
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS A N D SYSTEMS. VOL. 12. NO. 6. J U N E 1993 737

An Efficient Algorithm to Search for Minimal Closed
Covers in Sequential Machines

Ruchir Puri, Student Member, IEEE, and Jun Gu, Senior Member, IEEE

Abstract-The problem of state reduction in a finite state ma-
chine (FSM) is important to reduce the complexity of a sequen-
tial circuit. In this paper, we present an efficient algorithm for
state minimization in incompletely specified state machines.
This algorithm employs a tight lower bound and a fail-first heu-
ristic, and generates a relatively small search space from the
prime compatibles. It utilizes efficient pruning rules to further
reduce the search space and finds a minimal closed cover. The
technique guarantees the elimination of all the redundant states
in a very short execution time. Experimental results with a large
number of FSM’s including the MCNC FSM benchmarks, are
presented. The results are compared with other recent work in
the area.

I. INTRODUCTION
HE REMOVAL of redundant states is important to T reduce the circuit complexity in the design of sequen-

tial circuits. In a completely specified finite state machine
(FSM) with n states, a solution can be achieved success-
fully in O (n log n) time [22]. In such FSM’s, the merging
of equivalent states yields a unique minimal solution [27].
A state machine where transitions under some inputs lead
to unspecified states or unspecified outputs is called an
incompletely specified finite state machine (ISSM) [161,
[23]. The state minimization problem for such a machine
is, unfortunately, NP-complete [111, [30]. A minimal so-
lution obtained in such a case may not be unique [131.
This problem has been studied for many years [121, [131,
[27], [3 1 I . In recent years, because of the development of
automated FSM synthesis systems [l l , [9], [lo] , [28],
there has been a renewed interest in this problem [2], [171,
1201, W I , W I .

In this paper, we present a new algorithm for the state
minimization problem. This algorithm constructs a search
tree from prime compatibles. It efficiently builds up a rel-
atively small search space by utilizing a tight lower bound
derived from maximal incompatibles. Efficient pruning
criteria are developed to further prune the search space.
The algorithm is capable of removing all the redundant
states in a given FSM and guarantees a minimal FSM so-
lution. This algorithm can generate all the minimal FSM
solutions with almost no time overhead. It then selects the
FSM having minimum implementation area. Our experi-
ments with practical FSM’s, including MCNC FSM

Manuscript received June 1, 1991; revised June 26, 1992. This work
was supported in part by the NSERC Operating Grant OGP0046423 and
NSERC Strategic Grant MEF0045793. This paper was recommended by
Associate Editor R. K . Brayton.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Calgary, A h . , Canada T2N 1N4.

IEEE Log Number 9206846.

benchmarks, show that the technique is effective in re-
ducing time and memory requirements for large size
FSM’s. These results are compared with recent experi-
mental results by Kannan and Sarma 1201 and by Hachtel
et al. [17].

The rest of this paper is organized as follows. In Sec-
tion 11, we briefly overview the previous work in the area.
Section 111 gives some basic definitions and notations that
simplify our discussion. In Section IV, we describe in de-
tail an efficient algorithm for state reduction. Experimen-
tal results with industrial FSM’s, including MCNC
benchmarks, are illustrated in Section V. Section VI con-
cludes this paper.

11. PREVIOUS WORK

Paul and Unger [27] and Unger [33] developed a gen-
eral theory of ISSM’s and presented a systematic ap-
proach for generating maximum compatibles and minimal
closed covers. Since then many researchers have studied
the reduction of this enumerative tabular procedure pro-
posed by Paul and Unger. Grasselli and Luccio [13]
solved the binate covering (i.e., state minimization) prob-
lem by an integer linear programming approach. Luccio
[24] further extended the definition of prime compatibility
classes to simply the procedure. The chain generating
method developed by Meisel [25] generates all the paths
and chains unconditionally. This leads to an unacceptably
large search space in case a machine has a large number
of prime compatibles. DeSarkar et ul. [8] derived ali the
irredundant prime closed sets and chose the minimal one
that covers the machine. This method becomes inefficient
when a large number of irredundant prime closed sets ex-
ists.

Kella [21] proposed a method that avoids the genera-
tion of a complete set of maximal compatibles by adding
new states recursively. This method generates all possible
reduced machines so that no machine with fewer states is
overlooked. House and Stevens [19] and Curtis [7] de-
veloped reduction rules to reduce the size of a covering-
closure table proposed by Grasselli and Luccio [131. Ben-
netts [3] developed a method of deriving prime compati-
bles and corresponding implications without deriving the
maximal compatibles. Pager [26] proposed a method that
dealt with only a very special class of FSM’s (i.e., where
a minimal closed cover can be derived from maximal
compatibles only). Yang’s method [35] eliminates all the
implication unrelated and superseded compatibles, which
substantially reduces the number of compatibles under

0278-0070193$03.00 G 1993 IEEE

-

738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS A N D SYSTEMS, VOL. 12, NO. 6 . JUNE 1993

consideration. His method does not guarantee that at least
one minimal closed cover can be derived from the re-
maining set of compatibles [31]. Biswas [4] proposed a
technique based on implication trees. The approach is
suitable for small FSM's, where the minimal closed cover
contains at least one maximal compatible. Biswas later
modified this method to account for machines where none
of the solutions contain a maximal compatible [5] . Rao
and Biswas [31] applied some deletion rules to the set of
compatible classes and obtained a relatively small set of
symbolic compatibles. A minimal solution was then ob-
tained from these symbolic compatibles.

Perkowski and Nguyen [29] gave a backtracking algo-
rithm that checks partially generated solutions using dy-
namic rules. This algorithm employs an optimum variant
to find the optimality of the solutions. For large size
FSM's, the method requires excessive computing time.
Avedillo et al. [2] derived a reduced FSM by applying a
sequence of transformations to internal states in a given
FSM. Kannan and Sarma [20] proposed a simple heuristic
algorithm to find a minimal closed cover. Their approach
yields a suboptimal solution in some cases and suffers from
excessive computing time in the case of large FSM's. Re-
cently, Hachtel et al. [171 described the exact and heuris-
tic algorithms for minimizing incompletely specified fi-
nite state machines which yield optimal results in most of
the cases.

Following Meisel's approach [25] in generating a
search tree, our algorithm employs a tight lower bound
and an ordered generating sequence to create a smaller
search space. Efficient pruning criteria are developed to
reduce further the search space. Compared to the Per-
kowski-Nguyen backtracking algorithm [29], which em-
ploys an optimum variant to prove the optimality, in our
algorithm, the first path on the search tree satisfying the
covering and closure constraints is guaranteed to be a
minimal FSM solution.

111. PRELIMINARIES

The external behavior of an FSM can be described by
a state transition graph (STG). An STG can be repre-
sented by a flow table or a cube table. The flow table
representation is a two-dimensional array where columns
correspond to the input states and rows correspond to the
internal states. The entries are ordered pairs representing
the next internal state and the output. In a cube table rep-
resentation (e.g., MCNC FSM benchmarks), each row
corresponds to a transition edge of the STG. Thus each
entry specifies an input, the present state, the next state,
and the output. Each nontrivial entry of a flow table can
be mapped as a corresponding entry in the cube table. In
the following discussion, we will use a simple state ma-
chine example to illustrate our algorithm. The flow table
of the FSM example ungerex is shown in Table I [33].

For a finite state machine '312 with n states, let C, denote
the ith compatible class and let S = {Cl, C2 * * . } denote
a set of compatible classes. Following basic notations in
(231. [24], [33], we now give some basic definitions.

TABLE I
FLOW TABLE OF FSM EXAMPLE ungerex

Dejinition 1 : States p and q are compatible, if and only
if, for every possible input sequence applicable to p and
q, the same output sequence is produced, regardless of
whether p or q is an initial state. If the output sequences
differ, then p and q are called incompatible.

Dejinition 2: A set of states Q is compatible, if and
only if, for every possible input sequence, no two con-
flicting output sequences will be produced, regardless of
which state is the initial state.

Dejinition 3: A compatible class C, covers compatible
class C,, if and only if, every state contained in C, is also
contained in C,.

Dejnition 4: A compatible class is said to be maximal
if it is not covered by any other compatible class. Simi-
larly, an incompatible class is said to be maximal, or a
maximal incompatible (MI), if it is not covered by any
other incompatible class.

In the FSM example ungerex, there are five maximal
compatibles, i.e., {hfe, ifd, ged, fed, cba}, and twelve
maximal incompatibles, i.e., {ihgc, gfc, iec, hdc, ihgb,
gfb, ieb, hdb, ihga, gfa, iea, hda}.

Dejinition 5: Under input i , a set of states Q implies
another set of states R , if R is a set of next states for Q.
If Q is a compatible, then R is called an implied compat-
ible of Q under input i .

Dejnition 6: A closure class of compatible C,, denoted
as @(C,) , is a set of the implied compatibles of C; such
that

1) Each implied compatible has more than one state
2) Each implied compatible is not contained in Cj
3) Each implied compatible is not contained in any

A closure class is obtained by the repeated application of
implication transitivity for all inputs.

Dejnition 7: A compatible class C j is said to be prime
if there exists no other compatible class Cj such that

1) C, covers C,
2) Every member of closure class + (C') is contained

in at least one member of closure class @(CJ
For the FSM example ungerex, the prime compatibles and
their corresponding closure classes are shown in Table 11.

Dejinition 8: A compatible C, in a set of compatibles
S is said to be unimplied if neither Ci nor any of its subsets
are implied by any member of S.

Definition 9: An extended closure class of S , denoted
as @(S), is a set of the implied compatibles of S such that

1) Each implied compatible has more than one state

other member of the closure class

139

TABLE I1
PRIME COMPATIBLES A N D CORRESPONDING CLOSURE CLASSES

2) Each implied compatible is not contained in any
compatible of S

3) Each implied compatible is not contained in any
other member of the extended closure class

An extended closure class is obtained by the repeated ap-
plication of implication transitivity for all inputs.

Dejinition 10: A set of compatibles S,i dominates (5)
another set of compatibles S, if every compatible of S i is
contained in at least one compatible of S,.

In the FSM example, set SI = {ifd, hfe, ged, a} and set
S, = {ifd, hfe, ged, cba} have the extended closure class
+(SI) = 0 and a(&) = {fed}, respectively.

The set of compatibles S2 dominates another set of
compatibles S I , i .e., SI 5 S2, since every member of S ,
is contained in at least one member of Sz.

Dejinition 11: A set of compatibles covers machine 312
if it contains all the states of the machine.

The weight of S, denoted as w(S) , is the number of
distinct internal states covered by compatibles in S. If S
covers the machine 312, then w (S) is equal to n .

Dejinition 12: A set of compatibles is closed if for
every compatible contained in the set, all its implied com-
patibles are also contained in the same set. The extended
closure class of a closed set of compatibles S is empty,
i.e., @(S) = 0.
For example, the set of compatibles S = { ifd, hfe, ged,
cba} covers FSM example ungerex, since every state of
ungerex is covered by at least one of the compatibles in
S. Thus, the weight of set S, i.e., w (S) = 9.

The extended closure class of the sct S = {ifd, hfe,
ged, cba, fed} is empty, i.e., +(S) = 0. Thus, the set
of compatibles S is closed.

Dejinition 13: A set of k compatibles S is called a min-
imal closed cover if and only if S satisfies

1) Covering condition: S covers the machine 312, i .e.,

2) Closure condition: S is closed, i.e., +(S) = 0.
3) Minimal condition: A set of k - 1 or less compati-

bles does not satisfy both covering condition and
closure condition.

A minimal closed cover is a minimal FSM solution, i.e.,
a reduced FSM.

In FSM example ungerex, S = {ifd, hfe, ged, cba, fed}
is a minimal closed cover, since it satisfies the covering

w (S) = n .

condition, the closure condition, and the minimal condi-
tion.

The goal of state minimization is to find an equivalent
FSM, i.e., a minimal closed cover, that simulates the
given external behavior with a reduced number of states.
The state minimization process normally consists of the
following steps:

Detection of redundant states which can be merged,
producing pairwise compatibles.
Derivation of prime compatibles from painvise com-
patibles (in the case of completely specified FSM’s,
the solution can be found only from maximal com-
patibles).
Selection of a set of compatibles from prime com-
patibles which satisfies the covering constraint, the
closure constraint, and the minimal constraint.
Ensuring that the functional behavior of the reduced
FSM is equivalent to the original one.

IV. EFFICIENT ALGORITHM FOR FINDING A MINIMAL
FSM

The algorithm starts by generating all pairwise com-
patibles and incompatibles [23] from FSM cube table rep-
resentation (e.g., the KISS format (361). We employ Ben-
netts’s approach [3] to derive compatible classes directly
from the list of pairwise compatibles. Some of the com-
patible classes are then removed by utilizing Luccio’s
deletion rules [24]. The remaining compatible classes are
called prime compatibles, which are used to generate the
search tree.

In the following discussion, we will describe the lower
bound on the number of states in a reduced FSM, the gen-
erating sequence for the construction of the search tree,
search tree generation and pruning, and the algorithm to
search for a minimal FSM solution.

4.1. Lower Bound
A set of k incompatible states 41, 4 2 . . - , qk must be

covered by k compatible classes, since a single compati-
ble class cannot cover two incompatible states. In addi-
tion, the compatibles in a minimal closed cover must cover
all the internal states of the given FSM. Hence, a maximal
incompatible containing a maximum number of states de-
termines the limit to further state reduction. The lower
bound‘ on the size of the reduced FSM, denoted as Q , is
equal to the number of states contained in a maximal in-
compatible with the maximum number of states. The
maximum incompatibles (i.e., maximal cliques) are de-
rived from the incompatibility graph using Carraghan’s
maximal clique algorithm [6].

Example: In FSM example ungerex, there are three
maximal incompatibles having a maximum number of
states, i .e., ihgc, ihgb, and ihga. This implies that the
maximum number of states in a maximal incompatible is
four. Thus, the lower bound Q on the size of the minimal
closed cover is four.

‘This lower bound does not account for the closure constraint; thus, in
some cases, a closed covering of this minimal size may not be possible.

740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS A N D SYSTEMS, VOL. 12, NO. 6. JUNE 1993

thib
ihga

4.2. Generating Sequence

4.2.1. Selecting a Maximal Incompatible as a Gener-
ating Sequence

A generating sequence is an ordered sequence of states
in a maximal incompatible that contains the maximum
number of states and generates a minimum number of
nodes in the search tree. The generating sequence, de-
noted as S I , s2, s3 * * . sQ, is used to determine the priority
of the levels of the search tree. Each level 1 corresponds
to a state s, in the generating sequence. The nodes at level
I of the search tree are determined by the prime compat-
ibles that cover the state s[in the generating sequence.

The weight of a state qJ, denoted as w(qJ), in a maximal
incompatible is equal to the number of prime compatibles
covering state qJ. The total number of nodes, which is also
referred to as the weight of maximal incompatible, de-
noted as w(MI), equals @M'] w(q,).

It is possible that the number of states in more than one
maximal incompatible equals the lower bound Q . In such
a case, the maximal incompatible having the least weight
w (MI) (generating the minimum number of nodes) is cho-
sen as the generating sequence. If the weights of two or
more maximal incompatibles are the same, then the ties
are broken arbitrarily and any one of them is chosen as
the generating sequence.

Example: For FSM example ungerex, the maximal in-
compatibles having maximum number of states, and their
corresponding total number of nodes are shown in Table
111. Three maximal incompatibles, i .e., ihgc, ihgb, and
ihga, can be chosen as the generating sequence. Each will
generate an equal number of nodes, i.e., twelve. In such
a case, an arbitrary choice is made, and the maximal in
compatible ihga is chosen as the generating sequence.

4.2.2. Ordering States in the Generating Sequence
Pruning is more effective at a high level of a search

tree. Thus, the states of the generating sequence are or-
dered ascendingly in terms of their weights, so that a node
with fewer children nodes is selected first to construct the
search tree (fail-first heuristic [14], [15], [18]). If two
states in the ordered generating sequence have equal
weights and if the second state has a higher chance of
pruning the nodes, then we interchange their order. In
most instances, the swapping of the order results in a sub-
stantial reduction in the number of nodes in the search
tree.

Example: For FSM example ungerex, the weight of
states in the generating sequence ihga are

w (i) = w(h) = 1, w (g) = 3, w(a) = 4.

~, , ~I I ~-, . ~,
w (i) = l , w (h) = l , w (g) = 3 , w (b) = 4 12
w (t) = l , w (h) = l , w (g) = 3 , w (a) = 4 12

State i being least in weight is ordered at first position,
followed by state h , state g , and state a in that order. States
i and h have equal weights, i.e., one. But none of them
can prune the nodes, since each generates only one node,
i.e., ifd and hfe, respectively. Thus, the order of state i
and state h remains unchanged. The ordered generating
sequence for FSM example ungerex is ihga.

The obtained sequence of state variables in the maximal

TABLE I11
M A X I M A L INCOMPATIBLES HAVING MAXIMUM NUMBER OF STATES

[Maximal Incompatible (MI) I Weight of Each State w(q,) Weight w(M1)
I ihoc I wulil = 1.wulhl = l .wfol = 3.wfcl = 4 I 12 I

incompatible is called an ordered generating sequence
(OGS), denoted as s I s2s3 . . sn. The algorithm gener-
ate-sequence, shown in Fig. I , takes the set of maximal
incompatibles and the set of prime compatibles as inputs
and produces an OGS.

4.3. Search Tree Generation
In this section we describe the search tree generation

process. The search tree is constructed to find a minimal
solution. The OGS and the lower bound on the size of a
reduced FSM are used to generate the search tree. In the
rest of the paper, let

A node on the search tree represent a compatible.
The kth node on level I is denoted by q k .
A path on the search tree represent a set of compat-
ibles. A path consisting of 1 nodes (from the root
node to the k th node on level I) is denoted by path,, k .

Nodes in the search tree are comprised of prime compat-
ibles. The search tree is generated level by level in terms
of the OGS (sIs2s3 . sQ) , where w(s I) 5 w(sJ 5 * . *

5 w(sQ). There are Q states in the generating sequence,
and each state s, is associated with the corresponding level
1 of the search tree. A search tree generated by such a
method has fewer children nodes attached to a node at the
higher levels than at the lower ones, facilitating efficient
pruning. The tree generation process starts at root level
(1 = 0). Each node at the current level 1 is expanded to
the next lower level (1 + 1) by choosing prime compati-
bles covering the state sI + of the generating sequence as
its children. The nodes are expanded level by level until
all Q state variables in the generating sequence are used.
Thus, each node at level 0 spans a path from the root node
consisting of exactly Q compatibles.

Example: For FSM example ungerex, the generating
sequence derived in the previous section was ihga. Thus,
states i, h, g , and a of the generating sequence are asso-
ciated with the first, second, third, and fourth levels of
the search tree, respectively. The prime compatibles con-
taining states i , h , g , and a are shown in Table IV.

We start with an empty node at root level (I = 0). There
is only one node at the first and second levels of the search
tree, namely ifd and hfe. There are three nodes, i.e., ged,
gd, and ge, at the third level. Each of these nodes will
have four children nodes, i.e., cba, ba, ca, and a , at the
fourth level. Thus, in total there are twelve nodes at the
fourth level of the search tree. The tree generation process
stops as the four states in the generating sequence, i .e . ,
i , h , g and a , have been used. The search tree generation
process for this machine ungerex is illustrated in Fig. 2.

74 I PlJRI A N D G u ; EFFICIENT ALGORITHM FOR SEQUENTIAL MACHINES

I I, : ith State in OGS

Input : A set of maximal incompatibles. Generating Roo(Node

Output : An ordered generating sequence (OGS).

Procedure generate-sequence() [

Level i : A set of prime compatibles. Sequence

s1=i - - - - - - - - ifd - - - - - - - - 1=1
(ifd) And the lower bound R on the size of the reduced FSM ;

for each maximal incompatible M I with number of states equal to R { S2=h - - - - - -if,- - - - - - 1=2

n W e)
compute the weight of each state tu (q j) in M I ;

compute the weight of MI as v (M r) = n w (e) ;

1=3 ged - - - - - & s3=g - - - - - ,=I

And) a maximal incompatible (MI) having R states and minimum weight w(M1); k e d , g d , g e) /fi\ ' . // \
sort the states of this maximal incompatible in the ascending order of their weights ,
if two states q. and q, have equal weights (

,X: ca ba cba - - - ' 1 4 - - - 1' compare the chances of q, and qj to prune the nodes */ s4 =a

1=5
\

And the sets of prime compatibles P, and P, containing states q. and q, ; (cba ba,ca,a) ' a
ba cba

assign weights to P. and P>, equal to the number of prime compatibles,

if the first weight is larger
that are contained in the rest of their members ;

AMinimal fed _ _ _ _
1 FSM Solution

then interchmge the order of state q, and state q, ;

Prime Compatibles Containing State s,
ifd
h f e
ged, gd, ge
A, ba, a, (1

return the states of ordered maximal incompatible MI
as the states of OGS (SISZSI.. . sn) ;

1
Fig. 1. Algorithm to derive an ordered generating sequence

In the following discussion we present the rules for
search tree pruning.

4.4. Pruning Criteria
The search space generated by the tree generation pro-

cess described in the previous section can be relatively
large in case of a large FSM. In this section, we describe
the pruning criteria used to reduce the search space. Some
redundant nodes in the search tree can be deleted by com-
paring subsets of compatibles. The pruning rules ensure
that the covering condition and closure condition of a de-
leted node are covered by some other nodes.

Let S, = { C , , C2, a * * , C,_ I , C,} be a set of com-
patibles, which is shown in Fig. 3 as path, ,. Assume that
the end node C, of path,,, has two children nodes, C, and
C,. The compatible sets S, ({ C , , C2, - , C,- I , C,, C,})
and S, ({Cl, Cz, * . * , Cr-1, Cr, C,}) f o m p a t h / + i , , and
path,, I , J , respectively. Node C, deletes C, with respect to
the compatible set S, if all the conditions in either of the
following two rules are satisfied.

Rule 1
Condition I . 1: C, covers all the states contained in C,,
i.e., C, C C,.
Condition 1.2: The extended closure class of S, domi-
nates the extended closure class of S I . That is,

Fig. 2 . Search tree for FSM example ungerex.

ROM Node

, @

level l+l- - - - - - - - - - -

Fig. 3 . Pruning a node in the search tree

Proof: Let S be a set of compatibles containing all
the compatibles in S,, i .e. , {S,} U C, G S. Assume that
S is a minimal closed cover, i.e., weight w (S) = n and
the extended closure class @ (S) = 0 (Definition 13). If
CJ in S is replaced2 by a compatible class C, such that CJ
c C, (Condition l . l) , then the covering condition of S
will not be affected, i.e., w({S\C,} U C,) = n. If each
number of the extended closure class of {S,) U C,, is
contained in at least one member of the extended closure
class of {S,} U C,, i .e. , @(S,) I '(S,) (Condition 1.2),
then replacing C, by C, will not affect the closure condi-
tion of S, i.e., @({S\CJ} U C,) remains empty. The num-
ber of compatibles in S remains unchanged if C, is re-
placed by C,, thus the minimal condition will not be
affected. In summary, compatible C, can be deleted with-
out affecting the chances of finding the minimal closed
cover, if both Conditions 1.1 and 1.2 are satisfied. 0

Rule 2
Condition 2.1: If C, does not cover all the states in CJ
then these uncovered states should be covered by the
set of compatibles S, (i.e., path,. ,).
Condition 2.2: CJ is an unimplied compatible.
Condition 2.3: The extended closure class of S, domi-

*S\C, is the set of compatibles obtained by removing compatible C, from
@(C;) 5 '(S, U c,) U s,. compatibles in S .

142 IEEE TRANSAClIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS A N D SYSTEMS. VOL. 12, NO. 6, JUNE 1993

nates the extended closure class set of Si. That is,
+(S,) 5 a@,).

Pro08 Let S be the set of compatibles containing all
the compatibles in S j , i.e., {S,.} U C, E S. Assume that
S is a minimal closed cover, i .e., w (S) = n and +(S) =
0 (Definition 13). If C, in S is replaced by a compatible
class C, such that all the states of C, not covered by C, are
covered by S, (Condition 2. I) , then Si covers the same
states as S j . This ensures that the covering condition of S
will not be affected, i .e . , w({S\C,} U C;) = n. If the
extended closure class of { S\C,} contains C, (or its sub-
set) as its member, then replacing C, by C, may affect the
closure condition of S, i.e., the extended closure class
@(S) may no longer be empty. Compatible Cj being un-
implied (Condition 2.2) ensures that neither C’ nor any of
its subsets are implied by any of the prime compatibles
(Definition 8) . Thus, Condition 2.2 ensures that closure
condition +(S) = 0 will not be violated. In addition, if
each member of the closure class of the set of compatibles
{ S,.} U C, is contained in at least one member of the clo-
sure class of {S,} U C,, i.e., 4 (S j) 5 +(S,) (Condition
2.3), then replacing C, in S by Ci will not affect the clo-
sure condition of S , i.e., +({S\C,) U Ci) remains empty.
The number of compatibles in S remains unchanged when
replacing Cj by Ci. Thus, the minimal condition will also
be unaffected. This implies that compatible Cj can be de-
leted from the search tree without affecting the chances of
finding the minimal closed cover, if Conditions 2.1, 2.2,
and 2.3 are satisfied. U

The pruning is carried out in conjunction with tree gen-
eration as described in the previous section. When a node
is expanded to the next level, its children are tested for
the pruning criteria. Those satisfying the pruning criteria
are deleted from the search tree. The search tree genera-
tion and pruning algorithm is shown in Fig. 4. Procedure
tree-qeneration takes the ordered generating sequence and
the set of prime compatibles as its input and generates a
search tree with its depth equal to Q .

Example: In the search tree shown in Fig. 2, consider
the children nodes of node hfe at the second level, namely,
ged, gd, and ge. Node gd can delete node ge with respect
to the path consisting of nodes ifd and hfe because it sat-
isfies
low.

1)

2)

3)

all the conditions of pruning rule 2 as explained be-

State e of compatible ge is not covered by gd, but
is already covered by hfe (the parent node), thereby
satisfying Condition 2.1.
The compatible ge is unimplied. Thus Condition 2.2
is satisfied.
Extended closure classes +(ifd, hfe, ge) and +(ifd,
hfe, g d) are empty. They satisfy Condition 2.3.

Similarly, node a at the fourth level (i.e., a child of com-
patible ged at level 3) is also deleted. The deleted nodes
are marked in the search tree (Fig. 2).

In the following section, we describe an algorithm that
finds a minimal closed cover satisfying covering and clo-
sure constraints.

Input

Output : A search tree with its depth equal to $2.

Procedure tree-generation() {

: A set of prime compatibles.
: An ordered generating sequence (si, ~ 2 ~ ~ 3 , . . . sn).

initialize the mot node ;
while level I is less than the lower bound R (

expand each node at level I to level I + 1 by choosing

prune the children of each node at level I ;
increment 1 to level 1+1 :

prime compatibles covering the state sl+l as its children nodes

1
return the search tree

}

Fig. 4 . Algorithm for search tree generation and pruning

4.5. Searching for a Minimal FSM Solution
A path in the search tree is a minimal FSM solution if

it satisfies the closure condition, the covering condition,
and the minimal condition (Definition 13). An efficient
heuristic that is able to reduce the search effort further is
to rank the weights for nodes at the same level of the
search tree. The weight of a node is the number of distinct
states covered by compatibles on its path. To gain search
efficiency, a node having a large weight is expanded be-
fore a node having a smaller weight (again, fail-first heu-
ristic [151, [181). This heuristic increases the chances of
finding a minimal solution at an earlier stage of the search
and eliminates the redundant computational effort of ex-
panding the rest of the nodes.

For each node at level n, denoted as nQJ, the algorithm
tests each pathQ,k for covering and closure conditions. If
the path satisfies both constraints, then the compatibles
on the path form a closed covering. If the path does not
satisfy either constraint, then node is expanded to the
next level. pathn,k and its children are then tested for a
minimal solution. If the new path satisfies the covering
and closure conditions, the algorithm stops and returns
compatibles on the path as a minimal closed cover. A node
is expanded to the next level as follows.

The covering condition can be satisfied by adding prime
compatibles (i.e., children nodes at level $2 + 1) that cover
an uncovered state in pathn,k. The closure condition can
be satisfied by adding prime compatibles (i.e., children
nodes at level 0 + 1) that cover a member of the extended
closure class of compatibles on pathn,k. If pathQ,k has more
than one uncovered state, the rest of them are covered in
the subsequent levels. Similarly, if the extended closure
class has more than one member, the rest of them are cov-
ered in the subsequent levels. The nodes at lower levels
can be expanded similarly. If none of the nodes at level
fl + 1 satisfy the constraints, then each node nQ + I , k at
level s2 + 1 is expanded to next lower level, and its chil-
dren are tested for a minimal solution. This process of
expanding the nodes and testing the children is continued
until a path satisfying the covering and closure conditions
is found.

Proposition: A set of compatibles on the first path that
satisfies covering and closure constraints also satisfy min-
imal constraint.

Proof: A path having k compatibles forms a minimal
closed cover, if it satisfies covering and closure condi-

PUR1 AND GU: EFFICIENT ALGORITHM FOR SEQUENTIAL MACHINES 143

Input

Output : A minimal FSM solution.

Procedure search-minimal-solution() {
(k = 1,2,. . . , Innl) {

: A set of prime compatibles.
: Nodesat IevelR: nn+ (k = 1,2, . . . , I nn()

for each node /* test nodes at level R * I
S k = compatibles on pathnC ;
if St is a c l o d covering (solution found)

return pathnh ; stop and quit;
}
s t a r t from level 1 = R ;
while no solution {

sor t nodes at level I in the ascending order of their weights ,
for each node nIA (k = 1,2,. . . , In,/) {

St = compatibles on pathlA ;
if s k satisfies cowering condition {

if Sk satwfies closure condrtron (solution found)

else { /* if closure conditwn not satisfied, try to satisfy it at next level */
return pathlh ;

expand node nIL to level I + 1 ;
prune the children nodes ;
if path of the children satisfy both constraints (solution found)

s top and quit;

return the pnthr.t and the child ; stop and quit;
I

)
else {/* if couenng mndition not satisfied, try to satisfy it at next level */

expand node n1.t to level I + 1 :
prune the children nodes ;
if path of the children satisfy both constraints (solution found)

return the path!> and the child ; s top and quit;
)

) /* for loop ‘ J
increment I to level 1+1 ;

) /* while loop */
1

Fig. 5. Algorithm to find a minimal FSM solution.

tions and if there is no closed covering of k - 1 or less
compatibles. In the search for a minimal solution, a node
at level 1 is expanded to the next 1 + 1 level if and only
if none of the paths at level 1 satisfy the closure and cov-
ering constraints. Thus we test a path having k compati-
bles for a minimal solution only after we have tested all
the paths having k - 1 or less compatibles. This guar-
antees that the first path that satisfies both the covering
and the closure constraints will also satisfy the minimal
constraint. 0

The procedure search_minimal_solution, illustrated in
Fig. 5 , takes the set of prime compatibles and the nodes
generated by the tree-generation algorithm. It finds a
minimal FSM solution, or proves that no solution exists.
A complete path obtained from the procedure search-
minimal-solution is a minimal FSM solution of the given
state machine equals the number of nodes on the solution
path. The search tree generation process ensures that a
complete path containing 1 compatible must be at the Ith
level of the search tree. This implies that all the minimal
FSM solution paths must be at the same level of the search
tree as the first minimal closed covering path. Thus all the
minimal FSM solutions call be generated with almost no
time overhead.

Example: Fig. 2 shows the search tree for the FSM
example. The paths of nodes at the fourth level, i .e.,
path,.k, are shown in Table V, where s, denotes the set
of compatibles on The nodes are arranged in the
descending order of their weights w(Sk) . Each pathn In

Table V is then tested for a minimal solution. None of
them satisfies both covering and closure constraints. The
uncovered states and the extended closure class (S,) on
each path are shown in the table. Since pathn. i.e., S I
= {ifd, hfe, ged, cba} , satisfies the covering constraint.

~

I
,

TABLE V

(FSM EXAMPLE)
PATHS A N D CONSrRAlNl-S AT T H E FOURTH LEVEL OF SEARCH TREE

pathn.k States Covered by St @(&)
(Path of Compatibles at Level R) (Covering Condition) (Closure Condition)

ifd, bfe, ged, ba abdefghi
ifd, hfe, ged, ca acdefghi bc, ba
ifd, hfe, gd, ba abdefgbi bc, ca
ifd, hfe, gd, ca acdefgbi
ifd, hfe, gd, a adefghi

TABLE VI
R ~ D U C E D FSM Ob THE EXAMPLE STATE MACHINE ungerex

Present state I Io

it covers all the states in ungerex (wj(S,) = 9). The ex-
tended closure class of SI is not empty and it contains a
compatible fed. Thus, we expand the first node at level
four to level five, to satisfy the closure condition. This
requires supplementing pathn, I with compatible fed. Sub-
sequently, we test the path of childfed, i.e., {S , } U (fed)
= {ifd, hfe, ged, cba, fed}, for a minimal solution. This
new path satisfies both the covering and closure condi-
tions. It is therefore a minimal closed covering path, as
shown in the highlighted lines in Fig. 2. Compatibles {ifd,
hfe, ged, cba, f e d } form a minimal closed cover for FSM
example ungerex. The reduced state machine is derived
by merging states f , e , d into state A , states c , b , a into
state B , states g, e , d into state C , states h , f , e into state
D , and states i , f , d into state E , as shown in Table VI.

V . EXPERIMENTAL RESULTS

We have tested a large number of FSM’s for state min-
imization. The majority of the FSM’s tested were from
MCNC FSM benchmark set [36]. All experiments were
preformed on a SUN SPARC 1 + workstation. We have
compared our results with recent state minimization re-
sults from Kannan and Sarma [20] (experiments per-
formed on a SUN 3/60) and Hachtel et al. [I71 (experi-
ments performed on a DEC 3100).

Table VI1 illustrates the experimental results, where the
second, third, and fourth columns show the number of
inputs N I , number of outputs No, and number of states N ,
in the benchmark FSM’s. The fifth and sixth columns
show the lower bound LB and the memory reduction M R
obtained using our algorithm. The last several columns
give the number of states in the reduced FSM, N s (R) , and
the corresponding execution time (seconds), obtained us-
ing our algorithm, Kannan et al.’s algorithm, and Hachtel
et al.’s algorithm.

It was observed from Table VI1 that approximately half
the MCNC benchmarks do not have any compatible states
and thus could not be reduced. FSM’s whose number of
states were reduced have been underlined in Table VII.
In four of the MCNC FSM’s, i.e., donjle, modulol2,

~

744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS A N D SYSTEMS, VOL. 12, NO. 6 . JUNE 1993

TABLE VI1
STATE REDUCTION RESULTS W I T H B E N C H M A R K F S M ’ s

PSM Spmc$eat~ow
VI No Ns
4 2 10
7 7 16
2 2 6
3 4 7
7 7 16
3 5 7
3 5 4
2 3 27
2 3 8
1 2 7
1 3 15
2 1 24
9 9 20
2 2 I O
6 g 14
2 2 9
5 8 8
2 2 10
7 2 19
2 6 16
2 1 4
2 1 9
5 6 15
3 5 4
1 1 12
5 6 10
7 9 18
7 9 48
8 8 24
8 6 20
8 6 20
4 1 6
4 1 5
I 9 32

27 56 121
1 1 8
7 7 16
9 10 30
4 4 4
6 3 32
7 6 20
2 I 11
2 1 4
2 1 I0
2 1 9
2 1 9
2 1 9
2 1 9
3 1 8
2 1 8
2 1 8

Our Melhd
L e Mn Ns(R) Time

7 - 7 o w
13 ~ 13 0.02
6 - 6 OW
4 11% 4 0.01
16 - 16 001
7 ~ 7 001
4 ~ 4 001
27 ~ 27 0.02
8 ~ 8 001
7 ~ 7 001
IS ~ 15 001
I ~ I o n] . .~
I8 - 18 0.01
2 11% 4 2.51
14 - 14 001
2 22% 3 0 2 3
8 - 8 001
3 25% 3 0 2 6
19 - 19 0 0 2
16 ~ 16 0 0 2
4 ~ 4 001
4 17% 4 0.01
12 74% 12 0.02
4 - 4 001
I ~ 1 001
9 - 9 0 0 1

4s ~ 48 0 I I
48 ~ 48 0 11
24 ~ 24 006
20 ~ 20 0 0 2
1 ~ 1 001
5 - 5 001
1 - I 001

32 32 0.02
97 89% 97 0 9 9
8 ~ 8 002
I 3 ~ 13 0 0 2
30 30 0.04
4 - 4 0.01
16 99% 16 164

4 47% 4 0 0 1
4 ~ 4 001
7 ~ 7 0.00
4 31% S 0 0 3
4 4 0 00
2 ~ 4 5 5 9
2 ~ 2 0 0 0
3 ~ 4 001
3 31% 3 001
2 31% 3 0.08

18 17% 18 a m

Yannan rt 01.. [m y
YsIR) Time

7 2 . w

6
4
16

4
27
8

15
I

14
4
8
4
19
16
4

I2
4
I
9
16

20

1
32
9;
P
13
30
4
16

4
1

0 05
1 00
0 73
0 12
0 10
2 06
0 10
0 07
0 25

0 17
100
0 10
1 00
I 9 7
2 88
I 0 0

1 00
0 03

I 0 0
1 5 0

0 i o

122
998
0 05
100
4 10
0 10
:I5 0

I U0
n 05

I 0 0

13

4

I8
4

3

3

4
12

9

97

13

16
1P
4

4
3

Yachtcl rl 01.. [17]
Vs(R) Time

7 0.02
0 09

0 02

0 14
I 3 4

0 14

0 35

0 00
0 09

0 01

1 7 5

0 09

4 60
0 05
0 02

n 02
0 0 2

s l a , s8, all the states were compatible and thus they were
merely reduced to one state machine. The execution times
required to reduce the FSM’s, of which all or none of the
states are compatible, were negligible. For all except nine
FSM benchmarks that are marked with an asterisk, the
lower bound LB on the size of the reduced FSM was the
same as the number of states in the reduced state machine
obtained only from maximal compatibles. In such a case
prime compatibles were not required. The maximal com-
patibles (i.e., cliques in merger graph) were derived using
Unger’s implication table [33].

Statistics regarding the memory space reduction were
obtained directly from the percentage reduction in number
of nodes in the search tree due to pruning. The average
memory space reduction increases with the search tree
size. In case of FSM’s with a very large number of prime
compatibles (e.g. ex2) , pruning reduces the memory re-
quirements by 90-95 %, but requires a substantial amount
of time. Thus such a case involves a trade-off between
memory space and execution time. For MCNC FSM
benchmark scfhaving 121 states, a memory reduction of
89% was achieved, and an optimal solution was obtained
in 0.99 s of CPU time. In comparison, for the same ma-
chine, it took Kannan er al.’s algorithm 998 s to obtain a
solution (on a SUN 3/60). Also, Kannan er al.’s algo-

’Execution times for all methods are given for computing the minimal
closed cover and mapping the closed cover into a reduced FSM.

rithm does not guarantee an optical solution and requires
a large amount of time for all the benchmark FSM’s.

Our algorithm compares favorably with Hachtel et al.’s
exact and heuristic algorithms. It produced optimal results
for all examples in a lesser time for almost all cases. For
FSM’s scfand tbk, it took our algorithm 0.99 and 1.64 s,
as compared to 1.75 and 4.60 s with Hachtel et al.’s al-
gorithm (on a DEC 3100). In these two cases, only one
maximal incompatible having a maximum number of
states (maximal clique) was derived to obtain the OGS.
Because of efficient pruning criteria, the reduction of
FSM’s with our approach is accompanied by a substantial
memory reduction for all large examples. For example,
for nontrivial FSM’s scfand tbk, memory reductions of
89% and 99% were achieved.

The minimal FSM solution of an incompletely specified
FSM is not unique (e .g . , FSM’s ex7, tma, and lion9).
These minimal FSM’s may have different implementation
areas. For example, FSM ex7 has two minimal solutions
with a two-level implementation area of 84 and 72 (ob-
tained using NOVA [34]). Our algorithm selects the best
solution with a minimum area of 72. In comparison, Kan-
nan et al. ’s algorithm generated a sub-optimal solution
with an area of 108, and Hachtel er al.’s algorithm gen-
erated a solution with an area of 84.

VI. CONCLUSION

An efficient algorithm to search for the minimal closed
covers in sequential machines is presented. This algo-
rithm eliminates all the redundant states in a given state
machine and guarantees to produce an optimal solution
for a reduced FSM. This performance is achieved because
of the application of fail-first heuristics in the search tree
level and nodal ordering and taking advantage of efficient
search space pruning criteria in search tree generation and
in the search process.

ACKNOWLEDGMENT

Robert Brayton and reviewers provided constructive
comments that improved the quality of this paper. Rettig
Oliver and Michel Crastes sent us papers [171, [20], and
121‘

REFERENCES

[I] P. Ashar, S. Devadas, and A. R . Newton, “Irredundant interacting
sequential machines via optimal logic synthesis,” IEEE Trans. Com-
puter-AidedDesign, vol. 10, pp. 31 1-325, Mar. 1991.

[2] M. J. Avedillo, J . M. Quintana, and J. L. Huertas, “State reduction
of incompletely specified finite sequential machines,” in Proc. Work-
shop on Logic and Architecture Sjlnthesis, 1990, pp. 107-1 15.

131 R . G. Bennetts, “An improved method for prime C-class derivation
in the state reduction of sequential networks,” IEEE Trans. Com-
puters , vol. 20, pp. 229-231, Feb. 1971.

141 N . N . Biswas, ”State minlmization of incompletely specified sequen-
tial machines,” IEEE Trans. Computers, vol. 23, pp. 80-84, Jan.
1974.

151 N . N. Biswas. “Implication trees in the minimization of incompletely
specified sequential machines.” Int. J . Electronics. vol. 5 5 . pp. 291-
298, Jan. 1983.

FUR] AND G u , EFFICIENT ALGORITHM FOR SEQUENTIAL MACHINES 745

R. Carraghan and P. M. Pardalos, “An exact algorithm for maximum
clique problem,” Operations Research Letters, vol. 9, pp. 375-382.
Nov. 1990.
H. A. Curtis. “The further reduction of CC tables,” IEEE Truns.
Computers, vol. 20, pp. 454-456, Apr. 1971.
S. C . DeSarkar. A. K. Basu, and A. K. Choudhury. “Simplification
of incompletely specified flow tables with the help of prime closed
sets,” IEEE Trans. Computers, vol. 18. pp. 953-956. Oct. 1969.
S. Devadas. H. K. T . Ma, A. R. Newton, and A. Sangiovanni-Vin-
centelli, “Irredundant sequential machines via optimal logic synthe-
sis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 8-17. Jan.
1990.
X . Du. G . Hachtel, B. Lin. and A . R. Newton, “MUSE: a multilevel
symbolic encoding algorithm for state assignment, ” IEEE Truns.
Computer-Aided Design, vol. I O , pp. 28-38, Jan. 1991.
M. R. Carey and D. S. Johnson, Computers und Intractuhility-A
Guide t o the Theon of NP-Completeness. New York: W. H. Free-
man, 1979.
S . Ginsburg. “A synthesis technique for minimal state sequential ma-
chines,” IRE Truns. Electronic Computers. vol. 8 , pp, 13-24, Mar.
1959.
A. Grasselli and F . Luccio, “A method for minimizing the number
of internal states in incompletely specified sequential networks.” IEEE
Trans. Computers. vol. 14. pp. 350-359, June 1965.
J . Gu, Constraint-Based Search. New York: Cambridge University
Press, 1993.
R. M. Haralick and G . Elliot, “Increasing tree search efficiency for
constraint satisfaction problems,” Artificial Intelligence. vol. 14. pp.
263-313. 1980.
J . Hartrnanis and R . E. Steams. A l ~ e h r u i c Structure Theor! of Se-
quential Machines.
G. D. Hachtel, J . K. Rho. F. Somenzi, and R. Jacohy, “Exact and
heuristic algorithms for the minimization of incompletely specified
state machines,“ in Proc. European Des i~r i Autornutiun Conf., 199 I .
pp. 184-189.
E. Horowitz and S. Sahni, Fundumeritals of Computer Algoritknis.
Rockville, MD: Computer Science Press, 1978.
R. W . House and D. W . Stevens, “A new rule for reducing CC ta-
bles.“ IEEE Truns. Computers. vol. 19, pp. 1108-1 l l l . Nov. 1970.
L . N. Kannan and D. Sarma, “Fast heuristic algorithms for finite
state machine minimization,” in Proc. Europeun Design Automation
Conf. 1991, pp. 192-196.
J . Kella, “State minimization of incompletely specified Sequential
machines,” IEEE Truns. Computers, vol. 19, pp. 342-348. Apr.
1970.
Z. Kohavi and A. Paz, Theory of Muchines und Conipururions. New
York: Academic Press, 1971.
Z. Kohavi, Sw,itching and Finite Auromutu Theory. New York:
McGraw-Hill, 1978.
F. Luccio. ”Extending the definition of prime compatibility classes
of states in incompletely specified sequential machine reduction.’’
IEEE Truns. Cornputers. vol. 18. pp. 537-540, June 1969.
M. S. Meisel ”A note on internal state minimization in incompletely
specified sequential networks,’’ IEEE Truns. Computrrs, vol. 16, pp.
508-509, Aug. 1967.
D. Pager, “Conditions for existence of minimal clowd covers com-
posed of maximal compatibles.” IEEE Truns. Com/Jutc~rs. vol. 20.
pp, 450-452, Apr. I97 I .
M. C. Paul and S . H. Unger. “Minimizing the number of states in
incompletely specified sequential switching functions.“ IRE Truris.
Electronic Computers, vol. 8. pp. 356-367, Sept. 1959.
M. A. Perkowski and J. Liu, “Generation of finite state machines
from parallel program in DIADES,” in Proc. b i t . S w . Circuits urid
Svsterns, 1990. pp. 1139-1 142.

New York: Prcntice-Hall, 1966.

1311 C . V. S. Rao and N. N . Biswas, “Minimization of incompletely spec-
ified sequential machines,” IEEE Truns. Computers, vol. 24, pp.
1089-1 100, Nov. 1975.

1321 B. Reusch and W. Merzenich, “Minimal covering for incompletely
specified sequential machines,” Actu Inforniution. vol. 22. pp. 663-
678, 1986.

1331 S . H. Unger, Asynchronous Sequential Cirwits. New York: Wiley-
Interscience. 1969.

[34] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: state assignment
of finite state machines for optimal two-level logic implementation,”
IEEE Trans. Computer-Aided Design, vol. 9, pp. 905-924, Sept.
1990.

[35] C. Yang, “Closure partition method for minimizing incomplete se-
quential machines,” IEEE Truns. Computers, vol. 22, pp. 1109-
1122. Nov. 1973.

1361 S . Yang, “Logic synthesis and optimization benchmarks user guide
version. Technical report version 3.0.’’ Microelectronics Center of
North Carolina, Jan. 15. 1991.

Ruchir Puri (S’91) received the B.S. degree with
honors in electronics and communication engi-
neering from the Regional Engineering College,
Kurukshetra, India, in 1988, and the M.S. degree
in electrical engineering from the Indian Institute
of Technology, Kanpur, India, in 1990, both in
electrical engineering.

He joined the Department of Electrical Engi-
neering at the University of Calgary during 1990,
where he is presently a Ph.D. candidate. He has
been working on logic synthesis, design and ver-

ification of self-timed circuits, and efficient search techniques for VLSI
circuit design.

Mr. Puri is a member of the IEEE Computer Society. He is a recipient
of a 1993 ACMiIEEE Design Automation Scholarship and the 1992 and
1993 Alberta Microelectronics graduate research scholarships.

Jun Gu (S’86-M’90-SM’90) received the B.S.
degree in electrical engineering from the Univer-
sity of Science and Technology of China in 1982
and the Ph.D degree in computer science from the
University of Utah in 1989, where he was twice
awarded the ASC Fellowship, twice awarded the
University Research Fellowships, and twice
awarded the ACM/IEEE academic scholarship
awards.

He joined the University of Calgary in late
1989. Since 1990, he has been an Associate Pro-

fessor with the Department of Electrical and Computer Engineering at the
University of Calgary, where he has received substantial funding from fed-
eral governmental agencies and the industrial sector. His research interests
include operations research and combinatorial optimization, applied a r t -
ficial intelligence, computer-aided manufacturing, computer architecture
and parallel processing, and structured techniques for VLSI circuit design.
He developed many efficient search algorithms dealing with practical con-
strained optimization problems involving a million variables. In 1987, he
provided several discrete and continuous local search algorithms for the
satisfiability (SAT) problem and other NP-hard problems. He authored the

1291 M. A. Perkowski and N. Nguyen, “Minimization of finite state ma-
chine in system Superpeg.” in Proc. Midwest Sym. Circuits and Sys-
tums, 1985. pp. 139-147.

130) C. P. Pfleeger, “State reduction in incompletely specified finite state
machines,” IEEE Trans. Computers. vol. 22, pp, 1099-1 102. Dec.
1973. Society. and Sigma X i .

book Coris;ruint-Based Search (Cambridge Univ. Press, 1993).
Dr. Gu is Vice Program Chair of the 1993 IEEE International TA1 Con-

ference, Boston. MA, and an Adjunct Professor of the National Research
Center for Intelligent Computing Systems and the Academy of Sciences of
China. He is a member of the ACM, AAAI, International Neural Network

