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Abstract 
We describe a new automatic synthesis tool (3D) for design- 
ing asynchronous controllers from burst-mode specifications, a 
class of specifications allowing multiple input change fundamen- 
tal mode operation. We present an algorithm for constructing a 
three-dimensional next-state table, a heuristic for encoding states, 
and a procedure for generating necessary constraints for exact 
logic minimization. We demonstrate the effectiveness of the 3D 
implementation and the synthesis procedure on numerous designs 
including a large realistic example (Asynchronous Data Transfer 
Protocol of the SCSI Bus Controller). We estimate the latency 
(input to output delay) and the cycle time (time required for the 
circuit to stabilize after the excitation) for all benchmark designs 
using a 0.8pm CMOS standard cell library. 

1 Introduction 
As the digital systems become more complex, it is increasingly 
attractive to use components operating at different clock rates or 
components not requiring clocks at all, such as asynchronous FI- 
FOs and bus interface units. In such systems, the asynchronous 
designs are much better suited for interface circuits and controllers 
than the synchronous ones. The synchronous components require 
resynchronization of signals originating from modules operating at 
different clock rates. Upgrading one component may require the 
redesign of the entire system; however, the asynchronous compo- 
nents are inherently modular. The synchronous components must 
be designed for the worst case timing over all possible variations 
in power supply voltage, operating temperature and fabrication 
process. but the asynchronous components are robust under vari- 
ous environmental assumptions. The setup and hold time require- 
ments coupled with the clock skew (exacerbated due to the com- 
plexity in global clock distribution) becomes a significant fraction 
of a clock cycle in the synchronous design; however, there is no 
such overhead in the asynchronous design. 

In our previous paper [16], we have introduced a new asyn- 
chronous controller, called the 3 0  asynchronous state machine, 
and its synthesis method. This design style uses burst-mode spec- 
ifications. a class of specifications allowing multiple input change 
fundamental mode operation. Our implementation uses standard 
combinational logic, generates low latency outputs and guaran- 
teesfreedomfrom hazard at the gate level. Unlike locally clocked 
burst-mode machines [ 101. it requires no locally-synthesized clock 
and no explicit storage elements. In addition, primary outputs as 
well as additional state variables are used as feedback variables. 
Furthermore, the 3D machines do not require state bits to be en- 
coded in the original specification before synthesis can begin; cf. 
USC/CSC property [3. 7. 8, 5, 9, 151. 

In this paper, we present an automatic synthesis procedure for 
the 3D asynchronous state machines; in particular, we describe an 
algorithm for constructing a three-dimensional next-state table, a 
simple but efficient state encoding heuristic, and a procedure for 
generating constraints for exact logic minimization [ 111. Finally, 
we demonstrate the effectiveness of the 3D implementation and 
the synthesis procedure using benchmark designs including a large 
realistic example (Asynchronous Data Transfer Protocol of the 
SCSI Bus Controller). 

2 Overview 
2.1 Specification 
An asynchronous state machine allowing multiple-input changes 
is specified by a state diagram [lo, 161. A state diagram contains a 
finite set of states, a set of labelled arcs connecting pairs of states, 
and a start state. Arcs are labelled with possible transitions from 
one state to another. Each transition consists of a non-empty set of 
inputs (an input burst) and a set of outputs (an output burst). Note 
that every input burst must be non-empty; if no inputs change, 
the machine is stable. 

In a given state, when all the inputs in the specified input 
burst have changed value, the machine generates the correspond- 
ing output burst and moves to a new state. Only specified input 
changes may occur, and input transitions may arrive in arbitrary 
order; however, the next set of input transitions (the next input 
burst) may not arrive until the machine is stabilized (fundamental 
mode environmental assumption). There is an implicit restriction 
to such burst-mode specification - no input burst in a given state 
can be a subset of another. An example of a burst-mode specifi- 
cation is Shown in figure 1. This specification describes a simple 
controller having 3 inputs ( a ,  b, c) and 2 outputs (z, y). s + and 
s- denote 0-1 and 1-0 transitions of the signal s. 

abcxy = 00000 

q - 1  

$!if;- 
b-c+ I 
X- 

State Diagram Next-State Table for outputs xy 

Figure 1: Example (Specification and Next-state Table). 

2.2 Implementation 
Formally, a 3D asynchronous finite state machine can be defined 
as a 4-tuple (X, Y, Z, 6) where 

0 X is a set of primary input symbols; 

0 Y is a set of primary output symbols; 

0 Z is a (possibly empty) set of internal state variable symbols; 

6 : X x Y x Z + Y x Z is a next-state function. 

The hardware implementation of the 3D state machine is a 
two-level AND-OR network where outputs (and additional state 
variables when necessary) are fed back as inputs to the network. 
There are no explicit storage elements such as latches, flip-flops 

0-8186-3010-8/92 $03.00 0 1992 IEEE 
516 



or C-elements in a 3D machine; only static feedback is used to 
maintain memory. 

The 3D implementation of the burst-mode specification is ob- 
tained from the 3-dimensional function map called the next-state 
table, a 3-dimensional tabular representation of the next-state 
function 6 (see figure 1). In general, the next-state table is in- 
completely specifred; however, the next state of every “reachable” 
state must be completely specified. 

The operation of the 3D state machine is similar to a Mealy- 
mode synchronous state machine (see figure 2). A machine cycle 
consists of 3 phases (input burst followed by output burst followed 
by state burst). During the idle state, the machine waits for an 
input burst to occur. When the last input transition of the input 
burst arrives, an output burst takes place. The state burst, if 
required, immediately follows the output burst, completing the 
3-phase machine cycle. 

. . . . . . . . . . . . . . . . . . . . . . . . 

1 0 Stan of input Burst 
2 0 Start of Output Burst (End of input Burst) 
3 Start of State Burst (End of Output Burst) 
4 New Stable State (End of State Burst) 

Crifical Ram exists if different from 3 and 4 

Figure 2 3D Next-state Table. 

2.3 Considerations for Hazards 
We can classify all hazards in asynchronous circuits into two cat- 
egories: function hazard and logic hazard. Function hazards are 
due to the incompletely or incorrectly specified function during 
multiple input changes.’ Logic hazards arise due to the delay 
variations of the physical gates [16, 10. 1, 21 despite the correct 
function. We can further classify logic hazards into combinational 
and sequential logic hazards. 

In 3D machines, we preclude the presence of function hazards 
by correctly specifying the next-state of every “reachable” state 
during each of the bursts [16]. The requirements to insure hazard- 
free combinational logic during each of the bursts are presented 
in [16]. The following is a summary of the covering requirements 
for output logic (Similar requirements exist for state logic). 

For a 6 1  transition of output: 
The output burst must be covered by a single cube. 

For a 1-1 transition of output: 
The input burst must be covered by a single cube; the output 
burst must be covered by a single cube. 

For a 1-0 transition of output: 

‘In a sequential network, feedback variables as well as primary inputs must be 
considered as inputs to the network. 

Suppose n input transitions constitute an input burst enabling 
1-0 transition of an output. The input burst must be covered 
by n cubes, each of which contains exactly one literal that 
corresponds to a unique input in the input burst. Thus, each 
cube changes monotonically from 1 to 0 as the corresponding 
input transition fires. 
In addition, we require that any cube that intersects transient 
states of an input burst Bin (states traversed during Bin 
preceding the last transition of Bin not including the stable 
start state) must also include the start state of B , ,  if Bin 
enables a 1-0 transition of an output, for otherwise one such 
cube may glitch (0-1-0) and the glitch may propagate to the 
output (1-0-1-0 dynamic hazard). 

The smallest cube that covers a 1-1 transition of an output 
is called essential. Similarly, a 1-0 transition of an output is 
covered by a set of essential cubes - the minimal set consists of 
n essential cubes iff n input transitions enable the 1-0 transition 
of output. A logic hazard is present in an on-set cover if an 
essential cube is excluded from it. The essential cover for a logic 
function is a set of essential cubes. 

If a transition between layers (state burst) requires multiple 
state bit changes (see figure 2), the machine traverses intermedi- 
ate layers before it settles down to the final stable state. In 3D 
machines, a critical race is present if the transient states during a 
layer transition have different next-states from the final stable state 
(see figure 2). We insure that the machine is free of critical races 
by encoding layers such that no input or output burst intersects 
the transient states of layer transitions and by forcing all transient 
states during a layer transition to have the same next-states as the 
final stable state of the transition. 

It has been assumed up to this point that output changes are 
not fed back until an input burst is assimilated by the machine; 
likewise, no state variable changes are fed back until the preceding 
output burst is absorbed. However, if feedback delays are short, 
there may be situations in which one or more fed-back outputs 
(at the network input) change before an enabled output transition 
fires. The hazard that arises due to the race between the arrivals 
of input transitions and output (or state variable) transitions at the 
network input is called the essential hazard. Essential hazards 
can be circumvented by inserting sufficient delays in the feedback 
paths. However, it is desirable to minimize feedback delays since 
the delays in the feedback paths impose an additional constraint 
on when the next set of primary input transitions can arrive at the 
3D machine inputs without causing circuit malfunctions. In 3D 
machines, We minimize the feedback delays with a simple set of 
one-sided timing constraints 1161. 

3 Synthesis Procedure 
The synthesis procedure consists of the following three steps: 

1. A 3D next-state table is constructed from the burst-mode 
specification. 

2. A layer diagram, which represents connectivities and encod- 
ing restrictions amongst the layers, is generated; a critical- 
race-free layer encoding is performed. 

3. A set of on-set and off-set covers as well constraints for logic 
minimization is formed for each output and state variable; 
logic minimization is carried out. 

3.1 Next-State Table Construction 
Definition 1 Let Sro be the set of symbols representing the input- 
output states reachable by executing the burst-mode specr cation, 
and SO be the set of output symbols. A burst-mode FSh!spec$- 
cation is said to have the unique next-state code (UNC) property 
;ff there exists a next-state function which maps ,910 to S O ,  

A burst-mode specification has the UNC property iff the next- 
state table can be built in one layer without conflicts - no addi- 
tional state variable is required. The UNC property, however, is 



rbxy = 01 11 0 
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Figure 3: PUNC Violation. 

Essential cube 
aby intersects 
a transient state 
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not sufficient to guarantee that a hazard-free “one layer” imple- 
mentation of the specification exists. Suppose an essential cube of 
an on-set cover of an output, say z ,  intersects a transient state of 
an input burst Bin enabling a 1-0 transition of 2. If the essential 
cube is not expanded to “include” the start state of Bin in the 
final logic equation, then the implementation has a dynamic logic 
hazard. The top next-state table segment of figure 3 does not 
violate UNC; nevertheless, if the essential cube aby, which inter- 
sects a transient state (abzy = 1111) of the input burst (atb-), 
is not expanded to include the start state (abzy  = 0111) of the 
input burst, a dynamic logic hazard is present in the implementa- 
tion of c (during the input burst at b - ,  the term aby may glitch 
(0-la), and this glitch may propagate to the output). This ob- 
servation leads to the notion of the proper unique next-state code 
(PUNC) property - the specification with the UNC property has 
the PUNC property iff every essential cube of an output, that 
intersects a transient state of the input burst enabling a 1-0 tran- 
sition of the output, also intersects the start state of the input 
burst. The essential layer cover for a layer L of the next-state 
table for a logic function F includes all the essential cubes in the 
layer L and no others. 
Definition 2 A layer L of the next-state table is said to have the 
proper unique next-state code (PUNC) iff the essential layer 
covers for the outputs (state variables) do not include any cube 
that intersects the transient states of a burst B enabling a 1 - 0 
transition of an output (state variable) but does not include the 
start state of B .  

In general, burst-mode specifications do not satisfy the PUNC 
properv. We overcome this difficulty by building multiple layers 
of the next-state table. Each layer contains the next-states of the 
“path” traversed from one specification state to another via zero 
or more specification states and each satisfies the PUNC property. 

We build a layer of the next-state table by assigning a next-state 
to each reachable state. Reachable states are traversed by “execut- 
ing” the burst mode state diagram (in depth-first search manner). 
A node of the state diagram corresponds to a specificatwn-state. 
Whenever a PUNC violation is detected’. we back up to the last 
specification-state and start building a new layer from that node. 
When traversing a new branch of the state diagram, we start from 
the layer of the parent node. This process of traversing the state 
diagram and building layers of next-state table continues until all 
the nodes of the state diagram have been processed (see figure 4). 

‘There may be two diffemt states in the original specification with identical 
input and Output values. If the stable state reached at the conclusion of an output 
burst had been traversed (thus its next-state is a h d y  specified) and cornsponds to 
a diffaent spccificition-state, we need to back up to the last specification-state and 
stut building a new hycr even if the PUNC is not violated. 
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specification-state = initial specification-state; 
layer = Initial layer; 
repeat 

Execute input/output burst; 
if PUNC not violated then begin 

Enter next-states of the path traversed 
in the current layer of the next-state table; 

if next specification-state not processed then 
specification-state = next specification-state 

eke begin 
Go back to the nearest ancestor 

state = state of next unprocessed child node 
with unprocessed children nodes; 

end; 
layer = layer of parent node 

Back up to the last specification-state; 
layer = new layer 

until every node is processed. 

end else begin 

end 

Figure 4 Next-State Table Construction Algorithm. 

3.2 Layer Encoding 
Once the layers of the next-state table are built, the layer diagram 
(see figure 6 )  is formed by grouping specification-states into lay- 
ers by traversing the state diagram again. Whenever there is a 
transition (state burst) from layer A to layer B ,  an undirected 
edge is drawn between A and B .  Let us denote the initial and 
final state of the state burst (layer transition from A to B )  by s i  
and sf. The next-state table entries of the states with the same 
zy-position (see figure 2) as s i  and sf are checked for possible 
conflicts. If the next-state of a state with the same zy-position 
as si  and sf has already been specified, then the layer containing 
that state, say C. is considered a potential cause for a conflict 
in assigning codes to A and B.3 henceforth called a potential- 
conflict layer. The edge between A and B is then labelled with 
C. 

Formally, the layer diagram is defined as an undirected graph. 
Each edge e; is labelled with a (possibly empty) set of vertices. 
The vertices represent layers of the next-state table, the edges 
represent transitions between the layers, and the labels on the 
edges correspond to potential-co?$ict layers for the transitions 
edges represent. 

The critical-race-free layer encoding is done using this graph. 
The objective of the layer encoding is to generate a aitical-race- 
free layer assignment that requires a small number of state bits. 
It has been shown elsewhere [ 14, 4. 131 that a universal one-shot 
state encoding (using state splitting), with a Hamming distance 
of 1 between any two state codes, exists. However, the universal 
state encoding is very costly to implement for a large number of 
states; furthermore, requiring a Hamming distance of 1 between 
any two layers is unnecessary for our 3D implementation. Instead, 
we propose to use a simple heuristic. 

Let the codes assigned to layers A and B be c a and C b  respec- 
tively. The potential-conflict layer C ,  if assigned the code c c ,  is 
said to obstruct the transitiop from A to B (or from B to A) iff 

c c  + ( C a  @ c b )  = C a  + (ca @ cb) 

where + and @ denote bitwise OR and XOR respectively. For 
example, the potential-conflict la er C obspcts  the transition 
from A (ca = 001) to B (Cb = 610), if cc 1s 000 or 011, but 
does not, if cc is 100. Our goal is to encode the layers in such a 
manner that no layer obstructs the transitions (edges) on which it 
is labelled as a potential-conflict layer. 

’Avading this conflict is simply a sufficient condition to avoid introducing dy- 
namic logic hazards. 



The heuristic layer assignment begins by trying to use state 
bits of length [10g2m] bits where m is a number of layers. If 
the layer encoding using [log2ml bits fails, the heuristic re- 
tries using longer codes. The layer A,  which contains the initial 
specification-state, is always assigned the code 0. Each layer is 
assigned the next available code (defined below) as the layer di- 
agram is traversed in depth-first search manner starting from A .  
As we assign a code to layer 1 ,  we need to check whether the 
potentialconflict layers labelled on the edges between 1 and all 
of its neighbors with assigned codes obstruct the corresponding 
transitions. However, if a potential-conflict layer I , ,  for an edge, 
say (1 ,  l j ) ,  has not been assigned a code. we need to postpone 
checking for possible conflicts (caused by 1 pc) until a code is as- 
signed to it. Meanwhile, we must record each edge on which 
I , ,  is labelled as an unresolved potential-conflict for 1 pc. Further- 
more, we need to check whether 1 itself obstructs the transitions 
on which 1 is labelled as a potential-conflict layer. 

The next available code c for layer 1 is a code with the shortest 
Hamming distance from the code of its predecessor node that 
satisfies the following conditions: 

c is not already assigned to another layer. 

The potential-conflict layers labelled on the edge between 
the layer 1 and its neighbor l j  do not obstruct the transition 
between 1 and l j  when c is assigned to 1 .  

Every unresolved potential-conflict for 1 becomes resolved 
- no edge, on which 1 is labelled as a potential-conflict 
layer, is obstructed by 1 - when c is assigned to 1. 

@, 00000 J not assigned before this segment 
AnemptinQ to assim N 

Unresolved-Potential-Conflict 

10011 -* 
Unresolved-Potential-Conflict 

10011 -* 
Figure 5:  Code Assignment. 

Figure 5 illustrates the code assignment on a segment of a 
layer diagram. Suppose layer J has not been traversed (thus not 
assigned a code). 1Oo00, lo001 and 10011 are assigned to layers 
0, M and L.  In attempting to encode layer N ,  we find that layer 
L obstructs the edge N ,  M )  if 10010, 10111, 11011, 00011 or 
10110 is assigned to rs . The code for layer N with the minimum 
Hamming distance from layer L that does not induce any conflict 
is 10101. Since a potential-conflict layer J for the edge ( L ,  N )  
has not been assigned yet, we must record the fact that the edge 
( L ,  N )  must be checked when a code is assigned to layer J .  

If a code that meets the conditions above is not available when 
assigning a layer, the “code space” is enlarged by adding a code 
bit, and the entire encoding process is repeated. It is theoretically 
possible that adding code bits alone is not enough to guarantee 
that a critical-race-free layer assignment exists. Note that we can 
always fix the problem by adding redundant layers (state split- 
ting). Nevertheless, in our extensive experiments, we have not 
encountered any such example; thus, our current implementation 
does not have a provision for the state splitting. 
3.3 Logic Minimization 
Definition 3 A privileged cube is an essential cube that partially 
covers a burst enubling a 1 - 0 transition of an output or a state 

variable. The privileged pair ( p ,  3) is an ordered pair of a 
privileged cube p and the start state s of the burst enabling a 
1 - 0 transition of an output or a state variable, which p partially 
covers. 

Logic minimization is performed using exact algorithms for 
hazard-free logic, implemented in an automated logic minimiz- 
er [ll]. This hazard-free logic minimizer, using a variation of 
Quine-McCluskey algorithm, attempts to find an optimum cover 
of essential cubes using logical prime implicants. the implicants 
that do not illegally intersect privileged cubes. Essential cubes, 
off-set cubes and privileged pairs are generated by our 3 0  syn- 
thesis tool, and the prime implicants are produced by espresso. 

4 Experimental Results 
The synthesis procedure is completely automated (coded in C). 
Numerous experiments have shown that the synthesis tool pro- 
duces results that are efficient in terms of both the area and the 
latency. The latency is a delay from the last input transition of 
an input burst to the last transition of the resultant output burst. 
Another useful measure is the minimum delay from the last input 
transition of an input burst to the first input transition of the next 
input burst without causing circuit malfunction, called the cycle 
time. Experimental results are shown in table 2. The latencies and 
the cycle times are evaluated using a 0.8pm CMOS standard cell 
library, developed for the Verilog simulator by the Torch group 
at Stanford University [6].  The library cells were characterized 
using the SPICE simulator under military worst-case conditions 
(4.5V ower supply, 125°C) and derated for the nominal case 
(5V. 29‘C). 

f G 

Figure 6: PSCSI Layer Diagram. 

Layer Code Layer 
A 00000 I 
B o0001 J 

01100 
lo001 01010 
10000 U 10110 
10100 v 11000 
00101 w 10010 
01001 

Table 1: Critical-Race-Free Layer Assignment of PSCSI. 

We use a large specification called the Pipelined SCSI Bus 
Controller (Asynchronous Data Transfer Protocol) (similar to the 
one presented in [12]) to demonstrate the effectiveness of the 3D 
implementation and the synthesis procedure. The Asynchronous 
Data ’Tkansfer Protocol of the Pipelined SCSI Bus Controller is 
specified in 45 original states and 62 transitions; 10 primary inputs 
and 5 primary outputs are used. The 3D synthesis tool transforms 
the burst mode specification into the next-state table, derives a 
layer diagram (see figure 6), performs a critical-race-free layer 
assignment (see table l), and generates essential covers, off-set 
covers and privileged pair sets for outputs and state variables. 
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vanbek-adapt 
dme 
dme-fast 
alloc-outbound 
mp-forward-pkt 
nak-pa 
pe-send-ifc 
rcv-setup 
sbuf-read-ctl 
sbuf-send-ctl 
sen&-done 
sic-example 
dram-controller 
scsi-tsend-bm 
scsi-trcv-bm 
scsi-isend-bm 
scsi-tsend-csm 
scsi-trcv-csm 
scsi-isend-csm 
pscsi-isend 
pscsi-ircv 
pscsi-tsend 
pscsi-trcv 
uscsi-tsend-bm 

3 
3 
3 
3 
4 
5 
3 
2 
3 
3 
1 

3 
8 
8 
8 
4 
6 
11 
6 
7 
8 
3 
6 
12 
11 
10 
10 
10 
8 
8 
9 
6 
10 
6 
10 

0 
2 
2 
2 
0 
1 
2 
0 
1 
2 
1 

iscsi-trcv-bm 11 :5 
scsi 

ions 

3 
10 
10 
9 
4 
6 
14 
8 
8 
9 
3 
12 
14 
13 
12 
12 
11 
9 
9 
11 
7 
12 
7 
12 
9 
62 

4 

ZGiI 
-Piii 
In 

3 
3 
3 
4 
3 
4 
5 
3 
3 
3 
2 
2 
7 
5 
5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 
10 

3 

~ ~~ ~2 

3 1 
4 3 
4 2 

5 

vutput a 
4 
6 
7 
6 
6 
7 

15 
3 
5 
9 
1 
2 

17 
19 
19 
20 
20 
18 
19 
15 
9 

13 
12 
11 
15 
51 

Em- 
4 

4 
11 
12 
12 
6 

10 
21 
3 
8 

14 
4 
6 

20 
27 
24 
25 
24 
23 
24 
28 
14 
26 
14 
23 
21 

108 

Table 2: Experimental Results. 

The logic minimization is performed by the exact logic minimizer 
described in the previous section. 

In the future research, we plan to extend the burst mode spec- 
ifications to allow don't care inputs in the input bursts and pro- 
vide the capability to handle the input choices based on "level- 
sensitive" conditional signals. 
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