
DESIGN AND IMPLEMENTATION OF AN
ASYNCHRONOUS PIPELINED FFT

PROCESSOR

Master’s thesis project at

Electronics Systems

Jonas Claeson

Reg nr: LiTH-ISY-EX-3356-2003

Linköping, June 13, 2003

DESIGN AND IMPLEMENTATION OF AN
ASYNCHRONOUS PIPELINED FFT

PROCESSOR

Examensarbete utfört i Elektroniksystem

vid Linköpings Tekniska Högskola

av

Jonas Claeson

Reg nr: LiTH-ISY-EX-3356-2003

Supervisor: Weidong Li

Examiner: prof. Lars Wanhammar

Linköping, June 12, 2003

Sammanfattning
Abstract

Nyckelord
Keywords

Rapporttyp
Report: category

Licentiatavhandling

C-uppsats
D-uppsats
Övrig rapport

Språk
Language

Svenska/Swedish
Engelska/English

ISBN

Serietitel och serienummer
Title of series, numbering

URL för elektronisk version

Titel
Title

Författare
Author

Datum
DateAvdelning, Institution

Division, department

Department of Electrical Engineering

ISRN

Examensarbete
ISSN

X

581 83 LINKÖPING

http://www.ep.liu.se/exjobb/isy/2003/3356

Design och implementering av en asynkron pipelinad FFT processor

Design and Implementation of an Asynchronous Pipelined FFT Processor

FFT processors are today one of the most important blocks in communication equipment. They are
used in everything from broadband to 3G and digital TV to Radio LANs. This master's thesis project
will deal with pipelined hardware solutions for FFT processors with long FFT transforms, 1k to 8k
points. These processors could be used for instance in OFDM communication systems.

The final implementation of the FFT processor uses a GALS (Globally Asynchronous Locally Syn-
chronous) architecture, that implements the SDF (Single Delay Feedback) radix-22 algorithm.

The goal of this report is to outline the knowledge gained during the master's thesis project, to de-
scribe a design methodology and to document the different building blocks needed in these kinds of
systems.

DFT, FFT, Pipelined, Parameterizable, Processor, GALS, Radix-22, SDF

X

2003-06-06

Jonas Claeson

LiTH-ISY-EX-3356-2003

uni-
and

-
in

yn-
F

as-
nt
Abstract
FFT processors are today one of the most important blocks in comm
cation equipment. They are used in everything from broadband to 3G
digital TV to Radio LANs. This master’s thesis project will deal with
pipelined hardware solutions for FFT processors with long FFT trans
forms, 1k to 8k points. These processors could be used for instance
OFDM communication systems.

The final implementation of the processor uses a GALS (Globally As
chronous Locally Synchronous) architecture, that implements the SD

(Single Delay Feedback) radix-22 algorithm.

The goal of this report is to outline the knowledge gained during the m
ter’s thesis project, to describe a design methodology and to docume
the different building blocks needed in these kinds of systems.
i

 Abstract
ii

ar
ral
g

es-
cir-
Acknowledgements
First of all I would like to thank my examiner professor Lars Wanhamm
for giving me this interesting master’s thesis project and for the gene
directions of my work. I would also like to thank my supervisor Weidon
Li for his help with more detailed questions. Two other persons that
helped me a lot is Kent Palmkvist with VHDL and synthesis related qu
tions, and Jonas Carlsson with questions concerning asynchronous
cuits.
iii

 Acknowledgements
iv

s

t

Terminology
Table: Terminology.

Abbreviation or term Explanation

BFP Block Floating Point. One way of representing data
internally.

butterfly Basic building block in HW FFT processors.

CG FFT Constant Geometry FFT.

COFDM Coded Orthogonal Frequency Division Multiplexing.

DFT Discrete Fourier Transform. The discrete version of the
continuous fourier transform. Transforms a signal from
a time-domain to a frequency-domain.

DFT Design For Test. Extra HW is added in the design to
ease and speed up the testing.

DIF Decimation In Frequency. One out of two ways of
implementing a radix PE.

DIT Decimation In Time. One out of two ways of imple-
menting a radix PE.

FFT Fast Fourier Transform. Quick way of computing a
DFT.

GALS Globally Asynchronous Locally Synchronous. A way of
decomposing a system into several synchronous block
that communicate with an asynchronous protocol.

HW Hardware.

in-place algorithm Output of a butterfly is written back to where the inpu
came from.

LS-system Locally Synchronous system.

MDC Multipath Delay Commutator. Block between radix
PEs in a pipelined architecture.
v

 Terminology
not-in-place algorithm Output of a butterfly is not written back to where the
input came from.

OFDM Orthogonal Frequency Division Multiplexing. OFDM
is a broadband multicarrier modulation method used in
a lot of communication systems.

PE Processing Element.

SDC Single-path Delay Commutator. Block between radix
PEs in a pipelined architecture.

SDF Single-path Delay Feedback. Block between radix PEs
in a pipelined architecture.

SFG Signal Flow Graph. Describes an algorithm in a graph-
ical way using adders, multipliers, signal wires, etc.

SIC Single Instruction Computer.

SNR Signal to Noise Ratio. Not a good measurement in the
FFT context.

Table: Terminology.

Abbreviation or term Explanation
vi

Notation
Table: Symbols.

Symbol Explanation

N Length of the input and output sequence of a DFT or
FFT.

x Input signal to an FFT processor.

X FFT transform of the input signal x.

Table: Operators and functions.

Operator or function Explanation

a|b b is divisible by a, i.e. b/a gives 0 in rest.

<X>N X modulo N.
vii

 Notation
viii

Table of Contents
Abstract... i

Acknowledgements... iii

Terminology .. v

Notation... vii

Table of Contents.. ix

1 Introduction..1
1.1 General 1
1.2 Scope of the Report 1
1.3 Project Requirements 2
1.4 Reading Instructions 3

2 Algorithms ..5
2.1 Introduction 5
2.2 The DFT Algorithm 5
2.3 FFT Algorithms 6
2.4 Common Factor Algorithms 6
2.5 Radix-2 Algorithm 7
2.6 Radix-r Algorithm 9
2.7 Split Radix Algorithm 9
2.8 Mixed Radix Algorithm 9
2.9 Prime Factor Algorithms 10
ix

 Table of Contents
2.10 Radix-r Butterflies 10

3 Architectures ..13
3.1 Introduction 13
3.2 Array Architectures 13
3.3 Column Architectures 14
3.4 Pipelined Architectures 14

3.4.1 MDC, SDF and SDC Commutators 15
3.4.2 Pipeline Architecture Comparisons 16

3.5 Multipipelined Architectures 17
3.6 SIC FFT Architectures 17
3.7 Cached-FFT Architectures 18

4 Numerical Effects...19
4.1 Introduction 19
4.2 Safe Scaling 19

4.2.1 Radix-2 Safe Scaling 20
4.2.2 Radix-r Safe Scaling 21

4.3 Quantization 21
4.3.1 Two’s Complement Quantization 21
4.3.2 Radix-2 Quantization 22
4.3.3 Radix-r Quantization 23

5 Implementation Choices..25
5.1 Introduction 25
5.2 Algorithm Choice 25
5.3 Architecture Choice 26

6 Radix-22 FFTs ..27
6.1 Introduction 27
6.2 Algorithm 27
6.3 Architecture 29
6.4 Numerical Effects 30

7 FFT Design ...31
7.1 Introduction 31
7.2 Matlab Design 31
x

Design and Implementation of an Asynchronous Pipelined FFT Processor
7.2.1 Problems and Solutions 32
7.3 Matlab Simulations 32
7.4 VHDL Design 33

7.4.1 Problem 1 and Solution - Abstraction 1 33
7.4.2 Problem 2 and Solution - Object Orientation 34
7.4.3 Problem 3 and Solution - Control Block 35

7.5 Design for Test 35
7.6 VHDL Simulations 36
7.7 Synchronous or Asynchronous Design 36
7.8 Testing 36

7.8.1 Random Testing 36
7.8.2 Corner Testing 37
7.8.3 Block Testing 37
7.8.4 Golden Model Testing 37
7.8.5 FPGA Testing 37

7.9 Synthesis 39
7.10 Meetings 40

8 Asynchronous Design...41
8.1 Introduction 41
8.2 Asynchronous Circuits 41
8.3 GALS 42

8.3.1 Asynchronous Wrappers 43
8.3.2 Enable generation 43

8.4 Design Automation 44
8.5 Asynchronous FFT Architecture 45
8.6 Testing 46
8.7 Synthesis 46
8.8 Summary of GALS Design 46

9 Future Work ...49
9.1 Introduction 49
9.2 Word Length Optimization 49

9.2.1 General 49
9.2.2 Gradient Search 50
9.2.3 Utility Function 50

9.3 VLSI Layout 50
xi

 Table of Contents
9.4 VLSI Layout of Asynchronous Parts 51
9.5 Completely Asynchronous Design 51
9.6 Design for Test 51
9.7 Twiddle Factor Memory Reduction 51
9.8 Commutators Implemented with RAM 52
9.9 Unscrambler 52

10 Summary...53
10.1 Conclusions 53
10.2 Follow-up of Requirements 53

11 Bibliography ...55
xii

ot
but
rch

 sys-
or
l pur-
cost.
pro-
as-
he
ut.

rchi-
ces-

T

rs,
1 Introduction
1.1 General

FFT processors are involved in a wide range of applications today. N
only as a very important block in broadband systems, digital TV, etc.,
also in areas like radar, medical electronics and the SETI project (Sea
for Extraterrestrial Intelligence).

Many of these systems are real-time systems, which means that the
tems has to produce a result within a specified time. The work load f
FFT computations are also high and a better approach than a genera
pose processor is required, to fulfill the requirements at a reasonable
For instance using application specific processors, algorithm specific
cessors, or ASICs could be the solution to these problems. In this m
ter’s thesis project an ASIC FFT processor will be designed. ASIC is t
choice because of its lower power consumption and higher throughp

1.2 Scope of the Report

The report is concentrated on pipelined FFT processors, and what a
tectures and algorithms that are most suitable for dedicated FFT pro
sors.

The first part of the report gives a review on the theory behind the DF
and FFT algorithm and different approaches to implement the FFT in
HW. Some terminologies like radix butterflies, pipelining, commutato
algorithms, architectures, etc., are introduced in this part.
1

1 Introduction

the-
FT
ese
lgo-
en
the-
f its

test-
d in

ples

iz-

t:

and

ure-
n.
ion
The second part of the report describes the main goal of this master’s
sis project, i.e. to design and implement a parameterized pipelined F
processor for transform lengths from 1k to 8k samples per frame. Th
transform lengths and the parameterization reduces the amount of a
rithms, architectures, and so on, that could be taken into account wh
designing a processor according to these criteria. Some parts of the
ory are therefor very briefly described compared to others, because o
limited usefulness in the considered area.

What trade-offs have to be made? What architecture and algorithm
should be used? What types of simulations should be done? How is
ing performed? These are some of the questions that will be discusse
the second part.

1.3 Project Requirements

The requirements for this master’s thesis project are as follows:

1. The transform length shall be able to vary between 1k and 8k sam
in powers-of-2.

2. The input signal shall be a continuous data stream.

3. The input signal shall consist of only one continuous data stream.

4. The word length of the input and output signal shall be parameter
able. The internal word lengths shall also be parameterizable.

5. Safe scaling shall be used.

6. Data shall be represented with two’s complement format.

7. The implemented architecture shall be pipelined.

These are the prioritizations that should be taken mostly into accoun

• Effect, power consumption and throughput are superior to die area
latency within reasonable limits. Latency is hard to affect when the
input stream arrives continuously.

• SNR is a poor quality measurement in FFT processors, this meas
ment should therefor not be considered too important in the desig
Though, this does not mean that the output can have too low precis
due to quantization noise.
2

Design and Implementation of an Asynchronous Pipelined FFT Processor

o be
e
en-
.

t

t

d,

s
tion

he
ec-
or.

 in
These are the first requirements on the FFT processor that is going t
designed. Later in the report new restrictions and requirements will b
added to narrow down the area of investigation even further, to conc
trate the work on the type of architecture found to be most adequate

1.4 Reading Instructions

This list gives a short description of the content of each chapter.

• Chapter 1 Introduction contains the introduction of the project. Wha
will the project be all about? What will the result of the project be?

• Chapter 2 Algorithms contains a description of a lot of different FFT
algorithms, not only those that will be considered in the project, bu
also a few other ones.

• Chapter 3 Architecturescontains a description of a lot of different FFT
architectures that implement the FFT algorithms. Also here some
algorithms that not will be considered in the project will be describe
along with all the more adequate ones.

• Chapter 4 Numerical Effects contains a basic theoretical introduction
on the quantization errors in FFT algorithms and architectures.

• Chapter 5 Implementation Choices contains an explanation why the

radix-22 algorithm and the SDF architecture is chosen to be to one
being implemented.

• Chapter6 Radix-22 FFTs contains the derivation of the radix-22 algo-
rithm and architectural descriptions of its components.

• Chapter 7 FFT Design contains the design methodology used in thi
project. Some problems that arose during the project and the solu
are discussed in this chapter.

• Chapter 8 Asynchronous Design contains a very basic introduction to
asynchronous circuits, with a focus on GALS. The methodology is t
focus in this chapter, but it also describes the asynchronous archit
ture of the final implementation of the asynchronous FFT process

• Chapter 9 Future Work contains suggestions of what the next steps
this project could be.
3

1 Introduction
• Chapter 10 Summary contains the summary for the whole project.
General thoughts and acquired knowledge are discussed.

• Chapter 11 Bibliography contains the references referred to, inside
square brackets, in the text.
4

o-
ion
er

s
he
2 Algorithms
2.1 Introduction

The algorithms chapter will introduce the DFT definition, the FFT alg
rithm and different approaches to compute FFTs in HW. The discuss
will mainly be focused on FFT algorithms useful for long FFTs, but oth
algorithms, will also be described briefly.

2.2 The DFT Algorithm

A DFT is a transform that is defined as

(Eq 2.1)

where

(Eq 2.2)

is theN-th root of unity. The inverse of the DFT (IDFT) is defined as

(Eq 2.3)

These equations show that the complexity of a direct computation of

DFTs and IDFTs is O(N2), hence the long transforms considered in thi
master’s thesis will be very costly in a straight forward computation. T

X k() x n() WN
nk⋅

n 0=

N 1–

∑ k 0 N 1–,[]∈,=

WN e
j2

π
N
----–

=

x n() 1
N
---- X k() WN

n– k⋅
k 0=

N 1–

∑ n 0 N 1–,[]∈,=
5

2 Algorithms

gu-

olu-

 a
th

he
real
ut

rth.

g
ed

an
u-
a-
FFT algorithm deals with these complexity problems by exploiting re
larities in the DFT algorithm.

2.3 FFT Algorithms

An FFT algorithm uses a divide-and-conquer approach to reduce the
computation complexity for DFT, i.e. one big problem is divided into a
lot of different smaller problems that in the end are assembled to the s
tion of the original problem.

In a communication system that uses an FFT algorithm there is also
need for an IFFT algorithm. Since the DFT and the IDFT are similar bo
of these can be computed using basically the same FFT HW, swap t
real and imaginary parts of the input, compute the FFT and swap the
and imaginary data of the output. The output is now the IFFT of the inp
data, except for the scaling factor in the IFFT algorithm, 1/N. Usually
this is not a problem, and this will therefor not be discussed hencefo

2.4 Common Factor Algorithms

Common factor algorithms are one way of dividing the problem, usin
the divide-and-conquer approach. This method is the most widely us
way of computing FFTs.N is then divided into factors according to:

(Eq 2.4)

where the factors are constrained in the following way:

(Eq 2.5)

This basically means that they have one factor in common. In this way
FFT can be computed ini number of steps. There are two equally comp
tational complex algorithms that can be derived from this, DIF (decim
tion-in-frequency) and DIT (decimation-in-time).

N Ni
i

∏=

a i a Ni()∀∃
6

Design and Implementation of an Asynchronous Pipelined FFT Processor

m

, the

l-
2.5 Radix-2 Algorithm

The radix-2 algorithm is a special case of the common factor algorith
for N-point DFTs, whereN is power-of-2. To derive the radix-2 algo-
rithm, the indicesn andk in Equation 2.1 are represented by

(Eq 2.6)

where

(Eq 2.7)

When these representations are used for substitution in Equation 2.1
DFT definition can be rewritten as

(Eq 2.8)

The last term in the right side of Equation 2.8 can be expressed as

(Eq 2.9)

Observe that

(Eq 2.10)

By using Equation 2.10 on the different factors of Equation 2.9 the fo
lowing relations are found

n 2
α 1–

nα 1–⋅ 2
α 2–

nα 2–⋅ … n0+ + + 2
β

nβ⋅
β 0=

α 1–

∑= =

k 2
α 1–

kα 1–⋅ 2
α 2–

kα 2–⋅ … k0+ + + 2
β

kβ⋅
β 0=

α 1–

∑= =

ni ki, 0 1,{ }∈ i, 0…α 1–=

N 2
α

= α ℵ∈

X kα 1– kα 2– … k0, , ,() … x nα 1– nα 2– … n0, , ,() WN

2β
nβ⋅

β 0=

α 1–

∑ 
 
 

2β
kβ⋅

β 0=

α 1–

∑ 
 
 

⋅

⋅
nα 1– 0=

1

∑
n1 0=

1

∑
n0 0=

1

∑=

WN

2β
nβ⋅

β 0=

α 1–

∑ 
 
 

2β
kβ⋅

β 0=

α 1–

∑ 
 
 

⋅

WN

2α 1–
kα 1– 2β

nβ⋅
β 0=

α 1–

∑⋅

WN

2α 2–
kα 2– 2β

nβ⋅
β 0=

α 1–

∑⋅

… WN

k0 2β
nβ⋅

β 0=

α 1–

∑⋅

⋅ ⋅ ⋅=

WN
N

e

j2π
N

---------–

 
 
 

N

1= =
7

2 Algorithms

 the

ed
ng
(Eq 2.11)

Insert Equation 2.11 in Equation 2.8

(Eq 2.12)

This summation can be divided into sequential summations

(Eq 2.13)

Finally, to obtain the FFT an unscrambling stage is added to reorder
output data in natural order. Unscrambling is done by bit-reversing.

(Eq 2.14)

With this algorithm the computational complexity is reduced to
O(Nlog2(N)) butterfly operations. The computation has also been divid
into log2(N) different steps, which is an advantage considering pipelini
in HW.

The SFG for this derivation of the FFT algorithm looks like Figure 2.1
for an 8-point radix-2 DIF FFT:

G0 WN

2α 1–
kα 1– 2β

nβ⋅
β 0=

α 1–

∑⋅

WN

2α 1–
kα 1– 2β

nβ⋅
β 0=

0

∑⋅

WN
2α 1–

kα 1– n0= = =

G1 WN

2α 2–
kα 2– 2β

nβ⋅
β 0=

α 1–

∑⋅

WN

2α 2–
kα 2– 2β

nβ⋅
β 0=

1

∑⋅

= =

…

Gα 1– WN

k0 2β
nβ⋅

β 0=

α 1–

∑⋅

=

X kα 1– kα 2– … k0, , ,() … x nα 1– nα 2– … n0, , ,() Gi
i 0=

α 1–

∏⋅
nα 1– 0=

1

∑
n1 0=

1

∑
n0 0=

1

∑=

x1 k0 nα 2– nα 3– … n0, , , ,() x nα 1– nα 2– … n0, , ,() Gα 1–⋅
nα 1– 0=

1

∑=

x2 k0 k1 nα 3– … n0, , , ,() x1 k0 nα 2– nα 3– … n0, , , ,() Gα 2–⋅
nα 2– 0=

1

∑=

…

xα 1– k0 k1 … kα 1–, , ,() xα 2– k0 … kα 2– n,
0

, ,() G0⋅
n0 0=

1

∑=

X kα 1– kα 2– … k0, , ,() xα 1– k0 k1 … kα 1–, , ,()=
8

Design and Implementation of an Asynchronous Pipelined FFT Processor

ty

lti-

for

.
s.
ing
dds
Figure 2.1: SFG for an 8-point radix-2 DIF FFT.

2.6 Radix-r Algorithm

The radix-r algorithm uses the same approach as radix-2, but with the
decomposition using base-r instead of base-2.N is factorized as

(Eq 2.15)

The derivation of the radix-r is analogous to the derivation of radix-2.
The proof will therefore be left out here. The computational complexi
for the radix-r case is O(Nlogr(N)) butterfly operations divided into
O(logr(N)) butterfly stages.

2.7 Split Radix Algorithm

The split radix algorithm is one way of decreasing the number of mu
plications and additions required, [1]. The main drawback is the more
irregular structure compared to mixed radix and constant radix algo-
rithms. Because of the irregular structure this algorithm is not suitable
parameterization, and will therefore not be studied more thoroughly.

2.8 Mixed Radix Algorithm

Mixed radix algorithms is a combination of different radix-r algorithms
That is, different stages in the FFT computation have different radice
For instance, a 16-point long FFT can be computed in two stages us
one stage with radix-8 PEs, followed by a stage of radix-2 PEs. This a

W0

W0

W0

W0W0

W0

W0

W2

W2

W2

W1

W3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)
X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)
Stage 1 Stage 2 Stage 3

Unscramble

N r
α

= r α, ℵ∈
9

2 Algorithms

it

e,
o 1.
-
y
n’t
e

ns

rst

11

ari-
a bit of complexity to the algorithm compared to radix-r, but in return
gives more options in choosing the transform length.

2.9 Prime Factor Algorithms

Prime factor algorithms decompose N into factors that are relative prim
which means that the greatest common divisor of the factors is equal t
There are two reasons why prime factor algorithms will not be consid
ered later in the report. Firstly, it restricts the transform length in a wa
that N cannot be power-of-2, which is a requirement. Secondly, it does
scale very good, because for large Ns the decomposing relative prim
numbers will also be large, hence will result in a very complex imple-
mentation of the PEs.

2.10 Radix-r Butterflies

The radix-r butterflies are the blocks that perform the basic computatio
in the radix-r algorithm. The following reasoning will explain how the
SFG structure is derived (for the radix-2 case). Only the proof of the fi
stage will be shown, the other proofs are analogous. The butterfly
obtained is a radix-2 DIF (decimation-in-frequency). From Equation 2.
and Equation 2.13

(Eq 2.16)

The last factor in the summation is not depending on the summation v
able, hence this factor can be lifted out from the summation

x1 k0 nα 2– … n0, , ,() x nα 1– nα 2– … n0, , ,() WN

k0 2β
nβ⋅

β 0=

α 1–

∑⋅

⋅
nα 1– 0=

1

∑=

x nα 1– nα 2– … n0, , ,() WN
k0 2α 1–

nα 1–⋅ ⋅
W⋅ N

k0 2β
nβ⋅

β 0=

α 2–

∑⋅

⋅
nα 1– 0=

1

∑=
10

Design and Implementation of an Asynchronous Pipelined FFT Processor

n be
r

re
(Eq 2.17)

According to the above computations, the basic FFT computations ca
made with a structure called radix element. Radix elements for highe
radixes can be derived in a similar way. These elements will haver inputs
andr outputs for a radix-r element. The figure below shows the structu
for the radix-2 case.

Figure 2.2: Structure of a radix-2 DIF butterfly.

WN

k0 2β
nβ⋅

β 0=

α 2–

∑⋅

x nα 1– nα 2– … n0, , ,() WN
k0 2α 1–

nα 1–⋅ ⋅
⋅

nα 1– 0=

1

∑⋅=

WN
k0 2α 1–

nα 1–⋅ ⋅
e

j2π–

2α------------ 2α

2
----- k0 nα 1–⋅ ⋅ ⋅

1–()
k0 nα 1–⋅

= =

 
 
 
 
 

=

WN
P

x 0 nα 2– … n0, , ,() 1–()
k0 x 1 nα 2– … n0, , ,()⋅+()⋅=

Wp

x1

x0 X0

X1

+

+ Wp-
x1

x0 X0

X1
11

2 Algorithms
12

ons.
Ts
is-

e of
sing
lly
e,
3 Architectures
3.1 Introduction

This chapter discusses different architectures used for FFT computati
As in chapter 2 Algorithms, mostly the architectures useful for long FF
will be taken into account. Their advantages and drawbacks will be d
cussed.

3.2 Array Architectures

The array architecture can only be used for very short FFTs, becaus
the extensive use of chip-area. This comes from the use of one proces
element (PE) for each butterfly in the signal flow graph (SFG). Norma
FFTs longer than 16 points are not implemented with this architectur
hence it will not be discussed in details.

Figure 3.1: SFG for an 8-point array FFT architecture.

W0

W0

W0

W0W0

W0

W0

W2

W2

W2

W1

W3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)
X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)
Stage 1 Stage 2 Stage 3

Unscramble
13

3 Architectures

 the
ns
be
e,
s
c-

nt

n-

 the

se
itec-

r out-
l

3.3 Column Architectures

The column architecture uses an approach that requires less area on
chip than the array architecture. It is done by collapsing all the colum
in an array architecture into one column, hence a new frame cannot
processed until the processing of the current frame is finished. Henc
this architecture is not suitable for pipelining. The area requirement i
obviously smaller, only N/r radix-r elements, than for the array archite
ture. The architecture is still not small enough to be taken into accou
for long FFTs.

An architectural structure of a 4-point radix-2 DIF FFT can be seen
below. To get a simple feedback network a type of structure called co
stant geometry FFT (CG FFT) is often used as a starting point. This
means that the connection network in an array architecture would be
same between all stages.

Figure 3.2: Structure of a 4-point radix-2 column architecture.

3.4 Pipelined Architectures

Pipelined architectures are useful for FFTs that require high data
throughput. The basic principle with pipelined architectures is to collap
the rows, instead of the stages like in column architectures. The arch
ture is built up from radix butterfly elements with commutators in
between. An unscrambling stage is sometimes added on the input o
put side of the processor, if the output data is needed to be in natura
order.

The advantage with these architectures, are for instance, high data
throughput, relatively small area and a relatively simple control unit.

x(0)

x(2)

x(1)

x(4)

X(0)

X(2)

X(1)

X(4)Wp

Wp
14

Design and Implementation of an Asynchronous Pipelined FFT Processor

id-

een
c-
re).
d

natu-

-

p-

 in
er

t

res
es
nd
These advantages make this solution suitable for the long FFTs cons
ered in this master’s thesis project.

The basic structure of the pipelined architecture is shown below. Betw
each stage of radix-r PEs there is a commutator (denoted C in the pi
ture). The last stage is the unscrambling stage (denoted U in the pictu
The commutator reorders the output data from the previous stage an
feeds to the following stage. The unscrambler rearranges the data in
ral sorted order.

Figure 3.3: General structure of a pipelined FFT architecture.

3.4.1 MDC, SDF and SDC Commutators

There are basically three kinds of commutators, Multipath Delay Com
mutator (MDC), Single-path Delay Feedback (SDF) and Single-path
Delay Commutator (SDC). They all give the architecture different pro
erties, especially when it comes to total memory requirement.

A commutator is a switch for data between the radix butterfly stages
the pipeline. It stores parts of the FFT computations temporarily in ord
to perform the switching properly. The SDF commutator is somewha
different, because it also feeds data backwards, Figure 3.5.

The figures below show the structure of the commutators. In these figu
‘a’ denotes the stage number in the pipeline. The numbers in the box
gives the size of that FIFO buffer in complex samples. C2 is a switch a
BF4 is short for radix-4 butterfly element.

...x X
radix-r

PE C
radix-r

PE U
15

3 Architectures

A

sed
Figure 3.4: Multipath Delay Commutator structure.

Figure 3.5: Single-path Delay Feedback Commutator structure.

Figure 3.6: Single-path Delay Commutator structure.

3.4.2 Pipeline Architecture Comparisons

There are many different pipelined architectures. They have different
memory requirements, different complexities, different utilization, etc.
summary of the most common pipelined architectures are show in
Table 3.1, [2]. The abbreviations of the architecture names are compo

2a

2a

C2

3x4a

BF4

6x4a
16

Design and Implementation of an Asynchronous Pipelined FFT Processor

r-
rchi-
e

l be

pe-
pe-

ed
ber

e-
ies,
ory.
the
t of
in the following way, e.g. R2MDC is short for radix-2 multipath delay
commutator FFT architecture.

The R22SDF architecture is interesting. When it comes to these prope
ties in the table this architecture is equal to or better than the other a
tectures, with one exception, the number of adders is 25% lower in th
R4SDC architecture. The R22SDF architecture will therefore be a really
good candidate to investigate, when choosing the architecture that wil
implemented.

3.5 Multipipelined Architectures

Multipipelined architectures are built up in a similar way as normal pi
lined architectures, but with the distinction that some stages in the pi
line can use two or more radix butterfly elements.

These architectures achieve a higher parallelism than regular pipelin
architectures, [5]. The improvement in parallelism is equal to the num
of pipes introduced.

3.6 SIC FFT Architectures

SIC FFT Architectures can be a good choice when throughput requir
ments are not high compared with the throughput of available butterfl
[1]. In this architecture all the butterfly elements share the same mem
A radix PE reads data from the memory and when it is finished with
computation it writes the data back to the memory. This results in a lo

Table 3.1: Pipeline architecture comparison.

Architecture Multiplier # Adder # Memory size Control

R2MDC 2(log4 (N-1)) 4log4N 3N/2 - 2 Simple

R2SDF 2(log4 (N-1)) 4log4N N - 1 Simple

R4SDF log4 (N-1) 8log4N N - 1 Medium

R4MDC 3(log4 (N-1)) 8log4N 5N/2 - 4 Simple

R4SDC log4 (N-1) 3log4N 2N - 2 Complex

R22SDF log4 (N-1) 4log4N N - 1 Simple
17

3 Architectures

stly

ore
ns
 and

n-
-r
memory accesses, which could be both hard to implement and be co
in power consumption.

The architecture can be adapted to the requirements specification m
precisely by adapting the number of radix PEs. For some specificatio
this architecture reduces radix PEs, which reduces both the die area
the power consumption.

Figure 3.7: Structure of the SIC FFT architecture.

3.7 Cached-FFT Architectures

Cached-FFT architectures are mainly used for reducing the power co
sumption, [4]. The idea is to use a cache-memory between the radix
PEs and the main memory to decrease the number of main memory
accesses, which is very energy consuming.

.

.

.

Memory

radix-r
PE

radix-r
PE
18

e of

 the
nter-
d in

it is
ty
9.

safe
put
pu-

i-
by
4 Numerical Effects
4.1 Introduction

DSP systems almost always suffer from quantization effects, becaus
the limited internal data word length. For instance, a multiplication by
two operands always gives a result that is longer in bits than each of
operands. The result have to be truncated or rounded to avoid long i
nal word length, hence quantization occurs. Quantization is explaine
Section 4.3 on page 21.

There is another thing in FFT systems that have to be considered, and
overflow. If an overflow occurs in an FFT system it will generate a faul
output. How this is solved will be discussed in Section 4.2 on page 1

4.2 Safe Scaling

To prevent operations to overflow and cause errors a method called
scaling is used. It means that the output from each radix PE and the in
to the first FFT stage are scaled in such a way, that for certain the com
tation in the next radix PE will not overflow. The scaling is often a div
sion by a power-of-2 number, because it easily can be implemented
arithmetic right shift.

To simplify the discussion about safe scaling, the radix-2 case will be
used as an example. The safe scaling for the radix-r FFT algorithm is
given without detailed discussion.
19

4 Numerical Effects

not
ue

or,
e

s big

sure
the
nt
ed

,
to

 in

ice,

0.5,
 val-
ms a
4.2.1 Radix-2 Safe Scaling

In a radix-2 butterfly element, overflow can occur for signals in wire A
and B, see Figure 4.1, after the summations. Overflow can, in reality,
occur after the twiddle factor multiplication, because the absolute val
of the twiddle factor is always very close to one. Hence, the absolute
value does not change, only the argument.

Fractional two’s complement is going to be used in this FFT process
therefore signals that can be represented is in the range of [-1, 1[. Th
absolute value after each summation can in the worst case be twice a
as the input. Hence, to prevent the output from overflow the absolute
value of the input signals have to be smaller than 0.5. One way to en
that the input signals are in this range is to divide the output signals in
previous butterfly stage by a factor of 2. This method will always preve
overflow and it only requires a little extra HW, hence, this method is us
in the FFT implementation.

Figure 4.1: Problem areas in a radix-2 element.

No overflow will now occur in the radix-2 butterflies using this method
except for the first butterfly element. The input to this butterfly also has
be scaled. The real and imaginary input to the FFT processor will be

the range [-1, 1[, the absolute value could therefore be as large as 20.5. In

principle the input should be scaled by a factor of 1/21.5, to get the input
value of the first radix PE in the range [-0.5, 0.5[. This division is not
cheap to implement in HW and a scaling factor of 1/4 is a better cho
because it can be implemented using arithmetic right shift.

The absolute value of the output of the FFT processor is smaller than
due to the last safe scaling. To use the whole range of representable
ues a last stage called final scaling is often added. This stage perfor
multiplication by 2, increasing the absolute value of the output to the
range [-1, 1[.

-
x1

x0 X0

X1

A

B

+

+ Wp
20

Design and Implementation of an Asynchronous Pipelined FFT Processor

ce

-

ors
e
e
a-
 out-

ese
ror.
 by

rib-
end
 val-

alue
4.2.2 Radix-r Safe Scaling

Radix-r safe scaling is similar to radix-2 safe scaling. The only differen
is that the scaling factor in the radix elements are 1/r instead of 1/2, the
prescaling stage is 1/2r instead of 1/4 and the final scaling is a multiplica
tion of r instead of 2.

4.3 Quantization

Quantization occurs after each multiplication in the radix PEs. The err
introduced by quantization are modelled with a technique called nois
modelling. In this technique stochastic noise sources are added to th
SFG where quantization occurs. From the new SFG statistical calcul
tions can be made to estimate the amount of noise introduced in the
put by quantization.

4.3.1 Two’s Complement Quantization

The quantization can be done either by rounding or by truncation. Th
approaches give different statistical properties on the quantization er
The representation of a fractional two’s complement number is given

(Eq 4.1)

This definition shows that the values it can represent is uniformly dist
uted in the [-1, 1[interval, hence the quantization error does not dep
on the magnitude of the value. The difference between two adjacent
ues is equal to the truncation error. Hence, the truncation error has a
non-zero expectation value.

(Eq 4.2)

Rounding is a better quantization method, because the expectation v
of the rounding error is zero.

(Eq 4.3)

x x0– xi 2
i–⋅

i 1=

Wd 1–

∑+= xi 0 1,{ }∈

0 ∆t
1

2
Wd 1–

----------------≤ ≤

1

2
Wd

---------– ∆r
1

2
Wd

---------≤ ≤
21

4 Numerical Effects

he
of

dix
two
he
ver

ica-

der

tic
Assuming that the data is uniformly distributed in the range of [-1,1[, t
errors are evenly distributed in the above given intervals. The variance
a stochastic variable like this is

(Eq 4.4)

4.3.2 Radix-2 Quantization

The quantization discussion in this section is only considering DIF ra
butterfly elements with rounding and safe scaling. The scaling gives
properties, the first is that no quantization occurs in the adders and t
second that quantization occurs at both output nodes. The adders ne
cause overflow with safe scaling and both output nodes have multipl
tions when using safe scaling.

Figure 4.2: Quantization in a radix-2 DIF PE.

The quantization, denoted Q, in Figure 4.2 can be modelled as an ad
adding a complex stochastic variablen to the original signal. The real
part and the imaginary part can be seen as two independent stochas
variables.

(Eq 4.5)

The expectation value and variance of the complex noise are

σ2 1
12
------ 1

2
Wd

 
 
  2

⋅=

-
x1

x0 X0

X1+

+ Q

Q

1/2

1/2Wp

n nre j n⋅ im+=

E nre{ } E nim{ } 0= =

V nre{ } V nim{ } 1
12
------ 1

2
Wd

 
 
  2

⋅= =
22

Design and Implementation of an Asynchronous Pipelined FFT Processor

 for
in

over
de

s
rror
al-

ta-
(Eq 4.6)

The analysis are for a single radix-2 DIF PE. This result can be used
the error analysis in the FFT. Consider the error in only on output node
the SFG in Figure 2.1. The error in that node is then the summation
all stages in the binary tree that is formed with that particular output no
as root. Since safe scaling is used each error from a previous node i
divided by 2 before it is added to the next stage. By propagating the e
from the input to the output through the radix-2 PEs and their safe sc
ing, the noise variance for anN-point FFT [1] can be written as

(Eq 4.7)

4.3.3 Radix-r Quantization

The noise analysis of radix-r DIF quantization is similar to the radix-2
DIF quantization analysis, [1]. For the radix-r FFT the variance would be
in the following way

(Eq 4.8)

Equation 4.8 shows that the noise is larger for higher radix implemen
tions, even though it has fewer butterfly stages.

E n{ } E nre j n⋅ im+{ } 0= =

V n{ } E n n⋅{ } E nre
2

nim
2

+{ } E nre
2{ } E nim

2{ }+ V nre{ } V nim{ }+= = = =

V n{ } 1
6
--- 1

2
Wd

 
 
  2

⋅ σBF
2

= =

σFFT
2 σBF

2
1 2

2⋅ 2 1
2⋅ 4

1
2
--- 

  2
⋅ … 2

log2 N() 1– 1

2
log2 N()-------------------

 
 
  2

⋅+ + + +
 
 
 

⋅=

σFFT
2 σBF

2
2

2 1

2
i

i 0=

log2 N() 1–

∑⋅ ⋅ σBF
2

2
3

1 2
log2 N()–

–()⋅ ⋅ 8 σ⋅ BF
2

1 1
N
----– 

 ⋅= = =

σFFT
2 σBF

2
r

2
1 1

r
--- … 1

r
logr N() 1–

-------------------------+ + +
 
 
 

⋅ ⋅ σBF
2 r

3

r 1–
----------- 1 1

N
----– 

 ⋅ ⋅= =
23

4 Numerical Effects
24

ent

a in

he

o-
n
able

as
he

ause
riz-
o-
ve
5 Implementation
Choices

5.1 Introduction

The first part of the master’s thesis report is only a summary of differ
approaches to the FFT problem. This chapter is going to explain the
choice of an adequate algorithm, architecture, and so on, for the are
which the FFT processor is going to be used. A lot of trade-offs and
choices will be explained. The chosen architecture in this section is t
one going to be implemented later in the project.

5.2 Algorithm Choice

There are no restrictions on the algorithm choice, except that the alg
rithm should be able to compute the FFT lengths from 1k to 8k. Whe
selecting algorithm, the goal of an architectural and easy understand
design have to be considered.

The radix-2 FFT algorithm has many good features. For example, it h
low quantization noise level, and it is also easily parameterizable to t
different FFT lengths.

Radix-r does not seem to be as good a choice as the radix-2 one, bec
it has higher quantization noise, and that it is not as easily paramete
able to the different FFT lengths. To be able to parameterize this alg
rithm to the general power-of-2 FFT lengths, different radix-r stages ha
to be used in the pipeline, resulting in a mixed radix implementation.
25

5 Implementation Choices

e
lti-

 of

ht
r

ths

tec-
the
of
ent

is
he
FT

8k
by
Since minimizing the number of multipliers is important, a good choic
of algorithm would be the split radix one. It has a lower number of mu
pliers than all the above ones, but this algorithm results in a complex
design, which will be harder to parameterize. The control of this type
processor would also be more complex.

The radix-22 algorithm is the most attractive algorithm. It can be thoug
of as a radix-4 algorithm with radix-2 building blocks. It has low numbe
of multipliers, simple control structure and architecture.

Prime factor algorithms can not be used, because the right FFT leng
can not be calculated using this algorithm.

These are the reasons that the radix-22 FFT algorithm is going to be used
in the FFT implementation.

5.3 Architecture Choice

The choice of the architecture is easier, it has to be a pipelined archi
ture. What is left to decide is what kind of commutators to be used in
architecture, MDC, SDF or SDC. In the implementation the SDF type
commutator will be used, because it has a smaller memory requirem
than the other commutators.

The radix-22 architecture behaves a bit like the radix-4 architecture, th
calls for two different architectures later, to be able to implement all t
different FFT lengths needed. The first architecture is for power-of-4 F
lengths, i.e. 1k and 4k FFTs, and the second architecture is for 2k and
FFTs. The latter lengths can easily be created from the former ones
adding a radix-2 stage at either the input or the output of the FFT.
26

ion
6 Radix-22 FFTs
6.1 Introduction

This chapter will describe the radix-22 FFTs in detail. The mathematical
background to the algorithm and the architecture, will be discussed.

6.2 Algorithm

The derivation of the radix-22 FFT algorithm starts with a substitution
with a 3-dimensional index map, [2]. The indexn andk in Equation 2.1
can be expressed as

(Eq 6.1)

When the above substitutions are applied to DFT definition, the definit
can be rewritten as

(Eq 6.2)

Where

n
N
2
----n1

N
4
----n2 n3+ +〈 〉

N
=

k k1 2k2 4k3+ +〈 〉
N

=

X k1 2k2 4k3+ +() x
N
2
----n1

N
4
----n2 n3+ + 

  WN

N
2
----n1

N
4
----n2 n3+ + 

  k1 2k2 4k3+ +()⋅
⋅

n1 0=

1

∑
n2 0=

1

∑
n3 0=

N
4
---- 1–

∑=

BN
2

k1 N
4
----n2 n3+ 

  WN

N
4
----n2 n3+ 

  k1

⋅

 
 
 
 
 

WN

N
4
----n2 n3+ 

  2k2 4k3+()⋅
⋅

n2 0=

1

∑
n3 0=

N
4
---- 1–

∑=
27

6 Radix-22 FFTs

r

II

ed
he
(Eq 6.3)

is a general radix-2 butterfly.

Now, the two twiddle factors in Equation 6.2 can be rewritten as

(Eq 6.4)

Observe that the last twiddle factor in the above Equation 6.4 can be
rewritten.

(Eq 6.5)

Insert Equation 6.5 and Equation 6.4 in Equation 6.2, and expand the
summation over n2. The result is a DFT definition with four times shorte
FFT length.

(Eq 6.6)

The result is that the butterflies have the following structure. The BF2
butterfly takes the input from two BF2I butterflies.

(Eq 6.7)

These calculations are for the first radix-22 butterfly, or its components
the BF2I and BF2II butterflies. The BF2I butterfly is the one represent
by the formulas in brackets in Equation 6.7 and the BF2II butterfly is t

outer computation in the same equation. The complete radix-22 algorithm
is derived by applying this procedure recursively.

BN
2

k1 N
4
----n2 n3+ 

  x
N
4
----n2 n3+ 

  1–()
k1 x

N
4
----n2 n3

N
2
----+ + 

 ⋅+=

WN

N
4
----n2 n3+ 

  k1 2k2 4k3+ +()⋅
WN

Nn2k3WN

N
4
----n2 k1 2k2+()

WN
n3 k1 2k2+()

WN
4n3k3=

j–()
n2 k1 2k2+()

WN
n3 k1 2k2+()

WN
4n3k3=

WN
4n3k3 e

j2π–
N

------------ 4n3k3⋅
e

j2π–
4N

------------ n3k3⋅
WN

4

n3k3= = =

X k1 2k2 4k3+ +() H k1 k2 n3, ,()WN
n3 k1 2k2+()

[]WN
4

n3k3

n3 0=

N
4
---- 1–

∑=

H k1 k2 n3, ,() x n3() 1–()
k1x n3

N
2
----+ 

 + j–()
k1 2k2+()

x n3
N
4
----+ 

  1–()
k1x n3

3N
4

-------+ 
 ++=
28

Design and Implementation of an Asynchronous Pipelined FFT Processor

e
er-
6.3 Architecture

The first butterfly, the BF2I, in the radix-22 butterfly has the following
architecture.

Figure 6.1: BF2I DIF butterfly architecture.

The second butterfly, the BF2II, has the architecture seen in the figur
below. The BF2I butterfly is a radix-2 butterfly, whereas the BF2II butt
fly basically is a radix-2 butterfly but with trivial twiddle factor multipli-
cations.

Figure 6.2: BF2II DIF butterfly architecture.

-

-

1

1

0

0

0

0

1

1
xr(n)

xi(n)

xr(n+N/2)

xi(n+N/2)

Zr(n+N/2)

Zi(n+N/2)

Zr(n)

Zi(n)

s

+

+

+

+

-

-

1

1

0

0

0

0

1

1
xr(n)

xi(n)

xr(n+N/2)

xi(n+N/2)

Zr(n+N/2)

Zi(n+N/2)

Zr(n)

Zi(n)

s

+

+

+

+

t

+

+-
29

6 Radix-22 FFTs

us

ut
con-

the

h

al
A radix-22 SDF FFT architecture with these radix butterfly elements pl
multipliers is shown in Figure 6.3. This architecture uses the same
amount of non-trivial complex multipliers as the radix-4 architecture, b
retains the simple radix-2 architecture. Another advantage is that the
trol structure is simple for this implementation, only a binary counter.
The block in the feedback loop is a FIFO buffer, the number indicates
number of complex samples it can store.

Figure 6.3: Architecture of a 64-point radix-22 SDF FFT.

6.4 Numerical Effects

Numerical effects in the radix-22 algorithm is exactly the same as in the
radix-2 algorithm, because it has the same butterfly structure, but wit
fewer multipliers. For a description of the numerical effect for the

radix-22 algorithm, see the radix-2 investigations in chapter 4 Numeric
Effects.

clk 05 4 3 2 1

x(n) X(k)

W1(n) W2(n)

X X

BF2I BF2II

1632

s st

BF2I BF2II

12

BF2I BF2II

48

ssss t t
30

trac-
gs

eth-

gn
ps,

. At
d to
e

ure.
ple-

nc-
 in
a
er-
7 FFT Design
7.1 Introduction

This chapter discusses the design of an FFT processor. Different abs
tion levels, block division, trade-offs, simulations, testing, etc. are thin
discussed in more detail.

In general, the design in this project should be done with top-down m
odology in small refining steps. The first model will be built in Matlab
and the final model will be FPGA synthesizable VHDL code. The desi
process will go from the former to the latter in several small design ste
i.e. only small changes will be introduces in the model in each step.
These smaller design steps will hopefully lead to a more predictable
design process and smaller amount of errors introduced when refining
some point in the design process the Matlab model has to be converte
VHDL description, but it is hard to know in advance when the best tim
for this conversion will be.

The models should be implemented with a good hierarchical architect
This leads to a more reusable and easier understanding of the final im
mentation.

7.2 Matlab Design

The design of the FFT processor begins with the design of a simple fu
tional model in Matlab. The advantage of starting the design process
Matlab is that Matlab offers a high level programming language and
good interface for testing. This means that in a short time a lot of diff
ent models can be tested.
31

7 FFT Design

t a
ve
this
as

 bot-

ac-

as
a

ct,

rd
out.

imu-
ly
 dif-

r in
d the

a-

r, to
The first Matlab model was designed with a bottom-up methodology a
high level of abstraction. Actually a top-down methodology should ha
been used, but it seemed like a better solution to do the first model in
way, because a good description of the algorithm and architecture w
available [2]. Some things in the algorithm were left out, which later
caused problems that delayed the project for around two weeks. The
tom-up methodology was only for the creation of the first model and
from that point and onwards a top-down methodology was used.

7.2.1 Problems and Solutions

All the different blocks were easily implemented, except the twiddle-f
tor generating block. The other blocks where easy to understand and
were described in detail in the paper [2], but the twiddle-factor block w
almost completely left out. Only the deduction of the algorithm gave
hint about the functionality of the block. After testing a lot of different
models to get the FFT to work, the 16-point FFT finally worked corre

i.e. two radix-22 stages. To get it to work for longer FFTs was a real ha
problem, because this was the part where some descriptions were left
Finally it was solved through more studying of the FFT formulas, to
understand them better.

7.3 Matlab Simulations

Matlab simulations are an important part in the design process. The s
lation shows if the models developed are functionally correct. Not on
the final FFT model were tested through simulations, but also all the
ferent blocks in the processor were tested separately.

Most simulations were done to get an estimation of the size of the erro
the output. The error depends on the data-widths in the processor an
number of steps (depends on the FFT length) in the pipeline. A lot of
these simulations were carried out to test different data-width optimiz
tion techniques. Different optimization techniques are discussed in
Section 9.2 on page 49.

Simulations were also done to compare two models against each othe
validate that they are functionally equivalent.
32

Design and Implementation of an Asynchronous Pipelined FFT Processor

T
tep
uld
 In

it-

ure

nt
pre-
s to
alue
ob-
 for
Mat-

t it
o,

wo
ig-
he
ined
e-
7.4 VHDL Design

The VHDL design started when the model of the parameterizable FF
processor were decided to be correct after a lot of simulations. The s
from Matlab to VHDL should be as small as possible. The models sho
have the same blocks and their implementation should be the same.
VHDL it is possible to write functional models so the Matlab and the
VHDL model should not differ so much.

The design environment that was used was Emacs for VHDL text-ed
ing, Vcom for VHDL compiling and Vsim for VHDL simulation. There
is a tool for graphical representation off block structures, but the struct
is easier to understand with a total text representation, at least in this
project with a lot of parameterization.

7.4.1 Problem 1 and Solution - Abstraction 1

In the Matlab model signals are described by complex variables. The
IEEE library have support for complex signals, but only for floating poi
representation and not for the signed fractional two’s complement re
sentation. Hence, the first refinement between Matlab and VHDL wa
separate the complex signals into two signals, one holding the real v
and the other holding the imaginary value. This didn’t cause much pr
lems, for one reason the abstraction level was almost the same, and
another reason some of these models were already implemented in
lab.

One problem that the division of the complex signals caused was tha
increased the number of signals in the blocks almost by a factor of tw
increasing the block complexity. Increasing the block complexity
decreases the ease of understanding it.

The first approach to solve this problem was to create an array with t
elements of a std_logic_vector, to create an abstraction of complex s
nals. However, it was impossible two make a construct in this way. T
code wouldn’t compile because the array elements have to be constra
before compile-time, and the word length couldn’t therefore be param
terized.
33

7 FFT Design

 with
is
cial

ting
es
est

uld
e
e
to 2
of a

one
ra-

an-
ther
as-

on-

h an
this

 dif-
d

the
f the
 in
The second approach also used arrays. The approach used an array
word length number of std_logic_vector(1 downto 0). This construct
compilable. The problem with it is that slices couldn’t be used, a spe
function would have to be written to extract the information. The code
would be easy to read, and it might even be synthesizable, but the tes
will be more complicated. The std_logic_vector in this case only stor
two bits, one for the real value and one for the imaginary value. In the t
bench it will therefore not be easy to read the signal values.

The third approach was to create an array of std_logic. The array wo
have a size of 2 x the word length. This is a good way but it has som
drawbacks. Both dimensions in the declaration of the array have to b
unconstrained, the best way would be to be able to set one dimension
and the other as a parameter. The drawbacks is that in the declaration
signal two dimensions have to be given, one for the word length, and
for declaring the real and imaginary dimension (always 2). The decla
tion of signals in this way only makes the code a bit less readable.

The final approach, the one that was used in the implementation, ab
doned the abstraction of signals. The reason was that there was ano
good solution. An extra layer in the block structure was added, decre
ing the number of signals in each block. This gave VHDL-files of reas
able complexity and length.

7.4.2 Problem 2 and Solution - Object Orientation

The abstraction problem described above could have been solved wit
object oriented variant of VHDL. There are some attempts the create
functionality with an extra layer on top of VHDL. One solution had a
preprocessing stage, i.e. digital structures were written in a language
ferent from VHDL. To synthesis this, the code first had to be compile
into VHDL-code, the rest of the steps are the usual VHDL-synthesis
steps.

This solution wasn’t used because VHDL had to be used according to
requirements, and because most people don’t understand the code o
extra layer. The lack of understanding would limit the use of the code
the future.
34

Design and Implementation of an Asynchronous Pipelined FFT Processor

efit
d

nd
e of

nd
ncy

the

l
m-
FT
l
oice
to
h
e
tion

s.
ust
re-
the
5%
o-
When writing normal non-parameterized VHDL-descriptions the ben
of object orientation might not be as large as for highly parameterize
systems like the FFTs considered in this project.

7.4.3 Problem 3 and Solution - Control Block

The control problem arose in the synchronization of control signals a
data signals, i.e. that the right data should be available in the right stat
control signals.

To get the FFT processor to work, shimming delays had to be added

between each radix-22 stage and between the two butterfly elements

inside the radix-22 stage. The result was that more HW was needed a
that the latency between input and output frames increased. The late
is not a big problem, but the extra HW will increase the die size and
power consumption.

This problem could be solved in two ways, either changing the contro
unit or creating a system consisting of locally synchronous blocks co
municating asynchronously (GALS). The first choice of keeping the F
completely synchronous would increase the complexity of the contro
unit, resulting in a system that is harder to understand. The second ch
would only have a slightly different control structure, but very similar
the original one. The blocks would also be more separated from eac
other functionally, which could be a good property when improving th
design later in the future. These pros and cons lead to the implementa
of the FFT processor as a GALS-system.

7.5 Design for Test

Design for test is a way to speed up the testing of manufactured chip
This design method is used to find fabrication faults in the chips, e.g. d
in the printed chip causing logical errors, not design errors. A measu
ment often used in this context is fault coverage, which often means
coverage of stuck-at faults. A fault coverage of e.g. 95% means that 9
of the die area of the chip was not corrupted during the fabrication pr
cess.
35

7 FFT Design

f the

ous
 to a
s
into
b

f
ra-
les.

s and
S) in
yn-
n

els.
ec-

ng,

nces
L

nces
T’s
Design for test have not yet been considered, due to the early stage o
project.

7.6 VHDL Simulations

Test bench code-skeletons were produced for combinatoric, synchron
and asynchronous parts. These test benches could easily be altered
specific test bench for a block. Input and output from the test benche
were read and written to test files. These files could then later be read
Matlab where the VHDL simulations could be compared with the Matla
simulations.

To ease the interfacing between Matlab and VHDL simulation a set o
Matlab functions were developed. These functions handled the gene
tion of test data and the reading and writing of binary data to the test fi

7.7 Synchronous or Asynchronous Design

Both synchronous design and asynchronous design have advantage
disadvantages. The reason for choosing asynchronous design (GAL
this project can be found in Section 7.4.3 on page 35. More about as
chronous circuits and the design of these can be found in Section 8 o
page 41.

7.8 Testing

Testing is an important part of the project and testing is done on all lev
This section will outline the testing strategy of this project. Previous s
tions have been describing simulations, which also is a form for testi
but this section looks into this area more thoroughly.

7.8.1 Random Testing

Random testing is the most frequently used method. Random seque
are generated by Matlab, written to the test files and read by the VHD
test benches. This type of testing is quick to use because test seque
are generated automatically, and it is also adequate in the area of FF
because input signals often seem to be randomly distributed.
36

Design and Implementation of an Asynchronous Pipelined FFT Processor

r
 think
rea

i-

ling
in

of
that
or-
n-
nd

as
-

in
the

e
igns.

 in
n
the
7.8.2 Corner Testing

Random testing is good, but some things is hard to detect, e.g. corne
cases. Corner cases are input sequences that the designer or tester
can cause errors, e.g. overflows in adders and multipliers. In the FFT a
a corner case could be an input sequence of only maximum and min
mum input values.

In this project corner testing is mostly done to check that the safe sca
works as in should, resulting in no overflows which would cause errors
the output.

7.8.3 Block Testing

Block testing is the lowest level of testing. Before a block is built out
other sub-block, the sub-blocks are run through a block test to ensure
each sub-block is verified. When it is known that all sub-blocks work c
rectly it can be assumed that if the block errors it is due to the interco
nection of sub-blocks. This method limits the area where the error is a
will save a lot of debugging time.

7.8.4 Golden Model Testing

Golden model testing is the best way to ensure that a model is working
it should. TheGolden model is a model that is known to be working cor
rectly, which new implementations of the same functionality could be
compared against.

In the case of this project the golden model is the built-in FFT function
Matlab. The Matlab function can of course only be used when testing
complete FFT, and not really the sub-blocks of the system. Since the
Matlab model is thoroughly tested and it is assumed to be correct, th
sub-blocks can be used as golden models for the testing of later des

7.8.5 FPGA Testing

FPGA tests is the final step in the testing process. Doing simulations
computer software is time consuming, and it is therefore difficult to ru
large test vectors. VHDL code synthesized to an FPGA will speed up
test a lot, probably several orders of magnitude.
37

7 FFT Design

The
po-

the
e

t to
and

ory

e

n
n
ell
mu-

t

The Virtex-II V2MB1000 Development Board was used for the FPGA
tests. The choice to use this board is that it can handle large designs.
development board has a lot of sockets for interfacing with other com
nents, i.e. RS232, parallel input, ethernet and on board switches.

To do tests in real-time, test vectors have to be sent and received from
FPGA in full speed. This requires a high bandwidth through one of th
FPGA board interfaces, since all test vectors cannot be stored on the
FPGA board. These interfaces would take to much time to implemen
fit the time-plan of this thesis project, hence a simpler test is required
therefore the real-time requirement is dropped.

The full speed test can be done by loading all test vectors into a mem
on-board, run the simulation in full-speed while writing the output to
memory, and finally reading out the FFT output from the memory. Se
the block schematic of the test bench in the figure below.

Figure 7.1: Vertex-II asynchronous FFT test bench.

To test the design with this block structure would be possible, but eve
for this there is not enough time left in the project to finish the test. A
interface have to be written for the memory and the RS232 port, as w
as the code for the wrapper and test controller, and a program to com
nicate with the test board. To design all this would prolong the projec
time far beyond the limit.

Test
Controller

FFT

Wrapper

Data bus

Address bus

RS232

FPGA chip
Vertex-II board

Memory
38

Design and Implementation of an Asynchronous Pipelined FFT Processor

tex-
e

ince
pac-
FFT
 the
i.e.
ac-

r
in a
ith
ted
t a

FT

he
nd
ed,
The RS232 port seems to be the easiest way to interface with the Vir
II board, so the other solutions using other ports would also extend th
project beyond limits. Hence, another way of testing is required.

The final test bench was completely embedded on the FPGA chip. S
the FPGA chip does not have a large memory (ROMs and RAMs) ca
ity, the test vectors have to be small. Instead of testing a 1024-point
a smaller FFT was tested. A 16-point FFT was selected because it is
smallest FFT processor in this project that includes all components,
the two different butterflies, prescaling, final scaling and the twiddle f
tor multipliers.

Figure 7.2: The implemented FPGA test.

The Input generator was implemented with a ROM memory, a counte
and an asynchronous wrapper. The Output tester was implemented
similar way, but with an extra block that compared the received data w
the expected data. A difference between the received and the expec
data would trigger the test bench into an error mode, which would ligh
diode on the FPGA board.

The result of the test showed that it was possible to synthesize the F
processor to an FPGA.

7.9 Synthesis

The VHDL-code written in this project should be synthesizable. For t
synthesis of the code two programs were used, LeonardoSpectrum a
Xilinx Design Manager. The synchronous parts were easily synthesiz
but the asynchronous ones caused a lot of problems, Section 8.7 on
page 46.

FFT

FPGA chip

Input
generator

Output
testerReq

Ack

Data

Req

Ack

Data
39

7 FFT Design

d a
en

y
nd-
he
7.10 Meetings

Meetings were held regularly. Every meeting had a written protocol an
minutes were written directly after the meeting. The minutes were th
sent by e-mail to the examiner and the supervisor.

In the beginning the meetings were held to define the limitations and
directions of the project, and later the meetings mostly described the
progress in the work.

The meetings helped a lot in the beginning, because it defined clearl
what was going to be done. If something was forgotten, the correspo
ing minutes could be read to find the answer, if not, it was included in t
protocol for the next meeting.
40

sis
iza-
ea-

be

of it
t-
its

s,

 case
8 Asynchronous
Design

8.1 Introduction

An asynchronous design methodology was used in this master’s the
project to solve the problem with the control signal and data synchron
tion. Asynchronous design has many interesting properties, but the r
son for using it was to test if it could solve the control problem.

This chapter will introduce asynchronous circuits and it will also descri
the asynchronous design process used in this project.

8.2 Asynchronous Circuits

Asynchronous circuits are a big area of research and only small parts
will be used in this project, the theory will therefore only be briefly ou
lined. For the interested reader more material on asynchronous circu
can be found in [3].

Asynchronous circuits have many advantages over synchronous one
like

• Performance of an asynchronous system depends on the average
latency, not the worst case latency as in synchronous circuits.

• Global clock timing problems are avoided.

• The power consumption can be lower in asynchronous circuits,
despite the fact that they require more HW.
41

8 Asynchronous Design

sup-

ck

of
xam-
g. In
cing

t com-
mu-

-

he
ous
ools.
for

ting
• Asynchronous systems are more robust against temperature and
ply voltage variations.

• Lower electrical interference with other components, due to the la
of clock harmonics in the emission spectra.

No global clock is used in asynchronous circuits, instead some form
handshaking is used in the communication between systems. Two e
ples of handshaking protocols are 2-phase and 4-phase handshakin
this project 4-phase handshaking will be used, because these interfa
blocks already have been implemented in VHDL.

8.3 GALS

GALS, abbreviation of Globally Asynchronous Locally Synchronous,
are a small subset of asynchronous systems. These systems are no
pletely asynchronous, they consist of synchronous sub-systems com
nication asynchronously. In Figure 8.1 the LS-system is a locally
synchronous system,Req is short for request andAck is short for
acknowledge.Req andAck performs the handshaking. In this project a
push communication channel will be used, which means that the pro
ducer of data initiates the handshaking.

Figure 8.1: GALS asynchronous communication.

A 4-phase handshaking cycle is performed in the following way (Req+
meansReq goes high):Req+, Ack+, Req- and finallyAck-. Data should
be valid betweenReq+ andAck-, but is often sampled on theAck+ edge.

GALS combine some of the benefits from synchronous circuits with t
benefits from asynchronous ones. Since the local parts are synchron
they can be designed the same way as before using available design t
Globally the system is asynchronous, which removes timing problems
global signals, which is an increasing problem when designs are get
larger and faster.

LS-system LS-system
Req

Ack

Data
42

Design and Implementation of an Asynchronous Pipelined FFT Processor

od-
 gen-

el,

-

, for
po-

each
cycle.

nera-
t up
8.3.1 Asynchronous Wrappers

An asynchronous wrapper is used for the handshaking between two m
ules. The wrapper consists of three components, a stretchable clock
erator, a demand-port (D-port) and a poll-port (P-port). Connected
according to the figure below they implement a 4-phase push-chann
[3].

Figure 8.2: Asynchronous wrapper components.

TheEn signal is a control signal from the LS-system, that controls the
input and output of the system.Enon the input controls when the LS-sys
tem is ready to receive data, andEn on the output controls when the
LS-system is ready to send data. TheStrsignal stops the clock if no input
data is available or the receiving block is busy. Thelclk signal is the clock
for the LS-system.

8.3.2 Enable generation

The enable signal can be generated in a lot of different ways. Though
this problem an easy solution is possible. Data flows through the com
nents continuously and the same amount of processing is needed for
sample. The system both needs data and can send data each clock
Though, the output is delayed compared to the input, i.e. the output
enable generation has to be delayed compared to the input enable ge
tion. The result is that the enable control can be a separate block buil
mostly from a counter.

LS-system

P-in D-out

Stretchable clock

Req
Req

Ack Ack

StrStr

En

Data Data

En

lclk
43

8 Asynchronous Design

ion

ne
st
asyn-

e

y

he

al,
each
s

tly,

on.
eq
8.4 Design Automation

To be able to quickly convert the available synchronous implementat
to a GALS one, the design was automated. The wrapper was imple-
mented as one component, a VHDL code skeleton was created for o
LS-system with an asynchronous wrapper and data registers, and te
benches for these systems were created. The general structure of an
chronous component in this project uses the architecture in the figur
below.

Figure 8.3: General architecture of asynchronous components.

The skeleton according to this structure is easy to modify to wrap an
LS-system of the considered type.

The only difference between two different asynchronous blocks are t
control block, which of course depends on what LS-system is being
wrapped. In the synchronous implementation the control block is glob
whereas when the system is divided into several asynchronous block
block have to have its own local control block. The local control block
were similarly implemented as the global one.

The skeleton above only works for a special type of architectures. Firs
input is only received from one block and sent to another block. Sec-
ondly, the structure implements a push-channel type of communicati
Though, it is easy to change it to a pull-channel type by reversing the R

ReqReq

Ack Ack

En

Data

En

Wrapper

Control
block

lclk

Reg

Data

LS-system

Control
signals

Control
signals
44

Design and Implementation of an Asynchronous Pipelined FFT Processor

a

-

th.
age
 of
tput
ve

rfly

e.

es
and Ack signals, and swap the D-port for a P-port and the P-port for
D-port in the wrapper.

8.5 Asynchronous FFT Architecture

The asynchronous FFT is built up by connecting the wrapped LS-sys
tems, which is illustrated in the figure below.

Figure 8.4: The architecture of the asynchronous FFT, including scaling.

The number of stages are determined by the FFT transform length.
Figure 8.5 shows the FFT structure with a power-of-4 transform leng
In the case a 2 times power-of-4 length is wanted, an extra butterfly st
and twiddle factor multiplier stage have to be added on the input side
the processor. The reason for choosing the input side and not the ou
side, which also is possible, is that a layout could be done of the first fi

radix-22 (1024-point FFT) stages and the twiddle factor stages in
between. This layout would not change in the case when extra butte
stages are added on the input side.

Figure 8.5: The architecture of the asynchronous FFT.

Decomposing the radix-22 blocks into two different asynchronous units
removed the timing problem of the internal control signals in the stag

Figure 8.6: The architecture of the radix-22 block.

The asynchronous butterfly stages, the twiddle factor multiplying stag
and the scaling stages were designed according to the methodology
described in Section 8.4 on page 44.

Async
final
scaling

Async
prescaling

Async
FFT

Data

Req
Ack

Data

Req
Ack

Async
Twiddle
Factor

Multiplier

Async
2

Radix-2
Async

2
Radix-2

Async
2

Radix-2

Data

Req
Ack

Data

Req
Ack

Async
bf2i
stage

Async
bf2ii
stage

Data

Req
Ack

Data

Req
Ack
45

8 Asynchronous Design

he
wed
hro-

e. In
e
re
nt

at
he
g

nts
n-
om

ar-

em
im-
sor

d of
 a

.

8.6 Testing

The testing of the asynchronous circuits are similar to the testing of t
synchronous ones. A skeleton test bench were implemented that allo
the use of the same input and output files as for the testing of the sync
nous design.

8.7 Synthesis

The synthesis process of the asynchronous parts required a lot of tim
the VHDL simulations the asynchronous blocks were functional, thes
are not synthesizable, but synthesizable versions of these blocks we
available. These blocks, since they are asynchronous, need redunda
logic to be functionally correct and redundant logic is removed by the
synthesis tools to optimize the design. It took a lot of time to find out th
this was the problem when the FPGA simulations didn’t work, since t
FPGA does not offer any means of seeing what actually is happenin
inside the chip.

The synthesis tools have a possibility to see the generated compone
and the problem with the removed logic was found. The next time co
suming problem was to find out how to prevent the synthesis tools fr
removing logic in certain components. The solution was to use an
attribute (keep) in the VHDL code and also setting an attribute
(PRESERVE_SIGNAL) in the tcl-script used in the synthesis by Leon
doSpectrum.

8.8 Summary of GALS Design

To design a GALS-system instead of a completely synchronous syst
proved to be a quick and efficient way to solve the problem with the t
ing of data and control signals. All unnecessary buffers in the proces
could be removed in one week of work, not including the studying of
asynchronous circuits, which took only a few days.

The design principle is easy to use, not much understanding is neede
the asynchronous parts, only the use of them have to be learnt. With
package including the wrappers etc., a designer unexperienced with
GALS could get started designing these systems in a couple of days
46

Design and Implementation of an Asynchronous Pipelined FFT Processor

sis,
have
The only problem encountered with the GALS design was the synthe
but when the process to do the synthesis of the asynchronous parts
been learned, this design step will not cause much problems.
47

8 Asynchronous Design
48

ap-
rest-

for
lgo-
ut-
.

n,
rs be
ion.

t on
eci-
to

of
eters
me-
9 Future Work
9.1 Introduction

In this chapter the future work of the project will be discussed. The ch
ter suggests where improvements are possible or important, and inte
ing continuations of the project.

9.2 Word Length Optimization

Word length optimization is one of the most important future works.
Since the FFT processor is parameterized, the different parameters
specific applications should be easy to find using some optimization a
rithm. A few optimization test have been done, and this section will o
line them, plus describe some areas where more work could be done

9.2.1 General

In general, optimizing a HW structure is a trade-off between precisio
power consumption, die size, and so on. How should these paramete
weighed against each other? This depends of course on the applicat
When the application is know the needed precision of the output is
known. Since the precision is non-negotiable there is a fixed constrain
the precision, an optimized solution could therefore not have worse pr
sion than this constraint. Hence, the optimization problem is divided in
two parts: getting good enough precision, and maximizing the utility
the other parameters, as power consumption and so on. These param
are weighted together to a utility value (the importance between para
ters depends on the application).
49

9 Future Work

d
p and
s in
 in

he
n,
st

e
rs.

n-
d
n.
rd

me

er,
ize,

. It

re
lay-
rica-

the
9.2.2 Gradient Search

The test on gradient search that has been done uses a vector of wor
length parameters. One at a time each parameter is changed one ste
the utility and output error are calculated for each change. This result
a vector telling the importance (the gradient) of each parameter, both
utility and precision. If there are solutions with better precision than t
constraint the one with the highest utility is chosen for the next iteratio
and if no solution have a good enough precision, the solution with be
precision is chosen for the next iteration.

It was hard to test the convergence of this algorithm, mostly due to th
lack of a relevant function to calculate the utility of a set of paramete
One way to solve this is suggested in the next section.

9.2.3 Utility Function

One way on solving the problem to estimate the utility function is to sy
thesize the butterflies, ROMs, RAMs and multipliers with different wor
lengths, and measure the power consumption, the die area, and so o
Measurements does not have to be made for all possible different wo
lengths, because the ones not measured could be estimated with so
kind of interpolation.

The problem is still how to weigh these parameters against each oth
but with this method the solution is one step closer, since at least die s
power consumption, and so on have to be estimated.

The synthesis work for the different word lengths have not been done
is left for the future.

9.3 VLSI Layout

The work in this project ends in FPGA synthesizable code. FPGAs a
good in many ways. They have a short development cycle, because
outs does not have to be done and no layouts have to be sent for fab
tion. Though, they cannot compete with VLSI layouts in speed and
power consumption, and when it comes to large series of components
FPGAs can not compete with the prize.
50

Design and Implementation of an Asynchronous Pipelined FFT Processor

ion,
ay-
e if

of
 to

y
e a

e is
sys-
uld

sing
uld
be

be
uc-

ut
 the
fac-
Mostly due to the better performance, in speed and power consumpt
that a VLSI design gives, there could be an interest in doing a VLSI l
out of this FFT processor. It could of course also be interesting to se
the processor, considering the GALS design, is easy to layout into a
working chip.

9.4 VLSI Layout of Asynchronous Parts

The GALS design of this project is interesting. The high level design
these circuits turned out to be simple. It could therefor be interesting
learn more about the design flow of these kinds of circuits all the way
down to VLSI layout. Hopefully the design on that level will be as eas
as the high level design. The reason that this FFT processor could b
good test example is that it is a GALS design, that could be used in a
real-world application.

9.5 Completely Asynchronous Design

The design of the FFT processor is so far of the GALS type, but ther
no reason that the LS-systems have to be kept synchronous. These
tems could also be broken down into smaller systems, which also co
be of the GALS type, or even completely asynchronous.

9.6 Design for Test

DFT, or design for test, is increasing in importance due to the increa
size of designs. Adding design for test methodology to the project co
be interesting later on in the project before a VLSI layout is going to
done.

9.7 Twiddle Factor Memory Reduction

A twiddle factor memory reduction is possible. The reduction that can
accomplished is reducing the ROM memories by a factor of 8. The red
tion of the ROM memories will decrease the die size of the design, b
will probably increase the power consumption because the factors in
ROM have to be changed in some way to match the previous twiddle
tors.
51

9 Future Work

rs

s
am-
d

9.8 Commutators Implemented with RAM

The current implementation of the commutators uses a FIFO buffer
implementation. To use a RAM memory to implement the FIFO buffe
will reduce the power consumption.

9.9 Unscrambler

An unscrambler could be a useful block to implement. It is not alway
required to get the output data in natural order, but when it is an unscr
bler is needed. In the current solution the output arrives in bit-reverse
order.
52

e
ssor.

all

ign,
the
 a

n

ples

ire-
a

10 Summary
10.1 Conclusions

The goal with this master’s thesis project was to learn more about th
design of FFT processors, and designing a parameterized FFT proce
The processor has been designed and a design methodology with sm
design steps have been used successfully.

In the end of the project the design turned into an asynchronous des
leading to more interesting problems and solutions not expected from
beginning. The design of the GALS FFT taught a lot in this area, and
simple design methodology for this area has also been developed.

Finally the next section will go through the requirement stated early i
the project, to check that they are fulfilled.

10.2 Follow-up of Requirements

The “Follow-up of Requirements” will go through the requirements
stated in chapter 1 Introduction.

1. The transform length shall be able to vary between 1k and 8k sam
in powers-of-2.

This requirement is fulfilled. The result is even better than the requ
ments, the implemented architecture handles any frame length of
power-of-2 number, not only the ones between 1k and 8k.

2. The input signal shall be a continuous data stream.
53

10 Summary

s a
 in

s

iz-

ul-

fe

ed

ipe-
e-
This requirement is fulfilled. The implemented architecture handle
continuous data stream in natural order, and the output is received
bit-reversed order.

3. The input signal shall consist of only one continuous data stream.

This requirement is fulfilled. The implemented architecture handle
one and only one data stream.

4. The word length of the input and output signal shall be parameter
able. The internal word lengths shall also be parameterizable.

This requirement is fulfilled. The implemented architecture is com-
pletely parameterized. Word lengths in butterfly stages and in all m
tipliers, as well as input and output, can be specified.

5. Safe scaling shall be used.

This requirement is fulfilled. The implemented architecture uses sa
scaling, using a scaling factor of 2.

6. Data shall be represented with two’s complement format.

This requirement is fulfilled. Data representation in the implement
architecture uses fractional two’s complement representation.

7. The implemented architecture shall be pipelined.

This requirement is fulfilled. The implemented architecture uses p
lining. Each butterfly and each complex multiplier is a step in the pip
line. More pipelining stages can of course be inserted, if needed.
54

l

T
ing,
11 Bibliography
[1] Torbjörn Widhe. Efficient Implementation of FFT Processing

Elements. Thesis No. 619, Department of Electrical Engineering,
Linköping University, Sweden. 2002.

[2] Sousheng He, and Mats Torkelsson. “A New Approach to Pipeline
FFT Processor”. Department of Applied Electronics, Lund
University, SWEDEN.

[3] Jens Muttersbach, et. al. Globally-Asynchronous
Locally-Synchronous Architectures to Simplify the Design of
On-Chip Systems. Integrated Systems Laboratory, Swiss Federa
Institute of Technology, Zürich, Switzerland. 1999.

[4] Bevan M. Baas. An Approach to Low-Power, High-Performance FF
Processor design. Dissertation Department of Electrical Engineer
Stanford, USA. 1999.

[5] Shigenori Shimizu. Multi-Pipeline FFT Architecture. The
transactions of the IEICE, vol. E 70, no. 6 June 1987.
55

11 Bibliography
56

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ick-
ekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna
sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i
sådant sammanhang som är kränkande för upphovsmannens litterära eller konst-
närliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsidahttp://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring excep-
tional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose. Sub-
sequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The pub-
lisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its WWW home page:http://www.ep.liu.se/

© Jonas Claeson

	Abstract
	Acknowledgements
	Terminology
	Notation
	Table of Contents
	1 Introduction
	1.1 General
	1.2 Scope of the Report
	1.3 Project Requirements
	1.4 Reading Instructions

	2 Algorithms
	2.1 Introduction
	2.2 The DFT Algorithm
	2.3 FFT Algorithms
	2.4 Common Factor Algorithms
	2.5 Radix-2 Algorithm
	2.6 Radix-r Algorithm
	2.7 Split Radix Algorithm
	2.8 Mixed Radix Algorithm
	2.9 Prime Factor Algorithms
	2.10 Radix-r Butterflies

	3 Architectures
	3.1 Introduction
	3.2 Array Architectures
	3.3 Column Architectures
	3.4 Pipelined Architectures
	3.4.1 MDC, SDF and SDC Commutators
	3.4.2 Pipeline Architecture Comparisons

	3.5 Multipipelined Architectures
	3.6 SIC FFT Architectures
	3.7 Cached-FFT Architectures

	4 Numerical Effects
	4.1 Introduction
	4.2 Safe Scaling
	4.2.1 Radix-2 Safe Scaling
	4.2.2 Radix-r Safe Scaling

	4.3 Quantization
	4.3.1 Two’s Complement Quantization
	4.3.2 Radix-2 Quantization
	4.3.3 Radix-r Quantization

	5 Implementation Choices
	5.1 Introduction
	5.2 Algorithm Choice
	5.3 Architecture Choice

	6 Radix-22 FFTs
	6.1 Introduction
	6.2 Algorithm
	6.3 Architecture
	6.4 Numerical Effects

	7 FFT Design
	7.1 Introduction
	7.2 Matlab Design
	7.2.1 Problems and Solutions

	7.3 Matlab Simulations
	7.4 VHDL Design
	7.4.1 Problem 1 and Solution - Abstraction 1
	7.4.2 Problem 2 and Solution - Object Orientation
	7.4.3 Problem 3 and Solution - Control Block

	7.5 Design for Test
	7.6 VHDL Simulations
	7.7 Synchronous or Asynchronous Design
	7.8 Testing
	7.8.1 Random Testing
	7.8.2 Corner Testing
	7.8.3 Block Testing
	7.8.4 Golden Model Testing
	7.8.5 FPGA Testing

	7.9 Synthesis
	7.10 Meetings

	8 Asynchronous Design
	8.1 Introduction
	8.2 Asynchronous Circuits
	8.3 GALS
	8.3.1 Asynchronous Wrappers
	8.3.2 Enable generation

	8.4 Design Automation
	8.5 Asynchronous FFT Architecture
	8.6 Testing
	8.7 Synthesis
	8.8 Summary of GALS Design

	9 Future Work
	9.1 Introduction
	9.2 Word Length Optimization
	9.2.1 General
	9.2.2 Gradient Search
	9.2.3 Utility Function

	9.3 VLSI Layout
	9.4 VLSI Layout of Asynchronous Parts
	9.5 Completely Asynchronous Design
	9.6 Design for Test
	9.7 Twiddle Factor Memory Reduction
	9.8 Commutators Implemented with RAM
	9.9 Unscrambler

	10 Summary
	10.1 Conclusions
	10.2 Follow-up of Requirements

	11 Bibliography
	copyright.pdf
	Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god...
	In English
	The publishers will keep this document online on the Internet - or its possible replacement - for...
	The online availability of the document implies a permanent permission for anyone to read, to dow...
	According to intellectual property law the author has the right to be mentioned when his/her work...
	For additional information about the Linköping University Electronic Press and its procedures for...

