
ABSTRACT

Arkesh, Vikram Bangalore. FPGA Implementation of a Low Power Doppler Invariant

BFSK Receiver (Under the guidance of Dr Paul D. Franzon)

A non coherent frequency shift keying (FSK) receiver architecture is designed potentially for

low power applications. The receiver incorporates a 16 point Fast Fourier Transform (FFT)

for symbol detection and can withstand large Doppler shifts. Almost all the design units of

the receiver are digital designs for better power efficiency and reliability. The receiver

functions on one bit data processing and supports data rates of 10kbps, 1kbps and 100bps.

Co-ordinate rotation (CORDIC) algorithm is used for complex multiplications while

computing FFT, evading the use of power hungry multipliers.

The design and simulation of the receiver is carried out in MATLAB/SIMULINK. The

MATLAB model is translated to a XILINX FPGA hardware model using system generation

features of the XILINX development system. The hardware model is synthesized to a virtex-

2 XILINX FPGA and various performance parameters are extracted. A control system for

symbol and timing detection is designed and modeled in VHDL, synthesized to XILINX

hardware and interfaced to the receiver.

FPGA IMPLEMETATION OF A LOW POWER
DOPPLER INVARIANT BFSK RECEIVER

by
Vikram B Arkesh

A thesis submitted to the Graduate Faculty
of

North Carolina State University
in partial fulfillment of the requirements for the degree in

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

Raleigh
2003

Approved by:

Dr. Paul D. Franzon
Chairman, Advisory Committee

_____________________ _____________________

Dr. Rhett Davis Dr. J Keith Townsend

 ii

DEDICATION

To my parents, Arkesh and Sudha

 iii

BIOGRAPHY

Vikram Arkesh was born in Secunderabad, India in January 1978. He graduated from

Bangalore University, Bangalore, India with a Bachelor’s degree in Electronics and

Communication in August 2000. He worked at Robert Bosch, Bangalore, India from

September 2000 to August 2001 as software engineer in the area of communication

applications. In the fall of 2001, he enrolled in North Carolina State University as a graduate

student to pursue M.S in Electrical Engineering. He worked on his MS thesis under the

guidance of Dr Paul Franzon from May 2002 to August 2003.

 iv

ACKNOWLEDGEMENTS

First of all I would like to thank my thesis advisor, Dr Paul Franzon for having given me

such a wonderful opportunity. It was truly a very interesting and exciting experience to have

worked on my thesis topic. I would like to thank Dr Rhett Davis for all his support and

guidance on the XILINX tool set. I would like to thank Dr Keith Townsend for all his time

and support. This thesis work would have been impossible without the help and guidance of

my friends John Damiano, Mehmet Yuce, and Bhaskar Bharat; thank you very much.

Last but not the least, I would like to thank my parents, Arkesh and Sudha and my sister,

Chitra for being a constant source of inspiration and motivation for the entire tenure of my

Masters course.

 v

TABLE OF CONTENTS

List of Figures vii

List of Tables viii

1 Introduction…………………………………………………………………………… 1
1.1 Organization of the thesis………………………………………………………. 2

2 FSK Systems, an Overview…………………………………………………………... 3

2.1 Frequency Shift Keying………………………………………………………… 3
2.2 Binary FSK System…………………………………………………………….. 4
2.3 FSK Detection………………………………………………………………….. 6

2.3.1 Coherent Binary FSK Detector…………………………………………. 7
2.3.2 Non Coherent Binary FSK Detector……………………………………. 8
2.3.3 Introduction to FFT based Detectors………………………………….... 9

2.4 Co-ordinate Rotation Algorithm (CORDIC)………………………………….... 10

3 FSK Receiver Architecture…………………………………………………………… 12
3.1 Motivation…………………………………………………………………….... 12
3.2 Overview of the Receiver Architecture………………………………………… 13
3.3 The need of Sub Sampling……………………………………………………… 15
3.4 Noise Effects due to 1-bit quantization……………………………………….... 17
3.5 Detection Mechanism………………………………………………………....... 18
3.6 Control System…………………………………………………………………. 21

4 SIMULINK Model……………………………………………………………………. 22

4.1 Introduction to SIMULINK…………………………………………………….. 22
4.2 SIMULINK Model of the Receiver…………………………………………….. 24
4.3 Simulations……………………………………………………………………... 26
4.4 Verification……………………………………………………………………... 33

4.4.1 Receiver Performance to Doppler Shifts……………………………….. 33
4.4.2 Receiver BER Performance…………………………………………….. 34
4.4.3 Receiver performance to variations in A/D clock……………………… 36

5 XILINX Implementation of the Receiver……………………………………………. 37

5.1 Introduction to System Generation in XILINX………………………………... 37
5.1.1 System Generation Design Flow………………………………………. 38

5.2 XILINX Model - Top level system……………………………………………. 39
5.3 XILINX Model - Down Conversion…………………………………………… 41
5.4 XILINX Model – FFT Detector……………………………………………….. 43
5.5 Synthesis to XILINX FPGA…………………………………………………… 47

 vi

6 Conclusion and Future Work………………………………………………………… 48
6.1 Future Work……………………………………………………………………. 48

7 Bibliography………………………………………………………………………….. 49

8 Appendix……………………………………………………………………………… 50

 vii

List of Figures
2.1 Binary FSK waveform…………………………………………………………….. 4

2.2 Signal Space of BFSK……………………………………………………………… 5

2.3 Coherent BFSK Receiver…………………………………………………………. 7

2.4 Quadrature Receiver for non coherent Detection………………………………. 8

3.1 FSK Receiver System Diagram ………………………………………………….. 13

3.2 Effect of Sub Sampling……………………………………………………………. 15

3.3 FFT Detector………………………………………………………………………. 19

3.4 Control System Block Diagram…………………………………………………... 20

4.1 SIMULINK Model of the FSK Receiver…………………………………………. 23

4.2 Transmitted waveform and Received Digitized Waveform…………………….. 26

4.3 Down Conversion Waveform……………………………………………………... 27

4.4 Decimated Waveform……………………………………………………………… 28

4.5 Input data matrix to the FFT Detector…………………………………………… 29

4.6 Output data matrix after FFT Computation…………………………………….. 30

4.7 Receiver output after symbol detection…………………………………………… 31

4.8 Output of the Bernoulli Transmitter……………………………………………… 31

4.9 FFT Detector output after Doppler shift of 5 KHz………………………………. 32

4.10 BER plot for the three data rates………………………………………………... 35

5.1 XILINX System Generation Design Flow………………………………………… 38

5.2 XILINX Model top level system diagram………………………………………… 39

5.3 Receiver Model Implemented in XILINX………………………………………… 40

5.4 XILINX hardware model of the down conversion operation………………….... 41

5.5 XILINX hardware model of the FFT Detector…………………………………... 43

5.6 Subsystem to implement the sum of real and imaginary parts for

FFT computation…………………………………………………………………… 44

5.7 Subsystem to implement a rotation of 45o for FFT computation……………….. 45

5.8 Subsystem to implement a rotation of 22.5o for FFT computation……………… 45

5.9 Waveforms displayed after symbol detection……………………………………. 46

 viii

List of Tables

3.1 Receiver Specification………………………………………………………………. 13

4.1 Performance of the Receiver to Doppler Shifts…………………………………… 34

4.2 BER Performance of the Receiver…………………………………………………. 34

4.3 Receiver performance to clock variation at A/D converter………………………. 36

 1

Chapter 1

Introduction

Wireless communication is one of the fastest growing fields owing to its length and breadth

of applications. Deep space communication is one such field where the use of wireless

systems is indispensable. The most important issue in space communication is power and

happens to be one of the major driving forces in the quest for low power wireless systems.

We focus on the design of a low power FSK receiver intended specifically for deep space

communications that involves an orbiter and a lander.

A typical set up in space explorations will involve an orbiter, orbiting a planet or a satellite

and a lander which is on the planet or satellite and which is in communication with the

orbiter. In such a scenario, there exists a relative displacement between the orbiter and

lander. This results in Doppler shifts in the transmitted/received signal and could potentially

introduce detection errors in the receiver. Hence, the receiver designed for such applications

should be invariant to Doppler changes in frequency.

A receiver architecture based on frequency shift keying is proposed by Grayver [1] which

uses an FFT detection scheme. The receiver can take care of Doppler shifts and has almost

all digital architecture intended for low power applications. We explore this architecture for

the FSK receiver design. The FFT computation in the receiver involves non trivial complex

multiplications suggesting the need to use power consuming multipliers. The FFT algorithm

proposed by Bertazonni [2] uses co-ordinate rotation algorithm (CORDIC) in place of

complex multiplications. CORDIC algorithm works on the principle of rotating the complex

phasors instead of multiplying them and uses adders/shifters. We explore a CORDIC

approach for FFT computation to improve power efficiency.

 2

The receiver is designed and modeled in MATLAB and SIMULINK. We simulate the

receiver and test it for data rates of 10kbps, 1kbps and 100bps. We design an FSK transmitter

and introduce additive white Gaussian noise and Doppler shifts in the transmitted signal and

test the receiver for such conditions.

We port the SIMULINK model to a XILINX hardware model using the system generation

features and block sets of SIMULINK. The block set contains various building blocks for

digital signal processing, communication and math operations. We simulate the XILINX

model in SIMULINK and synthesize the model to a VIRTEX-2 FPGA using XILINX’s

optimized logiCOREs. Then we perform static timing analysis and power analysis of the

synthesized design. A control system is designed and developed in VHDL to take care of

symbol and timing detection of the receiver. The system is tested, synthesized to XILINX

hardware and interfaced to the receiver.

1.1 Organization of the thesis

Chapter 2 gives an introduction to FSK systems and the design entities used in the receiver.

Chapter 3 describes the FSK receiver design and control system design in detail. Chapter 4

describes the MATLAB model, the simulation results, waveforms and analysis. Chapter 5

describes the XILINX hardware model and synthesis results. Chapter 6 gives a summary of

the thesis and suggests future work that can be done in the direction of this thesis.

 3

Chapter 2

FSK Systems, an Overview

Digital modulation is the process by which digital symbols are transformed into waveforms

that are compatible with the characteristics of the channel. In the case of baseband

modulation these waveforms are pulses, but in the case of band pass modulation, the desired

information signal is modulated to a sinusoid called a carrier wave. FSK modulation is a

class of band pass modulation in which the frequency of the carrier varies in accordance with

the information signal.

2.1 Frequency shift keying (FSK):

Frequency Shift Keying (FSK) system is a class of wireless systems that is very popular

today and has widespread applications. An FSK system carries its information in the

instantaneous frequency of the received signal. For e.g. a binary FSK system which transmits

the symbols 0 and 1 have one frequency corresponding to the symbol 0 and another

frequency to the symbol 1.

FSK systems are broadly classified into Coherent and Non-coherent systems. A coherent

system requires carrier or phase synchronization at the receiver end in order to detect the

signals whereas non coherent detection does not require any sort of synchronization.

Consequently the design of non coherent systems is much simpler when compared to

coherent systems making them more popular when power is an important concern. But non

coherent systems have a BER performance of 3db less than the traditional coherent receiver

at a BER of 10E-5.

 4

The general analytic expression for FSK modulation is

 () ()φω += t
T
Ets ii cos2

where si(t) is the modulated carrier, E is the energy content of si(t) over each information

symbol of duration T, ωi is the frequency term with M discrete values, and the phase term, ф

is an arbitrary constant. (ωi+1 - ωi) is typically assumed to be an integral multiple of Π/T

since FSK is implemented as orthogonal signaling where each tone in the signal set cannot

interfere with any other tones. In case of binary FSK, the value of M is two, representing

binary information symbols and a carrier with two possible frequencies.

2.2 BINARY FSK SYSTEM:

Fig 2.1: Binary FSK waveform

The binary FSK waveform displayed in Fig 2.1 illustrates the typical abrupt frequency

changes at the symbol transitions. The top waveform represents the information symbols and

the bottom waveform represents the modulated carrier signal. It can be seen that symbol ‘1’

0 ≤ t ≤ T
i = 1,…., M

BIT 0 BIT 1

INFORMATION WAVE

BFSK WAVE

 5

φ2

is represented with a particular frequency and symbol ‘0’ is represented with a different

frequency. These frequencies would lie in the pass band of the channel in use.

A binary FSK system is characterized by having a signal space that is two dimensional with

two message points. The message points are defined by the signal vectors:

=

0
1

bEs and

=

bE
s

0
2

where Eb represents the energy of the signal over one symbol duration.

The distance between the two message points is bE2 .

The observation vector x has two elements x1 and x2 defined by,

 ∫=
Tb

dtttxx
0

11)()(φ

 ∫=
Tb

dtttxx
0

22)()(φ

where)(1 tφ and)(2 tφ are orthonormal basis functions.

Figure 2.2 shows the signal space diagram for a binary FSK system.

 Fig 2.2: Signal Space of BFSK

Message
Point 2

0
φ1

Decision
boundary

Message Point 1

Z1

Z2

 6

The observation space is partitioned into two decision regions, labeled as Z1 and Z2.

Accordingly the receiver decides in favor of symbol 1 if the received signal point represented

by the observation vector x falls inside region Z1 i.e. when x1>x2 else the receiver decides in

favor of symbol 0.

2.3 FSK DETECTION:

FSK detection is the process of extracting the information symbols from a modulated carrier

wave. The detection process is mainly categorized into two types namely; coherent detection

and non coherent detection. In the case of coherent detection, the receiver exploits the

knowledge of the carrier’s phase in order to detect the symbols whereas in the case of non

coherent detection, the receiver does not utilize any phase reference information from the

carrier. Coherent based receivers are usually complex to design but have the best BER

performances. Also, coherent designs consume a lot of power. Non coherent receivers have

simple design, consume less power but have reduced BER performances.

In the context of the present receiver design for deep space exploration, the receiver power is

a very important issue and since the transmitter power can be elevated, power is traded for

reduced BER performance.

 7

2.3.1 Coherent binary FSK detector:

Figure 2.3 shows the block diagram of a coherent binary FSK receiver which is used

commonly. As mentioned in the previous section a coherent receiver needs to be in phase

synchronization with the transmitter. It consists of two correlators with a common input and

which are supplied with two locally generated reference signals)(1 tφ and)(2 tφ . The

correlator outputs are then subtracted one from another and the resulting difference ‘d’ is

compared with a threshold of zero volts. If d>0, the receiver decides in favor of 1 else in

favor of 0. The transmitted signal consists of both the frequencies f1 and f2. The reference

signals)(1 tφ and)(2 tφ are extracted by applying the received signal to a pair of narrow band

filters, one tuned to f1 and the other tuned f2. Hence the reference signals are in phase

coherence with the transmitted signals.

Fig 2.3: Coherent BFSK receiver

INTEGRATORx

+ DECISION

INTEGRATORx

x(t)

Φ1(t)

Φ2(t)

+

_
d

1 if d>0
0 if d<0

 8

2.3.2 Non Coherent binary FSK detector:

 Fig 2.4: Quadrature receiver for non coherent detection

Figure 2.4 depicts the block diagram of a non coherent binary FSK detector. Since phase

information of the carrier is absent, the detector is implemented as an energy detector. As we

can see, the receiver consists of two channels namely; the in phase (I) channel and the

quadrature phase (Q) channel. The two branches of the I channel are configured to detect the

signal with frequency w1; the reference signals being T/2 cos(w1t) for the ‘I’ branch and

T/2 sin(w1t) for the ‘Q’ branch. A similar arrangement exists for the detection of signal

with frequency w2 as can be seen from the two branches of the Q channel. The blocks

following the product integrators perform a squaring operation to prevent the appearance of

any negative values. A difference of the energies of the channels I and Q is calculated and

fed to the decision stage which decides in favor of w1 if the difference is greater than zero

else in favor of w2. The quadrature non coherent detector requires twice as many branches as

the coherent detector and is not very power efficient.

INTx SQU

INTx SQU

+

INTx SQU

INTx SQU

+

+ DECISION

fc1

fs1

fc2

fs2

x(t)

I CHANNEL

Q CHANNEL

I CHANNEL

Q CHANNEL

+

_

z

 9

Another common implementation for non-coherent detection is the envelope detector where

band pass filters and envelope detectors are used. An envelope detector consists of a rectifier

and a low pass filter. The detectors are matched to the signal envelopes rather than the

signals themselves and a decision as to whether a one or a zero was transmitted is made on

the basis of which two envelope detectors have the largest amplitude. Although the envelope

detector has a simpler design as compared to the quadrature detector, the fact that quadrature

detectors can be implemented digitally as VLSI circuits and also the use of filters and

rectifiers in the envelope detectors increase their power requirement and cost than the

quadrature detector.

2.3.3 Introduction to FAST FOURIER TRANSFORM (FFT) based detectors

Speaking of energy detection in non-coherent FSK systems, the Discrete Fourier Transform

(DFT) based detection is another method which is gaining importance today. The DFT is a

powerful tool used to perform spectrum analysis of discrete time signals. The N point DFT of

a sequence x(n) of length N is given by the formula,

 ∑
−

=

=
1

0
)()(

N

n

kn
NWnxkX 0 ≤ k ≤ N-1

The sequence X(k) can be thought of as a bank of N correlators, each representing the energy

of the signal for a particular frequency which is used for analysis and detection. The

advantage of using DFT for detection lies in its capability to handle Doppler shifts in the

received signal. But, DFT computation as it is requires N2 complex multiplications and N2–N

complex additions which make DFT impossible to implement especially for large values of

N.

Fast Fourier Transform (FFT) algorithms [3] are a set of computationally efficient algorithms

used to compute the DFT and have made the implementation of DFT a reality. These

 10

algorithms work on the basis of a divide and conquer approach, by decomposing an N point

DFT into successively smaller DFT computations and finally aggregating the result. The FFT

algorithms bring about a phenomenal improvement in speed and computational efficiency of

the DFT. For e.g. the radix 2 FFT algorithm [3] which is one of the most widely used FFT

algorithms, requires a total number of (N/2)log2N complex multiplications and Nlog2N

complex additions. The speed improvement factor by using the radix 2 FFT algorithms for

sequences of size 1024 is about 200 and is better for larger sequences. The introduction of

CORDIC algorithms to perform complex multiplications in FFT has improved the power

efficiency of FFT computation to a very large extent and has made FFT based detection a

very attractive choice for low power FSK receivers.

2.6 CO-ORDINATE ROTATION ALGORITHM (CORDIC):

The CORDIC (Co-ordinate Rotation Digital Computing) algorithm is a time and space

efficient algorithm mainly used to calculate the Sine and Cosine of a given angle. The

algorithm replaces multiplication/division by shift operations resulting in time and space

efficiency. The only expensive operation in the computation is addition. The algorithm is

commonly used in sine and cosine generation, polar-Cartesian conversions, and vector

rotation.

An illustration of the CORDIC algorithm is given here. In FFT computations, a complex

number is multiplied by the factor i
NW which corresponds to a phase rotation of 2пi / N. For

e.g. let A = x + jy and i
NW = ej26.56

Therefore A ej26.56 = (x + jy)(cos(26.56) + jsin(26.56))

We could write the above product as,

 A ej26.56 = X1 + jY1

 11

Where

 X1 = cos(26.56) (x - ytan(26.56))

And

 Y1 = cos(26.56) (y + xtan(26.56))

But tan(26.56) ≈
2
1

And cos(26.56) ≈
2
1 + 22

1 + 32
1 + 62

1

As we can see, the “tan” and “cos” can be implemented as shift operations and the rest of the

computations are simple additions. Shifters and adders are relatively simple to implement

and have better space and time efficiency.

 12

CHAPTER 3

FSK RECEIVER ARCHITECTURE

3.1 Motivation:

There are a lot of FSK detectors in the market today depending upon the application of

interest. As mentioned previously, coherent receivers are the best in terms of BER

performances but have complex system design and consume more power. Also, coherent

designs require fine frequency tracking making them very sensitive to Doppler shifts and

require a longer frequency acquisition time. The non coherent receivers currently used do not

meet the power requirement and Doppler shift requirement demanded by the application of

interest.

The objective of the receiver design is to have an all digital architecture. Digital designs are

preferred over their analog counterparts mainly for the following reasons:

a) CMOS digital circuits consume very less power than their analog counterparts. They

can have sleep modes that allow the system to be completely shut off when no

processing is done.

b) Digital designs have no portability issues when it comes to fabricating the design

using a better fabrication process that consumes lesser power and size.

c) Digital circuits are less sensitive to changes in temperature, pressure and aging.

As mentioned earlier, the receiver is targeted for communications between an orbiting ship

and a planetary landing vehicle. This scenario has important ramifications that motivate to

optimize the receiver architecture and they are:

a) The power consumption of the receiver of the planetary lander is more critical than

the transmission power of the orbiting vehicle.

b) There is no adjacent channel interference, hence the noise is additive white Gaussian.

 13

Since power is an important concern at the receiver of the lander, the design trades off

transmit power against the receiver power. Since noise is only additive white Gaussian, the

design trades off BER performance to power consumption by implementing a non coherent

architecture.

3.2 Overview of the receiver architecture:

Fig 3.1: FSK receiver system diagram

Table 3.1: Receiver Specification

Modulation type Binary Frequency Shift Keying

Carrier Frequency 473.1 MHz

Data rates 100bps, 1kbps and 10kbps

Doppler Shift ± 10 KHz

AMPSAW

A/D X 24

10

10 MUX FFT SYMBOL
DECISION

DATA

RECEIVED
SIGNAL

ej

 14

Table 3.1 shows the receiver specifications and Fig 3.1 shows the proposed receiver

architecture. The received signal is amplified by a power efficient, low noise amplifier. The

amplified signal is filtered with a surface acoustic wave filter. The filtered signal is sub

sampled and digitized to 1-bit precision using a 1-bit A/D converter. The carrier frequency of

the received signal is 473.1 MHz and this signal is subsampled at 1.2 MHz. Sub sampling is

an excellent way to reduce power consumption since the circuit is made to operate at a much

lower frequency even though the received signal frequency is centered at a higher value. The

reason to choose a sampling frequency of 1.2MHz is dealt with in the succeeding sections.

The process of 1 bit A/D conversion also leads to a simple and power efficient detector

design. Moreover 1 bit quantization is a highly non linear operation which means that the

preceding analog components need not be linear and no AGC circuit is needed. Non-linear

amplifiers and samplers use considerably less power than their analog counter parts.

The one bit digitized signal is downconverted and decimated to baseband by first multiplying

the signal with a complex exponential. The multiplication is done in order to shift the

message part closer to DC before decimating it to a lower data rate so that the required

information is not lost. Careful choice of the sub sampling frequency reduces the

multiplication of the signal by i, 1, -i and -1, in effect eliminating the need for a hardware

multiplier. The complex multiplication process also produces the ‘I’ and ‘Q’ signals and calls

for separate processing of each of these paths. The 1.2 Mbps signal is now decimated by 24

to obtain a signal rate of 50kpbs. The 50kpbs signal is further decimated by 10 to obtain data

rates of 5kbps and 500bps.

As seen from the receiver architecture block diagram, the three decimated signals available at

the input of the MUX correspond to the data rates of 10kbps, 1kbps and 100bps. One of the

three signals is selected which is appropriate with the data rate transmitted and fed into a 16-

point FFT detector. The detector requires only 5 samples of the signal and the rest 11

samples are zeros. This approach eliminates one of the four stages of FFT computation

reducing circuit complexity. A control block designed to take care of detecting the data rate

transmitted controls the select line of the MUX. This block also analyzes the output of the

FFT detector and takes care of symbol decision.

 15

3.3 The need for Sub Sampling:

 Fig 3.2: Effect of Subsampling

As mentioned in the previous section, sub sampling is an excellent way of reducing the

circuit complexity and power consumption since the incoming signal is sampled at much

lower rate than the highest frequency component contained in the signal which happens to be

the carrier. Figure 3.2 demonstrates a received signal with carrier fc being subsampled at a

frequency fS. Due to sub sampling, a copy of all signal frequencies will be shifted to a lower

frequency. The frequency which is closest to DC (0Hz) denoted by fc’ can be utilized to

extract the required baseband signal.

However there is a lower bound constraint on the sampling frequency due the fact that

shifted replicas of the signal and noise will overlap with each other. The lower bound for the

sampling frequency is calculated as follows:

0
fc - fc

0 fc’ -fc’

 16

From sub sampling theory, the frequency component fc’ is given by

fc = α fc’ -(1/2) < α < (1/2)

In order to prevent the out of band noise from aliasing into the signal band, band pass

filtering is done after the amplifier stage. The SAW filter which servers the purpose has a

bandwidth of about fsaw = fc/1000. From the figure, consider the image at – fc’. The noise

within this image should be attenuated before reaching the signal band at fc’. This constraint

is satisfied by

fsaw < 2|α| fc – ∆F ≈ 2|α| fc where ∆F = hfb << fc

fb: data rate of the information source

h: modulation index of FSK

Hence fc >
||2

 fsaw

α

It appears that Fs can be selected to down convert fc to DC, but this is not the case. Since the

signal is real valued such a down conversion would make it impossible to distinguish

between fc + ∆F and fc – ∆F and thus prevent detection. Thus fc is shifted to a frequency

closer to DC and then downconverted to DC by multiplying the signal with a complex

exponential exp(-iпn fc’/Fs). If fc’ = ± fS /4, the down conversion reduces to multiplication by

(i, 1, -i, -1) eliminating the need for power hungry multipliers. Further fS has to be an integer

multiple of the data rate in order to facilitate the decimation ratios and reduce power

consumption. Thus fS is chosen to be 1.2 MHz.

 17

3.4 Noise effects due to 1 bit quantization:

One bit data processing used in the receiver allows for maximum power savings since the

operation is entirely non-linear. This allows the preceding analog components also to be non-

linear. Non linear analog components like amplifiers and samplers have comparatively

simpler design and hence more power efficient. However the quantization process severely

raises the noise floor as it introduces a large quantization error. Simulation and analytical

results show that an SNR loss of 2 dB is incurred due to one bit quantization. Analytical

treatment follows:

 SNRloss =

+
−

q

bb

NN
E

N
E

00
loglog10

 =

 +

0

0log10
N

NN q

 =

 +

0
1log10

N
Nq

 ≈
)10ln(

10
0N

Nq

The noise power introduced due to B bit quantization is given by,

 σ2
q =

12
2 1)--2(B

Since B = 1 in the present case,

 σ2
q =

12
1

and Nq =
s

q

F

2σ =
sF12

1

 18

Also, Eb = ∫
Tb

b dttF
0

2)2(sin π =
bF2

1

Therefore
0N

Nq =

bb

s

E
N

F

F
0

2
1
12

1

 =
06 NF

EF
s

bb

Finally,

 SNRloss =
)10ln(

10
06 NF

EF
s

bb

This shows that the SNR loss is significant for small over sampling ratios and large SNRs.

For an over sampling ratio (Fs/Fb) of 120 and SNR of 15, the SNR is loss is about 0.2 dB.

3.5 Detection mechanism:

A 16 point DFT is used to detect the binary FSK tones. The advantage of using a DFT

detector is listed as follows:

a) Capability of handling great frequency offsets without having to down convert the

signal exactly to 0 Hz.

b) A frequency tracking algorithm allows the DFT based receiver to be immune to

Doppler shifts.

c) An FFT algorithm is used to compute the DFT and is done in relatively fewer

operations leading to significant power savings.

 19

Fig 3.3: FFT Detector

Figure 3.3 shows a block diagram implementation of the FFT detector. The input register to

the FFT engine stores 5 samples from the signal and 11 zeros. It has been proved in [1] that 5

signal samples are sufficient to keep the performance loss below 0.25 dB. The contents of the

register are then fed into the FFT engine. The output of the FFT is a bank of 16 values

referred to as ‘bins’. Each of these bins represents the energy content of the signal in

different frequency intervals. Data detection is done by analyzing the 16 bins. One out of the

16 bins is regarded to be the ‘decision bin’. The output of the decision bin is compared with a

known threshold value using a comparator circuit. Decision is in favor of symbol 1 if the

value of the ‘decision bin’ is greater than the threshold value; else decision is in favor of

symbol 0.

X(5) X(4) X(3) X(2) X(1) 0 0 0 0 0 0 0 0 0 0 0

16 POINT
FFT

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DECISION
BLOCK

Data Samples

Data from MUX

INPUT REGISTER

FFT BIN REGISTER

 20

 Fig 3.4: Control System block diagram

16:1
MUX

DELAY 1 DELAY 2
BIN RES
BLOCK

TEMP_BIN
COUNTER

DEMOD
BLOCK

CONTROL
COUNTER

CLK
COUNTER

3:1
MUX

te
m

p_
bi

n

bin_out

enable

clk_count

clk

bin_out

enable

en_temp_bin

bin 1

bin 2

bin 16

clk_10k

clk_1k

clk_100

checkenable

temp_bin

en_temp_bin

sig_out

clk

en
_t

em
p_

bi
n

cl
k

demod

 21

3.6 Control System:

Figure 3.4 depicts the block diagram of the control circuit. The output of the DFT

detector is captured by a 16 to 1 multiplexer. The purpose of the control circuit is to

determine the “decision bin” out of the 16 bins and to decide the symbol rate. In order to

facilitate bin resolution and data detection a pilot signal is first transmitted from the

transmitter which consists of a series of alternate ones and zeros. To start with, the very

first bin is selected and the data rate is assumed to be 10kbps. The output of the 16:1

MUX is passed through two registers each serving the purpose of delaying the data by

one clock cycle. This is done so that two subsequent symbols can be compared with each

other. The bin resolution block compares the values of the registers DELAY1 and

DELAY2 with a threshold value. The following decision algorithm is used:

 Current bin = Decision bin if DELAY1 < Threshold value < DELAY2 or

 DELAY2 < Threshold value < DELAY1

The threshold value in the bin resolution can be adjusted allowing for variations in the

output of the DFT block. If decision fails on the current bin then the next bin is selected

by incrementing the ‘temp_bin’ line. This process is repeated until a decision bin is found

with the present clock rate. Once the value of ‘temp_bin’ reaches 16 and still a “decision

bin” hasn’t been found, it implies that the data rate is different is from the one assumed.

Hence the clock rate is reduced to 1kbps and then the process is repeated starting with the

first bin. The ‘CONTROL COUNTER’ block is used to assert the ‘check’ signal which

enables the “BIN_RES BLOCK’. After obtaining the right decision bin, control is

transferred to the demodulation block which takes care of converting the output of the

DFT to binary symbols.

 22

CHAPTER 4

SIMULINK MODEL

4.1 Introduction to SIMULINK:

MATLAB or “Matrix laboratory” is one of the most popular technical computing

environments today that provides mathematical and engineering functions for system

simulations, data analysis and algorithm development. MATLAB operates as an

interactive programming environment and has support for graphical output to supplement

numerical results. SIMULINK is a simulation and prototyping environment, part of

MATLAB for modeling, simulating and analyzing dynamic systems. SIMULINK

provides a block diagram interface that is built on the core MATLAB numeric, graphics,

and programming functionality. MATLAB has a collection of highly optimized

application specific functions called “toolboxes”. Toolbox functions are built in

MATLAB language and can be easily incorporated into a MATLAB program, viewed

and modified. “Block sets” are collections of application specific blocks built on the

functionality of toolboxes and can be directly included in SIMULINK models.

SIMULINK uses a graphical user interface (GUI) for solving process simulations. Instead

of writing MATLAB code, we simply connect the necessary “icons'” together to

construct the block diagram. SIMULINK is an icon-driven state of the art dynamic

simulation package that allows the user to specify a block diagram representation of a

dynamic process. Assorted sections of the block diagram are represented by icons which

are available via various "windows" that the user opens (through double clicking on the

icon). The block diagram is composed of icons representing different sections of the

process (inputs, state-space models, transfer functions, outputs, etc.) and connections

between the icons (which are made by "drawing" a line connecting the icons). Once the

block diagram is "built", one has to specify the parameters in the various blocks, for

example the gain of a transfer function. Once these parameters are specified, then the user

can simulate the model.

 23

Fig 4.1: SIMULINK model of the FSK receiver

TRANSMITTER

RECEVIER

 24

4.2 SIMULINK model of the receiver:

Fig 4.1 shows the block diagram of the FSK receiver modeled in SIMULINK. Obviously a

receiver cannot be tested without a transmitter indicating the presence of a transmitter and an

AWGN channel in the block diagram. The transmitter is modeled with a Bernoulli random

number generator as its information source. The random generator is configured to output

either a one or a zero with a specific probability and at a rate of 10kbps. There are two signal

sources acting as the two carriers of BFSK. One of the sources operates with a frequency of

437.1 MHz while the other operates at 437.12 MHz. The tone separation is thus 20 KHz.

Two product modulators are used, the upper one for modulating symbol 1 and the lower one

for symbol zero. Finally outputs of the modulators are summed to simulate a BFSK signal

with an information rate of 10kbps. The signal is passed through an additive white Gaussian

noise channel (AWGN) to add white noise to the transmitted signal. This completes

modeling the transmitter and the channel.

The receiver part of the block diagram starts with a sign block that basically functions like a

1-bit A/D converter. The sign block outputs a one if the input value is greater than zero else a

negative one if the input is less than zero. The convention is, symbol one is represented by

value one while symbol zero with value negative one. This is done in order to distinguish

symbol zero from the value zero. The sign block is operated at a sampling rate of 1.2 MHz.

The output of the sign block is down converted to base band by multiplying the signal with a

complex exponential. As we have discussed before, complex multiplication is reduced to

multiplication with 1, i,-1 and –i by proper choice of sampling frequencies. 1 and -1

represents the real part while i and –i represents the imaginary part. Since the quantities are

complex in nature, the real part and the imaginary part should be processed separately.

Consequently the data path this point onwards branches out to two paths; the real path and

the imaginary part as witnessed in the diagram. The upper branch denotes the real part with

the received signal being multiplied by cos(Πn/2N) and the lower branch is the imaginary

part being multiplied by sin(Πn/2N). The processing blocks for real data and imaginary data

are the same. The down converted signal is now decimated by 24 to reduce the data rate to

 25

50kbps. We now have a signal that can be processed by the FFT detector. As we have

discussed before, the FFT block uses only 5 samples of the signal for DFT computations. The

rest 11 inputs to the detector are zeros. This process results in an additional decimation of the

data rate by 5, bringing down the rate to 10kbps which should be the final data rate. As we

can see there is an inherent timing synchronization in the design resulting from proper choice

of the sampling frequency of the A/D converter and the decimation ratios. For lesser data

rates such as 1kpbs and 100bps, additional stages of decimation are required. For instance,

for a data rate of 1kpbs, the 50kpbs signal is decimated by 10 to reduce the rate to 5kpbs.

This signal incurs an additional decimation of 5 from FFT processing finally yielding a data

rate of 1kpbs.

The SIMULINK model of the receiver does not include the FFT detector block as well as the

control circuit block. We found it more convenient to capture the output of the decimated

signal to a workspace (which basically stores all the data values as a matrix) and then writing

a MATLAB script to apply the FFT on the captured data. The program also does the

additional task of stripping the first five bits from the data and padding the bits with eleven

zeros and feeding them to the FFT algorithm. The MATLAB script is included in the

Appendix for reference. Generally, it is very difficult to model a control circuit in

SIMULINK. Hence we decided that the easiest way was to write a VERILOG or VHDL

program capturing the functional or gate level description of the control circuit and then

simulating it. Since the final objective is to reduce the entire receiver model to hardware, this

method saves an additional step of converting the SIMULINK model to a VHDL/VERILOG

model. The control block which was explained in the previous chapter is written in VHDL

and is included in the Appendix for reference.

 26

4.3 SIMULATIONS

Fig 4.2: Transmitted waveform and Received Digitized waveform

We simulated the SIMULINK model for all the three data rates and found that the model was

performing as expected. The wave forms obtained at various points in the design when the

model is run with a bit rate of 10kpbs are indicated in this section. The simulation is run for

0.02 seconds so that 200 symbols are emitted by the Bernoulli source. Figure 4.2 shows a

section of three different waveforms. The first waveform is the output of the FSK transmitter.

The first half of the waveform represents symbol 1 and the second half represents symbol 0.

The frequency of the signal associated with symbol 1 is 473.12 MHz and the frequency of

symbol 0 is 473.1 MHz. The second waveform is the result of the FSK waveform being

passed though the additive white Gaussian channel with an SNR of 5db and a noise power of

100mW. As we can see, the transmitted signal is highly corrupted by noise in the channel.

This signal is input to the 1-bit A/D converter of the receiver which basically converts the

received signal to a rectangular waveform as witnessed in waveform 3. We can also see a

clear distinction between symbol 0 and symbol 1 in their frequency representations.

SYMBOL 1 SYMBOL 0

FSK WAVE

OUPUT OF AWGN CHANNEL

OUTPUT OF 1-BIT A/D

 27

Fig 4.3: Down conversion waveforms

Figure 4.3 shows the waveforms resulting from the down conversion operation. These

waveforms are specific to data processing in the real path. The first waveform is the 1 bit

digitized waveform from the A/D converter. The second waveform is the cosine waveform

that alternates between 1 and -1 with 0 interspersed. The cosine signal servers the purpose of

the in-phase function required for real part multiplication. The third waveform is real part of

the down converted wave which is the product of the first and the second waveforms.

SYMBOL 0 SYMBOL 1

1 BIT DIGITIZED SIGNAL

COSINE WAVEFORM FOR REAL PART OF DOWNCONVERSION

DOWNCONVERTED WAVE

 28

Fig 4.4: Decimated waveform

Figure 4.4 depicts the results of data rate decimation. The first waveform is the down

converted wave which we have seen before, and the second waveform is the result of

decimation by the order 24. We can see that the decimated waveform has a clear distinction

between the symbols 0 and 1.

SYMBOL 0 SYMBOL 1

DOWNCONVERTED WAVE

WAVE DECIMATED BY 24

 29

Fig 4.5: Input data matrix to the FFT detector

The data rate is now reduced to 50kbps. Since the transmitted data rate is 10kbps, the

decimated wave seen above can be directly fed to the FFT detector for further processing.

The wave is captured to a matrix named “yout1” as indicated in Fig 4.1. The MATLAB

accesses “yout1” and converts it to a 16 by 200 matrix form which can be fed into the FFT

detector. This matrix is referred as “val” in the MATLAB script. The first 6 values of this

matrix are displayed in Fig 4.5. As we can see, only the first five values are data in complex

form and the rest 11 values are zeros.

 30

Fig 4.6: Output data matrix after FFT computation

The formatted data as seen in the matrix “val” is fed to the FFT detector which is basically

implemented by invoking the MATLAB “fft” inbuilt function. Fig 4.6 displays the absolute

value of the output of the FFT operation stored in a matrix named “res1”. The column

numbers represent the symbol instants and the rows represent the 16 bin output for each

symbol. The first eleven symbols transmitted by the Bernoulli source are 1, 1, 0, 0, 1, 1, 1, 1,

0, 0 and 0. With theses symbols in view, we can see from fig 4.6 that there are quite a few

bins which can be regarded as a “decision bin” for symbol detection. We select bin number 5

to be our decision bin and set a threshold value of 2. Hence the decision algorithm now

becomes,

 Symbol = 1 if bin (5) > 2

 0 if bin (5) < 2

 31

Fig 4.7: Receiver output after symbol detection

Fig 4.8: Output of the Bernoulli transmitter

 32

Fig 4.7 shows the final detected waveform plotted in MATLAB and fig 4.8 shows the input

waveform. As we can see, the transmitted waveform and the detected waveform match with

each other.

Fig 4.9: FFT detector output after Doppler shift of 5 KHz

To test the receiver for Doppler invariance, we increased the carrier frequencies of the

transmitter by 5 KHz and ran the model. Fig 4.9 displays the output of the FFT detector for

the first eleven time instants. As we can see, the decision bin is no longer bin 5 and is

displaced to a different bin. Then, the task is to change the decision bin from bin 5 to another

suitable bin. In this case we choose, bin 8. A frequency tracking algorithm will help keep

track of the changes in magnitude of the decision bin. As we see a decrease in the magnitude

of the decision bin, we also see a proportional increase in the magnitude of the bin adjacent

to the decision bin. Thus the function of the frequency tracking algorithm is to

increment/decrement the bin number when the decision bin magnitude falls below a certain

level.

 33

4.4 VERIFICATION

In order to test whether the receiver was working, we sent a string of 10 bits from the

transmitter and observed the bit string at the receiver after detection. The test case is give

below,

TEST CASE FOR 10KBPS DATA RATE

TRANSMITTED BIT SEQUENCE : 1,0,1,1,1,0,0,0,0,1

CARRIER FREQUENCY 1 : 473.12MHZ

CARRIER FREQUENCY 2 : 473.1MHZ

INPUT SIGNAL : 100mW

SNR : 15dB

DATA OBSERVED AT THE RECEIVER

RECEIVED BIT SEQUENCE : 1,0,1,1,1,0,0,0,0,1

DECISION BIN : BIN 7

MAXIMUM VALUE (BIT 1) : 3.17

MINIMUM VALUE (BIT 0) : 0.566

THRESHOLD VALUE : 2

These results imply that the receiver is working as expected. Similar tests were conducted for

data rates of 1kbps and 100bps and found that the receiver was working properly.

4.4.1 Receiver Performance to Doppler Shifts

We tested the receiver for Doppler changes in frequency by varying the frequency of the

transmitted signal by different proportions. We found that the receiver was working

satisfactorily for Doppler shifts up to 10 KHz. Table 4.1 shows the simulation results.

Transmitted data rate : 10kbps

Decision bin without Doppler shift : Bin 8

 34

CHANGE IN

FREQUENCY
100HZ 200HZ 500HZ 1KHZ 1.5KHZ 3KHZ

DECISION

BIN
8 8 7 7 6 6

 Table 4.1: Performance of the receiver to Doppler Shift

Similar tests were conducted for data rates of 1kbps and 100bps and found satisfactory

performance.

4.4.2 Receiver BER Performance

 Table 4.2: BER performance of the receiver

We tested the model for a variety of noise conditions by varying the SNR of the transmitted

signal in the AWGN channel. We set the input signal power at a constant 100mW. Table 4.2

displays the results obtained for different values of SNR. The BER was measured by

transmitting 1000 information symbols at the transmitter end and measured the no of

10KBPS 1KBPS 100BPS
SNR

(dB)
DETECTION

ERRORS
BER

DETECTION

ERRORS
BER

DETECTION

ERRORS
BER

1 290 0.29 135 0.135 130 0.13

5 250 0.25 110 0.11 108 0.108

10 120 0.12 85 0.085 80 0.08

15 1 0.001 0 10e-5 0 10e-5

20 0 ≈0 0 ≈0 0 ≈0

25 0 ≈0 0 ≈0 0 ≈0

 35

symbols that were detected erroneously. After comparing these results with the BER

performance of an optimal un-coded non coherent FSK receiver, we found that the FFT

based receiver has a performance degradation of approximately 2.5 db at a BER of 10e-3.

The difference in performance is lesser for better BER. The results also indicate consistency

in the performance of the receiver to the three data rates.

Figure 4.10 displays a logarithmic plot of BER v/s SNR. The y axis corresponds to BER

values and is in logarithmic scale while the x axis corresponds to SNR values (dB) and is in

linear scale.

Fig 4.10: BER plot for the three data rates

 36

4.4.3 Receiver performance to variations in A/D clock

Original Clock Frequency : 1.2 MHz

Data rate : 10 kbps

SNR : 15 dB

 Table 4.3: Receiver performance to clock variation at A/D converter

We tested the receiver by varying the clock frequency by small amounts at the A/D

converter. Table 4.3 indicates the simulation results obtained. Such frequency variations are

restricted to ± 0.5% of the original clock rate. As we can see, the performance of the receiver

degrades as the variation in clock frequency increases and is highest at 0.5% variation.

Frequency Variation (%) BER

0.1 0.008

0.2 0.012

0.3 0.017

0.4 0.024

0.5 0.036

 37

CHAPTER 5

XINLINX IMPLEMENTATION OF THE RECEIVER

5.1 Introduction to System Generation in XILINX

The receiver model developed in SIMULINK is useful to validate the functionality of the

receiver design at a system level. In order to get a power estimate of the receiver, the

SIMULINK model has to be reduced to hardware. As mentioned before, SIMULINK’s

XILINX block set allows us to develop a XILINX hardware model of the receiver using the

XILINX building blocks. This process basically reduces to translation of the SIMULINK

model to a XILINX model provided a one to one correspondence exists between each and

every block. The hardware model is developed and tested in SIMULINK and the system

generator tools of XILINX is used to synthesize the model by generating .bit file targeted to a

particular XILINX FPGA. A .bit file contains all the configuration information defining all

the internal logic and interconnections in the FPGA.

The System Generator in XILINX is a very convenient method for electronic designs to be

created, tested, and translated into hardware for XILINX FPGAs. The tool extends

SIMULINK to support bit and cycle accurate system level simulation, and automatic code

generation for XILINX FPGAs. System Generator co-simulation interfaces extend

SIMULINK to incorporate FPGA hardware and HDL simulation into the system-level

environment as naturally as other library blocks. System Generator presents a high level and

abstract view of the design, but also exposes key features in the underlying silicon, making it

possible to build extremely high-performance FPGA implementations.

 38

System Generator designs are built and simulated within the SIMULINK block editor. Each

block produces results that make sense for the setting in which it is used. For example, a

multiplier whose inputs are signed fixed point numbers produces a signed result having an

appropriate width and binary point position. Signal types are propagated automatically, so

when one block is updated, System Generator adjusts downstream blocks accordingly.

5.1.1 System Generation DESIGN FLOW

Fig 5.1: XILINX System Generation Design Flow

Figure 5.1 illustrates the various processes involved in transforming a high level design

created in SIMULINK to a low level FGPA implementation. A brief description of all the

steps follows:

STEP1: A high level system design of the model is developed and tested in

MATLAB/SIMULINK using the XILINX block set provided in SIMULINK.

SYSTEM MODELING IN MATLAB/SIMULINK

XILINX SYSTEM GENERATOR

HDL SYNTHESIS(XILINX XST, SYNPLIFY PRO,
MENTOR GRAPHICS)

SIMULATION(MENTOR GRAPHICS FPGA ADVANTAGE)

FPGA IMPLEMENTATION(XILINX ISE)

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

 39

STEP2: System Generation is invoked in SIMULINK using the “XILINX System

Generation” icon in the SIMULINK model. This process generates VHDL code for

all the XILINX blocks in the SIMULINK design. FPGA designs are generated using

XILINX’s LogiCOREs to produce the most efficient implementation.

STEP3: The VHDL design is synthesized to FPGA using one of the three most popular

synthesis tools namely XILINX’s XST, SYNPLICITY’s SYNPLIFY PRO and

MENTOR GRAPHICS’s FPGA Advantage.

STEP4: This step is optional and can be used to simulate the VHDL design using MENTOR

GRAPHICS’s FPGA Advantage. A test bench and data vectors can be created using

the System Generator. The data vectors represent the input and the expected outputs

as simulated in the SIMULINK design.

STEP5: The synthesized design is loaded into a XILINX FPGA using place and route tools

of XILINX’s ISE.

5.2 XILINX Model: Top level system

Fig 5.2: XILINX Model top level system diagram

TRANSMITTER AND CHANNEL IMPLEMTED
IN SIMULINK

RECEIVER IMPLENTED USING XILINX
BLOCK SET

 40

The XLINX model looks pretty much alike the SIMULINK model as we can see from fig

5.2. The transmitter and channel blocks are modeled using the SIMULINK block set while

the receiver is modeled using the XILINX block set and included in “Subsystem2”. A

provision is made to generate the pilot sequence for an initial period of 0.01 sec in the

transmitter block. As mentioned before, the pilot sequence consists of a series of alternating

0s and 1s and is used to facilitate the control system of the receiver to detect the transmitted

data rate and to configure one of the FFT bins as the “decision bin”. The pilot signal needs to

be transmitted every time the data rate changes, as this is the only way the receiver can detect

a change in the transmitted data rate.

 Fig 5.3: Receiver Model implemented in XILINX

 41

The subsystem2 seen in Fig 5.2 is composed to two subsystems demarcated mainly due to

their functionalities. The first subsystem takes care of down conversion of the digitized signal

and decimation. The second subsystem takes care of FFT detection. As we can see from Fig

5.3, the red block named “System Generator” is used to translate the XILINX design to

XILINX hardware targeted to a particular FPGA. The System Generator block has various

parameters that can be set to generate XILINX hardware for a specific device and speed.

Some of these parameters are:

a) Product Family. E.g. SPARTAN, VIRTEX, VIRTEX2 etc

b) Package. E.g. fg676, bg575 etc

c) Synthesis tool. E.g. XST, SYNPLIFY etc

d) FPGA System clock period

5.3 XILINX MODEL: Down conversion

Fig 5.4: XILINX hardware model of the Down conversion operation

 42

Figure 5.4 depicts the hardware design of the down conversion sub system of the receiver.

All the blocks used in the design are provided in the XILINX block set and can be readily

synthesized to XILINX hardware. The input signal to the block is the 1 bit digitized signal

from the A/D converter. The input signal has to pass though the “Gateway In” block that

converts values of type “double” to the “XILINX fixed point” type. The number of bits for

each data value is 20 and the data type is signed (2s complement). The binary point of the

data is located at 0. As we can see, there exist two identical data paths in the design. The first

one represents the real path and the second one represents the imaginary part. A direct digital

synthesizer (DDS) is used to generate the required sine and cosine waveforms for down

conversion. Then, the signal is down sampled by 24, 10 and 10 and all the outputs are fed

into a 3:1 MUX. The select line of this MUX is controlled by the control system as

mentioned before. The output of the MUX is passed to a serial to parallel converter which

takes 5 serial 20 bit data values and converts it into one data value of bit length 100 which is

basically a concatenation of all the data values. This is done in order to stack five signal

samples per symbol for FFT detection. The parallel bit is sliced back into 20 bits each using

the “slice” blocks. Finally the output of the “slice” block is type converted to signed (2s

complement) data type and fed into the FFT detector.

 43

5.4 XILINX Model: FFT Detector

Fig 5.5: XILINX Hardware Model of the FFT Detector

As mentioned before, the FFT detector is modeled based on the algorithm proposed by

Bertazzoni [2]. Figure 5.5 depicts the XILINX hardware model of the FFT detector which

consists of various interconnected subsystems. Each subsystem has two kinds of inputs; real

and imaginary. The purpose of these subsystems is to add and shift the complex data

according to the FFT algorithm and thus implementing the CORDIC algorithm.

 44

Fig 5.6: Subsystem to implement the sum of real and imaginary parts for FFT

computation

 45

Fig 5.7: Subsystem to implement a rotation of 45o for FFT computation

Fig 5.8: Subsystem to implement a rotation of 22.5o for FFT computation

 46

Figures 5.6, 5.7 and 5.8 represent the internal hardware block diagram of the subsystems

used in the FFT detector based on the CORDIC algorithm. Figure 5.6 shows the hardware

block used for summing the real and imaginary parts of complex input data. The hardware

depicted in figures 5.7 and 5.8 are used to rotate a complex vector by angles 45o and 22.5o

respectively as proposed in [2].

Fig 5.9: Waveforms displayed after symbol detection

The output of the FFT detector is fed to the control system that takes care of symbol decision

based on the threshold value. The XILINX model was tested in SIMULINK for a data rate of

10kbps in presence of the AWGN channel. Figure 5.9 displays the results of the detected

waveform. The top waveform is the transmitted data from the Bernoulli random generator.

The bottom wave is the detected wave by the receiver. The transmitted and the received

waves match with each other indicating successful operation of the XILINX hardware model

of the receiver. Note a delay of one clock cycle in the received waveform.

 47

5.5 Synthesis to XILINX FPGA

We synthesized the XILINX hardware model to a XILINX FPGA using the system generator

tool. The product family used was Virtex2, deice used was xc2v1500 (anticipating around

1000 million gates) and the XILINX system clock period was set to 100ns. The model was

synthesized successfully and following is timing report as indicated in the synthesis report of

XILINX:

Timing Summary:

Speed Grade: -6

Minimum period: 6.841ns (Maximum Frequency: 146.178MHz)

Minimum input arrival time before clock (Critical Path Delay): 4.282ns

Following is the MAP report obtained from XILINX for the receiver model indicating the

total gate count and number of slices used in the FPGA.

Design Summary

Number of Slices: 2,633 out of 7,680 34%

Total equivalent gate count for design: 85,456

We ran XPOWER utility of XILINX and found that the total power usage of the receiver is

280mW.

 48

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have successfully designed and simulated a low power BFSK receiver intended for future

deep space missions. The receiver is implemented with a 16 point FFT detector for Doppler

invariance and tests show that frequency shifts of up to 10 KHz are tolerated by the receiver.

We have tested the receiver for data rates of 10kbps, 1kbps and 100bps. The worst case BER

performance of the receiver is about 2.5db less than the optimal non coherent FSK receiver at

a BER of 10E-3 and data rate of 10kbps. We have successfully understood the design flow of

XILINX system generation. The SIMULINK model of the receiver is used to develop a

XILINX model of the receiver and synthesized to VIRTEX-2 FPGA using system generation

and XILINX ISE tools. Power estimation of the receiver as per the XPOWER utility of

XILINX is 280mW.

6.1 Future Work

The power consumption of the receiver can be further reduced by making a few design

modifications. The FFT Detector can be implemented using a radix-4 FFT algorithm instead

of the existing radix-2 algorithm for better power and space efficiency. The hardware

multiplier and the digital frequency synthesizer at the down conversion stage could be

substituted by simpler circuits. A frequency tracking circuit can be implemented in the

control system to track the change in decision bins due to Doppler shifts.

 49

BIBLIOGRAPHY

[1] E. Grayver and B. Daneshrad, “A low power all digital FSK receiver for space

applications”, IEEE Trans. Communications, Volume: 49 Issue: 5, May 2001,

Page(s): 911 -921

[2] S. Bertazzoni et al., “16-point high speed (I)FFT for OFDM modulation”, Proceedings of

the 1998 IEEE International Symposium on Circuits and Systems, Volume: 5, 31 May-3 June

1998, Page(s): 210 -212.

[3] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Englewood Cliffs, NJ:

Prentice-Hall, 1997.

[4] S. Hara, A.Wannasarnmaytha, Y. Tsuchida and N. Morinaga, “A novel FSK

demodulation method using short-time DFT analysis for LEO satellite communication

systems”, IEEE Trans. Veh. Technol., Volume: 46, Aug. 1997, Page(s) 625–633.

[5] E. Grayver and B. Daneshrad, “VLSI implementation of a 100-µW multirate FSK

receiver”, IEEE J. Solid-State Circuits, Volume: 36 Issue: 11, Nov. 2001,

Page(s): 1821 -1828.

[6] Bernard Sklar, Digital Communication, Fundamentals and Applications. Englewood

Cliffs, NJ: Prentice-Hall, 1988.

[7] Martin. S. Roden, Digital Communication System Design. Englewood Cliffs, NJ:

Prentice-Hall, 1988.

[8] H.-C. Liu, J. S. Min and H. Samueli, “A low-power baseband receiver IC for frequency-

hopped spread spectrum communications”, IEEE J. Solid-State Circuits, Volume: 31, March

1996, Page(s) 384–394.

[9] E. Grayver and B. Daneshrad, “Low power, area efficient programmable filter and

variable rate decimator”, The 2000 IEEE International Symposium on Circuits and Systems,

Volume: 5, 28-31 May 2000, Page(s): 341 -344.

[10] M. K. Lee, K. W. Shin, J. K. Lee, “A VLSI Array processor for 16-point FFT”, IEEE J.

Solid-State Circuits, Volume: 26, No. 9, Nov. 1996, Page(s): 1286-1292.

 50

APPENDIX

1. MATLAB script for FFT computation and symbol decision

% Strip 5 data values from the received signal
compute = 1
if compute == 1
n_symbols = 1000
count = 1
for n = 1:n_symbols
 for j = 1:5
 val(j,n) = complex(yout1(count+j,2),yout1(count+j,1))
 end
 count = count + 5
end

%Pad the remaining 11 values with zeros
for n = 1:n_symbols
 for j = 6:16
 val(j,n) = 0
 end
end

% Compute the FFT
res = fft(val,16);
res1 = abs(res);

end

% Symbol decision
threshold = 2
decision_bin = 7
for n = 1:n_symbols
 if res1(decision_bin,n) > threshold
 wave(n) = 1
 else
 wave(n) = 0
 end
end

 51

%Compute error for BER analysis
error = 0
for n = 1:n_symbols
 if wave(n) ~= yout4(n)
 error = error +1
 end
end

 52

2. VHDL code implementing the control system for bin resolution and rate detection

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- Definition of entity called control
Entity control is
port(bin1,bin2,bin3,bin4,bin5,bin6,bin7,bin8,bin9,bin10,bin11,bin12,bin13,bin14,bin15,
Bin 16 : in std_logic_vector(19 downto 0); clk_10k, clk_1k, clk_100, rst : in std_logic; rate :
out std_logic_vector(0 to 1); sig_out : out std_logic);
end control;

-- Architecture definition of the entity control
architecture structure of control is
 type states is (binresolution, demodulation);
 signal currentstate, nextstate : states;
 signal bin_val1, bin_val2, bin_out : std_logic_vector(19 downto 0);
 signal count, count_clk : unsigned(0 to 1) := "00";
 signal temp_bin : unsigned(0 to 3) := "0000";
 signal clk : std_logic := clk_10k;
 signal demod, enable, en_temp_bin, check : std_logic;
 begin

 -- Select one of the three clocks
 SELECTCLK : process(clk_10k, clk_1k, clk_100)
 begin
 case count_clk is
 when "00" =>
 rate <= "00";
 clk <= clk_10k;
 when "01" =>
 rate <= "01";
 clk <= clk_1k;
 when "10" =>
 rate <= "10";
 clk <= clk_100;
 when others =>
 rate <= "00";
 clk <= clk_10k;
 end case;
 end process;

 53

-- State register
STREG : process(clk, rst)
begin
 if rst = '1' then
 currentstate <= binresolution;
 elsif rising_edge(clk) then
 currentstate <= nextstate;
 end if;
end process;

-- Select one of the 16 bins
BINMUX : process(temp_bin,bin1, bin2, bin3, bin4, bin5, bin6, bin7, bin8, bin9, bin10,
bin11, bin12, bin13, bin14, bin15, bin16)
begin
 case temp_bin is
 when "0000" =>
 bin_out <= bin1;
 when "0001" =>
 bin_out <= bin2;
 when "0010" =>
 bin_out <= bin3;
 when "0011" =>
 bin_out <= bin4;
 when "0100" =>
 bin_out <= bin5;
 when "0101" =>
 bin_out <= bin6;
 when "0110" =>
 bin_out <= bin7;
 when "0111" =>
 bin_out <= bin8;
 when "1000" =>
 bin_out <= bin9;
 when "1001" =>
 bin_out <= bin10;
 when "1010" =>
 bin_out <= bin11;
 when "1011" =>
 bin_out <= bin12;
 when "1100" =>
 bin_out <= bin13;
 when "1101" =>
 bin_out <= bin14;

 54

 when "1110" =>
 bin_out <= bin15;
 when "1111" =>
 bin_out <= bin16;
 when others =>
 bin_out <= bin_out;
 end case;
end process;

-- Bin decision
STTRANS : process(currentstate, check)
begin
 case currentstate is
 when binresolution =>
 demod <= '0';
 enable <= '1';
 en_temp_bin <= '0';
 if check = '1' then

if ((signed(bin_val1) > 7 and signed(bin_val2) <-7) or (signed(bin_val2) > 7 and
signed(bin_val1) < -7)) then

 nextstate <= demodulation;
 enable <= '0';
 en_temp_bin <= '0';
 else
 enable <= '1';
 en_temp_bin <= '1';
 end if;
 end if;

 when demodulation =>
 demod <= '1';
 end case;
end process;

-- count register
MYCOUNTER : process(clk, enable, rst)
begin
 if rst = '1' then
 count <= "00";
 elsif rising_edge(clk) and enable = '1' then
 count <= count + 1;
 else
 count <= count;
 end if;
end process;

 55

-- Registers for storing two successive samples of a particular bin
BINVAL : process(clk, enable, rst)
begin
 if rst = '1' then
 bin_val1 <= "00000000000000000000";
 bin_val2 <= "00000000000000000000";
 elsif rising_edge(clk) and enable = '1' then
 bin_val1 <= bin_out;
 bin_val2 <= bin_val1;
 else
 bin_val1 <= bin_val1;
 bin_val2 <= bin_val2;
 end if;
end process;

-- The check signal
CHECKSIG : process(clk, rst, enable, count)
begin
 if rst = '1' then
 check <= '0';
 elsif rising_edge(clk) and count = "11" then
 check <= '1';
 else
 check <= check;
 end if;
end process;

-- The temp_bin register for the select line of 16:1 Mux
TEMPBIN : process(clk, en_temp_bin, rst)
begin
 if rst = '1' then
 temp_bin <= "0000";
 count_clk <= "00";
 elsif rising_edge(clk) and en_temp_bin = '1' then
 if temp_bin = "1111" then
 count_clk <= count_clk + 1;
 end if;
 temp_bin <= temp_bin + 1;
 end if;
end process;

 56

-- The demodulation proces
STDEMOD : process(clk, demod)
begin
 if rising_edge(clk) and demod = '1' then
 if signed(bin_out) > 7 then
 sig_out <= '1';
 else
 sig_out <= '0';
 end if;
 end if;
end process;

end structure;

