z  
C 

Y, =V,fz 
Y , = w ,  +XY, 
z =X'Yz +M,VZ 

d 
Fig. 3 Example 2 
(I stale table c transition table 
b state assignment d excitation and output fundions 

X 

0 1 

NS. z 
a 

s, -00 
s, -+ 01 
s;+11 
s;-10 

b 

X 

Y1Y2 0 1 

01 
1 1  01.0 

Y,Y , . z  
C 

y ,  =Y\Vz 
Y ,  = x  
2 =x'Y;Yz +wV;v, 

d 

Fig. 4 
a split stale table c transition table 
b state assignmm1 d excitation and output functions 

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 

points out the convenience of considering state splitting 
in the context of optimal synthesis of FSMs. 

3 

Let us briefly show how the goals of state reduction and 
state splitting are achieved by a coding process which 
allows a single code to be assigned to a group of states 
and the use of incompletely specified codes. 

Assigning a single code to a group of states is equiva- 
lent to the transformation of the FSM description by the 
substitution of a group of states with one single state 
(state reduction) and the assignment of this internal state 
in the new description. From classical state reduction 
theory we know that the states which are merged into 
one state must be compatible and closure constraints 
must be satisfied [12, 141. These conditions are used as 
constraints in our encoding process. That is, the state 
reduction is achieved during the assignment process. 

Assigning an incompletely specified code [13] (group 
of codes) to a single state is equivalent to the transform- 
ation of the FSM symbolic description consisting in the 
substitution of a single state by a group of states (state 
splitting) and the assignment of this new description. 
There are two reasons for allowing incompletely specified 
codes as follows. 

(1) It is important to cope with the concurrent state 
reduction and state assignment of incompletely specified 
FSMs. In general, for these machines, a closed set of 
compatibles covering a state table (solution to the classic 
state reduction phase) is not disjoint. A non-disjoint 
gathering of states cannot be achieved via state assign- 
ment if incompletely specified codes are not allowed. 
Thus, concurrent state reduction and state assignment 
would fail to reach a part of the space of solutions, so 
precluding the possibility of finding some efficient ones. 

(2) The Boolean cover of the machine which is sup- 
plied to the logic minimiser can have extra flexibility in 
this way, because some next state entries have been sub- 
stituted by a group of states. The minimiser can take 
advantage of this by choosing each time the best state of 
the group to achieve minimisation. In Reference 15 it is 
reported that allowing 'don't care' bits in a state assign- 
ment often results in a significant reduction of the com- 
binational component. 

Nevertheless, this state splitting is restricted, because 
the codes assigned to the set of states resulting from the 
splitting of an original one are constrained to form a 
cube. 

Rationale of the new approach 

3.1 Basic definitions 
In order to formalise the above ideas, several definitions 
are introduced. 

Definition 1: Let ai and bi be two variables which can 
take the logic values: 0, 1, and unspecified ("). The inter- 
section operator n is defined according to following 
table. 

ai 
n O  1 -  

231 



Definition 2:  Let C(S,)  = (yl . . . y ,,,) and C(S,) = 
(v2, . . . yzJ be the codes of the states S, and S , ,  respect- 
ively. Assume each y i j  can be logic 0, logic 1 or be, 
unspecified. The intersection of the codes C(S,) and 
C(S,), C(S,) n C(S,) = C, = (c,, . . . c,-,,,), is defined as 

c,, = y , ,  n yZj 1 C j  d n 
i f 3 j l c n , = 0  thenC,=@ 

The meaning of C ,  = 0 is that the set of binary codes 
assigned to S, and the codes assigned to S, have no 
common elements. 

Definition 3:  Two states S, and S ,  have compatible 
assignments if the intersection of their codes, C(S,) n 
C(S,), is not empty. 

For example, assume the state S, has been given the 
code (001-) and the state S, the code (0010). S, and S, 
have compatible assignments because (001-) n (0010) = 
(0010). Identical assignments is a particular case of com- 
patible assignments when the codes of both states are 
completely specified. 

DeJinition 4 ;  Two states have discriminated assignments 
if the intersection of their codes is empty. 

Definition 5 :  Given an FSM, an encoding of its states is 
valid if the encoded machine and the symbolic descrip- 
tion are equivalent; that is, the derived logic implements 
the desired behaviour. 

Our assignment process is equivalent to both the trans- 
formation of the symbolic description of the FSM and to 
the assignment of this new description. Some constraints 
need to be imposed on the encoding so that the behav- 
iour of the machine is not changed by the state reduction 
achieved concurrently with the assignment. Translating 
the concepts of symbolic state reduction theory to the 
state assignment context and using Delinitions 1 to 5, it 
can be stated that in order to guarantee that an encoding 
is valid the following constraints must be satisfied. 

(1) A pair of states with compatible assignments must 
be compatible states or, a pair of incompatible states 
must be given discriminated assignments. 

(2) For each input, the pairs of states which are 
implied by a pair of states with compatible assignments 
must also have compatible assignments or, the pairs of 
states which imply a pair of states with discriminated 
assignments must also be given discriminated assign- 
ments. 

3 2  New state assignment problem formulation 
Classically the optimal state assignment problem is for- 
mulated as 

‘Obtain a distinct single binary code for each state 
of the FSM so that given design constraints are satis- 
fied’. 

Typical design constraints are that the circuit must be 
constructed with a minimal amount of logic or that 
circuit can be built from an interconnection of smaller 
subcircuits to obtain superior performance, or that it can 
be easily testable. Most of the state assignment algo- 
rithms aim to minimise the area of an implementation of 
the combinational component assuming a predetermined 
design style (two level, multilevel). 

However since a unique code, different from the codes 
of all other states, must be assigned to each state, the 

232 

state assignment is only free to encode the states in such 
a way that a minimal area implementation of a given 
state transition graph (STG) is obtained. The problem we 
propose to solve is more general in the sense that a 
minimal area implementation of an FSM is sought. As 
many STGs can implement the same functionality, our 
approach enlarges the search space compared with clas- 
sical techniques. 

Transformations of the STG like state splitting and 
state merging are made concurrently with the binary 
encoding instead of in a separate synthesis step (state 
reduction) as in conventional design procedures. In this 
way the STG transformation is guided by more realistic 
criteria than the ones used in symbolic STG manipula- 
tions. 

The problem we propose to solve can be stated as 

‘Obtain a valid assignment of the states of the FSM 
leading to a minimal area implementation of the 
machine’. 

4 The algorithm 

Given a state table describing the external behaviour of 
an FSM, a valid binary representation is built up by 
exploring both the potentials of state merging and state 
splitting. Given ns internal states in the symbolic descrip- 
tion, we assume that ns x nb bits are going to be assigned 
to a value from the set {0, 1, -}, where nb is the number 
of bits of the generated codes, and so it is unknown until 
the algorithm has finished the assignment process. 

Fig. 5 shows a Pidgin-C description of the algorithm. 

SMAS (T) 
f 

Discriminated-irs = 0; 
Identicaljmin = 0; 
lmplied-bv_identicalRai~ = /a; 
Compulsory_discriminationjmirs =pairs of incompatible states; 
nb = nb, = Initial-length(); 
Sinit=s,; 
while ( Compulsory_discriminationjmin ! = (0) ) 
} (s, , s,) = Selectgair(Compu/so~~discriminationjmin); 

Discriminategsir(s,, s,); 
Update-structures() ; 

} 
} 

DiscriminattmJJair(s,, s,) 
{ Candidate-assignments = Explore-codes (s, , S,); 

if ( Candidate-assignments I ={/a} ) 
{ for (each assignment E Candidate-assignments) 

{ Evaluate-cost (assignment) ; 
} 
selects minimum cost assignment; 

1 
else 
{ lncrease_code_length(); 

Discriminatepair(s, , s,); 
} 

} 

Fig. 6 Algorithm’s description @setdocode) 

Initially the codes of all the states are completely unspeci- 
fied, the algorithm assigns bits to 0 or 1 until the assign- 
ment is valid according to conditions 1 and 2 stated in 
Section 3.1. In order to describe how the algorithm 
works, we introduce the concept of pair of compulsory 
discrimination. 

IEE Proc.-Cmput. Digit. Tech., Vol. 141, No. 4, July I994 



DeJnition 6: Two states form a pair of compulsory dis- 
crimination if they cannot have compatible assignments. 

Incompatible states, and those pairs which imply a pair 
with discriminated assignments, are pairs of compulsory 
discrimination. 

First we explain the meaning of the data structures. 
The list of state pairs with discriminated assignments 
is stored in Discriminated-pairs (DP); the list of state 
pairs with identical assignments in Identical-pairs (IP); 
the list of state pairs which are implied by at least 
another pair of states with identical assignments in 
Implied-by-identical-pairs (IIP) and the list of state pairs 
which must have discriminated assignments in 
Compulsory-discrimination-pairs (CDP). 

The algorithm starts initialising the above lists. The 
lists DP, IP, IIP are empty. The list CDP is initialised to 
the set of pairs of incompatible states. 

The initial length of the codes, nb,, is determined. 
Since our state assignment algorithm allows state 
merging and state splitting the length of the resulting 
encoding is not known beforehand. We start with the 
number of bits needed to encode as many states as there 
are in the maximal incompatible of highest cardinality. 
Afterwards, the length of the codes will be increased by 
one bit each time the intermediate assignment cannot be 
turned into a valid one with the current number of bits in 
the encoding. To finish the initialisation block, the first 
state in the symbolic description, SI, is selected to have 
nb, bits assigned to 0. 

The basic operation in the process is the discrimi- 
nation of a compulsory discrimination pair 
(Discriminate-pair). This operation is repeated until the 
list CDP is empty. The pair (Si, Si) to be discriminated 
next is selected according to a heuristic criteria which will 
be explained later. 

Procedure Discriminate-pair assigns a single bit of the 
code of the states Si and/or Sj  so that these two states 
have discriminated assignments. To achieve the discrim- 
ination, 6rst all legal bit assignments leading to the dis- 
crimination of S, and Si are enumerated. Function 
Explore-codes stores them in Candidate-assignments. 

A bit assignment is not legal if any of the following 
situations arises: 

(a) there is at least a state pair (S,, Sk), m = i, j; k # m, 
which now have identical assignments but it belongs to 
CDP; 

(b) there is at least a state pair (S,, S&, m = i, j; k # m, 
which now have discriminated assignments but it belongs 
to IIP. 
If either (a) or (b) occurs, the number of bits will have to 
be increased before a valid encoding is reached. It is 
important to point out that legal bit assignment does not 
mean that there is guarantee of the existence of a valid 
encoding with current code length. However, trying to 
discriminate a given pair using legal bit assignments 
helps in keeping the code length short and has proven to 
give good results. The lists IP and IIP are used to easy 
and efficiently detect that a given bit assignment is not 
legal. 

Next, a cost function for each member of 
Candidate-assignments is evaluated and the one which 
minimises it is selected. Finally, if Candidate-assignments 
is empty, the function Increase-code-length adds one 
new state variable. Since the code of every state has the 
new bit unspecified, there is no state pair with identical 
codes and so the lists Identicallpairs and 
Implied-by-identical-pairs are emptied. 

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 

Procedure Update-structures updates lists DP, IP, IIP 
and CDP. For example, to update CDP we remove from 
it those pairs which have been discriminated and add 
those implying other pairs just discriminated. Fig. 6 sum- 
marises the update procedure. 

Update of data structures: Update-structures 

Let (s i ,  s i )  be the discriminated pair. 

+ on list Discrirninated-pairs: 
(1) Addition of (s i .s i ) .  

(2) Addition of pairs (si. s k )  or (si, s,.), with k # i, k # j ,  whose 
assignments have been discriminated as a consequence of 
assigning a bit of si and/or s i .  

+ on list Identical>irs: 

(1) Addition of pairs (st, s k )  or (s i ,  se), with k # i. k # j .  whose 
assignments are identical as a consequence of assigning a 
bit of si and/or s i .  

+ on list Irnpli~-by_identiwlgairs: 

(1) Addition of pairs implied by (si. s k )  or (s i ,  s k ) .  with k # i ,  
k # j .  whose assignments are identical as a consequence of 
assigning a bit of si and/or si. The implication concept is 
applied recursively. 

--t on list Cornpulso~-discrirnination-pai~: 

(1) Elimination of (s i ,s i ) .  

(2) Elimination of t h m  pairs (s,, sk)  or (s i ,  s,.), with k # i ,  
k # j ,  whose assignments have been discriminated as a con- 
sequence of assigning a bit of s, and/or si. 

(3) Addition of pairs (s,,, s,) implying any pair (s i ,  s,.) or (si, 
s k ) ,  whose assignments have been discriminated as a conse- 
quence of assigning a bit of s, and/or s i .  The implication 
concept is applied recursively. 

Update of data structures cflfer having discriminated the pair Fig. 6 
(Si. Sj )  

Finally, we demonstrate that a state assignment 
derived with this algorithm is valid according to condi- 
tions stated in Section 3.1. 

Theorem 1: Given an FSM, an encoding of its states 
derived with previous algorithm is a valid assignment. 

Proof: 
(a) Suppose it is not a valid assignment because there 

are pairs with compatible assignments which are no com- 
patible states. This would mean an incompatible pair has 
not been discriminated yet and so the list of pairs of com- 
pulsory discrimination would not be empty as it is the 
condition for the process to finish. 

(b) Suppose it is not a legal assignment because there 
are pairs which have compatible codes but they imply 
pairs with discriminated assignments. This is not possible 
because when discriminating those implied pairs, the 
implying pairs would have been added to the list of pairs 
of compulsory discrimination (see Fig. 6). 

4.1 

It is worth noting that the straight application of our 
algorithm does not guarantee that the length of the codes 
is a minimum. However, several heuristics have been 
developed in order to achieve efficient assignments. For 
example, the order in which pairs of states are discrimin- 
ated and the cost function are critical. Very efficient order 
strategies have been introduced so that codes longer than 
minimum ones are not usually generated. Moreover, the 

Considerations about order strategies and cost 
function 

233 



potential of state merging leads, in some cases, to assign- 
ments with a number of state variables which is less than 
the minimum needed to code the number of states in the 
initial symbolic description. The number of pairs in CDP 
each state belongs to is evaluated. For state Si this 
number is referred to as Ind (Si). Each state pair (Si, Si) in 
CDP has associated an index equal to the sum of Ind (Si) 
and Ind (Si). In each iteration the pair with the maximum 
index is discriminated. 

The cost function has been designed to force the 
number of bits to be small. In this sense each pair of 
states is discriminated so that the cardinality of the 
resulting Discriminated-pairs list is a minimum. It also 
aims at reducing the area of final realisations by taking 
into account the fulfillment of the adjacencies derived 
from Humphrey’s or Armstrong’s rules [16, 171. 

4 2  Example 3 
As an example of how the algorithm works we use the 
FSM shown in Fig. 7 taken from Reference 18. To sim- 
plify the explanation only the first mentioned cost criteria 
is evaluated. 

OOO 001 010 011 100 101 110 

NS, z 

Fig. 7 State table for FSM in Example 3 

g 
s.. 0 

Initialisation phase 
N ,  the cardinality of the largest maximal incompatible, 
is three and so the initial code length nb = nb, = 
Clog2 NI = 2 

Code Matrix: 

s1 00 s2 - s3 - sq - 
s5 - s, - s7 - ss - 
Discriminated-pairs = {a} ; Identical-pairs = {a} ; 
Implied-by-identical-pairs = {a} 
Compulsory-discrimination-pairs = incompatible state 
pairs = {(sl, s3b (sly s 6 ) 9  (sl. sa), (s2, s6), ( ~ 2 ,  s7), ( ~ 2 ,  SE), 

(s7, se)} 
(s3 9 s5), (s3 9 SE) ,  (s4 9 s6h (s4 9 s7)r (s5 9 s6)9 (ss 9 s7), (ss I s8b 

Assignment phase 
Iteration I :  The number of pairs in CDP each state 
belongs to is evaluated. The pair (s,, se) maximises the 
parameters Ind (Si) + Ind (Si) and so this pair is selected 
to be discriminated in this stage. 

The assignments which discriminate the states S, and 
Ss  are 

(1) s6 1- (2) s6 0- (3) 36 -1 (4) s6 -0 
S8 0- S8 1- se-0 S8 - 1  

The four assignments have the same cost. In every case 
the resulting CDP list has 12 elements. None of the four 

234 

assignments implies the addition of pairs to that list. The 
fist and third options glienate the pairs (s,, s8) V d  
(sl, s,). The second and fourth discriminate the pans 
(s,, s8) and (sl, s,). In this case the first assignment is 
arbitrarily selected. This is frequent at the first stages of 
the procedure because there are many unspecified bits in 
the codes of the states. The data structures are updated 
and the results are 

Code matrix: 

s1 00 s2 - s3 - s, - 
s5 - s, 1- s7 - sg 0- 

Compulsory-discrimination-pairs = {(si, s3), (sir SS), 

6 2  7 s6), (s2 3 s7), (s2 > s8b (s3 7 SS), (s3 9 

(sS, s6)r (ss 9 s7)9 6 7  > 

(s4, s6), (s4, s7)? 

Iteration 2: The pair selected to be discriminated is 
(s7, se). Candidate bit assignments are 

(1) s7 1- (2) s, -1 (3) s7 -0 
ss CL se 00 sg 01 

Those bits already assigned appear in bold. The cost 
function is evaluated for first and third assignments but 
not for the second one. This is because it is not legal. 
Clearly if this second option is taken, the states s1 and ss 
have identical assignments but the pair (si, s8) belongs to 
the list of pairs of compulsory discrimination. The dis- 
crimination of two states with identical codes can only be 
achieved by adding a new state variable. 

The assignment (1) discriminates the pairs (s7, se) and 
(sl, s7). The pair (s7 ,  s8) is the only one removed from the 
CDP list. The discrimination of (sl, s7) which did not 
belong to CDP involves adding to that list those state 
pairs which imply (sl, s7) and have not discriminated 
assignments. In this case the pairs (s3, sq), (s3, s7) and 
(s3, s,) must be added to the list. The cost of this assign- 
ment is 14 (there are 14 pairs in the resulting CDP list). 

The assignment (3) discriminates the pairs (s7, se) and 
(sl, se) which are then removed from CDP. It does not 
reqlure the addition of any pair to that list and so its cost 
is 10. 

Assignment (3) is chosen since it minimises the cost 
function. Updated data structures are 

Code Matrix: 
s1 00 s2 - s3 - s, - 

Discriminated-pairs = {(sl, s& (sir s8), (s6, s8), ( ~ 7 ,  ~ 8 ) )  

Identical-pairs = { a} ; 
Implied-by-identical-pairs = { 0) 
Compulsory-discriminationgairs = {(sl, s3), (s2 , se), 

(ss 7 s7)) 

ss - s6 1- s7 -0 ss 01 

(s2 9 s7), (s2 9 Ss), (s3 3 sg), (SI 9 ssb (s4 9 s6), (s4 9 s7)9 (ss 9 s6), 

Iteration 3:  The pair (ss , sa) is discriminated next. Again 
candidate assignments are enumerated 

(1) s3 1- 

(2) s3 0- 

(3) s3 -1 

(4) s3 -0 

~5 0- cost = 6 s5 -0 cost = 9 

s5 1- cost = 15 SS -1 cost = 14 

I E E  Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July I994 



Table 1 : Example 3 summary 

Iteration 4 Iteration 5 Iteration 6 Iteration 7 

Pair to discriminate (s2, s,) (%I Se) (s3, ss) (s2. SEJ 

Minimum cost s, & s3 1- s3 11 s2 00 
discriminating s, 10 s4 0- se 10 ss 01 
assianment cost = 6 cost = 3 cost = 1 cost = 0 

Assignment (1) is selected and updated data structures 
are 

Code Matrix: 
s1 00 s, - s3 1- s4 - 

s5 0- S6 1- s, -0 ss 01 

Discriminated-pairs = {(sl, s6), (sl, s3), (s,, s8), (sj, s5), 

Identical-pairs = {a} ; 
Implied-by-identical-pairs = {a} 
Compulsory-discrimination-pairs = {(s2, s6), (s2, s,), 

While CDP is not empty the algorithm follows discrimi- 
nating state pairs. The remaining iterations do not intro- 
duce anything new. Table 1 presents a summary. 

The state assignment obtained with the algorithm is: 

(s3 9 (s5 9 s6). 9 s8b ( s 7 ,  s8) )  

(82 9 s8b (s4, s6), (s4 9 s 7 ) 9  (s5 9 s7) }  

s1 00 s, 00 SJ 11 s4 0- 

s5 0- S6 10 s, 10 S8 01 

The state encoding derived with our algorithm is equiva- 
lent to the following state merging C = {(sl, s2, s4, ss), 
(s3), (s6. s7), (s4. s5, s8)}. So the coding procedure is 
equivalent to the generation of a symbolic description 
with four states and to the binary encoding of it. 

A two level realisation of the FSM using this encoding 
requires eight product terms and two memory elements. 
Using the symbolic description in Fig. 7 as input to a 
conventional state assignment program produces an 
encoding with three state variables. In particular a two 
level realisation with 13 product terms and three memory 
elements was obtained with the well known state assign- 
ment tool NOVA [SI. 

5 Experimental results 

The algorithm is particularly suited to those machines for 
which state merging applies and so a subset of the 
MCNC machines (group 1) [19], those with compatibles 
or equivalent states, has been used to test the algorithm. 
Many examples picked out from switching circuit text- 
books and journal papers on minimisation have also 
been tried, all of them are in Reference 20 (group 2). Two 
figures of merit are focused on: the area occupied by the 

IEE Pr0c.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 

combinational component in an PLA implementation of 
the FSM and the time which is required for design. 

Table 2 depicts the results for the first group of 
machines and Table 3 for the second group. The number 
of primary inputs ( n ~ ] ,  primary outputs (no) and states (ns) 
are shown for each of the machines to which SMAS (C 
implementation of the new algorithm), NOVA [21] 
(i-hybrid algorithm*), and a synthesis procedure includ- 
ing state reduction (ARNES [5] + NOVA i-hybrid) have 
been applied. The number of state variables (nu), the 
number of product terms (tp) after logic minimisation 
and the size ((2ni + 3nu + no) x tp) of the PLA imple- 
menting the combinational component for the assign- 
ments obtained with each program after code shifting? 
and minimisation with ESPRESSO [22] are also shown 
in Tables 2 and 3. Times are given in seconds in a SUN 
Workstation 4/330. Columns with ratio of sizes, A, and 
A ,  are included with: 

sizeSMAS A ,  = SizeSMAS A ,  = 
S ~ Z ~ N O V A . & ~  SiZe(ARNES) + (NOVAawu) 

Both tables show that in all the cases the number of 
state variables in SMAS's assignments is less than or 
equal to the number of state variables in NOVA's assign- 
ments. Concerning group 1 machines, SMAS obtains 
more efficient implementations (in terms of size) than 
NOVA in 15 of the 17 machines in Table 2. In particular, 
let us focus on the set formed by donzfile, modulol2, s la  
and s8. These machines do not need to be realised as 
FSMs. NOVA is not able to detect it and supplies an 
assignment for them. This leads to realisations which are 
expensive in terms of area. None of the machines in 
Table 3 is more efficiently assigned with NOVA than it is 
with SMAS. On average the area savings with SMAS is 
around 50% for group 1 and 57% for group 2. Also the 
time comparison is favourable for SMAS. 

One of the NOVA's options. It achieves a very good trade-off between 
quality of the solutions and CPU time. It uses codes with minimum 
length 
t Each bit position which is '1' in the code of the state appearing more 
times in the next state field is complemented in the d e s  of all the 
states. This 'classic' heuristic is incorporated in many state assignments 
tools and has been reported to lead to area savings. Clearly, this oper- 
ation cannot change a valid assignment into an invalid one 

235 



Table 2: Experimental results for group 1 machines 

NOVA i-hybrid ARNES + NOVA i-hybrid SMAS A,  A2 

ni no nv tp size time nv tp size time nv tp size time 

bbara 4 2 4 
bbsse 7 7 4 
beecount 3 4 3 
donfile 2 1 5 
ex1 9 19 5 
ex2 2 2 5  
ex3 2 2 4  
ex5 2 2 4  
ex7 2 2 4  
lion9 2 1 4 
mark1 5 16 4 
modulo12 1 1 4 
opus 5 6 4 
s la  8 6 5  
S8 4 1 3  
tbk 6 3 5  
train11 2 1 4 

25 
30 
13 
35 
48 
29 
18 
14 
17 
8 

21 
13 
16 
76 
10 

154 
9 

550 
990 
247 
700 

2496 
609 
324 
252 
306 
136 
798 
195 
448 

281 2 
180 

4620 
153 

1.9 3 
3.0 4 
1.1 2 

394 0 
38.6 5 

3.4 3 
1.4 3 
3.7 2 
2.3 2 
1.9 2 

23.4 4 
0.9 0 
1.9 4 
5.0 0 
1.1 0 

979 4 
3.3 2 

20 
31 

9 
0 

41 
12 
10 
6 
9 
7 

17 
0 

16 
0 
0 

53 
6 

380 
1023 

144 
0 

21 32 
180 
1 50 
72 

108 
77 

646 
0 

448 
0 
0 

1431 
66 

1.5 3 
5.2 4 
1.0 3 
0.1 0 

34.7 5 
3.4 3 
1.6 3 
1.1 2 
1.3 2 
0.9 3 
5.5 4 
0.1 0 
1.6 4 

12.7 0 
0.1 0 

146.6 4 
1.1 2 

21 
28 
10 
0 

53 
12 
8 
7 
8 
9 

21 
0 

15 
0 
0 

55 
6 

399 
924 
190 

0 
2756 

180 
120 
84 
96 

126 
798 

0 
420 

0 
0 

1485 
66 

0.8 0.72 
5.2 0.93 
0.3 0.77 
0.1 0.00 

32.1 1.10 
1.7 0.30 
0.4 0.37 
0.2 0.33 
0.3 0.31 
0.3 0.93 
3.7 1.00 
0.1 0.00 
0.9 0.94 

12.7 0.00 
0.1 0.00 

48.2 0.32 
0.3 0.43 

1.05 
0.90 
1.32 
1 .00 
1.29 
1 .oo 
0.80 
1.16 
0.88 
1.63 
1.23 
1 .00 
0.94 
1 .00 
1 .OO 
1.03 
1 .oo 

ni no. of input variables 
no no. of outputs 
tp no. of product terms 
time in seconds on a workstation SUN 41330 
size (2ni+3nv+no) xtp 

Table 3: Experimental results for group 2 machines 

NOVA;-hybrid ARNES + NOVA i-hybrid SMAS A,  A2 

ni no nv tp size time nv tp size time nv tp size time 

FSMl 2 1 3 8 112 1.1 2 5 55 0.8 2 4 44 0.1 0.39 0.80 
FSM2 2 1 4 12 204 1.6 2 8 88 1.1 3 11 154 0.3 0.75 1.75 
FSM3 2 1 3 11 154 1.2 2 5 5 0.7 2 5 55 0.2 0.36 1.00 
FSM4 
FSM5 
FSM6 
FSM7 
FSM8 
FSM9 
FSM10 
FSM11 
FSMl2 
FSMl3 
FSM14 
FSMl5 

2 1  3 
2 1  3 
2 1  5 
2 1  4 
2 1  3 
3 1  4 
3 1  3 
2 1  3 
2 1  4 
3 1  3 
2 1  3 
3 1  4 

8 112 1.0 2 
9 126 1.3 2 

31 620 164 4 
15 255 6.9 2 
9 126 1.4 2 

15 255 6.1 2 
18 288 4.0 3 
10 140 1.3 2 
13 221 3.5 2 
13 208 1.4 2 
7 98 0.9 1 

11 209 5.4 2 

4 44 0.9 
5 55 0.9 

15 255 2.6 
8 88 0.8 
7 77 0.9 
7 91 0.9 

13 208 1.5 
7 77 0.9 
8 88 0.9 
8 104 0.9 
3 24 0.8 
4 52 1.0 

2 4 44 0.1 
2 6 66 0.1 
4 15 255 3.6 
2 7 77 0.2 
2 7 77 0.1 
2 7 91 0.4 
2 8 104 0.3 
3 6 84 0.2 
2 7 77 0.3 
2 8 104 0.1 
1 3 24 0.1 
2 4 52 0.4 

0.39 
0.52 
0.41 
0.30 
0.61 
0.36 
0.36 
0.60 
0.35 
0.50 
0.24 
0.25 

1 .00 
1.20 
1 .OO 
0.87 
1 .oo 
1 .oo 
0.50 
1.09 
0.87 
1 .OO 
1 .00 
1 .00 

ni no. of input variables 
no no. of outputs 
tp no. of product terms 
time in seconds on a workstation SUN 4/330 
size (2ni + 3nv +no) x tp 

Next we compare SMAS with the synthesis procedure 
including state reduction with ARNES and optimal state 
assignment with NOVA. In six out of the 17 machines in 
Table 2, the same area results were obtained with both 
approaches. In seven machines worse results were 
obtained with SMAS and better in four cases. For 
machines from Table 3, the area results were identical in 
eight cases, in three SMAS achieved more expensive 
implementations and in the remaining four SMAS 
obtained cheaper realisations. The CPU time invested by 
SMAS is smaller for both groups of machines, with the 
exception of FSM6. 

6 Conclusions 

We have presented a state assignment algorithm which, 
concurrently with the assignment of binary codes in the 
symbolic representation, exploits the potentials of state 
merging and state splitting. The algorithm heuristically 
minimises the area of the combinational component after 
logic reduction. The conventional constraint of giving 
each state a unique distinct code have been removed and 
conditions under which two states can share one or more 

236 

binary codes have been stated so that the initial symbolic 
machine and the encoded one have the same functional- 
ity. The algorithm is original and paves the way for a 
new treatment of state assignment. 

Experimental results have been shown. The algorithm 
is extremely advantageous (reductions of around 50%) 
for the assignment of non-minimised FSMs because of 
the power of state merging. It achieves slightly worse 
results than NOVA for previously minimised machines. 

Paying more attention to the cost function will lead to 
more efficient assignment of FSMs with a minimum 
number of states. More exact criteria such as input and 
and output constraint satisfaction [23, 241 for two level 
implementations are being incorporated into the cost 
function instead of counting state adjacencies. Finally, 
future work includes a BDD-based [25] version of the 
algorithm. 

7 References 

1 HOPCROFT, J.: ‘An n log n algorithm for minimizing states in a 
finite automaton’, in KOHAVI, (Ed.): ‘Theory of machines and 
computation’(Academic Press, 1971), pp. 189-196 

I E E  Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 



2 PFLEEGER, C.P.: ‘State reduction m incompletely specified finite- 
state machines’, IEEE Trans. Cornput., 1973, C-22, (12), pp. 1099- 
1102 

‘Exact and heuristic algorithms for the minimization of incompletely 
specified state machines’. Proceedings of the European Design 
Automation Conference, 1991, pp. 184-191 

4 KANNAN, L.N., and SARMA, D.: ‘Fast heuristic algorithms for 
linite state machine minimization’. Proceedings of the European 
Design Automation Conference, 1991, pp. 192-196 

5 AVEDILLO, MJ., QUINTANA, J.M., and HUERTAS, J.L.: ‘E&- 
dent state reduction methods for PLA-based sequential circuits’, 
IEE Proc. E, 1992,139, (6) 

6 VILLA, T.: ‘NOVA: state assignment of linite state machines for 
optimal two-level logic implementation’, IEEE Trans. Cornput- 
Aided Des. Integr. Circuits Syst., 19w,9, (9), pp. 90-924 

7 LEE, E.B., and PERKOWSKI, M.A.: ‘Concurrent minimization 
and state assignment of hi te  state machines’. Proaedmgs of the 
1984 International Conference on Syst., Man. and Cyb., IEEE, 
Halifax, October 1984 

8 ASHAR, P., DEVADAS, S, and NEWTON, A.R.: ‘Sequential logic 
synthesis’ (Kluwer Academic Publishers, 1992) 

9 RUDELL, R., SANGIOVANNI-VICENTELLI, A.L., and DE 
MICHELI, G.: ‘A h i t e  state machine synthesis system’. Pro- 
ceedings of International Symp. on Circuits and Systems, May 1985, 
pp. 617-650 

10 HARTMANIS, J., and STEARNS, R.E.: ‘Some dangers in the state 
reduction of sequential machines’, I& Control, 1962,!5, pp. 252-260 

11 DEVADAS, S., MA, H.-K.T, NEWTON, A.R., and 
SANGIOVANNI-VINCENTELLI, A. : ‘Irredundant sequential 
machines via optimal logic synthesis’, IEEE Trans. CompubAided 
Des. Integr. CirnUts Syst., 1990,9, (l), pp. 8-17 

12 UNGER, S.H.: ‘Asynchronous sequential switching circuits’ (Wiley- 
Interscience, New York, 1969) 

13 KOHAVI, 2.: ‘Switching and h i t e  automata theory’ (McGraw-Hill 
Book Company, New York, 1978). 2nd edn. 

14 GRASSELLI, A., and LUCCIO, F.: ‘Some covering problems in 

3 HACHTEL, G.D., RHO, J.-K., SOMENZI, F., and JACOBY, R.: 

IEE Proc-Cornput. Digit. Tech., Vol. 141, No.  4, July 1994 

switching theory’, in ‘Networks and switching theory’ (Academic 

15 TSENG, C., PRABHU, A.M., LI, C., MEHMOOD, Z., and TONG, 
M.M.: ‘A versatile finite state machine synthesis system’. Pro- 
d i n g s  of the 1986 International Symposium on Circuits and 
Systems, 1986, pp. 206-209 

16 HUMPHREY, W.S.: ‘Switching circuits with computer applica- 
tions’ (McGraw-Hill Book Company, New York, 1957). Section 
10.5, pp. 233-252 

17 ARMSTRONG, D.B.: ‘A programmed algorithm for assigning 
internal d e s  to sequential machines’, IRE Trans. Electro. Cornput., 
1962, EC-11, pp. 46-472 

18 DE SARKAR, S.C., BASUY, A.K., and CHOUDHURY, A.K.: ‘On 
the determination of irredundant prime closed sets’, IEEE Trans. 
Cornput., 1971, C-20, pp. 933-938 

19 LISANKE, R.: ‘Introduction of synthesis benchmarks’. Inter- 
national Workshop on h g i c  Synthesis, North Carolina, 1989 

20 REUSCH, B., and MERZENICH, W.: ‘Minimal coverings for 
incompletely specified’sequential machines’, Acta Inform., 1986, 22, 
pp. 663-678 

21 VILLA, T.: ‘NOVA, User’s Manual‘. University of California, 
Berkeley, October 1988 

22 BRAYTON, R.K., HACHTEL, G.D., McMULLEN, C., and 
SANGIOVANNI-VINCENTELLI, A.L.: ‘Logic minimization algo- 
rithms for VLSI synthesis’ (Kluwcr Academic Publishers, Boston, 

Press, 1968) 

Massachusetts, 196%) 
23 DE MICHELI, G., BRAYTON, R.K., and SANGIOVANNI- 

VINCENTELLI. A.L.: ‘KISS: a oromam for ootimal state assign- 
ment of finite-’ state machine2 Proceedingi of Internatioial 
Conferena on Computer Aided Design, Novemher 1984, pp. 209- 
211 

24 DE MICHELI, G.: ‘Symbolic design of combinational and sequen- 
tial logic circuits implemented by two-level macros’, IEEE Trans. 
Cornput.-Aided Des. Integr. Circuits Syst., 1986, CAD-5, pp. 597-616 

25 BRYANT, R.E.: ‘Graph based algorithms for Boolean function 
manipulation’, IEEE Trans. Cornput., 1986, CJS, (8), pp. 677-691 

237 


