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Abstract

Due to inherent limitations of the fixed-point representation, it is sometimes desirable

to perform arithmetic operations in the floating-point format. Although an established

standard for floating-point arithmetic exists, optimal hardware implementations of al-

gorithms require use of floating-point formats different from the ones specified in the

standard. A library of fully parameterized hardware modules for floating-point format

control, arithmetic operators and conversion to and from any fixed-point format are

presented. Synthesis results for arithmetic operator modules in several floating-point

formats, including the IEEE single precision format, are also shown. The library sup-

ports creation of custom format floating-point pipelines, as well as hybrid fixed and

floating-point implementations. A hybrid implementation of the K-means clustering

algorithm for multispectral and hyperspectral image processing is presented, illustrat-

ing the use of the library. Synthesis and processing results for both implementations

are shown and compared.
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Chapter 1

Introduction

Many image and signal processing applications benefit from acceleration with recon-

figurable hardware. This acceleration results from the exploitation of fine-grained

parallelism available in reconfigurable hardware. Custom circuits built for these ap-

plications in reconfigurable hardware process values in fixed or floating-point formats.

Minimizing bitwidths of signals carrying those values makes more parallel implemen-

tations possible and reduces power dissipation of the circuit. Arbitrary fixed-point

formats are not difficult to implement and are in common use. Because of the inher-

ent complexity of the floating-point representation, it is no less desirable, but much

harder to implement arbitrary floating-point formats. This thesis presents a library

of hardware modules that makes implementation of custom designs with arbitrary

floating-point formats possible.

In this chapter, the reader is introduced to fixed and floating-point representations,

reconfigurable hardware used to implement all the designs presented, motivation for

this work and a survey of related work.

9
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1.1 Fixed-Point Arithmetic

Fixed-Point Format

One of the most widely implemented formats for representing and storing numerical

values in the binary number system is the fixed-point format.

Every numerical value is composed of an integer part and a fractional part and

the delimitation between the two is referred to as the radix point. In the fixed-point

format, the radix point is always implied to be in a predetermined position. The format

thus gets its name from the fixed location of the radix point. Usually, the radix point

is assumed to be located immediately to the right of the least significant digit, in which

case only integer values are represented (no digits represent the fractional part).

Signed and Unsigned Representations

Two alternative schemes of representing values exist in the fixed-point format: signed

and unsigned. In the unsigned fixed-point format, only values larger than or equal

to zero can be represented. Thus, the sign of the value is redundant information and

is not stored. For a given bitwidth n, integer values between 0 and 2n − 1 can be

represented in the unsigned number format.

In the signed fixed-point format, however, we aim to represent both positive and

negative values. Thus, the sign of the numerical value has to be stored. Signed

values are represented in sign-and-magnitude, one’s complement or two’s complement

notation, where the latter is most popular for hardware implementations. For a given

bitwidth n, integer values between −2n−1 and 2n−1 − 1 can be represented in the

signed two’s complement fixed-point format.
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1.2 Floating-Point Arithmetic

Limited Range in Fixed-Point Format

Simplicity of arithmetic operations in the fixed-point format makes it a popular imple-

mentation choice for many algorithms. However, scientific computation often involves

very large and very small values, which are not easily represented in fixed-point for-

mat. In other words, scientific applications often have larger range than fixed-point

format can easily accommodate. Scaling of fixed-point numbers by placing the radix

point in positions other than immediately to the right of the least significant digit

is possible. This may let us represent very small or very large values, but not both

without very large bitwidths. Of course, in such schemes, increased bitwidth brings

about increased complexity of arithmetic operations. Hence, fixed-point formats are

said to suffer from limited range.

Floating-Point Format

The floating-point format is the most common way of representing real numbers in

computer systems. It ameliorates the problem of limited range and is suitable to most

scientific algorithms. In essence, the floating-point format is similar to the scientific

notation of numbers, such as −1.35× 106. There are three fields in the representation

of a value in the floating-point format: sign s, exponent e and fraction f. Thus, every

floating-point value can be defined by

(−1)s × 1.f × 2e−BIAS

Please note that the exponent is biased, meaning that the stored value is shifted

from 0 by a known bias value, depending on the bitwidth of the exponent field in
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the particular format. Given that the exponent bitwidth is exp bits, we can represent

exponent values from −2exp bits−1+1 to 2exp bits−1 by assigning the value 2exp bits−1−1

to the bias. It is worth noting that the bias value is not constant and changes with

exponent bitwidth.

The bitwidth alignment of the three fields is shown in Figure 1.1. The distinction

Figure 1.1: Alignment of fields in a floating-point format

between terms fraction and mantissa is that fraction represents only the portion of

the mantissa to the right of the radix point (fractional part). Naturally, a tradeoff

exists in total bitwidth between smaller width requiring less hardware resources and

higher width providing better precision. Also, within a certain total bitwidth, it is

possible to assign various combinations of values to the exponent and fraction fields

(see Figure 1.1). Wider exponent fields brings higher range and wider fraction fields

brings higher precision.

IEEE Standard And Other Formats

The Institute of Electrical and Electronics Engineers (IEEE) issued standard 754

in 1985, specifying details of implementing binary floating-point arithmetic. This

standard details four floating-point formats - basic and extended, each in single and

double precision bitwidths. Most implementations of floating-point arithmetic adhere

to one or more of these standard formats, though few follow the standard absolutely.

However, optimal implementations of algorithms may not always require bitwidths

as specified by the standard. In fact, it is often the case that much smaller bitwidths

than those specified in the 754 standard are sufficient to provide desired precision
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and occupy less resources than the full standard bitwidth implementation. In cus-

tom hardware designs, it is possible, and indeed desirable, to have full control and

flexibility over the floating-point format that is implemented. Reducing datapath

bitwidths to their optimal values enables design of more parallel architectures and

implementation of larger designs. This thesis presents a library of variable precision

floating-point components to support this. These components have been implemented

in reconfigurable hardware.

1.3 Reconfigurable Hardware

Field Programmable Gate Array (FPGA)

Field Programmable Gate Arrays (FPGAs) are integrated circuits with a flexible ar-

chitecture, such that their structure can be programmed by the designer. FPGAs are

composed of an array of hardware resources called configurable logic blocks (CLBs).

The designer creates the functionality of the overall circuit by configuring CLBs to

perform appropriate logic functions. Hence, FPGAs are a form of reconfigurable hard-

ware, combining flexibility similar to software with the speed of specialized hardware.

Designs mapped to FPGAs are usually described in hardware description lan-

guages, such as VHDL or Verilog. In this project, all hardware descriptions are writ-

ten in VHDL. A number of software tools exists to aid the designer in mapping the

high-level description of the design in VHDL to the logic level of each CLB. Such

tools perform synthesis, mapping, placing and routing of the design to the hardware.

For synthesis and mapping of all designs in this project we used Synplicity Pro from

Synplify. Mapping, placing and routing of the designs was done using Xilinx Alliance
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tools. In order to verify the fidelity of the VHDL descriptions to the intended func-

tionality, all designs in this project were simulated with Mentor Graphics ModelSim

prior to being implemented in hardware.

The Wildstar Reconfigurable Computing Engine

Reconfigurable computing is characterized by use of hardware elements that have

reconfigurable architectures, as opposed to general purpose computing which uses

hardware elements with fixed architectures.

Many reconfigurable computing systems are based on one or more FPGAs con-

nected to a number of memory banks. All designs presented in this project are im-

plemented on the Wildstar reconfigurable computing engine from Annapolis Micro

Systems. Figure 1.2 shows the structure of this board.

Some of the main features of the Wildstar board are:

• 3 Xilinx VIRTEX XCV1000 FPGAs,

• total of 3 million system gates,

• 40 Mbytes of SRAM,

• 1.6 Gbytes/sec I/O bandwidth,

• 6.4 Gbytes/sec memory bandwidth,

• processing clock rates up to 100MHz.
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Figure 1.2: Structure of the Wildstar reconfigurable computing engine

1.4 Motivation for This Work

Accelerating Algorithms

One of the main applications of reconfigurable hardware is to accelerate algorithms

implemented on general purpose processors. Candidate algorithms are initially imple-

mented purely in software that runs on a general purpose processor. Acceleration of

the algorithm is achieved by partitioning of the algorithm into portions to be imple-

mented in software on a general purpose processor and portions to be implemented in

reconfigurable hardware.
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Typically, the parts of the algorithm that are assigned to software are serial or pro-

cedural in nature, while the highly parallel, computational parts of the algorithm get

implemented in hardware. Custom datapaths are created in reconfigurable hardware

to achieve desired functionality. Communication with the general purpose processor is

done through memory banks and/or register tables in reconfigurable hardware, both

of which are accessible by the custom hardware and the general purpose processor.

Typical speedups are in the range of 10-100 times for algorithms implemented in

custom hardware compared to software implementation on the general purpose pro-

cessor. Highly regular and parallel applications such as DSP (filters, media processing,

FFT), network controllers and similar applications are prime candidates for this form

of acceleration.

Control Over Bitwidths

Custom datapaths that are designed in reconfigurable hardware often use either fixed-

point or floating-point arithmetic. In either case optimal signal bitwidths throughout

the custom datapath are application-specific and depend on the values they carry.

Having datapath bitwidths that are too wide for the variables they represent is a

waste of resources on the FPGA, especially so in operating elements that are highly

sensitive to bitwidth, such as multipliers. Conversely, datapath bitwidths that are too

narrow for the variables they represent result in erroneous outputs and in some cases

malfunction of the overall circuit.

Hence, it is important to have fine-grained control over datapath bitwidths through-

out the design process. This means that all logic elements that constitute the datapath

need to be parameterized by their bitwidth. In other words, when a designer puts to-

gether a custom datapath, (s)he specifies the exact bitwidth of each element.
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Parameterized Elements

Bitwidth flexibility is easy to achieve in fixed-point arithmetic and logic elements

for various functions are available to the designer in any bitwidth. In floating-point

arithmetic, however, the presence of three distinct fields with complex interactions

makes it difficult to represent logic functions for every possible bitwidth. It is the aim

of this work to produce a library of parameterized hardware modules for floating-point

arithmetic.

To completely describe any floating-point format, two values suffice: width of the

exponent field (exp bits) and width of the fraction (or mantissa) field (man bits). The

sign field always has a bitwidth of 1. Hence, the total bitwidth of any floating-point

format is given by 1+exp bits+man bits. These parameters allow for the creation of

a wide range of different modules through a single VHDL description. Values of the

parameters help resolve the description at compile time and ensure synthesis of the

correct amount of logic needed to perform the function of the module for the given

format.

1.5 Related Work

One of the earliest investigations into using FPGAs to implement floating-point arith-

metic was done by Fagin et al. [4], who in 1994 showed that implementing IEEE

single precision operators was possible, but also impractical on then current FPGA

technology. The circuits designed by the authors were an adder and a multiplier and

both had full implementation of all four rounding modes specified by the IEEE 754

standard. Area was the critical constraint, with the authors reporting that no device

in existence could contain a single precision multiplier circuit. Therefore, the authors
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propose adopting smaller, custom formats which may be more appropriate to FPGA

architectures than the full IEEE formats.

This line of thought was expanded on by the significant work of Shirazi et al. [17]

who suggested application-specific formats for image and DSP algorithms in widths of

16 (1-6-9) and 18 (1-7-10) bits, as opposed to the full 32 (1-8-23) bits in the IEEE stan-

dard. Modules for addition/subtraction, multiplication and division were presented,

though no work was done on implementing rounding or error-handling.

Another significant work came from Louca et al.[11] in which the authors, building

on the work of Shirazi and others, abstract the normalization operation away from

the actual arithmetic operators, in an effort to conserve area. Only IEEE single pre-

cision addition and multiplication modules were implemented, but neither contained

circuitry for normalizing the output values. Rather, a separate normalization unit

served several operator modules by alternating between them in time. No rounding

capability was implemented by the authors, due to area constraints.

In an effort to expand the capabilities of existing architectures, Ligon et al. [8]

presented IEEE single precision adder and multiplier circuits on the then newly avail-

able Xilinx 4000 series FPGAs. Both circuits supported rounding to nearest, but did

not use a separate normalizing unit. Similar work by Stamoulis et al. [18] presented

IEEE single precision adder/subtractor, multiplier and division circuits. However, the

authors do not present any rounding capability, as the intended application (3D com-

puter graphics) does not require this functionality. Again, the work does not make

use of a separate normalization unit.

Two works by Sahin et al.[16][15] present adder, subtractor, multiplier and ac-

cumulator circuits, but again only in IEEE single precision format. Also, rounding

capability is not implemented. The authors introduce the concept of providing pipeline
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synchronization signals. Namely, all floating-point modules presented had a ready sig-

nal on each input and a done signal on the output, which helps synchronize the flow

of data through pipelines made by the modules. Essentially, when the ready signal

is high, the module processes the input data, which is then valid. Upon completion,

the module makes the output values available on its data outputs and signals their

validity with a done signal going high. The authors present additional modules, in-

cluding multiply-accumulate (MAC), in their second publication, with no other major

changes.

Recent work by Dido et al.[2] discusses optimization of datapaths, especially in

image and video processing applications such as high definition television (HDTV).

This datapath optimization is achieved by providing flexible floating-point formats

that are optimal for every signal in the datapath. However, their work presents a non-

general floating point format that is primarily used to represent scaled integer values,

because this suits the particular application. Hence, the format cannot represent

any of the IEEE formats. Hardware modules presented by these authors are format

converters, similar to those shown in this work, as well as an inversion module, all

without support for rounding or error handling. Their format contains no sign bit or

bias of the exponent.

The floating-point formats in our work are a generalized superset of all these

formats. It includes all the IEEE formats as particular instances of exponent and

mantissa bitwidths, as well as the flexible floating-point format presented by Dido

et al.[2] and the two formats by Shirazi et al.[17]. Also, we abstract normalization

as well as rounding functionality into a separate unit with a choice of rounding to

zero and rounding to nearest. In this way, as Dido et al.[2] explained, we make use

of non-normalized values between arithmetic operators in pipelines, which in no way
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compromises the results. Normalization is then executed after an arbitrarily long chain

of operators and not after every operation. All our modules are equipped with ready

and done pipeline synchronization signals, as well as limited error handling capabilities

which are propagated through the pipeline with the results.

1.6 Conclusion

This chapter presented an introduction to fixed and floating-point arithmetic, recon-

figurable hardware used to implement all the modules in the library and motivation

for the research presented here, as well as a survey of related work. The next chapter

will introduce all the hardware modules that make up the library.



Chapter 2

Hardware Modules

In this chapter, the hardware modules which were designed as part of this work are

presented, including their functions, structures and use. Low level modules, which are

used as building blocks for top level modules that constitute the library, are described

in Section 2.1. Library modules used for floating-point format control are presented in

Section 2.2. Floating-point arithmetic operator modules are described in Section 2.3.

Library modules for conversion between fixed and floating-point representations of

values are described Section 2.4. Following these discussions of individual modules,

Section 2.5 presents an example of assembly of library modules to build a complete

IEEE single precision adder. Testing of the hardware modules is described in Sec-

tion 2.6, while the results of synthesis experiments conducted on operator modules

are presented in Section 2.7.

A complete list of all the hardware modules presented in this chapter is found in

Appendix A, along with the VHDL entity for each. Names, functions and latencies (in

clock cycles) of all modules that represent the parameterized library for floating-point

arithmetic are shown in Table 2.1. All VHDL entity definitions in Appendix A present

21
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Table 2.1: Floating-point hardware modules and their latency in clock cycles

Module Function Latency
denorm Introduction of implied integer digit 0
rnd norm Normalizing and rounding 2
fp add Addition 4
fp sub Subtraction 4
fp mul Multiplication 3
fix2float Unsigned fixed-point to floating-point conversion 4

Signed fixed-point to floating-point conversion 5
float2fix Floating-point to unsigned fixed-point conversion 4

Floating-point to signed fixed-point conversion 5

generic and port declarations. The former contain parameters for the circuit, while

the latter contains inputs and outputs. Parameters are compile-time variables that

determine the amount and structure of logic needed to implement the circuit. Inputs

and outputs are run-time variables of the circuit.

2.1 Low Level Hardware Modules

The hardware modules that constitute the parameterized library for floating-point

arithmetic rely on the existence of some basic logic functions, such as multiplexers

and fixed point adders. These basic building blocks are described in this section.

These building blocks that perform functions commonly encountered in logic de-

sign all share one characteristic - parameterization. All of them have parameterized

functionality, so that they can be used to build higher level modules that are them-

selves parameterized. Details of parameterization of each building block are described

in the following sections.
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Fixed-Point Adder and Fixed-Point Subtractor

Many floating-point algorithms require the implementation of fixed-point addition as

part of the overall algorithm. Examples are rounding, floating-point addition and

conversion between fixed and floating-point formats. A dedicated module

parameterized adder has been written to provide this functionality. It is parame-

terized by the width of the input and, consequently, output signals. Carry input and

carry output signals are also provided.

Another frequent use of this operation is fixed-point subtraction. Module

parameterized subtractor provides this functionality, parameterized by the width

of the input and output signals.

Fixed-Point Multiplier

Fixed-point multiplication is needed by floating-point algorithms - in particular, floating-

point multiplication. Hence, the module parameterized multiplier was designed,

parameterized by the width of the input signals. The output signal, which is the

product of the input values, has twice the bitwidth of the input signals.

Variable Shifter

Through several floating-point algorithms, there exists a need for shifting signals, left

or right, by a variable number of bits. Such functionality is usually implemented

through variable shifter circuits, which accept two inputs: one for the signal to be

shifted and the other to indicate the distance through which the first is to be shifted.

The module parameterized variable shifter is parameterized by the width of the

input, the width of the controlling signal and the direction of shifting (left or right).
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Delay Block

Module delay block has been developed to aid in the pipeline assembly for all the

modules in this work. Its function is to delay any signal by a given number of clock

cycles between its input and output. In this way, the designer can synchronize signals

to produce correctly pipelined modules. Two parameters control the synthesis of the

delay block module: bitwidth of the input and output signals and the number of

cycles the input is delayed.

Absolute Value

When handling signed fixed-point signals, it is sometimes necessary to derive their ab-

solute value, e.g. in converting from signed fixed-point representation to the floating-

point representation of a number. Thus, the module parameterized absolute value

has been developed to accept a signed fixed-point value at its input and produce the

absolute value of the input signal on its output. This module is parameterized by the

width of its input and output signals.

Priority Encoder

Prior to many variable shifting operations, it is necessary to determine the position

of the most significant bit that has value ’1’ in a given signal. Examples of high

level algorithms that require this functionality are normalizing and converting from

fixed-point to floating-point representations of a number.

Thus, module parameterized priority encoder has been developed, taking a

signal to be examined on its input and producing the value, in unsigned fixed-point

representation, of the index of the most significant ’1’ in the input signal. The module

is parameterized by the width of the input signal, as well as the width of the output
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signal.

Multiplexer

One of the most frequently used low level logic functions throughout this work is

multiplexing. Virtually every high level module uses multiplexing at some step in its

algorithm by making one or more instances of the module parameterized mux. This

module is parameterized by the width of its two inputs and thus the width of its one

output, while the select input has the bitwidth of 1.

Comparator

Another highly reused low-level logic function is comparison of unsigned fixed-point

numbers. Higher level modules like floating-point addition and normalization use the

module parameterized comparator. This module is parameterized by the width of

the fixed-point signals that are to be compared, and produces three boolean outputs,

exactly one of which is always high, while the others are low. These outputs indicate

whether input A is larger, equal to or smaller than input B.

2.2 Format Control Hardware Modules

Denormalization

Every floating-point value can be represented in many ways:

−24.97× 1012 = −2.497× 1013 = −0.2497× 1014 . . .

The normalized form of a floating-point value is defined in the same way as in standard

scientific notation: it is the form in which exactly one non-zero digit forms the integer
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part of the mantissa. In the given example, this is the expression in the middle.

When the binary number system is used, the only non-zero digit is ’1’ and, hence,

the integer part of normalized floating-point numbers is ’1’. Since this is redundant

information, only the fractional part of the number is stored. The integer part of the

value is then referred to as the implied ’1’. While this provides efficiency in storage,

the implied ’1’ is necessary to carry out arithmetic operations on the number and

must be re-introduced, which is the function of the denorm module.

However, by convention formally described in the IEEE standard 754, the value

zero is represented by all zero exponent and mantissa fields, with the sign bit as either

’0’ or ’1’ (±0). The full-mantissa representation of the zero value is composed of an

all-zero fractional part and a 0 (not 1) for the integer part. This is the only exceptional

circumstance that can arise.

Hence, the denorm module inserts the implied ’1’ into the representation, between

the mantissa and exponent fields, unless the value being processed is zero. In the

latter case, it will insert a ’0’. Implementation of this functionality is a simple n-input

OR gate, taking as its Boolean inputs all the bits of the exponent and mantissa fields

of the floating-point signal. The output of the gate is then inserted into the floating-

point signal, between the exponent and the mantissa fields. Due to its relatively

simple function, this module is purely combinational and is not pipelined, but is

parameterized by the bitwidths of the exponent and mantissa fields.

Rounding and Normalizing

Subsequent to all arithmetic operations performed on the floating-point value, it is

necessary to return it to the standard, normalized form, before presenting the re-

sult for storage or further processing by external units. This is the function of the
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round norm module, whose structure is shown in Figure 2.1. There are two parts to

Figure 2.1: Rounding and normalizing

the functioning of the round norm module: normalizing (submodule normalizer) and

rounding (submodule round add). Normalizing a floating-point value refers to shifting

left its mantissa until its MSB is ’1’, while decrementing the exponent for every bit

the mantissa was shifted. In this way, the floating-point value has been brought into

its normalized form.

During processing, mantissa bitwidth will normally increase, as in the introduction

of guard digits during addition, for example. Hence, to return the post-processing

floating-point value into the correct format, its mantissa bitwidth must be reduced

to its original size. However, reduction of bitwidth introduces the need for rounding,
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because the fraction value needs to be converted into a less precise representation.

The IEEE standard specifies four rounding modes:

• round to zero,

• round to nearest,

• round to positive infinity (+∞), and

• round to negative infinity (−∞).

Out of these four, the first two modes of rounding are implemented in the round norm

module, with rounding to nearest being the default, as it is in the IEEE standard 754.

Rounding to zero is the simplest form of rounding to implement, because it is

represented by simple truncation. For both positive and negative floating-point values,

removal of low-order bits from the fractional part of the mantissa can only reduce the

overall magnitude of the number, thereby bringing it closer to zero.

However, rounding to zero introduces significant rounding error in some instances,

which can be avoided by rounding to nearest. As can be seen in Figure 2.2, where

the bitwidth of the mantissa is reduced by two bits, rounding to zero assigns number

labelled A with value 100011 to rounded value 1000, although it is much closer to

rounded value 1001.

Rounding to nearest tackles this problem and minimizes rounding error by as-

signing every value to its closest rounded value. Thus, A gets assigned to 1001, not

1000. An issue of equidistant numbers arises in rounding to nearest: if a number is

equally distant to two rounded values, which will be chosen? In our implementation,

the equidistant value is assigned to the higher rounded value, because this simplifies

the hardware implementation. This is illustrated in Figure 2.2 by number labelled B,
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Figure 2.2: Rounding to zero and nearest

which is equally distant to rounded value 1000 and 1001, but is assigned to the higher

one.

Both forms of rounding are implemented in the rnd norm module dynamically

through a round signal. When this signal has value ’0’, it indicates rounding to zero

and the rounding addition is disabled, thus just truncating the inputs to the correct

fraction bitwidth. Inversely, a high round signal indicates rounding to nearest, where

rounding addition is enabled and inputs are rounded to the nearest rounded value.

The final function of the rnd norm module is to remove the integer part of the
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mantissa field, or in other words remove the ”implied ’1’”, thus returning the floating-

point value completely into the original format.

Module rnd norm is parameterized by three values: the width of the exponent

field, the width of the mantissa field on the input and the width of the mantissa field

on the output. The difference between the last two parameters indicates the number

of bits of the mantissa to be removed during rounding.

2.3 Arithmetic Operator Hardware Modules

Addition

Addition is one of the most computationally complex operations in floating-point

arithmetic. The algorithm of the addition operation for floating-point numbers is

composed of four steps:

• ensure that the operand with larger magnitude is on input 1 (swap),

• align the mantissas (shift adjust),

• add or subtract the mantissas (add sub), and

• shift the result mantissa right by one bit and increment the exponent if addition

overflow occurred (correction).

Each of the four steps of the algorithm is implemented in a dedicated module, shown

above in brackets. The four sub-modules are assembled into the overall fp add module

as shown in Figure 2.3.

The swap submodule compares the exponent and mantissa fields of the input vari-

ables. Based on these two comparisons, the two floating-point inputs are multiplexed

to the outputs. If the exponent field of input A is larger, or the exponent fields are
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Figure 2.3: Floating-point addition

equal and the mantissa of input A is larger, input A is multiplexed to output large

and input B to output small. Otherwise, the reverse mapping of inputs to outputs

occurs.

Submodule shift adjust is responsible for aligning the mantissas of the larger

and smaller operands. It achieves this by shifting the smaller mantissa to the right

as many bits as is the difference between the exponents. Another function of this

module is to introduce the guard bit into the smaller operand’s mantissa. Guard bits

are introduced in the addition algorithm to provide rounding to nearest for the result.
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Hence, the mantissa of the sum is one bit wider than the mantissas of the inputs.

Expansion of the mantissa fields happens during aligning of the mantissas, so that

the extra information the guard bit carries can be saved when the smaller operand’s

mantissa is shifted right and some least significant bits may be lost. The guard bit is

introduced into the larger operand’s mantissa to the right of the least significant bit

and always has value ’0’.

Once the mantissas are aligned, it is necessary to either add or subtract them,

depending on the signs of the two operands. If the signs are the same, the addi-

tion operation is constructive and the mantissas are added. If the signs are opposite,

however, the addition operation is destructive and the mantissas are subtracted. Sub-

module add sub will perform this variable operation under the control of the op input,

which is fed with the XOR of the input sign bits.

Outputs of the overall addition algorithm are controlled by the correction mod-

ule. If an exception is indicated on the input, the exception is propagated to the

output and the result output is set to all zeros. Otherwise, if the input values are

detected to be of the same magnitude, but opposite sign, an exception is not gener-

ated on the output, but the result output is still blanked out, to indicate zero value,

as A + (−A) = 0. Otherwise, if an overflow in the addition of the mantissas was

detected, the result mantissa is shifted to the right by one bit, truncating the least

significant bit, and the most significant bit is filled with ’1’. Also, the exponent field is

incremented by 1, to reflect the shift in the mantissa. These operations correct for the

overflow in the addition of the mantissas. Finally, the floating-point value assembled

from the sign, exponent and mantissa fields is presented on the output.

Module fp add is parameterized by the width of the exponent and mantissa fields

of the floating-point format it operates on.
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Subtraction

The subtraction operation is similar to the addition operation, as

A−B = A + (−B)

Thus, we use a slightly modified addition module to perform subtraction. This is

especially helped by the sign-magnitude form of the floating-point format. To invert a

floating-point value, all that needs to be done is to invert the sign bit (most significant

bit, MSB, of the floating-point signal).

There is only one, minor structural difference between the addition and subtraction

modules: the inverter on the MSB of the second operand is not used on the input to

the parameterized comparator module (see Figure 2.3), but on the input to the swap

module. That way, we invert the sign of the second operand to achieve subtraction.

Also, the comparator now monitors input values equal in both sign and magnitude,

since A − A = 0. Because the inverter is only moved from one location to another,

module fp sub occupies the exact same area as the fp add module.

Similarly to the fp add module, the fp sub module is also parameterized by the

width of the exponent and mantissa fields of the floating-point format it operates on.

Multiplication

Unlike fixed-point arithmetic, in floating-point arithmetic, multiplication is a rela-

tively straight-forward operation compared to addition. This is again due to the

sign-magnitude nature of the floating-point format, because

((−1)s1 ×m1 × 2e1)× ((−1)s2 ×m2 × 2e2) = (−1)s1⊕s2 × (m1 ×m2)× 2(e1+e2)
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From the above, it can be concluded that the three fields of the floating-point

format do not interact during multiplication and can thus be processed at the same

time, in parallel. The sign of the product is given as the exclusive OR (XOR) of the

input value signs. Mantissa of the product is calculated by fixed-point multiplication

of the input value mantissas, while the exponents of the input values are added to

give the exponent of the product.

The only further complication of the floating-point multiplication algorithm is the

fact that the exponent fields are biased. When two biased exponent fields are added,

the result contains the bias twice, one of which must be subtracted. If, using IEEE

standard 754 notation, E is an unbiased exponent and e is a biased exponent, it stands

that:

e1 + e2 =

(E1 + BIAS) + (E2 + BIAS) =

(E1 + E2) + 2×BIAS =

Ep + 2×BIAS =

ep + BIAS

The structure of the floating-point multiplier is given in Figure 2.4. The fp mul

module is parameterized by the bitwidths of the exponent and mantissa fields of the

floating-point format it processes. The bitwidth of the product is 1 + exp bits + (2×
man bits). The mantissa field has twice the bitwidth of the input mantissas because

it is their fixed-point product.
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Figure 2.4: Floating-point multiplication

2.4 Format Conversion Hardware Modules

Custom hardware architectures have the ability to perform some sections of the al-

gorithm in fixed-point arithmetic and others in floating-point arithmetic, depending

on the optimal representation of each variable in the algorithm. It is the goal of our

library to provide all the hardware modules the designer needs to build such hybrid

fixed and floating-point architectures. Hence, some of the most important modules
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are those that convert between fixed and floating-point representations of variables.

Conversion From Fixed-Point To Floating-Point

Module fix2float was designed to convert a given value from fixed to floating-point

representation. Thus, its input is a fixed-point value and its output is the correspond-

ing floating-point representation. Since fixed-point values can be in the unsigned or

signed (two’s complement) form, two versions of the fix2float module have been

developed. The structure of the unsigned version is shown in Figure 2.5, while the

structure of the signed version is shown in Figure 2.6. The signed version is more

Figure 2.5: Conversion from unsigned fixed-point to floating-point representation
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Figure 2.6: Conversion from signed fixed-point to floating-point representation

complex due to handling of the two’s complement representations of the input and

hence has a longer latency of 5 clock cycles, as opposed to 4 clock cycles for the

unsigned version (see Table 2.1).

To determine the sign-magnitude form of the resulting floating-point representa-

tion, the absolute value of the input fixed-point number must first be obtained. In the

conversion from signed fixed-point numbers, it may be necessary to derive the two’s
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complement of the input signal, while in the case of unsigned fixed-point numbers, no

operation is necessary, as only non-negative values can be represented. This added

operation results in the difference in latencies of the signed and unsigned module

versions.

The mantissa of the final result is produced by shifting left the absolute value of

the input until its MSB is ’1’, while the exponent is derived from format constants

and the number of shifts made to the mantissa. For example:

010010112 = 75 =

= 010010112 × 20 = 100101102 × 2−1 = 1.00101102 × 27−1

= 1.00101102 × 26 = 1.171875× 64 = 75

⇒ f = 00101102

⇒ e = 6 + BIAS

The value of the exponent field depends on the normalizing shift of the mantissa,

shift, the bitwidth of the fixed-point input, fix bits, and the bias value, BIAS. Its

final form is

e = E + BIAS = ((fix bits− 1)− shift) + BIAS = (fix bits + BIAS − 1)− shift

The absolute value of the input is fed into a priority encoder, to determine the shift

value. This constitutes the first clock cycle of the unsigned architecture and the second

cycle of the signed one. Once the value of the normalizing shift is known, the exponent

field is calculated by performing the subtraction (fix bits + BIAS − 1)− shift. The

value of the signal const in Figures 2.5 and 2.6 is fix bits + BIAS − 1.

Once the value of the normalizing shift is known, the mantissa is produced by
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shifting left the absolute value of the input and the exponent is calculated through

subtraction. These operations happen in parallel, in the second clock cycle of the

unsigned architecture and third of the signed one.

After the shifting operation, the width of the mantissa field is that of the fixed-

point input and may need to be reduced to the width specified by the floating-point

format that is to appear on the output. This reduction in bitwidth calls for rounding,

in a similar fashion as discussed in Section 2.2. Rounding to zero or nearest are

both available through input round and happen in clock cycle three in the unsigned

architecture and four in the signed one.

The final clock cycle of both architectures is dedicated to determining the outputs

of the circuit. The floating-point output is either the calculated value or all zeros. The

latter option is multiplexed to the output in case of an exception being received at the

input or encountered during processing, or a zero fixed-point input, which requires an

all-zero floating-point output. Otherwise, the floating-point value calculated by the

module is presented on the output.

Both versions of the fix2float module are parameterized by three values: the

width of the fixed-point input, the width of the exponent field and the width of the

mantissa field of the floating-point output.

Conversion From Floating-Point To Fixed-Point

Module float2fix implements the inverse function to that of the fix2float mod-

ule: conversion from the floating-point representation of a value to its fixed-point

representation.

As before, two versions of the float2fix module exist: one for converting to
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signed and the other to unsigned fixed-point representation of the input floating-

point value. The structure of the hardware for conversion to the unsigned fixed-point

representation is shown in Figure 2.7, while Figure 2.8 shows the signed version. Due

Figure 2.7: Conversion from floating-point to unsigned fixed-point representation

to the added complexity of handling two’s complement representations of the output

value, the signed version has a latency of 5 clock cycles, while the unsigned version

has a latency of 4 clock cycles.

The functioning of the float2fix module can easily produce exceptions because,

in general, floating-point formats have a wider range than fixed-point formats. For
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Figure 2.8: Conversion from floating-point to signed fixed-point representation

instance, all floating-point values that have negative exponents (magnitude less than

1) cannot be represented in integer fixed-point formats by values other than 0 or

1. Also, all floating-point values that exceed the largest representable value in the

target fixed-point format produce an exception. In the unsigned version, another

exception is caused by negative floating-point values appearing on the input, which
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can by definition not be represented in unsigned fixed-point format. These exceptions

are trapped in the first clock cycle of both the signed and the unsigned architecture.

Also in this clock cycle, the shift required to produce the fixed-point output from

the mantissa value is calculated using the exponent field. This shift is simply the

unbiased value of the exponent. For example:

1.010112 × 26 =

= 1.34375× 64 = 86

= 10101102 × 20 = 86

The shift required is calculated by subtracting the bias value from the exponent field

of the input. In the second clock cycle of both versions of the float2fix module,

the absolute value of the fixed-point representation is obtained by shifting left the

mantissa field of the input. In parallel with this, the exception signals obtained in the

first clock cycle are combined into one exception signal.

Because the fixed-point format on the output may specify a smaller bitwidth than

the mantissa field of the input floating-point format, some least significant bits of

the absolute value of the fixed-point representation, obtained by shifting the mantissa

field, may need to be truncated. This truncation calls for rounding functionality,

implemented in the third clock cycle of both the signed and the unsigned architecture.

The prepared absolute value of the fixed-point representation, rounded to the

required bitwidth, is ready for output in the unsigned version, while in the signed

version, it may need to undergo a two’s complement operation before being placed

on the output. It is because of this extra step that the signed version of the module

has the longer latency of 5 clock cycles. The two’s complement of the absolute value
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is found by inverting all the bits and adding 1. The sign bit of the input floating-

point value is used to select the correct form (positive or two’s complement) of the

fixed-point value, before it is passed to the next stage.

The final stage of both the signed and the unsigned architectures is the output

stage, where the computed fixed-point representation is placed on the output, unless

the input was zero or an exception was encountered during operation or received at

the input, in which case the output is set to all zeros.

Module float2fix is parameterized by the bitwidths of the exponent and mantissa

fields of the input floating-point signal, as well as the bitwidth of the fixed-point

output.

2.5 Implementing an IEEE Single Precision Adder

This section describes assembly of several hardware modules in the library into one

module that performs a complete floating-point operation. As an example, we present

assembly of an IEEE single precision adder. The IEEE single precision floating-point

format consists of 1 sign bit, 8 exponent bits and 23 mantissa bits. To implement

an IEEE single precision adder, the designer would use three parameterized modules:

denorm, fp add and round norm. The first module would be instantiated twice, to

introduce the implied integer digit into both input operands. The fp add module

accepts the two prepared operands and produces their sum. The mantissa field of

the sum signal is 25 bits wide: one extra bit for the integer digit introduced by

the denorm module and one extra bit for the guard bit during addition. Module

round norm accepts the sum signal and reformats it back into IEEE single precision

format. Assembly of the overall IEEE single precision adder is shown in Figure 2.9.

The IEEE single precision adder module, assembled as shown above and mapped
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Figure 2.9: Assembly of an IEEE single precision adder

to an XCV1000 processing element of the Annapolis Micro Systems Wildstar engine

takes up 305 slices, or just under 2.5% of the chip. Its VHDL description demonstrates

instantiation of parameterized library modules and is given in Appendix B.

2.6 Testing

All the hardware modules described in this chapter have been tested both in simula-

tion and in hardware. The purpose of the two testing stages was to ensure the correct

operation of the VHDL description of each module. A set of input vectors was devel-

oped for each module to test its operation with a range of inputs. Parameterization

of each module was also tested to ensure correct operation of the module at various

instances in the design space.
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The simulator used to test the VHDL descriptions was Mentor Graphics ModelSim

(see Section 1.3). Iteration between modification of the VHDL description and analysis

in the simulator continued until the correct operation of the module was achieved for

all the test vectors.

The second testing stage was done in hardware. The VHDL description, shown

to operate correctly in the simulator, was synthesized and loaded on the Wildstar

board. The same set of test vectors used in simulation was applied to the hardware

implementation. Testing results from hardware were compared to expected result

values. If they did not match, the VHDL description was further modified to achieve

the correct operation.

An example of a test vector used to test the IEEE single precision adder circuit in

Section 2.5 is given below.

Operand 1 Operand 2 Sum

41BA3C57 4349C776 43610F01

41BA3C5716 =

= 0 10000011 011101000111100010101112

= + 1.45496642× 24

= 23.27946281

4349C77616 =

= 0 10000110 100100111000111011101102

= + 1.57639956× 27

= 201.77914429
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Sum =

= 225.05860710

= + 1.75827036× 27

= 0 10000110 110000100001111000000012

= 43610F0116

2.7 Results

This section presents results of synthesis experiments conducted on the floating-point

operator modules fp add, fp sub and fp mul of Section 2.3. The aims of the experiments

are to:

• determine the area of the above modules in several floating-point formats,

• examine the relationship between the area and total bitwidth of the format, and

• estimate the number of modules that can realistically be used on a single FPGA.

The experiments were conducted by synthesizing the modules for specific floating-

point formats on the Annapolis Micro Systems Wildstar reconfigurable computing

engine (see Section 1.3). Table 2.2 shows results of the synthesis experiments on

floating-point operator modules. The quantities for the area of each instance are

expressed in slices of the Xilinx XCV1000 FPGA. Results for the fp add module in

Table 2.2 also represent the fp sub module, which has the same amount of logic.

Floating-point formats used in the experiments were chosen to represent the range

of realistic floating-point formats from 8 to 32 bits in total bitwidth and include the

IEEE single precision format (E1 in Table 2.2).
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Table 2.2: Operator synthesis results
Format Bitwidth Area Per IC

total exponent fraction fp add fp mul fp add fp mul
A0 8 2 5 39 46 236 200
A1 8 3 4 39 51 236 180
A2 8 4 3 32 36 288 256
B0 12 3 8 84 127 109 72
B1 12 4 7 80 140 115 65
B2 12 5 6 81 108 113 85
C0 16 4 11 121 208 76 44
C1 16 5 10 141 178 65 51
C2 16 6 9 113 150 81 61
D0 24 6 17 221 421 41 21
D1 24 8 15 216 431 42 21
D2 24 10 13 217 275 42 33
E0 32 5 26 328 766 28 12
E1 32 8 23 291 674 31 13
E2 32 11 20 284 536 32 17

The number of operator cores per processing element, shown in the two rightmost

columns, is based on a Xilinx XCV1000 FPGA, with a total of 12288 slices, with

85% area utilization. A realistic design cannot utilize all the resources on the FPGA

because of routing overhead; a practical maximum is estimated at about 85%. Also

included is an overhead allowance of approximately 1200 slices for necessary circuitry

other than the operators themselves. This allowance may represent memory read

and/or write circuitry, state machines, register tables and similar circuits which are

required by most designs. Thus, results shown for the number of modules per IC

correspond to realistic designs using the operator cores.

The results in Table 2.2 show growth in area with increasing total bitwidth, for all

modules. This growth is represented graphically in Figure 2.10.
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Figure 2.10: Growth of area with increasing bitwidth

The inverse effect of the growth in size with bitwidth is the reduction in the number

of cores that can realistically fit onto an XCV1000 processing element. This is shown

graphically in Figure 2.11.

Figure 2.11: Reduction in number of cores per processing element
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2.8 Conclusion

In this chapter, all the hardware modules that constitute the parameterized library of

hardware components have been presented. Some of the building block modules that

are used to construct the top level modules of the library were presented. Construc-

tion of complete floating-point operations from library modules, testing and results of

synthesis experiments on operator modules were also discussed. To demonstrate func-

tionality of all these modules and give an example of assembling the library modules

to make a fully custom floating-point datapath, the next chapter introduces an exam-

ple application: the K-means clustering algorithm for multispectral and hyperspectral

images.



Chapter 3

An Application: K-means

Clustering

The hardware modules described in Chapter 2 lend themselves to the creation of

finely customized hardware implementations of algorithms. They give the designer full

freedom to implement various sections of the algorithm in the most suitable arithmetic

representation, be it fixed or floating-point. Also, bitwidths of all the signals in the

circuit, whether in fixed or floating point representation, can be optimized to the

precision required by the values the signal carries.

When using floating-point arithmetic, the designer using the library has full con-

trol to trade off between range and precision. Because all the modules in the library

are fully parameterized, the boundary between the exponent and fraction fields for

the same total bitwidth is flexible. With a wider exponent field, the designer provides

larger range to the signal, while sacrificing precision. Similarly, to increase the preci-

sion of a signal at the cost of reduced range, the designer chooses a narrower exponent

and wider fraction field.

50
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Another benefit of using the library is that the input data format does not define

the way the data is processed; its representation can be changed if required. Similarly,

the results of processing can be stored in any format that is needed for further pro-

cessing or presentation. Hence, the library of parameterized modules presented here

provides the finest-grain control possible over signal format and bitwidth, as well as

an opportunity to implement hybrid fixed and floating-point designs.

To demonstrate the above concepts and illustrate the use of the library, an appli-

cation was developed, designed and implemented. The application is a hybrid imple-

mentation of the K-means clustering algorithm for satellite image processing and is

described in this chapter.

The K-means algorithm is highly suitable as an example application in this the-

sis because it demonstrates the ability of the library modules to form hybrid fixed

and floating-point circuits. Also, a purely fixed-point implementation of the K-means

algorithm exists and can be used to assess the quality of the hybrid implementa-

tion. Construction of the hybrid implementation makes use of most modules in the

library (with the exception of the multiplication operator) and shows the ability of

the modules to form fully pipelined circuits. Also, the construction of the hybrid

implementation shows that correct assembly of library modules achieves appropri-

ate arithmetic operation with real data. The hybrid implementation of the K-means

algorithm exploits the ability of the library modules to construct fully custom floating-

point formats and demonstrates processing of data in a format different from the one

it is stored in.



CHAPTER 3. AN APPLICATION: K-MEANS CLUSTERING 52

3.1 K-means Clustering Algorithm and Structure

The K-means clustering algorithm is commonly used for segmentation of

multi-dimensional data. This chapter describes two implementations of this algo-

rithm, applied to multispectral/hyperspectral satellite images, both using reconfig-

urable hardware. The first implementation by M. Estlick and M. Leeser [3] is based

on a purely fixed-point datapath. The second implementation was developed as part

of the work presented in this thesis and uses a hybrid fixed and floating-point datap-

ath. Both implementations are designed to operate on 10-channel multispectral data,

with 12 bits per channel; this data is segmented into 8 clusters.

General properties that pertain equally to both implementations are described

in Section 3.1, details particular to the purely fixed-point implementation are con-

tained in Section 3.2 and details particular to the hybrid implementation are given in

Section 3.3.

Algorithm

K-means is an unsupervised clustering algorithm that operates by assigning multi-

dimensional vectors to one of K clusters. The aim of the algorithm is to minimize

variance of all vectors within each cluster. The algorithm is iterative: after each vec-

tor is assigned to one of the clusters, the positions of cluster centers are re-calculated

and the vectors are assigned again. Pseudo-code describing the K-means algorithm is

given below.

kmeans(image)
{

//initialize cluster centers
centers=initialize_cluster_centers();
//main loop; until terminating condition is met
while(done!=TRUE)
{
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//go through all pixels
for(pixel=0;pixel<N;pixel++)
{
//initialize min_distance to maximum value it can hold
min_distance=infinity;
//go through all the clusters
for(cluster=0;cluster<K;cluster++)
{
//calculate the distance between pixel and cluster center
distance=vector_distance(image[pixel],centers[cluster]);
//is it shortest so far?
if(distance<min_distance)
{
//assign pixel to cluster
cluster_image[pixel]=cluster;
//keep minimum distance
min_distance=distance;

}
}

}
//go through all clusters
for(cluster=0;cluster<K;cluster++)
{
//initialize accumulators
accumulators[cluster]=0;
//initialize counters
counters[cluster=0;

}
//go through all the pixels
for(pixel=0;pixel<N;pixel++)
{
//accumulate pixel value
accumulator(cluster_image[pixel])+=image[pixel];
//increment counter
counter(cluster_image[pixel])++;

}
//go through all the clusters
for(cluster=0;cluster<K;cluster++)
//re-calculate cluster centers
centers[cluster]=accumulator[cluster]/counter[cluster];

//evaluate terminating condition; are we done?
done=terminating_condition();

}
//return clustered image and final positions of cluster centers
return cluster_image,centers;

}

The given pseudo-code processes a total of N pixels, assigning them to one of K

clusters. Variable centers contains K multidimensional vectors which represent the

center points for each cluster. The while loop iterates until a terminating condition
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is met. The distance to each cluster center is calculated for each pixel in the input

image. The minimum distance is kept and the pixel is assigned to the cluster that

corresponds to the minimum distance. Once all the pixels have been assigned to one

of the clusters, accumulators and counters are cleared. Each pixel in the image is then

accumulated into the accumulator that corresponds to the cluster it was assigned

to. The corresponding counter is incremented. Once all accumulations have been

performed, cluster centers are re-calculated to be the average value of all the pixels

assigned to the particular cluster. The terminating condition is evaluated and the

process is repeated. The algorithm returns the clustered image, as well as the final

values of all the cluster centers.

In both the purely fixed-point and the hybrid implementation the algorithm is

partitioned between the host and the reconfigurable computing engine. In both im-

plementations, initialization and re-calculation of cluster centers happens on the host,

while cluster assignments of the pixels and accumulations happen in reconfigurable

hardware. The interaction between the host and reconfigurable hardware is illustrated

in Figure 3.1.

Figure 3.1: Interaction between the host and the reconfigurable hardware

Applied to multispectral and hyperspectral image processing, the reconfigurable
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hardware partition of the K-means clustering algorithm consists of assigning each pixel

in the input image to one of the K clusters, as well as accumulating the values of all

pixels assigned to each cluster. Hence, inputs to the circuit are all pixels in the image

and the positions of all K clusters, while its outputs are a cluster assignment for each

pixel, accumulated values of all pixels assigned to each cluster and counters of the

number of pixels accumulated for each cluster.

Pixels are assigned to the nearest cluster, which is achieved by comparing Man-

hattan, or 1-norm, distances of the pixel to each cluster center. The pixel is thus

assigned to the cluster corresponding to the shortest distance. Hence, the first stage

of the datapath concentrates on determining the Manhattan distance of the pixel to

each cluster center, while the second compares those K distances to find the minimal

one, yielding the cluster assignment.

There is an accumulator associated with each cluster, or a set of K accumulators.

Also, there is a counter associated with each cluster, or a set of K counters. Once the

cluster assignment for a given pixel is made, it is used to reference the corresponding

accumulator and counter. The value of the pixel is added to the accumulator, while

the counter is incremented to reflect the accumulation.

The above set of operations is performed on every pixel in the image serially. The

pixels are streamed from on-board memory, until every pixel is processed.

Design Structure

The overall K-means clustering circuit is composed of two functional units and two

shift-register units. The first functional unit is a datapath, taking at its input the pixel

value and the locations of all cluster centers and outputting the cluster assignment of

the pixel. The second functional unit accumulates pixel values according to the cluster
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assignment given by the datapath circuit. Both shift-register units are used to delay

signals from memory to the accumulator circuit, to synchronize their arrival with the

cluster assignment which is delayed due to the latency of the datapath unit. The first

delay pipe is used to pass pixel values from memory to the accumulator circuit, in

parallel with their processing in the datapath unit. The second delay pipe passes the

signal from memory indicating that pixel data is valid, which is used to enable the

accumulator circuit. An illustration of the structure of the K-means circuit is shown

in Figure 3.2.

Figure 3.2: Structure of the K-means circuit

The validity shift pipeline is a shift register in both implementations. The pixel

shift pipeline is a set of shift registers, transferring pixel values from memory to



CHAPTER 3. AN APPLICATION: K-MEANS CLUSTERING 57

the accumulator circuit, in both implementations. The accumulator unit operates

in fixed-point arithmetic in both implementations, because of its area requirements.

The purely fixed-point implementation has a datapath unit that operates only in fixed-

point arithmetic, while the hybrid implementation has a datapath unit that operates

both in fixed and floating-point arithmetic.

Datapath Unit

The datapath unit determines the cluster assignment for each pixel. It arrives at

this decision by computing the distance of the pixel to each of the cluster centers, in

Manhattan or 1-norm in both of our implementations, and finding the minimal one

of those distances. The pixel is assigned to the cluster corresponding to the minimal

distance. Hence, the first stage of the datapath circuit calculates 8 distances, while

the second stage of the circuit compares those 8 distances to extract the minimal one.

Distance calculations of the datapath circuit are done in 10-dimensional space, be-

cause the algorithm operates on 10-channel data. To perform this distance calculation,

each dimension (or channel) of the pixel value is subtracted from the corresponding

dimension (or channel) in the cluster center, followed by an absolute value operation

on all ten differences, leading into an addition tree that sums all the absolute values,

resulting in the value of the distance. Thus, calculating distance involves three op-

erations: subtraction, absolute value and addition. Once all 8 distances are known,

they are compared to find the minimal one. The four operations that make up the

datapath unit are illustrated in Figure 3.3.
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Figure 3.3: Structure of the datapath unit

3.2 Fixed-point Implementation

The implementation of the K-means clustering algorithm by M. Estlick and M. Leeser [3]

is the first of the two implementations considered in this chapter. Its inclusion is based

on the fact that it represents a purely fixed-point implementation that does not uti-

lize the library of parameterized hardware components of Chapter 2, but is a correct

implementation of the algorithm and can be used to compare against. Thus, it is

used here as a reference implementation and a basis for the building of the hybrid

implementation described in Section 3.3.

In this implementation, all four units that make up the K-means circuit operate in

fixed-point format. The datapath circuit is built from fixed-point subtraction, absolute

value, addition and comparison operations. All the inputs to the circuit are assumed in

fixed-point format and the outputs are provided in fixed-point format. This suits the

application because both pixel and cluster center data is available in 12-bit unsigned

fixed-point format and the result is expected in 3-bit unsigned fixed-point format (to

represent the cluster assignment to one of 8 clusters).
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Because of the relatively small size of the fixed-point datapath circuit, all 8 distance

calculations are performed in parallel and a comparison tree is used to derive the

minimal distance. This architecture is thus capable of processing a new pixel every

clock cycle. Processing results (segmented images) of this design are available and

were used as a basis for comparison with the results of the hybrid design.

3.3 Hybrid Implementation

The hybrid fixed and floating-point implementation of the K-means algorithm was

created to demonstrate the use of the hardware modules presented in Chapter 2. In

particular, it demonstrates the creation of hybrid circuits and the required sectioning

of the implementation.

Three out of the four blocks that make up the K-means implementation circuit (see

Figure 3.2) still operate in fixed-point format - pixel delay pipe, validity delay pipe

and the accumulator circuit. In fact, there is no change to those three circuits from

the purely fixed-point implementation. The datapath circuit on the other hand is now

divided into a floating-point section and a fixed-point section. Figure 3.4 represents

the sectioning of the structure of the datapath circuit.

An inherent advantage of the floating-point format is the relative simplicity of the

absolute value operation. Due to the sign-magnitude nature of floating-point repre-

sentation, the absolute value is found by simply forcing the sign bit of the value to zero

(indicating a positive number). Thus, in the datapath circuit, only the operations of

subtraction and addition are implemented with hardware modules from the parame-

terized library, while the absolute value operation is done by signal manipulation.

The floating-point format used in the floating-point section of the datapath was

chosen to have range equal to or greater than that of the unsigned fixed-point format.
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Figure 3.4: Structure of the hybrid datapath unit

Hence, the floating-point format needs to be able to represent all values between 0

and 212 − 1, or [0, 4095]. To maintain total bitwidth of 12 bits, floating-point format

with 5 exponent bits and 6 mantissa bits (1-5-6) was chosen, with range calculated as

follows. The largest positive number that can be represented is:

0 11111 1111112 =

= (1 +
63
64

)× 2(31−15) =

= 1.984375× 216 = 130048

Therefore, the range is [-130048,130048].

Converters from fixed to floating-point representation are placed at the input to

the subtraction stage of the datapath circuit, to convert the 12-bit unsigned pixel

and cluster center data into the 1-5-6 floating-point format for processing. Similarly,

floating to fixed-point converters are placed between addition and comparison stages of
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the datapath circuit to convert the distance measurement from the 1-5-6 floating-point

format in which it is computed, to the 16-bit unsigned fixed-point format expected

by the comparison operation. The distance signal in the datapath circuit reaches its

maximum value when pixel and cluster centers are maximally apart in every channel.

In other words, the maximum value of the distance signal for 10 channels is

(FFF16 − 00016)× 10 = 9FF616 = 1001 1111 1111 01102

Thus, 16 bits are required to represent the distance signal. Structural composition of

the floating-point section of the datapath circuit is shown in Figure 3.5.

The distance calculation in the datapath circuit takes up more area resources when

implemented in floating-point format than it does in the purely fixed-point implemen-

tation. Because of this fact, it is not possible to fit multiple floating-point distance

calculations into one design that will be implemented on an XCV1000 processing

element. Instead, only one distance is calculated and the comparison of distances is

performed serially. Because the distance to each of the eight clusters is to be computed

for every pixel, a new pixel value is read every eight clock cycles. This serialization,

made necessary by the increased area of the distance calculation, affects the structure

of the overall K-means implementation in the comparison stage of the datapath circuit

and in the rate of memory reads. The throughput of the purely fixed-point datapath

circuit is 1 clock cycle, while the throughput of the hybrid datapath circuit is 8 clock

cycles.
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Figure 3.5: Floating-point distance calculation in the datapath circuit

3.4 Testing

The hybrid implementation of the K-means clustering algorithm was tested in both

simulation and hardware to ensure it operates correctly. Testing methods used were

similar to those described in Section 2.6. The test vectors were a set of cluster centers

and a set of pixel values. The VHDL description of the hybrid implementation was

modified and simulated until it performed correctly for all test vectors. Following this,

the hybrid implementation was synthesized and the same test vectors were applied to
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confirm that the hardware circuit also operates correctly. An example of a test vector

applied to the hybrid implementation is given below.

Cluster Channel
0 1 2 3 4 5 6 7 8 9

0 000 000 000 000 000 000 000 000 000 000
1 111 111 111 111 111 111 111 111 111 111
2 222 222 222 222 222 222 222 222 222 222
3 333 333 333 333 333 333 333 333 333 333
4 444 444 444 444 444 444 444 444 444 444
5 555 555 555 555 555 555 555 555 555 555
6 666 666 666 666 666 666 666 666 666 666
7 777 777 777 777 777 777 777 777 777 777

Pixel Channel
0 1 2 3 4 5 6 7 8 9

0 000 000 000 000 000 000 000 000 000 000
1 555 555 555 555 555 555 555 555 555 555
2 220 221 222 223 224 225 226 227 228 229

Pixel Cluster Distance Assignment
0 1 2 3 4 5 6 7

0 0 AAA 1554 1FFE 2AA8 3552 3FFC 4AA6 0
1 3552 2AA8 1FFE 1554 AAA 0 AAA 1554 5
2 156D AC3 1F A91 153B 1FE5 2A8F 3539 2

Once correct operation of the circuit was achieved, the synthesis and operation

results presented in the following section were obtained.
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Table 3.1: K-means implementations synthesis results
Property Fixed-point Hybrid
Area (in slices) 9420 10883
Percent area used 76% 88%
Minimum period 15.679ns 19.829ns
Maximum frequency 63.78MHz 50.43MHz
Throughput 1 cycle 8 cycles

3.5 Results

This section describes synthesis results of both implementations of the K-means clus-

tering algorithm. Also, processing results, which are clustered images, for both im-

plementations are presented.

Synthesis Results

Both the purely fixed-point and the hybrid implementations of the K-means clustering

algorithm are synthesized for the Wildstar reconfigurable computing engine, using the

same software tools (see Section 1.3). A comparative summary of synthesis results for

the two implementations is shown in Table 3.1. The hybrid implementation is both

larger and slower than the purely fixed-point one because of the increased size of the

distance calculation section of the datapath circuit.

The hybrid implementation has a potential advantage over the purely fixed-point

implementation if the distance metric in both circuits is to be changed from Man-

hattan to Euclidean. The latter distance metric is the standard metric used in the

K-means clustering algorithm, including its software implementation. It produces bet-

ter clustering results, with 20-40% less total variance in classification than Manhattan

distance metric [3]. The purely fixed-point implementation uses the Manhattan dis-

tance metric at the cost of inferior performance because of the prohibitive area cost
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of implementing Euclidean distance calculations.

Converting the purely fixed-point implementation to use the Euclidean distance

metric would require 80 additional 12-bit fixed-point multipliers (52 slices each) and

approximately double the cost of the addition stage. The total cost of this conversion

would be about 4500 slices. The cost of converting the hybrid implementation would

be 10 additional 12-bit (1-5-6) floating-point multipliers (108 slices each), putting the

total cost at about 1100 slices. Therefore, upgrading the hybrid implementation to

use the Euclidean distance metric would require significantly less area than upgrading

the purely fixed-point implementation. On the limited hardware resources used in

this work, neither of the applications could be upgraded to use the Euclidean distance

metric.

Processing Results

The output of both K-means clustering algorithm implementations is a clustered image

representing the multispectral or hyperspectral input image. To compare processing

results of the purely fixed-point and the hybrid implementations, both designs were

given the same input image with 10 channels and 12 bits of data per channel, and

clustered images with 8 clusters were collected on their outputs. Figure 3.6 shows the

two clustered images, with the output of the hybrid implementation on the top and

the output of the purely fixed-point implementation on the bottom.

The clustered images are pseudo-colored, meaning that each cluster in each image

is assigned a random color from a set of K (in this case 8) colors. In other words,

the actual color used to represent the cluster carries no information. Also, the same

circuit produces a different clustering for every run of the algorithm. This is due to the
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sensitivity of the algorithm to the initialization, which is different in every run. There-

fore, the two clustered images in Figure 3.6 are not identical. As can be expected from

random color assignment and variation in clustering, they differ in coloring and cluster

assignment of a number of pixels. However, in essence, both images demonstrate good

quality K-means clustering, because similar pixels are assigned to the same cluster.

3.6 Conclusions

The hybrid implementation of the K-means algorithm showed that the library mod-

ules of Chapter 2 can be used to form fully pipelined circuits that perform a chain

of arithmetic operations correctly in a fully custom floating-point format. This was

further used to construct a hybrid fixed and floating-point circuit which illustrated

the use of most of the modules in the library. Comparison of the new, hybrid imple-

mentation to the existing, purely fixed-point one showed that good quality K-means

clustering is achieved.



CHAPTER 3. AN APPLICATION: K-MEANS CLUSTERING 67

Figure 3.6: Clustered image: hybrid (top) and purely fixed point (bottom) - note that
both images are pseudo-colored



Chapter 4

Conclusions

The library of parameterized hardware modules for floating-point arithmetic has been

created and includes modules for format control, arithmetic operators and conversion

to and from any fixed-point format. All the modules are parameterized to operate

on any floating-point format, with rounding to zero or nearest. Limited exception

handling is implemented in all the modules, with the ability to propagate an error

through a pipeline of modules. Ready and done synchronization signals are provided

in all modules, to aid in the creation of pipelines.

The library can be used to implement finely tuned datapaths, in both fixed and

floating-point arithmetic, to the exact bitwidths, ranges and precisions required by the

signals in the algorithm. Also, library modules for format conversion enable creation

of hybrid fixed and floating-point designs. These benefits of the library, as well as

ease of use of the modules in creation of custom pipelines, have been demonstrated

through the hybrid implementation of the K-means clustering algorithm.

The hybrid version is different from the purely fixed-point one in the format of

the distance calculation, which is performed in floating-point. The hybrid version

68
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is also more serial, due to its increased area. The results of the algorithm are un-

changed with these alterations, indicating suitability of the modules to perform the

given functionality in the algorithm.

Synthesis results indicate that a realistic design on a Xilinx XCV1000 FPGA may

include up to 31 addition or 13 multiplication operators, complete with denormalizing,

rounding and normalizing functionality each, for the IEEE single precision format.

Similarly, a useful custom floating-point format, with 5 exponent and 6 mantissa bits

for example, may provide the designer with up to 113 addition or 85 multiplication

modules, all also complete with full format handling functionalities, on the same

FPGA.

Synthesis experiments on the K-means clustering algorithm implementations indi-

cate that the hybrid implementation is larger and slower than the purely fixed-point

implementation. Although the hybrid design is thus inferior, processing results indi-

cate that it implements the algorithm equivalently to the fixed-point version. Hence,

it serves its purpose of showing that the library can be used to correctly implement

hybrid designs of complex algorithms.

4.1 Future Work

With the completion of the library and demonstration of its use come further chal-

lenges. Clearly, the library is a resource that can be used to design highly optimized

circuits in custom floating-point formats or even hybrid implementations. Hence, fu-

ture work on this research may include implementations of algorithms that would

particularly benefit from the use of the library. These may include algorithms that

are highly parallel and have signal values that have a high enough range to require
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floating-point representation, yet are tolerant enough to accommodate its lower pre-

cision. Also, the range and precision required will ideally necessitate bitwidths sig-

nificantly lower than those of the IEEE formats, so that higher parallelism may be

achieved.

The most interesting possibility for future research lies in automation of the design

process using the library. Currently, algorithms that would benefit from implementa-

tion by the modules in the library need to be manually analyzed and optimized for

the best fixed or floating-point format for each signal in the design. Automation of

this process would allow the designer to go from a formal description of the algorithm

directly to an optimized implementation using fully custom formats.

Research on bitwidth analysis [20, 19] indicates possibilities for area and power

savings in bitwidth reduction and use of custom formats. However, these approaches

do not have the required implementation support to enable the complete transition

from algorithm to hardware. The library of hardware modules presented in this thesis

can bridge this gap and provide a complete solution.
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Appendix A

VHDL Entities

Module:

parameterized_adder

Entity:

entity parameterized_adder is
generic
(

bits : integer := 0
);
port
(

--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
CIN : in std_logic;
--outputs
S : out std_logic_vector(bits-1 downto 0) := (others=>’0’);
COUT : out std_logic := ’0’

);
end parameterized_adder;

Module:

parameterized_subtractor

Entity:

entity parameterized_subtractor is
generic
(

bits : integer := 0
);
port
(

--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
--outputs
O : out std_logic_vector(bits-1 downto 0) := (others=>’0’)

);
end parameterized_subtractor;

Module:
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parameterized_multiplier

Entity:

entity parameterized_multiplier is
generic
(

bits : integer := 0
);
port
(

--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
--outputs
S : out std_logic_vector((2*bits)-1 downto 0) := (others=>’0’)

);
end parameterized_multiplier;

Module:

parameterized_variable_shifter

Entity:

entity parameterized_variable_shifter is
generic
(

bits : integer := 0;
select_bits : integer := 0;
direction : std_logic := ’0’ --0=right,1=left

);
port
(

--inputs
I : in std_logic_vector(bits-1 downto 0);
S : in std_logic_vector(select_bits-1 downto 0);
CLEAR : in std_logic;
--outputs
O : out std_logic_vector(bits-1 downto 0)

);
end parameterized_variable_shifter;

Module:

delay_block

Entity:

entity delay_block is
generic
(

bits : integer := 0;
delay : integer := 0

);
port
(

--inputs
A : in std_logic_vector(bits-1 downto 0);
CLK : in std_logic;
--outputs
A_DELAYED : out std_logic_vector(bits-1 downto 0) := (others=>’0’)

);
end delay_block;

Module:

parameterized_absolute_value

Entity:
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entity parameterized_absolute_value is
generic
(

bits : integer := 0
);
port
(

--inputs
IN1 : in std_logic_vector(bits-1 downto 0);
--outputs
EXC : out std_logic := ’0’;
OUT1 : out std_logic_vector(bits-1 downto 0) := (others=>’0’)

);
end parameterized_absolute_value;

Module:

parameterized_priority_encoder

Entity:

entity parameterized_priority_encoder is
generic
(

man_bits : integer := 0;
shift_bits : integer := 0

);
port
(

--inputs
MAN_IN : in std_logic_vector(man_bits-1 downto 0);
--outputs
SHIFT : out std_logic_vector(shift_bits-1 downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’

);
end parameterized_priority_encoder;

Module:

parameterized_mux

Entity:

entity parameterized_mux is
generic
(

bits : integer := 0
);
port
(

--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
S : in std_logic;
--outputs
O : out std_logic_vector(bits-1 downto 0) := (others=>’0’)

);
end parameterized_mux;

Module:

parameterized_comparator

Entity:

entity parameterized_comparator is
generic
(

bits : integer := 0
);
port
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(
--inputs
A : in std_logic_vector(bits-1 downto 0);
B : in std_logic_vector(bits-1 downto 0);
--outputs
A_GT_B : out std_logic := ’0’;
A_EQ_B : out std_logic := ’0’;
A_LT_B : out std_logic := ’0’

);
end parameterized_comparator;

Module:

denorm

Entity:

entity denorm is
generic
(

exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
IN1 : in std_logic_vector(exp_bits+man_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
--outputs
OUT1 : out std_logic_vector(exp_bits+man_bits+1 downto 0) := (others=>’0’);
DONE : out std_logic := ’0’;
EXCEPTION_OUT : out std_logic := ’0’

);
end denorm;

Module:

rnd_norm

Entity:

entity rnd_norm is
generic
(

exp_bits : integer := 0;
man_bits_in : integer := 0;
man_bits_out : integer := 0

);
port
(

--inputs
IN1 : in std_logic_vector((exp_bits+man_bits_in) downto 0);
READY : in std_logic;
CLK : in std_logic;
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
--outputs
OUT1 : out std_logic_vector((exp_bits+man_bits_out) downto 0) := (others=>’0’);
DONE : out std_logic := ’0’;
EXCEPTION_OUT : out std_logic := ’0’

);
end rnd_norm;

Module:

fp_add

Entity:
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entity fp_add is
generic
(

exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
OP1 : in std_logic_vector(man_bits+exp_bits downto 0);
OP2 : in std_logic_vector(man_bits+exp_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end fp_add;

Module:

fp_sub

Entity:

entity fp_sub is
generic
(

exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
OP1 : in std_logic_vector(man_bits+exp_bits downto 0);
OP2 : in std_logic_vector(man_bits+exp_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(man_bits+exp_bits+1 downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end fp_sub;

Module:

fp_mul

Entity:

entity fp_mul is
generic
(

exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
OP1 : in std_logic_vector(exp_bits+man_bits downto 0);
OP2 : in std_logic_vector(exp_bits+man_bits downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
--outputs
RESULT : out std_logic_vector(exp_bits+(2*man_bits) downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end entity;
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Module:

fix2float

Entity:

entity fix2float is
generic
(

fix_bits : integer := 0;
exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
FIXED : in std_logic_vector(fix_bits-1 downto 0);
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
READY : in std_logic;
--outputs
FLOAT : out std_logic_vector(exp_bits+man_bits downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end fix2float;

Module:

float2fix

Entity:

entity float2fix is
generic
(

fix_bits : integer := 0;
exp_bits : integer := 0;
man_bits : integer := 0

);
port
(

--inputs
FLOAT : in std_logic_vector(exp_bits+man_bits downto 0);
ROUND : in std_logic;
EXCEPTION_IN : in std_logic;
CLK : in std_logic;
READY : in std_logic;
--outputs
FIXED : out std_logic_vector(fix_bits-1 downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end float2fix;
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--======================================================--
-- LIBRARIES --
--======================================================--

-- IEEE Libraries --
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

-- float
library PEX_Lib;
use PEX_Lib.float_pkg.all;
----------------------------------------------------------
-- IEEE Single Precision Adder --
----------------------------------------------------------
entity single_precision_adder is

port
(

--inputs
IN1 : in std_logic_vector(31 downto 0);
IN2 : in std_logic_vector(31 downto 0);
READY : in std_logic;
EXCEPTION_IN : in std_logic;
ROUND : in std_logic;
CLK : in std_logic;
--outputs
OUT1 : out std_logic_vector(31 downto 0) := (others=>’0’);
EXCEPTION_OUT : out std_logic := ’0’;
DONE : out std_logic := ’0’

);
end single_precision_adder;
----------------------------------------------------------
-- IEEE Single Precision Adder --
----------------------------------------------------------
architecture single_precision_adder_arch of single_precision_adder is

signal rd1 : std_logic := ’0’;
signal rd2 : std_logic := ’0’;
signal rd3 : std_logic := ’0’;
signal rd4 : std_logic := ’0’;
signal exc1 : std_logic := ’0’;

81
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signal exc2 : std_logic := ’0’;
signal exc3 : std_logic := ’0’;
signal exc4 : std_logic := ’0’;
signal rnd1 : std_logic := ’0’;
signal rnd2 : std_logic := ’0’;
signal rnd3 : std_logic := ’0’;
signal rnd4 : std_logic := ’0’;
signal op1 : std_logic_vector(32 downto 0) := (others=>’0’);
signal op2 : std_logic_vector(32 downto 0) := (others=>’0’);
signal sum : std_logic_vector(33 downto 0) := (others=>’0’);

begin
--instances of components
denorm1: denorm

generic map
(
exp_bits => 8,
man_bits => 23

)
port map
(
--inputs
IN1 => IN1,
READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs
OUT1 => op1,
DONE => rd1,
EXCEPTION_OUT => exc1

);

denorm2: denorm
generic map
(
exp_bits => 8,
man_bits => 23

)
port map
(
--inputs
IN1 => IN2,
READY => READY,
EXCEPTION_IN => EXCEPTION_IN,
--outputs
OUT1 => op2,
DONE => rd2,
EXCEPTION_OUT => exc2

);
adder: fp_add

generic map
(
exp_bits => 8,
man_bits => 24

)
port map
(
--inputs
OP1 => op1,
OP2 => op2,
READY => rd3,
EXCEPTION_IN => exc3,
CLK => CLK,
--outputs
RESULT => sum,
EXCEPTION_OUT => exc4,
DONE => rd4

);
rnd_norm1: rnd_norm

generic map
(
exp_bits => 8,
man_bits_in => 25,
man_bits_out => 23

)
port map
(
--inputs
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IN1 => sum,
READY => rd4,
CLK => CLK,
ROUND => rnd4,
EXCEPTION_IN => exc4,
--outputs
OUT1 => OUT1,
DONE => DONE,
EXCEPTION_OUT => EXCEPTION_OUT

);

rd3 <= rd1 AND rd2;
exc3 <= exc1 OR exc2;

main: process (CLK)
begin

if(rising_edge(CLK)) then
rnd4 <= rnd3;
rnd3 <= rnd2;
rnd2 <= rnd1;
rnd1 <= ROUND;

end if;--CLK
end process;--main

end single_precision_adder_arch;--end of architecture


