
Automatic Synthesis of 3D Asynchronous State Machines

Kenneth Y. Yun David L. Dill

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract
We describe a new automatic synthesis tool (3D) for design-
ing asynchronous controllers from burst-mode specifications, a
class of specifications allowing multiple input change fundamen-
tal mode operation. We present an algorithm for constructing a
three-dimensional next-state table, a heuristic for encoding states,
and a procedure for generating necessary constraints for exact
logic minimization. We demonstrate the effectiveness of the 3D
implementation and the synthesis procedure on numerous designs
including a large realistic example (Asynchronous Data Transfer
Protocol of the SCSI Bus Controller). We estimate the latency
(input to output delay) and the cycle time (time required for the
circuit to stabilize after the excitation) for all benchmark designs
using a 0.8pm CMOS standard cell library.

1 Introduction
As the digital systems become more complex, it is increasingly
attractive to use components operating at different clock rates or
components not requiring clocks at all, such as asynchronous FI-
FOs and bus interface units. In such systems, the asynchronous
designs are much better suited for interface circuits and controllers
than the synchronous ones. The synchronous components require
resynchronization of signals originating from modules operating at
different clock rates. Upgrading one component may require the
redesign of the entire system; however, the asynchronous compo-
nents are inherently modular. The synchronous components must
be designed for the worst case timing over all possible variations
in power supply voltage, operating temperature and fabrication
process. but the asynchronous components are robust under vari-
ous environmental assumptions. The setup and hold time require-
ments coupled with the clock skew (exacerbated due to the com-
plexity in global clock distribution) becomes a significant fraction
of a clock cycle in the synchronous design; however, there is no
such overhead in the asynchronous design.

In our previous paper [16], we have introduced a new asyn-
chronous controller, called the 3 0 asynchronous state machine,
and its synthesis method. This design style uses burst-mode spec-
ifications. a class of specifications allowing multiple input change
fundamental mode operation. Our implementation uses standard
combinational logic, generates low latency outputs and guaran-
teesfreedomfrom hazard at the gate level. Unlike locally clocked
burst-mode machines [101. it requires no locally-synthesized clock
and no explicit storage elements. In addition, primary outputs as
well as additional state variables are used as feedback variables.
Furthermore, the 3D machines do not require state bits to be en-
coded in the original specification before synthesis can begin; cf.
USC/CSC property [3. 7. 8, 5, 9, 151.

In this paper, we present an automatic synthesis procedure for
the 3D asynchronous state machines; in particular, we describe an
algorithm for constructing a three-dimensional next-state table, a
simple but efficient state encoding heuristic, and a procedure for
generating constraints for exact logic minimization [111. Finally,
we demonstrate the effectiveness of the 3D implementation and
the synthesis procedure using benchmark designs including a large
realistic example (Asynchronous Data Transfer Protocol of the
SCSI Bus Controller).

2 Overview
2.1 Specification
An asynchronous state machine allowing multiple-input changes
is specified by a state diagram [lo, 161. A state diagram contains a
finite set of states, a set of labelled arcs connecting pairs of states,
and a start state. Arcs are labelled with possible transitions from
one state to another. Each transition consists of a non-empty set of
inputs (an input burst) and a set of outputs (an output burst). Note
that every input burst must be non-empty; if no inputs change,
the machine is stable.

In a given state, when all the inputs in the specified input
burst have changed value, the machine generates the correspond-
ing output burst and moves to a new state. Only specified input
changes may occur, and input transitions may arrive in arbitrary
order; however, the next set of input transitions (the next input
burst) may not arrive until the machine is stabilized (fundamental
mode environmental assumption). There is an implicit restriction
to such burst-mode specification - no input burst in a given state
can be a subset of another. An example of a burst-mode specifi-
cation is Shown in figure 1. This specification describes a simple
controller having 3 inputs (a , b, c) and 2 outputs (z, y). s + and
s- denote 0-1 and 1-0 transitions of the signal s.

abcxy = 00000

q - 1

$!if;-
b-c+ I
X-

State Diagram Next-State Table for outputs xy

Figure 1: Example (Specification and Next-state Table).

2.2 Implementation
Formally, a 3D asynchronous finite state machine can be defined
as a 4-tuple (X, Y, Z, 6) where

0 X is a set of primary input symbols;

0 Y is a set of primary output symbols;

0 Z is a (possibly empty) set of internal state variable symbols;

6 : X x Y x Z + Y x Z is a next-state function.

The hardware implementation of the 3D state machine is a
two-level AND-OR network where outputs (and additional state
variables when necessary) are fed back as inputs to the network.
There are no explicit storage elements such as latches, flip-flops

0-8186-3010-8/92 $03.00 0 1992 IEEE
516

or C-elements in a 3D machine; only static feedback is used to
maintain memory.

The 3D implementation of the burst-mode specification is ob-
tained from the 3-dimensional function map called the next-state
table, a 3-dimensional tabular representation of the next-state
function 6 (see figure 1). In general, the next-state table is in-
completely specifred; however, the next state of every “reachable”
state must be completely specified.

The operation of the 3D state machine is similar to a Mealy-
mode synchronous state machine (see figure 2). A machine cycle
consists of 3 phases (input burst followed by output burst followed
by state burst). During the idle state, the machine waits for an
input burst to occur. When the last input transition of the input
burst arrives, an output burst takes place. The state burst, if
required, immediately follows the output burst, completing the
3-phase machine cycle.

.

1 0 Stan of input Burst
2 0 Start of Output Burst (End of input Burst)
3 Start of State Burst (End of Output Burst)
4 New Stable State (End of State Burst)

Crifical Ram exists if different from 3 and 4

Figure 2 3D Next-state Table.

2.3 Considerations for Hazards
We can classify all hazards in asynchronous circuits into two cat-
egories: function hazard and logic hazard. Function hazards are
due to the incompletely or incorrectly specified function during
multiple input changes.’ Logic hazards arise due to the delay
variations of the physical gates [16, 10. 1, 21 despite the correct
function. We can further classify logic hazards into combinational
and sequential logic hazards.

In 3D machines, we preclude the presence of function hazards
by correctly specifying the next-state of every “reachable” state
during each of the bursts [16]. The requirements to insure hazard-
free combinational logic during each of the bursts are presented
in [16]. The following is a summary of the covering requirements
for output logic (Similar requirements exist for state logic).

For a 6 1 transition of output:
The output burst must be covered by a single cube.

For a 1-1 transition of output:
The input burst must be covered by a single cube; the output
burst must be covered by a single cube.

For a 1-0 transition of output:

‘In a sequential network, feedback variables as well as primary inputs must be
considered as inputs to the network.

Suppose n input transitions constitute an input burst enabling
1-0 transition of an output. The input burst must be covered
by n cubes, each of which contains exactly one literal that
corresponds to a unique input in the input burst. Thus, each
cube changes monotonically from 1 to 0 as the corresponding
input transition fires.
In addition, we require that any cube that intersects transient
states of an input burst Bin (states traversed during Bin
preceding the last transition of Bin not including the stable
start state) must also include the start state of B , , if Bin
enables a 1-0 transition of an output, for otherwise one such
cube may glitch (0-1-0) and the glitch may propagate to the
output (1-0-1-0 dynamic hazard).

The smallest cube that covers a 1-1 transition of an output
is called essential. Similarly, a 1-0 transition of an output is
covered by a set of essential cubes - the minimal set consists of
n essential cubes iff n input transitions enable the 1-0 transition
of output. A logic hazard is present in an on-set cover if an
essential cube is excluded from it. The essential cover for a logic
function is a set of essential cubes.

If a transition between layers (state burst) requires multiple
state bit changes (see figure 2), the machine traverses intermedi-
ate layers before it settles down to the final stable state. In 3D
machines, a critical race is present if the transient states during a
layer transition have different next-states from the final stable state
(see figure 2). We insure that the machine is free of critical races
by encoding layers such that no input or output burst intersects
the transient states of layer transitions and by forcing all transient
states during a layer transition to have the same next-states as the
final stable state of the transition.

It has been assumed up to this point that output changes are
not fed back until an input burst is assimilated by the machine;
likewise, no state variable changes are fed back until the preceding
output burst is absorbed. However, if feedback delays are short,
there may be situations in which one or more fed-back outputs
(at the network input) change before an enabled output transition
fires. The hazard that arises due to the race between the arrivals
of input transitions and output (or state variable) transitions at the
network input is called the essential hazard. Essential hazards
can be circumvented by inserting sufficient delays in the feedback
paths. However, it is desirable to minimize feedback delays since
the delays in the feedback paths impose an additional constraint
on when the next set of primary input transitions can arrive at the
3D machine inputs without causing circuit malfunctions. In 3D
machines, We minimize the feedback delays with a simple set of
one-sided timing constraints 1161.

3 Synthesis Procedure
The synthesis procedure consists of the following three steps:

1. A 3D next-state table is constructed from the burst-mode
specification.

2. A layer diagram, which represents connectivities and encod-
ing restrictions amongst the layers, is generated; a critical-
race-free layer encoding is performed.

3. A set of on-set and off-set covers as well constraints for logic
minimization is formed for each output and state variable;
logic minimization is carried out.

3.1 Next-State Table Construction
Definition 1 Let Sro be the set of symbols representing the input-
output states reachable by executing the burst-mode specr cation,
and SO be the set of output symbols. A burst-mode FSh!spec$-
cation is said to have the unique next-state code (UNC) property
;ff there exists a next-state function which maps ,910 to S O ,

A burst-mode specification has the UNC property iff the next-
state table can be built in one layer without conflicts - no addi-
tional state variable is required. The UNC property, however, is

rbxy = 01 11 0
b - / X -

N o r t X

Figure 3: PUNC Violation.

Essential cube
aby intersects
a transient state
ole&

not sufficient to guarantee that a hazard-free “one layer” imple-
mentation of the specification exists. Suppose an essential cube of
an on-set cover of an output, say z , intersects a transient state of
an input burst Bin enabling a 1-0 transition of 2. If the essential
cube is not expanded to “include” the start state of Bin in the
final logic equation, then the implementation has a dynamic logic
hazard. The top next-state table segment of figure 3 does not
violate UNC; nevertheless, if the essential cube aby, which inter-
sects a transient state (abzy = 1111) of the input burst (atb-),
is not expanded to include the start state (abzy = 0111) of the
input burst, a dynamic logic hazard is present in the implementa-
tion of c (during the input burst at b - , the term aby may glitch
(0-la), and this glitch may propagate to the output). This ob-
servation leads to the notion of the proper unique next-state code
(PUNC) property - the specification with the UNC property has
the PUNC property iff every essential cube of an output, that
intersects a transient state of the input burst enabling a 1-0 tran-
sition of the output, also intersects the start state of the input
burst. The essential layer cover for a layer L of the next-state
table for a logic function F includes all the essential cubes in the
layer L and no others.
Definition 2 A layer L of the next-state table is said to have the
proper unique next-state code (PUNC) iff the essential layer
covers for the outputs (state variables) do not include any cube
that intersects the transient states of a burst B enabling a 1 - 0
transition of an output (state variable) but does not include the
start state of B .

In general, burst-mode specifications do not satisfy the PUNC
properv. We overcome this difficulty by building multiple layers
of the next-state table. Each layer contains the next-states of the
“path” traversed from one specification state to another via zero
or more specification states and each satisfies the PUNC property.

We build a layer of the next-state table by assigning a next-state
to each reachable state. Reachable states are traversed by “execut-
ing” the burst mode state diagram (in depth-first search manner).
A node of the state diagram corresponds to a specificatwn-state.
Whenever a PUNC violation is detected’. we back up to the last
specification-state and start building a new layer from that node.
When traversing a new branch of the state diagram, we start from
the layer of the parent node. This process of traversing the state
diagram and building layers of next-state table continues until all
the nodes of the state diagram have been processed (see figure 4).

‘There may be two diffemt states in the original specification with identical
input and Output values. If the stable state reached at the conclusion of an output
burst had been traversed (thus its next-state is a h d y specified) and cornsponds to
a diffaent spccificition-state, we need to back up to the last specification-state and
stut building a new hycr even if the PUNC is not violated.

578

specification-state = initial specification-state;
layer = Initial layer;
repeat

Execute input/output burst;
if PUNC not violated then begin

Enter next-states of the path traversed
in the current layer of the next-state table;

if next specification-state not processed then
specification-state = next specification-state

eke begin
Go back to the nearest ancestor

state = state of next unprocessed child node
with unprocessed children nodes;

end;
layer = layer of parent node

Back up to the last specification-state;
layer = new layer

until every node is processed.

end else begin

end

Figure 4 Next-State Table Construction Algorithm.

3.2 Layer Encoding
Once the layers of the next-state table are built, the layer diagram
(see figure 6) is formed by grouping specification-states into lay-
ers by traversing the state diagram again. Whenever there is a
transition (state burst) from layer A to layer B , an undirected
edge is drawn between A and B . Let us denote the initial and
final state of the state burst (layer transition from A to B) by s i
and sf. The next-state table entries of the states with the same
zy-position (see figure 2) as s i and sf are checked for possible
conflicts. If the next-state of a state with the same zy-position
as si and sf has already been specified, then the layer containing
that state, say C. is considered a potential cause for a conflict
in assigning codes to A and B.3 henceforth called a potential-
conflict layer. The edge between A and B is then labelled with
C.

Formally, the layer diagram is defined as an undirected graph.
Each edge e; is labelled with a (possibly empty) set of vertices.
The vertices represent layers of the next-state table, the edges
represent transitions between the layers, and the labels on the
edges correspond to potential-co?$ict layers for the transitions
edges represent.

The critical-race-free layer encoding is done using this graph.
The objective of the layer encoding is to generate a aitical-race-
free layer assignment that requires a small number of state bits.
It has been shown elsewhere [14, 4. 131 that a universal one-shot
state encoding (using state splitting), with a Hamming distance
of 1 between any two state codes, exists. However, the universal
state encoding is very costly to implement for a large number of
states; furthermore, requiring a Hamming distance of 1 between
any two layers is unnecessary for our 3D implementation. Instead,
we propose to use a simple heuristic.

Let the codes assigned to layers A and B be c a and C b respec-
tively. The potential-conflict layer C , if assigned the code c c , is
said to obstruct the transitiop from A to B (or from B to A) iff

c c + (C a @ c b) = C a + (ca @ cb)

where + and @ denote bitwise OR and XOR respectively. For
example, the potential-conflict la er C obspcts the transition
from A (ca = 001) to B (Cb = 610), if cc 1s 000 or 011, but
does not, if cc is 100. Our goal is to encode the layers in such a
manner that no layer obstructs the transitions (edges) on which it
is labelled as a potential-conflict layer.

’Avading this conflict is simply a sufficient condition to avoid introducing dy-
namic logic hazards.

The heuristic layer assignment begins by trying to use state
bits of length [10g2m] bits where m is a number of layers. If
the layer encoding using [log2ml bits fails, the heuristic re-
tries using longer codes. The layer A, which contains the initial
specification-state, is always assigned the code 0. Each layer is
assigned the next available code (defined below) as the layer di-
agram is traversed in depth-first search manner starting from A .
As we assign a code to layer 1 , we need to check whether the
potentialconflict layers labelled on the edges between 1 and all
of its neighbors with assigned codes obstruct the corresponding
transitions. However, if a potential-conflict layer I , , for an edge,
say (1 , l j) , has not been assigned a code. we need to postpone
checking for possible conflicts (caused by 1 pc) until a code is as-
signed to it. Meanwhile, we must record each edge on which
I , , is labelled as an unresolved potential-conflict for 1 pc. Further-
more, we need to check whether 1 itself obstructs the transitions
on which 1 is labelled as a potential-conflict layer.

The next available code c for layer 1 is a code with the shortest
Hamming distance from the code of its predecessor node that
satisfies the following conditions:

c is not already assigned to another layer.

The potential-conflict layers labelled on the edge between
the layer 1 and its neighbor l j do not obstruct the transition
between 1 and l j when c is assigned to 1 .

Every unresolved potential-conflict for 1 becomes resolved
- no edge, on which 1 is labelled as a potential-conflict
layer, is obstructed by 1 - when c is assigned to 1.

@, 00000 J not assigned before this segment
AnemptinQ to assim N

Unresolved-Potential-Conflict

10011 -*
Unresolved-Potential-Conflict

10011 -*
Figure 5: Code Assignment.

Figure 5 illustrates the code assignment on a segment of a
layer diagram. Suppose layer J has not been traversed (thus not
assigned a code). 1Oo00, lo001 and 10011 are assigned to layers
0, M and L. In attempting to encode layer N , we find that layer
L obstructs the edge N , M) if 10010, 10111, 11011, 00011 or
10110 is assigned to rs . The code for layer N with the minimum
Hamming distance from layer L that does not induce any conflict
is 10101. Since a potential-conflict layer J for the edge (L , N)
has not been assigned yet, we must record the fact that the edge
(L , N) must be checked when a code is assigned to layer J .

If a code that meets the conditions above is not available when
assigning a layer, the “code space” is enlarged by adding a code
bit, and the entire encoding process is repeated. It is theoretically
possible that adding code bits alone is not enough to guarantee
that a critical-race-free layer assignment exists. Note that we can
always fix the problem by adding redundant layers (state split-
ting). Nevertheless, in our extensive experiments, we have not
encountered any such example; thus, our current implementation
does not have a provision for the state splitting.
3.3 Logic Minimization
Definition 3 A privileged cube is an essential cube that partially
covers a burst enubling a 1 - 0 transition of an output or a state

variable. The privileged pair (p , 3) is an ordered pair of a
privileged cube p and the start state s of the burst enabling a
1 - 0 transition of an output or a state variable, which p partially
covers.

Logic minimization is performed using exact algorithms for
hazard-free logic, implemented in an automated logic minimiz-
er [ll]. This hazard-free logic minimizer, using a variation of
Quine-McCluskey algorithm, attempts to find an optimum cover
of essential cubes using logical prime implicants. the implicants
that do not illegally intersect privileged cubes. Essential cubes,
off-set cubes and privileged pairs are generated by our 3 0 syn-
thesis tool, and the prime implicants are produced by espresso.

4 Experimental Results
The synthesis procedure is completely automated (coded in C).
Numerous experiments have shown that the synthesis tool pro-
duces results that are efficient in terms of both the area and the
latency. The latency is a delay from the last input transition of
an input burst to the last transition of the resultant output burst.
Another useful measure is the minimum delay from the last input
transition of an input burst to the first input transition of the next
input burst without causing circuit malfunction, called the cycle
time. Experimental results are shown in table 2. The latencies and
the cycle times are evaluated using a 0.8pm CMOS standard cell
library, developed for the Verilog simulator by the Torch group
at Stanford University [6]. The library cells were characterized
using the SPICE simulator under military worst-case conditions
(4.5V ower supply, 125°C) and derated for the nominal case
(5V. 29‘C).

f G

Figure 6: PSCSI Layer Diagram.

Layer Code Layer
A 00000 I
B o0001 J

01100
lo001 01010
10000 U 10110
10100 v 11000
00101 w 10010
01001

Table 1: Critical-Race-Free Layer Assignment of PSCSI.

We use a large specification called the Pipelined SCSI Bus
Controller (Asynchronous Data Transfer Protocol) (similar to the
one presented in [12]) to demonstrate the effectiveness of the 3D
implementation and the synthesis procedure. The Asynchronous
Data ’Tkansfer Protocol of the Pipelined SCSI Bus Controller is
specified in 45 original states and 62 transitions; 10 primary inputs
and 5 primary outputs are used. The 3D synthesis tool transforms
the burst mode specification into the next-state table, derives a
layer diagram (see figure 6), performs a critical-race-free layer
assignment (see table l), and generates essential covers, off-set
covers and privileged pair sets for outputs and state variables.

579

vanbek-adapt
dme
dme-fast
alloc-outbound
mp-forward-pkt
nak-pa
pe-send-ifc
rcv-setup
sbuf-read-ctl
sbuf-send-ctl
sen&-done
sic-example
dram-controller
scsi-tsend-bm
scsi-trcv-bm
scsi-isend-bm
scsi-tsend-csm
scsi-trcv-csm
scsi-isend-csm
pscsi-isend
pscsi-ircv
pscsi-tsend
pscsi-trcv
uscsi-tsend-bm

3
3
3
3
4
5
3
2
3
3
1

3
8
8
8
4
6
11
6
7
8
3
6
12
11
10
10
10
8
8
9
6
10
6
10

0
2
2
2
0
1
2
0
1
2
1

iscsi-trcv-bm 11 :5
scsi

ions

3
10
10
9
4
6
14
8
8
9
3
12
14
13
12
12
11
9
9
11
7
12
7
12
9
62

4

ZGiI
-Piii
In

3
3
3
4
3
4
5
3
3
3
2
2
7
5
5
5
5
5
5
4
4
4
4
4
4
10

3

~ ~~ ~2

3 1
4 3
4 2

5

vutput a
4
6
7
6
6
7

15
3
5
9
1
2

17
19
19
20
20
18
19
15
9

13
12
11
15
51

Em-
4

4
11
12
12
6

10
21
3
8

14
4
6

20
27
24
25
24
23
24
28
14
26
14
23
21

108

Table 2: Experimental Results.

The logic minimization is performed by the exact logic minimizer
described in the previous section.

In the future research, we plan to extend the burst mode spec-
ifications to allow don't care inputs in the input bursts and pro-
vide the capability to handle the input choices based on "level-
sensitive" conditional signals.

5 Acknowledgement
The authors would like to thank Steve Nowick of Stanford Uni-
versity for generously providing the logic minimizer and many
helpful discussions.

References
[l] Jon G. Bredeson. On multiple input change hazard-free

combinational switchinn circuits without feedback. In 14th
Annual Symposium on switching Theory, Iowa City, Iowa,
October 1973.

[2] Jon G. Bredeson and Paul T. Hulina. Elimination of static
and dynamic hazards for multiple input changes in combina-
tional switching circuits. Information and Control, 20114-
224, 1972.

[3] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-
theoretic specifications. Technical Report MIT-LCS-TR-393,
1987.

[4] A. D. Friedman, R. L. Graham, and J. D. Ullman. Universal
single transition time asynchronous state assignments. IEEE
TOC. C-18(6):541-547, 1969.

[5] L. Lavagno, K. Keutzer. and A. Sangiovanni-Vincentelli. Al-
gorithm; for synthesis of hazard-frge asynchronous circuits.
In DAC-91.

,lemenl
I;ife
outpilt
11

9
18
19
16
14
12
45
8

12
21
3
6

40
38
40
47
34
30
30
44
19
34
21
29
32

162

on ~~

7

5 E
l - i -

9
29
29
27
14
17
60
8

17
32

8
13
46
58
55
62
44
42
42
80
31
70
25
60
47

378 -

Latency
1.2n5

1.3n5
2.0n5
1.711s
1.8n5
1.4n5
1.7-
2.311s
1.411s
1.5n5
2.1n5
1 .om
1.5n5
2.2n5
2.311s
2.315
2.511s
2.2n5
2.311s
1.9n5
2.9n5
1.7n5
2.2n5
2.2n5
2.0n5
2.0n5
3.311s

C j E F

13n5
Time

1.3n5
3.111s
2.915
3.0n5
1.4n5
2.5-
3.7n5
1.411s
2.6n5
3.3n5
2.411s
2.511s
2.2n5
3.8n5
3.411s
3.9n5
3.3n5
3.611s
3.4n5
4.4n5
3.211s
4.3n5
2.611s
3.7n5
3.811s
6.1n5 -

[6] J. Maneatis and D. Ramsey, 1992. Private communication.

[7] T. H. Meng. Synchronization Design for Digital System.
Kluwer Academic, 1990.

[8] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis
of delay-insensitive modules. In Henry Fuchs, editor, 1985
Chapel Hill Conference on Very Large Scale Integration,
pages 67-86. CSP, Inc., 1985.

[9] C.W. Moon, P.R. Stephan, and R.K. Brayton. Specification,
synthesis, and verification of hazard-free asynchronous cir-
cuits. In ICCAD-91.

[lo] S. M. Nowick and D. L. Dill. Synthesis of asynchronous
state machines using a local clock. In ICCD-91.

[l l] S. M. Nowick and D. L. Dill. Exact two-level minimization
of hazard-free logic with multiple-input changes. In KCAD-
92.

[12] S. M. Nowick, K. Y. Yun and D. L. Dill. Practical asyn-
chronous controller design. In ICCD-92.

[13] Gabrikle Saucier. Encoding of asynchronous sequential net-
works. IEEE TEC, EC-16(6):365-369. 1967.

[14] S. H. Unger. Asynchronous Sequential Switching Circuits.
New York Wiley-Interscience, 1969.

[15] P. Vanbekbergen, E Catthoor, G. Goossens and H. De Man.
Optimized synthesis of asynchronous control circuits from
graph-theoretic specifications. In ICCAD-90.

[16] K. Y. Yun. D. L. Dill and S. M. Nowick. Synthesis of 3D
asynchronous state machines. In ICCD-92.

580

