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ABSTRACT 
In this paper we describe a state assignment 
algorithm for PLA-based machines which produces 
an assignment of non necessarily distinct, and 
eventually incompletely specified codes. In this new 
approach, state reduction and state assignment are 
concurrently dealt with, and a restricted state 
splitting technique is explored. The algorithm is 
particularly appropriate for machines with compa- 
tibility relations among its states because the 
potentials of state merging are exploited during the 
state assignment step. The input to SMAS, the pro- 
gramme implementing the algorithm, is a symbolic 
cover of the FSM. The output is a boolean represen- 
tation of both next state and output functions suit- 
able to be minimized with ESPRESSO [Bray841. 
The machines in the MCNC[Lisa89] benchmark set 
are used to test the new algorithm and to compare 
it with a well known state assignment program. 

1 INTRODUCTION 
One main task in logic system synthesis is the 

design of Finite Sequential Machines (FSMs). This 
process includes state reduction, state assignment 
and logic minimization. Classically, the two first 
steps have received an  independent treatment. 
Afterwards, in more recent references on automatic 
FSM design systems, i t  has been stated that the 
classical assumptions of structural design methods 
are no longer valid for modern technologies 
[Lee84]. Lee recommends not to seek a FSM with 
the minimum number of states. Rude11 [Rude851 
does not include state minimization within FSM 
synthesis, but he points out the need of a more gen- 
eral transformation of the FSM aimed a t  obtaining 
an equivalent machine that is easier to build. 

In [Lee841 i t  is suggested to replace the stages of 
state minimization and state assignment with one 
stage of joint minimization and state assignment. 
In this paper, a novel approach to the concurrent 
s ta te  minimization and s ta te  assignment i s  
described. It is also explored a restricted state 
splitting technique. The need of state splitting for 
optimal state assignment has been pointed out in 
[Hart621, [DevaSOI. 

I 1  HA'I'IONAI, OFTHE NEW A P P R O A C H  
Let us briefly show how the goals of state 

reduction and state splitting are achieved by a 
coding process which allows a single code to be 
ussig:rit*d to a g r o u p  of states a n d  the use of 
incompletely specified codes. 

Assigning a single code to a group of states is 
equivalent to the transformation of the FSM de- 
scription by the substitution of a group of states with 
one single state (state reduction) and the assignment 
of this internal state in the new description. From 
classical state reduction theory we know that, in 
order to specify the same external behavior than 
original machine, the states which are merged into 
one state must be compatible and closure constraints 
must be satisfied [Unger691, fGrass683. These 
conditions are used as constraints in our encoding 
process. This is, the state reduction is achieved during 
the assignment process. 

Assigning a n  incompletely specified code 
[Koha78] (group of codes) to a single s ta te  is 
equivalent to the transformation of the FSM symbolic 
description consisting in the substitution of a sin le 

assignment of this new description..There are two 
reasons to allow incompletely specified codes: 
1.- It is important to cope with the concurrent state 

reduction and state assignment of incom letely 
specified sequential machines. In general, For this 
kind of FSMs, a closed set of compatibles covering 
a state table (solution to the classic state reduction 
phase) is not disjoint. But a non disjoint gathering 
of states cannot be achieved via state assignment 
if incompletely specified codes are not allowed. 
Thus, concurrent state reduction and state assign- 
ment will fail to reach a part of the space of 
solutions so, precluding the possibility of finding 
some efficient ones. 

2.-The boolean cover of the machine which i s  
supplied to the logic minimizer, can have extra 
flexibility in this way, because some next state 
entries have been substituted by a group of states. 
The minimizer can take advantage by choosing 
each time the best state of the group to achieve 
minimization. In [Tseng86] i t  is  reported that  
allowing "don't care" bits in a state assignment 
often results in a significant reduction of the 
combinational component. 
Nevertheless, this state splitting is restricted, 

because the codes assigned to the set of s ta tes  
resulting from the splitting of an original one are 
constrained to form a cube. 
11.1 C o n c u r r e n t  state r e d u c t i o n  a n d  state 
assignment 

From previous paragraphs, i t  is  clear that  our 
assignment process is equivalent to both the trans- 
formation of the symbolic description of the FSM and 
to the assignment of this new description. Some con- 

state by a group of states (state splitting) and t % e 
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straints need to be imposed to the encoding so that the 
behavior of the machine is not changed by the state 
reduction achieved concurrently to the assignment. 

Let us introduce some definitions in order to for- 
mulate the constraints the assignment has to satisfy. 
We say two states have compatible assignments if 
the intersection of their codes is not empty, (notice 
that "don't care" bits are allowed in the codes). For 
example, assume the state Si has been given the code 
(001-1 and the state S2 the code (0010). Si and S2 
have compatible assignments because (001 - )  n 
(0010) = (0010). Iden t i ca l  a s s i g n m e n t s  i s  a 
particular case of compatible assignments. 

We say two states have discriminated assign- 
ments if the intersection of their codes is empty. 

In order to guarantee that an encoding is valid 
(the derived logic implements the desired behavior) 
the following constraints must be satisfied: 

1.- A pair of states with compatible assignments 
must  be compatible states o r ,  a pa i r  of 
incompatible states must be given discrimi- 
nated assignments. 

2.- For each input sequence, the pairs of states 
which are implied by a pair of states with 
compatible assignments must have compatible 
assignments too or, the pairs of states which 
imply a pair of states with discriminated 
assignments must be given discriminated 
assignments too. 

111 THE ALGORITHM 
Given a state table describing the external 

behavior of a FSM, the state assignment phase tries 
to find the binary representation of the internal 
states of the machine corresponding to a PLA of 
minimal area. In our approach a valid binary 
representation is built up by exploring both the 
potentials of state merging and state splitting. 

Given ns i n t e rna l  s t a t e s  in  the  symbolic 
description to be assigned, we assume that ns X nb 
bits are oing to be assigned to a value from the set 
(0, 1,  -7, where nb is the number of bits of the 
generated codes and so i t  is not known until the 
algorithm has finished the assignment process. We 
start with the number of bits needed to encode a s  
many states as there are in the maximal incompatible 
of highest cardinality (nbo). Afterwards, the length of 
the codes will be incremented by one bit, each time 
the actual intermediate assignment cannot be turned 
into a valid one with the current number of bits in the 
encoding. 

Initially the codes of all the states are completely 
unspecified, the algorithm assigns bits to 0 or 1 until 
the assignment is valid according to conditions 1 and 
2. In order to describe how the algorithm works, we 
introduce the concept of p a i r  of c o m p u l s o r y  
discrimination as those pairs of states which cannot 
have compatible assignments (incompatible states, 
and those pairs which imply a pair with discrimi- 
nated assignments, are  p a i r s  of c o m p u l s o r y  
d i sc r imina t ion ) .  Ini t ia l ly  the  only pa i r s  of 
compulsory discrimination are the pairs of incompat- 
ible states. Figure 1 shows the main data structures 
and a Pidgin-C description of the algorithm. 
111.1 Procedure Initialize 

The lists DAP, IAP, ITP are initialized to the 
empty set. The list of pairs of compulsory discrimi- 
na t ion  ( C U P )  is i n i t i a l i z e d  t o  t h e  s e t  of 

Data Structures 

DAP: list ofpairs with discriminated assignments. 
CDP: list ofpairs of compulsory discrimination. 
IIP: list of pairs implied by pairs of states with 

identical assignments. 
IAP: list of  pairs with identical assignments. 

Main() 
{ Kead FSMO; 

I ni tiaTTze0; 
for ( eachparr (si,sj) in CDP) 
{ Discriminate(s2,sj); 
1 

1 
Figure 1 

pairs of incompatible states. The initial length of the 
codes (nbo) is determined. A state (Sinit) is selected to 
have nbo bits assigned to 0. 
111.2 Procedure Discriminate 

Basic ope ra t ion  i n  t h e  process  i s  t h e  
discrimination of the assignments of a pair of states. 
Among all the different assignments of bits leading to 
the discrimination, the best one according to a cost 
function is chosen. The lists DAP, IAP, IIP,CDP are 
then updated. for example, for DCP to be updated 
pairs which have been discriminated are removed and 
those pair implying other pairs just discriminated are 
added. The discrimination of some pairs can require 
that the code length is incremented as we said before. 
In this case the lists IIP, IAP are emptied. 
Theorem: When there are no pairs of compulsory 
discrimination left, the actual assignment satisfies 
conditions 1 and 2 and so it is valid. 
Proof: a) Suppose it is not a legal assignment because 

there are pairs with compatible assign- 
ments which are no compatible states. This 
would mean an incompatible pair has not 
been discriminated yet and so, the list of 
pairs of compulsory discrimination would 
not be empty as it is the condition for the 
process to finish. 

b) Suppose i t  is not a legal assignment because 
there are pairs which have compatible codes 
but they imply pairs with discriminated 
assignments. This is not possible because when 
discriminating those implied pairs,  t he  
implying pairs would have been added to the 
list of pairs of compulsory discrimination. 

111.3 Considerations about  order  strategies and  
cost function 

It  is worth noting that the straight application of 
our algorithm does not guarantee that the length of 
the codes is minimum. However, several heuristics 
have been developed in order to achieve more efficient 
assignments. For example, the order in which pairs of 
states are discriminated and the cost function are 
critical. Very efficient order strategies have been 
introduced so that, in practice, codes longer than 
minimum ones are not usually generated. Moreover, 
the potential of state merging leads, in some cases, to 
assignments with a number of state variables which 
is less than the minimum needed to code the number 
of states in the initial symbolic description. The cost 
function has been designed to force the number of bits 
to keep low. A t  the same time, it aims a t  reducing the 
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area of final implementations by adding extra 
flexibility to next state functions and by taking into 
account the fulfillment of the adjacencies derived 
from Humphrey's rules. 
IV EXPEHIMENTAL RESULTS 

The a1 orithm is particularly suited for those 
machines for which state merging applies and so a 
subset  of t h e  MCNC machines ,  those wi th  
compatibles or equivalent states, has been used to 
test the algorithm. We have also tried many examples 
picked out from Switching Circuit Textbooks and 
journal papers about minimization (all of them 
referenced in [Reus86]). We will focus on two figures 
of merits: the area occupied by the combinational 
component in the PLA implementation of the FSM 
and the time which is required for design. 

Tables I and II depict the results for both groups of 
machines. The number of primary inputs  (ni) ,  
primary outputs (no) and states (ns) are shown for 
each of t h e  m a c h i n e s  to  which SMAS ( C  
implementation of the new algorithm) and NOVA 
[Vila881 (hybrid algorithm) have been applied. The 
number of state variables (nv), the number of-product 
terms (tp) after logic minimization and the size ((2ni + 3nv + no)tp) of the PLA implementing the  
combinational component for the assignments 
obtained with each program are also shown in Tables 
I and 11. Times are given in seconds in a SUN 
Workstation 31260. A column with the ratio of sizes, 
Ar, is included 

SizewithSMAS (sizes) 

SizewithNOVA (size ) 
N. From both Tables, we can see that in all the cases 

the number of state variables in SMAS' assignments 
is less than or equal to the number of state variables 
in NOVA'S assignments. Concerning the first group 
of machines, SMAS obtains  a more efficient 
implementation than NOVA does in 16 of the 18 
machines we have tried. In particular, let us focus on 
the set formed b donfile, modulol2, s l a  and s8. 
These machines i o  not need to be implemented as  
FSMs. NOVA is not able of detecting i t  and supplies 
an assignment for them. This leads to realizations 
which are expensive in terms of area. None of the ma- 
chines in the second group (Table II) is more efficient- 
ly assigned with NOVA than i t  is with SMAS. 

In Tables El and IV, the arithmetic average of the 
ratios of sizes and of the ratios of times (it is defined 
similar to the ratios of sizes) between our algorithm 
and different algorithms in NOVA are shown. The 
default random option that we use, tries as many 
random encodings as states in the machine. The 
hybrid algorithm from NOVA has been chosen 
because it is said to provide the best tradeoff between 
area and time. Table El summarizes results for group 
1 while Table IV is devoted to group 2. As we can 
observe from Table III, area savings up to 50% are 
achieved with SMAS versus the hybrid algorithm in 
NOVA, the average of time ratios being near to 1. 
Even more area and time savings are achieved by 
S U S  on the second group of machines. 

Finally, although this algorithm is not tailored to 
the assignment of minimized machines, when SMAS 
is applied to the subset of the MCNC benchmark 
corresponding to minimized machines, there is only 

A r =  

an increment of around 11% in area with respect to 
the i-hvbrid ontion in NOVA. 
CONc'Lusr6Ns 

We have developed and programmed an state 
assignment algorithm which, concurrently to the 
assignment  of binary codes i n  t h e  symbolic 
representation, exploits the potentials of s ta te  
merging and state splitting when i t  is possible. 

Up to now, the algorithm is extremely advantage- 
ous for the assignment of non minimized machines 
because of the power o f  state mergin . It achieves 
slightly worse results than NOVA f% minimized 
machines. Nevertheless, this is a preliminary version 
of the work. In our opinion, paying more attention to 
the state splittin technique and the tuning of the 
cost function willgead to a more efficient assignment 
of machines with a minimum number of states. In any 
case, the algorithm is  original and paves the way to a 
newtreatmht  of state assignment.. 
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I I I NOVA I SMAS I I 

area 
time 

~ 

Table I 

I I I NOVA I SMAS I I 

0.44 0.43 
0.08 0.16 

Table II 

area 
time 

0.48 0.54 
0.12 0.61 

Table IIi 

random I ratios I hybrid I 
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