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ABSTRACT

A new method for the state reduction of
incompletely specified Finite Sequential Machines is
proposed. Fundamenta! theorem of minimization
theory states that, given an incomplete state table,
another state table specifying the same external
behavior corresponds to each closed set of
compatibility classes which covers all internal states
of the given table. The new heuristic algorithm
builds up a closed cover for a given state table
selecting maximal compatibles (MCs) one by one
until both covering and closure requirements are
satisfied. Near-minimal solutions are so
incrementally generated. The process is dynamic as
the consequences of adding a particular MC are
precisely determine.The new algorithm is designed
for speed and has proven to be extremely valuable in
i but good optimization is
required. The algorithm has been programmed and
results on a wide set of machines shown.

INTRODUCTION

In the framework of computer-aided synthesis of
Finite Sequential Machines (FSMs), a great attention
has been paid to the state assignment of a FSM, i.e., to
the problem of selecting a binary representation for
the internal states of the machine. It has been so
because of its dramatic influence on the overall area
occupation of the final circuit as well as on the time
required for the design process. However, there is a
previous step in the design of a FSM which also might
be responsible of a significant wasting both in silicon
area and CPU time, if the designer is not aware from it.
We are referring to the elimination of redundant
states in the description of the FSM being manipulated
in the design process. A reduction of t?ue number of
states may correspond to a reduction of the number of
bits that is needed for the state coding. Moreover,
reducing the number of states corresponds to
decreasing the number of transitions of the
sequencin? functions (and eventually, to reducing the
number of implicants in a two level logic realization,
for example). Although there is no assurance that
circuit complexity reduces with state minimization [1],
it has been noted that this process may become
necessary and bring area minimization when starting
with high-level initial descriptions which are then
translated into state tables [2]. Those programs usually
introduce a lot of states, which are redundant and
must be eliminated in what is classically called the
state reduction phase [3,4].

In this communication we will show the need of
considering this previous state reduction phase, we
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will discuss the presently known state reduction
methods and finally, we will propose a new heuristic
algorithm which achieves a satisfactory compromise
between the quality of the solutions and the required
time to obtain such solutions.

A PRELIMINARY EXAMPLE

In order to show how the state reduction may
influence the result of the design process let us
consider a classical example taken from the literature
and corresponding to a medium size machine [5].
Table 1-a shows the state table representation of an
incompletely specified machine of 22 states. This
machine has been proved to have an equivalent
representation with only 9 states, as is shown in Table
1-b. Table 2 depicts figures for the area obtained and
the time invested when both state tables are
implemented using a PLA and a dynamic register. An
automatic state assignment program (PRASES [6]) has
been used. From Table 2 it should be clear the
difference between applying the program to a
reduced machine and to the original description.

PREVIOUS WORK

Several methods have been reported in the past to
deal with the problem of state reduction [7-12]. In
general these techniques involve two steps: 1)

eneration of compatibility classes (prime compatibles
P9], prime closed sets [12], etc.), and 2) extraction of a
minimal closed cover. There are drawbacks related to
both steps. Concerning the first one, the number of
those compatibility entities might be too large
precluding an efficient generation. Moreover, the
second step implies the solution of a minimum closed
covering problem, which is known to belong to the
class of NP-complete problems. The consequence is
that exhaustive algorithms are impractical for VLS|
circuits even when the machine size is relatively small.

Traditionally, two kinds of solutions have been
proposed to deal with second step, one of them being
based on covering tables, the other being based on a
mathematical programming formulation. In both
cases, prime compatibles were usually preferred to
maximal compatibles since the former ones ensure the
absolute minimality of the solution. The price to be
paid is the computational cost. Tabular approaches are
impractical even for small size machines. Nevertheless,
they are systematically reported in textbooks, the
mathematical programming approaches being only
considered in a few papers [9].

Luccio and Graselli [9] converted the closure and
covering problem into a mathematical programming
one and proposed to use standard solution methods
for such a kind of problems. Namely, the authors




formulated this selection stage as an integer restricted
linear program by associating with every prime class R;
an 0-1integer variable r;. R; s selected if r; = 1 and not
selected if r;=0. Unfortunately, we are still dealing
with a NP-complete problem. Heuristic algorithms
have been developed to cope with this. These
algorithms do not attempt to determine the absolute
minimum, so the compatibility class set on which they
are based is not so critical (it is well known that it is not
guaranteed [13] that a minimum closed cover
composed uniquely of maximal! compatibles exists, for
example). Bennets in [10] proposes a reduction
algorithm based on the maximal compatible sets, MCs.
Using this subset of the prime compatible sets reduces
(in some cases drastically) the number of compatible
candidates. The procedure consists of selecting one of
the essential (or quasi-essential) MCs and attempting
to satisfy its closure requirements (generating one of
the smallest set of MCs that satisfies the violated
closure requirements for the MC selected). The result
will be a closed set of MCs that may be or may not
provide full cover on the initial set of states. The
procedure is repeated until a full cover is performed.

We have carried out many experiments using
Bennets' approach as well as several well-stablished
general solution methods for linear programming
problems. Table 3 shows some results for four
different machines to illustrate our experience. The
first machine, FSM1, is the one in Table I -a. The second
one, FSM2, has also been selected from the literature
[13]. The machines FSM3 and FSM4 have been
randomly generated. We have applied to those
machines three different state reduction methods. The
one referenced as G1 in Table 3 corresponds to the
first solution obtained by a linear pro ramming (LP)
integer problem general method [14]. We include
solutions using maximal compatibles, MCs, as well as
those using prime compatibles, PCs, as potential
members of a minimal closed cover. The column
referenced as G-H corresponds to the same previous
general method with a speed-up strategy added [15].
This strategy allows intermediate solutions, perhaps
no minimal, but with a bound on the difference from
the minimal for the closed covering problem. This is, a
given tolerance &, is assumed which causes an exit if
an approximate solution is found that is guaranteed to
be within a distance €, from the best. We also report
the solution obtained by the algorithm in [10] and the
minimum. The CPU times, in seconds, corresponds to a
SUN workstation 3/260. Entries filled with the label
"Not P.", standing for not practical, apply for a
method in Table 3 when the CPU time was found to be
atleast three orders of magnitude higher than G1.

From Table 3 we can observe that using PCs or MCs
as starting compatibility classes does not seem to be
too critical if we are trying to get near minimal
solutions rather than the absolute minimum. It should
be clear that the solutions obtained with G-H have a
bound on the difference from the minimal, but time
requirements can be too large even for medium size
machines. Finally, the algorithm [10] produces nice
results when is applied to smail FSMs but we have
realized that for many machines produces worse
solutions than G1. In summary, we have realized that
none of these approaches is a clear candidate to be
inserted on top of a design tool we are implementing
for the automatic design of FSMs. Hence, we have
decided to introduce a new alternative.
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Table!-a Table 2
G1[14]
PARAMETERS
FSM using MCs|using PCs
ns | ni lemc|#ecnsy | t nsy [time
FSM1122 | 4 |30 261 14 | 06| 70 |58
FSM21 9 | 4 110(70] 6 [01] 5 |07
FSM3 | 43 3127127121 o7 | 21 0.7
FSM4a |43 | 3 |25 25 8 0S| 8 |025
-H [14
G-H[14).[15] B.etal.
10
FSM Jusing MCs| using PCs (o) m&w
ns3| t |[nsg{ t nss [time
FSM1 1 11 14435] 10 [NotP. [ 12 [ 06 | 9
FSM21 5 | 04 [ 4 [NotP. ] 6 [01] a
FSM3 1| 9 139 9 13.9 8 0.4 8
FSMaf 8 1025 | 8 (025 [12[ 07| 7

ns : state number of the original FSM
N : input number of the original FSM
#MC : MC number of original the FSM
#PC : PC number of original the FSM
ns, : state number of the reduced FSM

Table3
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A NEW APPROACH
In this section, we present the state reduction
algorithm we have developed. It is described using
Pidgin-C as follows:

main()
/* state reduction algorithm based on maximal
compatibles (MCs) */

{
CCSS =Get _MC(T);

Q = Get_constraints(CCSS, T):

CC={@};
while(CC ! = closed cover)

{ if(CC =closed)

CC = + Select _CC(Violated Closure Constraints);

else
{CC = + select _ cC(Violated Covering
Constraints),
}
}

T' = Get_Table(CC);
}
Select _ CC(Violated Type Constraints)
{ Cand=Most._ restrictive(Violated Type
Constraints);
for(each CC in Cand)
Compute _C();
return{M; maximizes C);

The state reduction is achieved by processing the
state table T, from which the set of maximal
compatibles, CCSS is obtained. Then, a table Q with
the covering and closure constraints is derived by
Get_ constraints(). The closed cover (CC) is initialized
to the empty set. CC is built up by adding MCs one b
one until no closure or covering constraint is violated.
To do this, if CC is not closed, procedure Select - CC() is
called with the set of violated closure constraints as an
argument, else it is called with the set of violated
covering constraints. This procedure returns a maximal
compatible, M;, satisfying at least one of the most
restrictive constraint (constraint satisfied by the
smallest number of MCs) in the passed set. Procedure
Most _restrictive() evaluates the most restrictive
constraints. These MCs are stored in the set Cand. For
each MC in this set, Compute . C() calculates a) the
number of violated constraints satisfied by selecting
M; (PC, positive contribution), and b) the number of
them that are violated as a consequence of adding M;
to CC (NC, negative contribution). Finally the MC, M;,
which maximizes C, a weighted sum of NC and PC, is
returned so ending the call to procedure Select - CC().
we remark how if both closure and covering constraints
are violated, we attempt tosatisfy closure requirements
firstly. These actions are repeated until CC is a closed
cover for table T. Then, the reduced state table, T", is
derived by Get_Table(). An important point in the
heuristic proposed is the selection of weights in the

554

definition of C. From our experience we conclude that
an effective guideline is C = PC - 2NC.

Note that unlike the algorithm proposed in [10] we
do not need to generate a minimum set of MCs
satisfying a given subset of the constraints, this
preventing us to handle a NP-complete problem.

We will use FSM2 in Table 3 as an example to clarify
how the algorithm works. The set of maximal
compatibles (CCSS) for this machine is shown in
Figurel.

MCs for Table 2:

Mg = (s2,53,56,59)
M7= (s1,52,55,58)

M| =(s4,55,57,58,89)
M2 =(s2,55,57,58,59)

M3 =(s2,53,57,58,59)
My = (s4,55,56,59)
M5 = (s9,55,56,59)

Mg = (s1,59,53,58)
Mgy = (s1,52,55,5¢)
M= (s1,52,53,56)

Figure 1

We associate a 0 -1 integer variable ¢; with each
maximal compatible M; so that the corresponding
integer program is formulated. ¢; = 1 if M; is selected
as a member of a closed cover set and ¢; = 0 if M; is not
selected. These covering and closure constraints are
shown in Figure 2.

—1+C7+Cg+Co+C10= 0 (1)
~1+C+C3+C5+Ce+C7+C8+C9+C10 = (2)
~1+c3+ce+Cg+C102 0 (3)
-1+c1+¢4=0 (4)
—l+Ci+Q+a+C5+C7+cg = 0 (5)
~T+Ca+cs+Ce+Cg+c10= 0 (6)
-T+¢c1+c+¢c3= 0 (7)
~1+C1+C0Q+@3+C7+¢g= 0 (8)
-1+ +CQQ+C3+C+C5+¢ = 0 (9)
—C1+CQ+C5+C7+C3 = 0 (10)
-C1+cg+ci0=0 (11)
-1+ =0 (12)
-C+Cq+C5+cg = 0 (13)
-Ca+C3+¢ = 0 (14)
—C2+Cg+Cig= 0 (15)
-C3+C+c5+cg = 0 (16)
-3+¢7+cg= 0 (17)
—Ca+C7+g = 0 (18)
-Ca+cg+cip= 0 (19)
~-Ca+Cs+Cg+Ca+C10= 0 (20)
-¢5+¢cg =0 (21)
-C5+c3+¢= 0 (22)
-C6+C9 =0 (23)
-Cg+C2+C3= 0 (24)
~-C7+C5+cg= 0 (25)
-Cc7+C1+¢c4 = 0 (26)
-c7+¢10= 0 (27)
-cg+Cs+cg= 0 (28)
-cg+C1+¢g = 0 (29)
-C+Ci+ca = 0 (30)
~-C+Ce+C10= 0 (31)
-Cc10+C1+c =0 (32)
-C1p+C2+3=0 (33)
-Clo+C3+¢g = 0 (34)

Figure?2
Initially, CC =@ and the procedure Select _CC() is
called with the set of covering constraints ((1) - (9)) as
argument. inequality number (4) is the most restrictive
violated one, as it is satisfied only by the selection of
M/ or M4 (these MCs are the only ones that cover state




sq4). It is clear that M; and/or M4 will be members of
any closed cover set, including that of minimum

cardinality. Then:
Cand ={M;, M4}
and C is computed for both MCs:
1 for M,
PC(M;) = 5 because M; = (sy, s5, 57, 58, s9) covers five
uncovered states of the original table. This is, the
selection of this MC satisfies five violated inequalities.
These are (4), (5), (7), (8) and (9).
NC(M;) = 3 because the consequence of selecting M;
is the violation of inequalities (10), (11), (12) which
express the closure requirements of M;. This is, if M; is
selected as a member of a ctosed cover, MCs
containing compatibles (s;, s2, s3), (s2, s5) and (s;, s5,
sg) will have to be inciuded too.
C(M)=PC(M;) -2NC(M})= -1

1 for My

PC(My) = 4

NC(My) =3

C(M4)=PC(My) -2NC(My4) = -2
M isselected (CC = {M;}) because it maximizes the

parameter C. Now there are some closure constraints
violated (inequalities (10), (11), (12)) and the algorithm
tries to satisfy them firstly, so procedure Select_ CC() is
called for these constraints. Among this set inequality
(12) is the most restrictive one and:

Cand = {Mgy}

In this case as there is only one candidate MC we do

not need to compute C. Mg becomes a member of CC.
Now, the set of violated closure constraints is {(11),

(31)} and
Cand = {Mg, Mg, M 10}
C(Mg) = 0
C(Mg) = 2
CMip) = -1

My is selected. The only inequality not satisfied is
(31) and the algorithm evaluates C for each of the MCs
whose selection satisfies that constraint, i. e.:

Cand ={Mg, M0}
C(Mg) = -1
CMy0) = -1
Arbitrary Mg is selected. As a consequence of
adding this MC to CC, constraint (24) is violated :
Cand = {M3z, M3}
C(Mg2) =1
C(M3) =1

M3 is added to CC (CC = {M; Mg Mg Mg M2}
which now is a closed cover of the original table
describing the FSM

PRACTICAL RESULTS AND COMPARISONS

We have developed REDUCES, a computer program
for state reduction of Finite State Machines. This
program has been written in C and consists of around
1000 lines of code. We have oriented this program to
get solutions based on MCs. REDUCES has been
applied to many problems; solutions given by this new
algorithm are better than those supplied by other
programs. Because of the lack of space, we will only
show some examples herein. As we have no
knowledge of any standard benchmark for state
reduction we have opted for generating random
machines. Table 4 depicts the results obtained by
REDUCES, the first solution given by an
implementation of the algorithm in [14], the one
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obtained by an implementation of the algorithm in
[10], and the minimum, for 30 randomly generated
machines.

Concerning CPU time, REDUCES always gave either
the same or better results . However, numeric figures
in Table 4 may be misleading since the three methods
are very fast for these examples. What must be
emphasized is that a reduction in the number of states
allow us to get significant savings in time during the
state assignment phase, these savings ranging in the
case of the machines in Table 4 from a few to many
minutes when a SUN 3/260 and PRASES are used.
Concerning the number of states, it should be clear the
superior performance of the new algorithm, which
always gave the best solution with the exception of
FSM15 for which G1 found the absolute optimum.
Nevertheless, REDUCES found a solution with only one
more state.

Furthermore, in order to understand the
improvement given by REDUCES, it is worth comparing
it with standard algorithms. Basically, the general
method [14] for 0-1 integer LP problems can be viewed
as a branch and bound algorithm. This is, a variation
on backtrack that achieves branch pruning (preclusion)
of the search tree, on the assumption that each
solution has a cost associated with it and that the one
of least cost is to be found. The efficiency of the
preclusion techniques depends on the selective
strategy being used to choose the next variable on
which branching is performed. We have used the
heuristic strategy described in the previous section to
implement a new branch and bound algorithm that
allows to preclude more nodes of the search tree. So
we can obtain minimum solutions faster than with
[14]). In Table 5 we include a time comparison between
the algorithm in [14} and the new one just proposed
for other 30 machines. We also report the number of
searched nodes in each case. Again, the superior
performance of the new method should be evident.

CONCLUSIONS

A new state reduction program REDUCES has been
described. it has proven to be more efficient than
previous heuristic algorithms in both quality of the
solutions and required time. Moreover, the strategy
described above when used as the selective strategy
within a general linear programming method, has
shown to achieve high pruning of the search tree for
integer LP problems associated with the state
reduction of incompletely specified FSMs. Comparisons
between the results given by our method and others
previously reported have shown a clear superiority of
the new algorithm.




PARAMETERS] G1([14] [PBENNETS[10]] REDUCES
ESM MiINI-
MUM
ns|nij#mclns; | t fnsp | t [ns3| t
[FomiT 143 | 3 [25] 17 041z oa] e oz ¢
FSM2 |43 |3 [27] 9 |03 | 8 |05] 8 |03 | 6
FSM3 43] 3 127} 15 04 17 0.6 15 04 15
FSMa ]430 3 |27 9 (03} 10 |0s] 8 |03 | 8
FSMS 43| 3 | 27 7 03 8 0.3 7 03 7
FSM6 43 |13 |25] 19 1.0 20 1.8 19 1.0 18
FSM7 a3 |13 |25 20 1.1 20 1.6 16 0.8 1
FSM8 |43 |13 1251 24 13 20 1.4 17 0.9 12
FSM9 143 | 13127 15 14 18 19 12 11 1"
FSM10 | 43 {13 [ 27 | 22 14 19 1.6 14 09 1"
FSM11 |43 | 13|27 ] 10 09 20 2.1 " 09 10
FSM12 |43 {13 |27 ) 12 1.2 20 1.7 10 1.0 10
FSM13 143 13 |27 | 27 15 27 2.1 27 1.5 27
FSM14 170 3 {45 15 1.6 12 1.2 7 08 7
FSM15 {70 | 3 [45] 24 1.4 28 1.5 23 14 22
FSM16 |70 [ 3 (45| 9 |08 ] 11 |10] 8 |0B| 8
FSM17 |70 | 3 |45] 11 |08 | 13 |09 | 10 | 08 ] 9
FSM18 |70 | 3 |a7| 8 |08 | 11 |09 | 8 |08 |-
FSM19 [ 70 | 3 |47 13 09 17 1.0 1" 0.8 10
FSM20 | 701 3 |47} 13 1.3 13 1.1 " 1.1 10
FSM21 | 70§ 3 | 49| 19 1.8 13 11 9 0.9 9
FSM22 |70 3 (49 10 |09 | 1a | 11 ] 10 |08 | 9
FsM23 [70 [ 3 49 34 | 22 ] 18 | 12 ] 14 | 09 | 12
FSM24 1 70 | 3 {65 16 22 12 20 1 15 8
FSM25 170 | 3 | 65 15 25 15 20 10 1.7 8
FSM26 | 70 | 3 | 65 9 2.0 11 19 9 20 8
FSM27 | 70 | 3 | 6S 9 1.5 10 1.8 8 14 8
FSM28 [70 | 3 [65] 6 | 27 | 11 | 18] 9 | 15] 7
FSM29 Y 20 [ 3 | 65 16 1.7 12 17 10 1.7 9
FSM30 |70} 3 | 65 1 20 1 17 8 15 8
Table4
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