
A Scaleable FIR Filter Implementation Using 32-bit Floating-
Point Complex Arithmetic on a FPGA Based Custom

Computing Platform

by

Allison L. Walters

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

Approved:

Dr. Peter Athanas, Chair
Dr. Nathaniel J. Davis, IV

Dr. Mark T. Jones

January, 30 1998
Blacksburg, Virginia

Keywords: Reconfiguable Computing, FIR Filters, Digital Signal Processing
©Copyright 1998 Allison L. Walters

A Scaleable FIR Filter Implementation Using 32-bit Floating-
Point Complex Arithmetic on a FPGA Based Custom

Computing Platform

Allison L. Walters

Committee Chairman: Dr. Peter Athanas
The Bradley Department of Electrical Engineering

 Abstract

This thesis presents a linear phase finite impulse response filter implementation

developed on a custom computing platform called WILDFORCE. The work has been

motivated by ways to off-load intensive computing tasks to hardware for indoor

communications channel modeling. The design entails complex convolution filters with

customized lengths that can support channel impulse response profiles generated by

SIRCIM. The paper details the partitioning for a fully pipelined convolution algorithm onto

field programmable gate arrays through VHDL synthesis. Using WILDFORCE, the filter

can achieve calculations at 160 MFLOPs/s.

iii

Dedicated to my wonderful parents, Robert and Oanh Walters, and my

beautiful fiancée, Joyce.

iv

Acknowledgements
I never would have come this far were it not for the encouragement of my family,

the heckling of my friends, and the support of Dr. Athanas. I am extremely grateful for

everything they have done for me to make this important goal in my life a reality.

My sincerest thanks go out to Dr. Peter Athanas for all the effort and support he

has given me throughout my thesis work. All his technical insight and motivation through

my work has made it a success. In addition, I appreciate the funding from the Center for

Wireless Technology that they and Dr. Athanas provided me.

I would also like to express my graditude to Dr. Nathaniel Davis, IV who put up

with me in several of his classes during my undergraduate and graduate years and then

participated on my defense committee.

Many thanks go to Dr. Mark Jones for partaking on my defense committee and

taking the time to read through my material in such short notice. I hope to share more

ideas for numerical computations on re-configurable computing platforms with him in the

future.

I cannot thank the following people enough for the technical support and

camaraderie they have given me during my development on Splash 2 and WILDFORCE.

Their help accelerated much of my work and made it less frustrating. Thanks to: Bradley

Fross, Nabeel Shirazi, Jim Peterson, Mark Musgrove, and Dave Lee.

Without the help of Annapolis Micro Systems, I certainly would not have completed

my thesis work. The use of their re-configurable computing products and tools were

invaluable to my work. Everyone there made it an enjoyable environment to work in.

Most importantly, I would like to thank my family and fiancée who continuously

encouraged and supported me. I appreciate all the patience they have given over the last

five years.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Application Development on WILDFORCE 2

1.2 Task Definition 4

1.3 Contributions 5

2 Background 7

2.1 Digital Filters 7

2.1.1 Infinite Impulse Response Filters 8

2.1.2 Finite Impulse Response Filters 9

2.2 Communications Channel Models 11

2.3 Field Programmable Gate Arrays 14

2.4 Custom Computing Platforms 14

2.4.1 VTSplash and Splash 2 14

2.4.2 WILDFORCE 15

2.5 Floating Point Representations on CCMs 19

2.5.1 Custom Formats 18

2.5.2 32-bit Floating-Point Format on FPGAs 21

3 32-bit Floating-Point Arithmetic Logic Element Design 23

3.1 Design Considerations 24

vi

3.2 32-bit Floating-Point Adder 26

3.2.1 Algorithm and Design 27

3.2.2 Implementation in VHDL 31

3.2.3 Stage 0: Comparator Stage 31

3.2.4 Stage 1: Denormalization Shift Calculation Stage 31

3.2.5 Stage 2: Denormalization Shift Stage 32

3.2.6 Stage 3: Mantissa Addition/Subtraction Stage 32

3.2.7 Stage 4: Addition Carry-Out Exception Handling Stage 32

3.2.8 Stage 5: Leading-One Detection Stage 33

3.2.9 Stage 6: Normalization Shift Calculation Stage 34

3.2.10 Stage 7: Normalization Shift and Assembly Stage 35

3.3 32-bit Floating-Point Multiplier 35

3.3.1 Algorithm and Design 36

3.3.2 24-bit Pipelined Integer Multiplier 38

3.3.3 Pipelined Delay Component 40

3.3.4 Implementation in VHDL 40

3.3.5 Stages 0-12: Mantissa Multiplication and Exponent Addition 41

3.3.6 Stage 13: Exponent Adjustment and Product Assembly Stage 41

4 Filter Tap Design and VHDL Implementation 43

4.1 1-D Time Domain Convolution on a CCM 43

4.1.1 Algorithm and Design Considerations 44

4.1.2 Implementation in VHDL 48

4.1.3 Data Detection State Machine 49

4.1.4 Coefficient Loading State Machine 49

4.1.5 Multiplier Operand Loading State Machine 50

4.1.6 Adder Operand Loading State Machine 51

4.1.7 Processing Element Output Stage 54

4.2 MATLAB Filter Design Techniques 54

4.3 SIRCIM Channel Model Coefficient Generation 55

vii

5 FIR Filter Data Flow Design on CCMs 57

5.1 Filter Data Flow Through the WILDFORCE Architecture 58

5.1.1 Data Flow Specifications 58

5.1.2 Data Flow Control within the Processing Element 60

5.2 Filter Architecture on Other CCMs 61

5.3 Variable Filter Lengths Using Re-circulation 62

6 Synthesis Results and Implementation Verification 63

6.1 VHDL Synthesis Results 63

6.2 Results Verification Using MATLAB 63

6.2.1 Filter Verification with Real Numbers 63

6.2.2 Filter Verification with Complex Numbers 70

6.2.3 Filter Performance on WILDFORCE 71

7 Conclusions 73

7.1 Suggestions for Future Work 73

7.2 Design Limitations 74

7.3 Conclusions on the Work 75

Appendix A: Filter Processing Element Finite State Machines 77

A.1 Data Detection State Machine 78

A.2 Coefficient Loading State Machine 79

A.3 Multiplier Operand Loading State Machine 80

A.4 Adder Operand Loading State Machine 82

Appendix B: Real Number Values Filter Verification 84

B.1 Lowpass Filter Verification 84

B.2 Highpass Filter Verification 86

B.3 Bandpass Filter Verification 89

B.4 Bandstop Filter Verification 90

viii

Bibliography 93

Vita 96

ix

List of Figures

Figure 1. Application design process. 3

Figure 2: Direct Form II realization signal flow graph of an IIR. 9

Figure 3: Direct Form realization signal flow graph of an FIR. 10

Figure 4: Simplified block diagram of communications system. 12

Figure 5: Two board Splash system. 15

Figure 6: WILDFORCE system architecture. 17

Figure 7: Floating-point format comparisons. 20

Figure 8: 32-bit floating-point format. 21

Figure 9: Flow diagram for floating-point addition. 28

Figure 10: Pipelined multiplier flow diagram. 30

Figure 11: Leading-one detection logic. 33

Figure 12: Pipelined Multiplier Block Diagram. 38

Figure 13: Example integer multiplication. 39

Figure 14: Constructed input data stream by CPE0. 46

Figure 15: Processing element component connectivity. 47

Figure 16: Multiplier component interconnections. 50

Figure 17: Data flow through WILDFORCE. 59

Figure 18: Processing element internal data flow paths. 61

Figure 19: Asynchronous global reset coding technique. 64

Figure 20: Frequency spectrum of input signal. 67

Figure 21: Filter of length 7 error analysis. 67

Figure 22: Filter of length 31 error analysis. 68

Figure 23: Spectrum plot of bandpass filtering for 7 taps (left) and 31 taps (right). 69

x

Figure 24: Spectrum plot of bandpass filtering for 7 taps (left) and 31 taps (right). 70

Figure 25: Effective filter performance with data re-circulation. 72

Figure 26: Data detection finite state machine. 78

Figure 27: Coefficient loading finite state machine. 79

Figure 28: Multiplier loading finite state machine. 81

Figure 29: Adder operand feeding finite state machine. 83

Figure 30: Lowpass filter frequency responses for 7-tap (left) and 31-tap (right) filters with a

target cutoff frequency of 1413.7 rad/s (225 Hz). 85

Figure 31: Lowpass filtered signal spectrums for 7-tap (left) and 31-tap (right) filters with a

target cutoff frequency of 1413.7 rad/s (225 Hz). 85

Figure 32: Lowpass filter output error analysis for 7-tap (left) and 31-tap (right) filters. 86

Figure 33: Highpass filter frequency responses for 7-tap (left) and 31-tap (right) filters with

a target cutoff frequency of 1413.7 rad/s (225 Hz). 87

Figure 34: Highpass filtered signal spectrums for 7-tap (left) and 31-tap (right) filters. 87

Figure 35: Highpass filter output error analysis for 7-tap (left) and 31-tap (right) filters. 88

Figure 36: Bandpass filter frequency responses for 7-tap (left) and 31-tap (right) filters with

a target cutoff frequency of 1130.97 rad/s (180 Hz) and 1696.46 rad/s (270 Hz). 89

Figure 37: Bandpass filtered signal spectrums for 7-tap (left) and 31-tap (right) filters. 89

Figure 38: Bandpass filter output error analysis for 7-tap (left) and 31-tap (right) filters. 90

Figure 39: Bandstop filter frequency responses for 7-tap (left) and 31-tap (right) filters with

a target cutoff frequency of 1130.97 rad/s (180 Hz) and 1382.30 rad/s (220 Hz). 91

Figure 40: Bandstop filtered signal spectrums for 7-tap (left) and 31-tap (right) filters. 91

Figure 41: Bandstop filter output error analysis for 7-tap (left) and 31-tap (right) filters. 92

xi

List of Tables

Table 1: Nibble Sector Words for LOD Detection. 34

Table 2: Adder Operand Data Path Selections. 52

Table 3: VHDL synthesis results for a XC4036EX device. 65

Table 4: Place and route results for a XC4036EX device. 65

Table 5: Mean filter error comparisons with IEEE 754 standard. 68

Table 6: Data detection FSM states. 78

Table 7: Coefficient loading FSM states. 79

Table 8: Multiplier coefficient loading FSM states. 80

Table 9: Adder operand loading FSM states. 82

1

Chapter 1

Introduction

Many signal processing tasks frequently necessitate an immense amount of floating-

point or fixed-point calculations for real-time or near real-time speeds [20]. Traditional von

Neumann architectures cannot provide the performance of special-purpose signal

processing architectures using specialized data paths, optimized sequencing, and pipelining.

Unfortunately, such systems forego much flexibility despite operating at sufficient speeds.

Custom computing machines propose a middle ground that employs flexible, high-

performance computing for new algorithms on existing hardware at real-time or near real-

time operation.

Digital finite impulse response filtering introduces one of many computationally

demanding signal processing tasks. Wireless indoor channel modeling can be represented

by an FIR filter using complex arithmetic due to the magnitude and phase responses of the

channel impulse characteristics [13,15]. This thesis presents an implementation of such a

filter on a custom computing platform called WILDFORCE. Furthermore, custom 32-bit

floating-point operators have been devised to support hosts using the IEEE 754 floating-

point format. Shorter word formats studied by [21] possess unacceptable loss in precision

and accuracy. The pipelined implementation of the multiplier and accumulator elements

permit the design to achieve maximum throughput at allowable clock speeds. High-

performance yields may still be reached through the use of CCMs without having to depend

on application-specific hardware.

Although not new to the realm of programmable devices, field programmable gate

arrays (FPGAs) are becoming increasingly popular for rapid prototyping of designs with the

aid of software simulation and synthesis. Software synthesis tools translate high-level

2

language descriptions of the implementation into formats that may be loaded directly into

the FPGAs. An increasing number of design changes through software synthesis becomes

more cost effective than similar changes done for hardware prototypes. In addition, the

implementation may be constructed on existing hardware to help further reduce the cost.

1.1 Application Development on WILDFORCE

The introduction of automated tools and progressively advanced configurable logic

devices have facilitated the development environment for custom computing machines.

Conventional methods of programmable logic design consists of gate-level designs and

schematic capture using complex CAD tools. With current design technology, hardware

description language (HDL) compilers and synthesis tools allow designers to make

alterations at a higher, abstract level.

Figure 1 illustrates the application design process for WILDFORCE and similar

CCMs that use HDLs as the primary implementation tool. To facilitate the design process,

the application designer should always generate a solid problem definition as seen in the first

step. The designer may begin verification using high-level models with C, MATLAB, or

behavioral VHDL to ensure problem definition compliance. In addition, the results

obtained from the high-level verification may be used to confirm the implementation during

later stages in the design process.

The problem partitioning step divides the algorithm among the processing elements

such that the partial computations contribute to the final result in some fashion.

Partitioning generally requires consideration from three primary factors as described by [30]:

time, area, and communication complexity. According to [31], time and area factors appear

to be familiar problems and are discussed further in the high-level synthesis and silicon

compiler literature. The time factor relates to the amount of desired computation per clock

cycle and area describes the amount of reconfigurable resources allocated to a given

computation, to the total available reconfigurable resources within each processor board,

and within each of the total number of processing elements on the board [30].

Communications complexity involves careful consideration of how data paths between the

3

partitioned algorithm should be routed. Since all CCMs do not possess the exact same bus

widths, bandwidths, and propagation delays, the designer needs to architect the application

to fit the platform being used. For instance, despite Splash 2 and WILDFORCE having

systolic array architectures and a 36-bit bus to interconnect the processing elements,

memory bus widths differ and must be taken into consideration when using a 32-bit

floating-point implementation.

The high-level, partitioned design can be implemented using a variety of FPGA

CAD tools, although high-level language synthesis with VHDL provides an advanced

development environment for CCMs as well. Contemporary debugging tools exist for most

environments that allow designers to step through the high-level code similar to other

current high-level language integrated development environments. The VHDL models

undergo simulation to provide the designer with a level of correctness before the synthesis

stage. Actual propagation delays in the Xilinx FPGAs are highly sensitive to the outcome of

Problem Definition

Behavioral Modeling

Problem Partitioning

VHDL Design

Simulation

Synthesis

Debug

Integration

Figure 1. Application design process.

4

the place-and-route process and can have a disturbing effect on the application behavior

[30]. Debugging tools in the development environment allow designers to counter such

problems introduced by the limited functional coverage of simulators. As shown in Figure

1, several repetitions back to the coding stage of the design process may be necessary to

achieve the desired results after synthesis.

The design approach for partitioned algorithms should be done in an incremental

fashion to alleviate design and integration time. When integrating smaller, working

components debugging can be facilitated knowing that each part has been functionally

tested on an individual basis (when possible). Even though development environments

such as with Splash 2 and WILDFORCE have been deemed as state-of-the-art, substantial

amounts of time must still be invested to produce optimal, high-performance applications.

According to [30], research efforts are underway to improve automation of the stages

shaded in gray of Figure 1.

1.2 Task Definition

Earlier floating-point format development on Splash 2 by [21] introduced methods

for shorter word formats and relied on the synthesis tools to produce necessary arithmetic

units. Implementing 32-bit floating-point formats in the same manner generates functional

components at the expense of vast CLB consumption. Furthermore, the use of smaller

word lengths degrade either the range or precision of values to be represented. Fortunately

due to recent advances in FPGA resource availability over its predecessors, higher density

and faster FPGAs have made 32-bit floating-point designs become more feasible for higher

bandwidth applications. A custom 32-bit floating-point format provides accurate filter

realization and maintains host compatibility with a IEEE 754 format derivation. Chapter 7

provides an error analysis of the format used. Section 2.5 of the paper discusses alternative

representations of 16- and 18-bit floating-point format advantages and disadvantages.

Mathematically, finite length sequence convolution is described by [2],

y c un k n k
k N

N

= −
=−
∑

(1.1)

5

where ck represents a set of coefficients and un-k represents the unfiltered input sequence.

This may be readily computed by hand or by software; however, the implementation on

CCMs introduce another level of complexity called algorithm partitioning as described in

Section 1.2. The objective behind this work is to implement convolution in a way that

scales elegantly over several chips. The number of synthesized components that have to be

designed depends on how well the design can be re-used. By examining replication, the

design may take advantage of systolic array CCMs such as WILDFORCE and Splash 2

which provide the capability to expand the array across multiple boards. By seamlessly

expanding the implementation across multiple boards, the size of the filter increases at the

expense of an increased startup latency. Re-circulation techniques introduce another

alternative to lessen the cost and at the same time, lengthen the filter for better frequency

responses. Since FIR filters generally need to be of higher order than IIR filters, these

methods become an important implementation issue [4].

1.3 Contributions

This thesis presents a scaleable FIR filter implemented on a CCM. The filter

implementation runs at a maximum clock speed of 20 MHz. The latency of the filter

depends on how many processing elements the filter uses in the array; the higher the filter

order, the higher the latency. Filter coefficients can be loaded directly into the local

memories of the processing elements, thus allowing the host to control the type of filtering

being performed on the data dynamically. The CCM acts as a computing engine solely to

perform filtering which could possibly be used for real-time filtering depending on the

sampling rate. The design currently runs on a WILDFORCE four processing element array

allowing up to eight filter taps per board. Implementing the filter on a CCM may benefit

the end user by shortening the computation time on convolution in comparison to running

it through software. By performing the computation in the time-domain, additional

processing to perform an FFT, multiplying, and then converting back to the time-domain

can be avoided. With the accelerated computations, sampled signal sources could provide

the CCM with continuous data to be filtered.

6

Sections 2 through 6 of this thesis provides supporting background on filtering and

CCMs as well as specific design criteria on how the filter maps onto the CCM being used.

Chapter 2 covers all background material associated with filtering algorithms examined,

CCM platforms to build the filter on, and different data representations possible. Chapter 3

examines the two different arithmetic logic unit designs used in each processing element.

Chapter 4 covers the integration of the state machine to feed the ALUs and ultimately build

the dual-tap processing element. Chapter 5 goes in depth on the data flow throughout the

entire filter including the internals of each processing element. Chapter 6 discusses the

results obtained from the synthesis and place-and-route tools, including area consumption

and maximum estimated clock speeds. Coding techniques to produce ideal state machines

and logic are presented as well. The results from various runs that verify the design on the

CCM hardware contribute to the second part of Chapter 6. Unfiltered and filtered

spectrum plots help to visually verify the design. The last chapter, Chapter 7, concludes the

paper with the current work and possible future continuing work.

7

Chapter 2

Background

Digital communications is one of several areas that involve intensive signal

processing, and one of the most important techniques found among the processing is digital

filtering [5]. The channel model contributes to one of the many steps in a communication

simulation in order to give the designer a perspective of how the signal propagates through

different mediums [13]. Since channel models can simply be represented by a finite impulse

response filter [10], further background material on this matter is included.

An important goal of this thesis is to show that such a model can be constructed on

a general purpose custom computing platform which provides a flexible tool for simulation

on hardware. In support of this work, some history and system architecture background

on WILDFORCE and the Splash 2 system is given.

2.1 Digital Filters

Digital signal processing has been increasing in popularity due to the declining cost

of general purpose computers and application specific hardware [5,7]. Since many

telephony and data communications applications have been moving to digital, the need for

digital filtering methods continue to grow [2]. Hence, simulation techniques to model these

complex systems are needed as well. Software simulators offer flexible schemes to code the

algorithm from a choice of many languages but cannot always offer the speed that a

hardware simulator can. Unfortunately, building hardware prototypes to model different

8

systems can be costly and time consuming when constant changes have to be made.

Therefore, a middle ground might be found using custom computing platforms or

programmable logic. Such systems can offer similar flexibility as software and still retain

some or all of the hardware acceleration [7] at the cost of a shorter implementation cycle.

2.1.1 Infinite Impulse Response Filters

Two commonly implemented filters in hardware include the finite impulse response

filter (FIR) and the infinite impulse response filter (IIR), which may also take on the names

non-recursive and recursive, respectively [2]. IIRs not only use the data values that pass

through but also use other values of the output, which can be described by the following

equation [2]:

y c u d yn k n k k n k
kk

= +− −
=−∞

∞

=−∞

∞

∑∑
(2.1)

where c and d represent the IIR coefficients and u the input data. The recursive system can

also be described in a Direct Form II structure as shown in Figure 2 below. In order to use

these types of filters, future values beyond the current yn are necessary and is termed a causal

filter [6]. Since simulations may possibly have the data to be filtered stored on some non-

volatile media, non-recursive filters may be ideal [2]. Unfortunately, the side effect of being

unstable, depending on the characteristic transform function, may limit its applicability [12].

Most importantly here, IIR implementation is not as easily realizable as that of the FIR even

though IIRs typically require a lower order filter to accomplish the same function. But IIRs

are preferred due to fewer parameters, less memory requirements, and lower computational

complexity [6]. The non-linear phase characteristic generated by IIRs can be a severe

drawback. Some transform techniques, such as the impulse invariance technique, does not

have a direct filter frequency interpretation and may give unwanted effects such as aliasing

and other phase problems -- more so than FIR filters [5].

9

z-1

z-1

z-1

c1 d1

c2 d2

cN-1 dN-1

+

+

+

+

+

+

+

d0 +

cN dN

y(n)x(n)

Figure 2: Direct Form II realization signal flow graph of an IIR.

2.1.2 Finite Impulse Response Filters

FIRs have the advantage of being much more realizable in hardware [12] because

they avoid division and feedback paths. Despite needing twice the filter order of an IIR,

FIRs are dependent on the data coming through the filter and on past values rather than

future values like the IIR. Essentially, Equation 1.1 is a 1-D convolution between the filter

coefficients and the input data. In performing convolution, one of the two sets of numbers

is reversed and “slid past” the other. The resulting stream of numbers is found by taking

10

the sum of the multiplications at each sliding interval. FIRs can be graphically represented

by a Direct Form realization as shown in Figure 3 [6].

Like the IIR structure, the FIR realization can be highly replicatable, which becomes

important in the hardware design. One important aspect of FIRs is the linear phase

characteristic, which makes it ideal for most digital signal processing applications [6]. Non-

recursive filters are always stable unlike the recursive or IIR filters which have to keep the

pole placements in perspective. Again, FIRs have to have twice the order of an IIR

because they cannot achieve the smaller side lobes in the stopband of the frequency

response given the same number of parameters as an IIR [6]. To help shape the frequency

selective band of the FIR, “windowing functions” are convolved with the filter function.

Examples of these functions include the Bartlett (rectangular), Blackman, and Hamming

windows. The windowing technique tends to give the frequency response a sharper cutoff

and “flatter” response in the passband [4,6]. Typically, a window with a taper and gradual

roll off to zero produces less ringing in the sidelobes and lessens the oscillations in both the

passband and stopband. The oscillations commonly found in the frequency response are

due to Gibbs phenomenon, which is due to abrupt truncations of the Fourier series

representation of the frequency response. Unfortunately, when correcting excess ringing in

z-1 z-1 z-1 z-1

c1 c2 c3 c4 cN-1 cN

+ + + + +

x(n)

y(n)

Figure 3: Direct Form realization signal flow graph of an FIR.

11

the sidelobes, the window is widened, which means an increase in the width of the

transition band of the filter, or a higher order filter [6]. Despite the higher order of the FIR

filter, the implementation is feasible in hardware and possesses the necessary linear phase

property needed by channel models [10,13].

Filter properities, design criteria, and the application at hand determine from which

filter to chose. In this case, the channel model output is the convolution of the input signal

and the impulse response which characterizes the channel. Due to propagation and

additional phase shifts, the linear system can be represented as a complex impulse response

[13]. Therefore, an FIR with linear phase properties and complex coefficients fulfills the

requirements needed to build the channel model.

2.2 Communications Channel Models

Wireless indoor radio channel modeling has been a motivating, potential application

for FIR filtering with complex arithmetic. Channel modeling becomes important when the

designer must predict the minimum amount of power to transmit a signal through a

medium within a specified area [13]. In mobile communications, analysis of the channel

may help the designer in frequency re-use techniques or band-sharing schemes. Frequency

re-use schemes to obtain high spectrum efficiency is a common way to re-allocate channels

in an available spectrum, and therefore, careful consideration and study on interference

makes channel models an important part of communication simulations [13]. The channel

serves as the link between the transmitter and receiver ends as shown in Figure 4 below

[14]. Typically, the channel model includes means to simulate other additive signal features

such as noise, distortion, fading effects, and interference [13]. Some or all of these features

tend to make channel modeling a very computationally intensive task, involving convolution

filters for the signal processing.

For indoor radio channel models, a channel can be based on a statistical impulse

response model as presented in [10]. Much of the statistical model is derived from [11], but

does not take the effects of path loss as a function of transmitter-receiver separation into

account, which is necessary if the power levels must be known [10]. In order to produce

12

the power delay profiles for the channel model, a program called SIRCIM [15] can be used.

The necessary magnitude and phase values from the program are used as the impulse

response model coefficients.

The convolution of input signals with these coefficients enables a designer to

examine multiple access schemes, coding, diversity techniques, co-channel interference

detection algorithms, and suitable physical layouts for high data rate factory and open plan

office building radio communication systems [10]. Since the channel model can be

represented by an impulse response, a linear filter, or FIR filter can be used to convolve the

input signal and the channel’s coefficients. The coefficients represent a complex baseband

to model multi-path channels and can be described in the following equation [10]:

h t a e tb k
j

k
k

k() ()= −−∑ θ δ τ (2.2)

where represents a real voltage attenuation factor, the exponential term represents a linear

phase shift due to propagation and additional phase shifts induced by reflection coefficients

Digital
Source

Transmitter

Digital
Sink

Receiver

Channel
Model

Figure 4: Simplified block diagram of communications system.

13

of scatterers, and τk is the time delay of the kth path in the channel with respect to the arrival

of the first arriving component [10]. To find the necessary coefficients for the FIR, the

power impulse responses given by the equation below [10],

| ()| ()h t a p tb k k
k

2 2 2= −∑ τ (2.3)

are quantized into groups having temporal widths of 7.8ns. To get the estimated power

impulse response values for discrete excess time delay TK, the equation becomes [10]

| ()| ()h t A t Tb K K
K

2 2= −∑ δ (2.4)

where AK
2

is a measure of multi-path power. According to [10], an averaging technique is

used due to the resolution of the oscilloscope used in the experiments to obtain the data.

Also, since the time domain window of the scope was limited to 500 ns, a maximum of 64

resolvable discrete multi-path components can be found in integrals of 7.8 ns [10].

Therefore, the maximum filter length needed for the complex channel model presented is

limited to 64. Although this may not seem high for an FIR, analysis of the data described in

[10] noted that few components arrive at excess delays greater than 500 ns. The profiles for

responses taken at λ/4 intervals on a 1 meter track indicate that fading occurs in individual

multi-path components [10]. Hence, the channel profiles change in space which results in

varying sets of coefficients needed for the modeling filter. The FIR filter needed for this

channel model requires an array of coefficients for each time delay “tap” as well as complex

number convolution.

The examination of indoor, or factory and open plan building, channel models is

due to a communications simulator called BERSIM, which is able to use SIRCIM’s

generated channel impulse response data. BERSIM convolves the transmitter signal with

the channel impulse response. At the output of the channel, the co-channel interference

and/or Gaussian noise may be added to simulate either noise limited or interference-limited

systems [16]. With these operations in mind, the possibility of off-loading the signal

convolution of the channel model on a hardware platform might lessen the simulation time.

14

2.3 Field Programmable Gate Arrays

Custom computing platforms such as WILDFORCE and Splash 2 contain several

field programmable gate arrays, or FPGAs, to provide reconfigurability without penalties

such as hardware modifications or timely programming. Programming of FPGAs takes on

the order of milliseconds through software configuration. Depending on the application

size, different sized FPGAs give the designer the flexibility to increase or decrease the

resources as needed.

This thesis bases the design work around Xilinx FPGAs. The FPGA architecture

consists of columns and rows of configurable logic blocks (CLBs) surrounded by I/O cells.

In order to connect signals between CLBs, routing resources and programmable

interconnects lay between the logic blocks. The basic nature of FPGAs presents a general

set of resources which allow the designer to configure the logic blocks, routing, and I/O

cells for a tailored application that runs at the speed of hardware, yet can be easily modified

as software. The designer builds the application using a structured, high level language such

as VHDL.

2.4 Custom Computing Platforms

The following sections include two reconfigurable computing platforms with systolic

array architectures to support pipelined algorithms. Early development on Splash 2

investigated shorter word formats such as in [21] and [22]. Further research with 32-bit

floating-point exploited the newer technology of WILDFORCE.

2.4.1 VTSplash and Splash 2

Splash 2 was a preliminary working platform for early filter design stages. The

Splash system can consist of between 17 and 272 FPGAs used for special purpose

computing, which is accessed primarily through the Sun SPARCstation 2 host SBus. Each

Field Programmable Gate Array (FPGA) processor is accompanied by 0.5Mbytes of fast,

15

static RAM. The crossbar provides a full interconnection network between each of sixteen

processing elements on a single array board. The interface board on the Splash 2 system is

connected to the SBus on the Sun host through an SBus adapter, and the interface board

communicates with a possible 1-16 processor array boards through a Futurebus+ backplane

running a custom protocol [3]. In order to develop applications for the boards, the

designer can use software development environments such as ViewLogic or the Synopsys

tools in conjunction with custom cell libraries designed specifically for Splash 2.

X1 X2 X3 X4 X5 X6 X7 X8

X16 X15 X14 X13 X12 X11 X10 X9

X0 Crossbar Interconnect

Splash 2 Array Boards

X1 X2 X3 X4 X5 X6 X7 X8

X16 X15 X14 X13 X12 X11 X10 X9

X0 Crossbar Interconnect

XL

XR

Input
DMA

Output
DMA

Splash 2 Interface Board

Sun Host

SBUS Extension
SIMD Bus

RBus

Figure 5: Two board Splash system.

2.4.2 WILDFORCE

Annapolis Micro Systems, Inc. constructs a similar commercial version of the Splash

2 computing engine called WILDFIRE. Over the past few years, a refinement process has

brought about smaller versions based on the same architecture but with fewer processing

elements, including WILDCHILD with eight FPGAs, WILDFORCE with five FPGAs, and

WILD-ONE with two FPGAs. Note that each system does not include an additional

control PE accounting for n+1 PEs on the respective boards. With resources within an

16

FPGA increasing and intelligent tools becoming available, just a few processing elements

can hold an entire application.

The following thesis builds the FIR filter on a WILDFORCE commercially available

board which communicates with the host through a PCI bus. The use of PCI allows high

bandwidth transfers using master mode DMA and burst mode block access. Currently, up

to four boards can be linked together to form a larger computing engine which can share a

mastered clock line between all four boards. A SIMD connector on each board allows for

direct I/O between each board in addition to the PCI bus. Like, Splash 2 and all its other

predecessors, the host controls much of the administrative work for the application such as

programming the PEs, setting up DMA transfers, and clock control. Host interaction with

the application does not have to be administrative but can also be vital when acting as an

accelerator for some applications being run on the host in which data needs to be sent to

and from the board.

2.4.2.1 The Host Interface

The application interfaces with WILDFORCE through a set of application

programming interface (API) calls. Programming and application data do not have to go

through multiple adapters such as those found in WILDFIRE and Splash 2 before reaching

the board itself since WILDFORCE plugs straight into a host’s PCI slot. With access to the

bus and master mode DMA capabilities, large amounts of data can be moved between

boards and possibly off the board with a properly designed external I/O connector card.

The application designer uses C code in conjunction with the dynamic link library (DLL) to

build a program which sets up the board clocks, programs the processing elements, and

initializes any external memory for each PE, if necessary.

2.4.2.2 The WILDFORCE Architecture

The architecture and data flow of WILDFORCE still maintains much of the design

features of Splash 2 and WILDFIRE but includes additional features, such as internal dual

17

port memory FIFOs, processing element FIFOs, mailbox capabilities, multiple master mode

DMA, PCI burst transfers, and the ability to customize peripheral cards for each PE. The

control processing element (CPE0), PE1, and PE4 each have input and output FIFOs

which can either go to the host or the external I/O connector. To take advantage of PCI

burst mode transfers and DMA, each dual port memory controller (DPMC) maintains an

internal FIFO for memory accesses in addition to random memory accesses. Rather than

continue asynchronous handshake lines to the host that need to be polled, mailbox

capabilities on each PE with a FIFO (CPE0, PE1, and PE4) can send a single 32-bit word

to/from the host using interrupt notification. In addition, each PE can interrupt the host

individually.

Unlike the predecessors, WILDFORCE does not limit its local bus accesses to just

memory, but instead has a general mezzanine connector interface. The interface allows

Processing
Element 1

Processing
Element 2

Processing
Element 3

Processing
Element 4

Processing
Element 0

Crossbar

Host Bus

Mezzanine
Connector

Mezzanine
Connector

Mezzanine
Connector

Mezzanine
Connector

Mezzanine
Connector

DPMC DPMC DPMC DPMC DPMC

FIFOFIFO

External I/O Interface FIFO

SIMD
Interface

Figure 6: WILDFORCE system architecture.

18

local memory to be given to the PE but custom boards other than memory can be attached

using the connector, such as a co-processor, DSP, or even another Xilinx FPGA or ASIC.

Currently, up to 4 Mbytes of static RAM can be accessed by each PE with the capability to

go up to 256 Mbytes. In the near future, the ability to off-load floating-point can be done

using a DSP or other co-processor. The newer line of WILDFIRE products, including

WILDFORCE and WILD-ONE allow for 32-bit memory accesses rather than the 16-bit

accesses found in its predecessors.

2.4.2.3 The WILDFORCE Programming Environment

The programming environment parallels that of the Splash 2. VHDL code in

addition to C code is written to construct an application. For WILDFORCE, Model

Technology, Inc.’s tools provide compilation and simulation support for application design.

After the designer codes the algorithm in VHDL, the MTI environment first compiles the

VHDL and then simulates the board model with the designer’s application in the

appropriate processing elements. Like Splash 2, a VHDL model of WILDFORCE allows

the designer to accurately simulate the behavior of the board with the application

embedded. Once the application logic has been verified, implementation follows.

Synplicity’s Synplify synthesis program builds the necessary image to be placed and routed

for the FPGAs on the board. Formatted project files provide the program with all the

information it needs to build the Xilinx netlist for the place-and-route tool. Xilinx provides

a set of place-and-route tools which map the design onto the available FPGA resources

(CLBs). Once the signals have been routed, the program creates the binary image that

needs to be downloaded to the processing elements.

The host application, written in C, becomes an important part of the application.

The host program controls board features not accessible by the PE, such as clock setup,

interrupt handling, and DMA. A primary task of the host program includes setting up the

environment on the board for the VHDL application. Once everything has been initialized,

the application can then be downloaded to the board and started. Other tasks of the host

program may include the following:

19

• data to/from the board either directly to memory or through the PE FIFOs

• interrupt processing

• post-processing of data

• setting up DMA transfers

• mailbox processing

The designer of the application needs to be well versed in not only VHDL, but C

programming in order to take advantage of the host capabilities. Some processing, such as

file I/O, simply cannot be done on such computing engines and therefore, relies on host

interaction to aid in such circumstances.

2.5 Floating Point Representations on CCMs

Showing the feasibility of implementing floating-point on a custom computing

machine is one of the primary focuses of this thesis. According to [19], many real-time

hardware designs for signal processing applications use fixed-point formats due to size, cost,

and speed of the available past hardware. Unfortunately, fixed-point does not offer the

increased dynamic range, consistent precision, and normalization features of floating-point

which are desirable among signal processing tasks. Recently, the arrival of sophisticated

HDLs, like VHDL, and general purpose CCMs offer the ability to quickly prototype custom

floating-point formats to suit the designer’s application [20].

2.5.1 Custom Formats

Typically, general purpose machines employ 32-bit floating-point computations,

providing more accuracy than signal processing applications generally need. But for real-

time requirements, signal processing necessitates both speed and accuracy, a combination

which general purpose machines find cumbersome to manage [19]. Hardware

implementations make a trade-off on a reasonable decrease in precision for a smaller, more

20

manageable word size to enable floating-point processing. Commercial DSP chips, like

Sharp’s LH9124 and TRW’s LSI chips, use a 24-bit and 22-bit format, respectively, but still

retain enough accuracy and range to support most DSP applications. Therefore, even

smaller floating-point formats have been investigated by [20] to enable DSP application

prototypes and computation acceleration on CCMs. Another concern about using smaller

formats involves the dynamic range capabilities. Having a large dynamic range helps to

lessen the underflow and overflow problems fixed-point typically runs into [19]. Fixed-

point formats try to accomplish a larger range by widening the format, but the hardware

complexities and area consumption become obvious with such a large representation.

Figure 7 [19], presents a graphical comparison of different formats and their possible ranges.

Fixed Point Full (S-1) Precision Range 6(N-S)

Fixed Point Total Range 6(N-S)

Floating Point Full (S-1) Precision Range 6(2E)

Floating Point Total Range 6(2E+S-1)

Format Size (bits)
Significand Size (S)
Exponent Size (E)

16
12
4

22
16
6

32
25
8

163
96
90
24

36

126

385

476

42

187

1541

1686

R
an

ge
 (

dB
)

1500

1000

500

Figure 7: Floating-point format comparisons.

21

The algorithms presented in [20] try to compromise between the accuracy of a 32-

bit format and the speed offered by hardware as well. Area consumption by floating-point

operator units becomes the limiting factor on programmable hardware in parallel

implementations. The design methodologies shown in [20] are based on HDL constructs

which allow designers to tailor and prototype the floating-point format to meet the

application requirements. Therefore, many designs depend on synthesis tools to handle the

automatic mapping and logic generation. But having such flexibility on CCMs can benefit

custom designs, such as the case with Shirazi’s 18-bit 2-D Fast Fourier Transform [20]. The

FFT could use an 18-bit format since Splash 2 uses a 36-bit wide data path, thus allowing

two values per bus word. The ability to customize the format offers more freedom in the

implementation rather than constraint around the data.

2.5.2 32-bit Floating-Point Format on FPGAs

Floating-point implementations on FPGAs present the challenge of mapping high

resource demanding algorithms for optimal performance on a constrained platform. Not

only do FPGA constraints come in the number of logic blocks, routing resources, and I/O

capability, but the designer relies heavily on tools to map the implementation onto the chip.

For a single stage, combinational logic multiplier to be implemented in an FPGA, the

number of CLBs required grows increasingly non-linear. Hence, a compromise in speed

and area have to be made in order to map the rest of the design completely and efficiently.

Sign bit 8-bit Exponent 23-bit Mantissa

Figure 8: 32-bit floating-point format.

This thesis presents one of several ways to implement a 32-bit floating-point

multiplier and adder arithmetic logic units based on the IEEE floating-point format. The

IEEE format uses an 8-bit exponent, E, with an excess of 127 and a 23-bit mantissa field,

M. With normalization included, the mantissa value goes to 24-bits. The sign bit, S,

22

determines positive or negative nature of the value. The format allows non-zero

magnitudes in the range of approximately 1.18 x 10-38 to 3.40 x 1038 [23].

The design takes into account both real estate with respect to the rest of the filter

design and desired speed to run the application. The goal of using 32-bit floating-point

includes increased precision and range over fixed-point representations commonly used in

signal processing applications. Chapter 4 presents a more in-depth discussion of the

compromises made to implement the ALUs in addition to the filter logic on a single FPGA.

High speed reconfigurability through a PROM, FLASH memory, or other peripheral device

makes FPGAs ideal for custom logic without the need for discrete components. Hence, the

progression of FPGA enhancements offer more design options to replace several of these

discrete components. The 32-bit floating-point ALU design presented in this paper attempt

to take advantage of state-of-the-art FPGAs taking both size constraints and speed into

consideration with the rest of the design partitioning. Different VHDL constructs need to

be examined since the designer must rely on the tools somewhat to be efficient with the

resources used in the FPGA. Only rough estimations can be made from the code of how

much real estate the design actually consumes on the FPGAs. Chapter 3 discusses insights

of the design and implementation used.

23

Chapter 3

32-bit Floating-Point Arithmetic Logic

Element Design

The following chapter discusses the construction of the arithmetic logic elements

from the ground up. To provide compatibility with most host platforms, a format similar in

structure to the IEEE 754 32-bit floating-point format has been chosen. Floating-point

data to and from the host does not have to undergo any format conversions as found with

shorter word representations of 16-bit or 18-bit formats in [21]. However, the coefficients

must be pre-processed prior to being written to each processing element local memory

space due to the multiplier design. Furthermore, the arithmetic logic elements do not

handle exception cases including NaNs, overflow, and underflow. Sections within this

chapter cover different design considerations that have to be examined, such as area and

speed constraints. Filter calculations simply need to multiply the data with known

coefficients and sum them accordingly to produce the convolved result. The adder and

multiplier unit both use a fully pipelined design to achieve a floating-point operation per

clock cycle.

Designs on earlier CCMs, including Splash, investigated shorter word formats

including 16-bit and 18-bit floating-point formats to fit specific application needs. XC4010

Xilinx parts provide less than 10% of the available resources found in current FPGA

technology. New technologies allow investigations with larger floating-point formats. As

later chapters show, even with such resources available, the design considerations must still

24

pay attention to area and speed compromises. Some combinational multipliers consume

resources in an increasing, O(n2) fashion, unlike adders.

The essential idea behind floating-point number systems is to formulate

representations and computation procedures in which the scaling procedures introduced by

fixed-point systems are built-in [25]. In a floating-point system with radix R, a number N is

represented by a pair <E,S>, where E is a signed fixed-point integer and S is a signed fixed-

point number, such that N = S x RE. The value S is also known as the significand and E as

the exponent. Addition of two values using this format require that the exponents be of

equal value before their significands be added which leads to variable length shifts on the

significand, S. Multiplication requires much less overhead and the product more readily

normalized. Basically, each operation can be broken down in to smaller, discrete operations

on their respective fields which make it ideal for a pipelined architecture.

3.1 Design Considerations

Choosing the proper 32-bit format enables the arithmetic logic units to coincide

within a host that also uses the standard to provide a co-processing, computing engine.

Aside from convenience of the chosen format, designers can tailor the format with custom

computing machines. In [22], the FFT implementation takes advantage of the 36-bit data

path of Splash 2 allowing the application to transfer two data words at a time. Decisions

that involve the format depend on the application at hand which include range, accuracy,

and precision requirements. By considering the floating-point format, the total decibel

range as calculated by [19] is

(2e + m) x 20log2 = 1679.75 dB (3.1)

where e = 8 for the number of exponent bits and m = 23 for the number of mantissa bits.

The dynamic range for using the 32-bit format allows more than an order of magnitude

over a 22-bit or 16-bit format giving just 480 dB and 440 dB, respectively [19]. In some

fixed-point applications, re-scaling can be done to handle comparable ranges found in

floating-point rather than accommodating larger word growths becomes an alternative.

Unfortunately, the side effect of overflow may occur or precision is lost [19]. Although

25

overflow and underflow require special circuitry for either format, such occurrences happen

less often with floating-point due to a greater dynamic range. The format of the floating-

point number depends greatly on the application requirements and expected bounds.

Providing excessive resolution comes at a high price and should not be spent if not needed.

Truncation and rounding effects must also be considered when dealing with either

fixed-point or floating-point formats. According to [6], these effects introduce an error

value which depends on the word size of the original value and how much of the word is

truncated or rounded. The attributes of the introduced error rely on the particular form of

the number representation. For fixed-point sign magnitude values, the truncation error is

symmetric about zero and falls in the range

-(2-b - 2-bu) ≤ Et ≤ (2-b - 2-bu) (3.2)

where Et is the error, bu is the number of bits prior to truncation. For two’s complement

format, the truncation error is always negative and falls in the range

-(2-b - 2-bu) ≤ Et ≤ 0 (3.3)

Round-off error can be represented by the equation,

Er = Qr(x) - x (3.4)

which is independent of the format of the fixed-point value and only affects the magnitude

of the value. Since the maximum error through rounding is

Emax = (2-b - 2-bu)/2, (3.5)

round-off error becomes symmetric about zero and falls in the range

-(2-b - 2-bu)/2 ≤ Er ≤ (2-b - 2-bu)/2 (3.6)

Since floating-point values have a non-uniform distribution, the error introduced from

either truncation or rounding becomes proportional to the value being quantized [6]. The

quantized value can be represented as

Q(x) = x + ex (3.7)

where e is the relative error. The following equation can be used to give boundaries to the

truncation error, ex, for positive values

-2E2-b < etx < 0 (3.8)

Since 2E-1 ≤ et < 2E, then

26

-2-b+1 < et ≤ 0, for all x > 0 (3.9)

For negative numbers,

0 ≤ et < 2-b+1, for all x < 0 (3.10)

The algorithms in the multiplier and adder units for the filter use truncation, chopping off

the lower bits. Instead of a two’s complement representation, the arithmetic units in the

filter design use a sign-magnitude representation which differs primarily in the distribution

of the error value. [6] describes the error value as an equivalent random variable under a

uniform distribution serving as additive noise. Chapter 6 presents the actual error analysis

found between the expected value and the truncated value which found errors far less than

1% of the expected value.

Aside from mathematical limitations, physical limitations with FPGAs exist. The

design elements must fit within a fixed number of configurable logic blocks with a limited

number of routing resources to connect the logic cells. The multiplier unit demands a large

amount of FPGA resources when implemented through the VHDL multiplication symbol,

typically on the order of n2. The synthesized integer multiplier that computes the product

of the two operand mantissas generates a large amount of logic for a single cycle

computation. Pipeline alternatives can be investigated to delay the integer multiplication

result. The filter design incorporates a pipeline integer multiplier developed by Annapolis

Micro Systems. The integer multiplier requires approximately half the amount of space as

those generated by the synthesized VHDL multiplier operator. Further sections discuss

how the design integrates the multiplier in a pipelined design to achieve a floating-point

operation per clock cycle.

3.2 32-bit Floating-Point Adder

The pipelined design of the 32-bit floating-point adder has a latency of eight clock

cycles. Once the pipeline has been filled, the adder can generate a result each clock cycle so

long as new operands are given every clock cycle thereafter. The design follows that of

Shirazi’s 18-bit floating-point format adder in [22] except one of the stages has been split

into multiple stages to allow the adder to run at a slightly faster clock speed. Basically, by

27

having more stages with fewer logic levels, the pipeline can be run at faster clock speeds

[19]. The following two sections describe the algorithm used to partition the different

stages of manipulation and the VHDL constructs used to synthesize the arithmetic logic

unit.

3.2.1 Algorithm and Design

A scientifically formatted floating-point value, N, can be represented as N = S x RE,

where S is a fixed-point value multiplied by a radix, R, to some power, E. The algorithm to

add two numbers with this representation requires that the radix power, E, be the same in

power and sign. If so, the significand components, S, can be summed together while

keeping the same radix to some power, E, as the multiplier. If they are not the same,

adjustment of the significand needs to be made prior to addition. For instance, in scientific

notation, the value 3456.983 can be represented as 3.456983 x 103. Binary based values can

also be represented in a similar fashion where 1.101 x 23 might be better understood as

1.625 x 8 = 13.0 in base 10. If one adds two operands in a scaled format, or scientific

notation, the scaling factor exponents have to be equal. To do this, the decimal point of one

of the significands must be shifted so that the exponents become equal in magnitude and

sign. After doing so, the significands can be added with the proper decimal alignment.

Typically, it is the significand of the operand with the smaller exponent that is shifted;

therefore, the shift is to the right. Were the other operand to be shifted, this would be a

left-shift, and, as the significance of digits increases towards the left-hand end, the most

significant digits could be lost [25]. For example, if the two values A = 3.45 x 108 and B =

38.754 x 106 are to be added, B needs to have its significand shift twice to the right to

become 0.38754 x 108. With the A and B values having the same exponents, the two

significands can then be added for a sum of 3.83754 x 108. Similar techniques can be done

for radix-2 based values. For instance, if the two values C = 11.101 x 24 and D = 100.011 x

25 are to be added, C in this case would need to be shifted one place to the right (thus

moving the decimal to the left one place). Hence, the values 1.1101 x 25 and 100.011 x 25

28

give 110.0011 x 25. Figure 9 below illustrates the steps necessary to perform floating-point

addition. The two values to be added are represented by Na = Sa x REa and Nb = Sb x REb.

During calculations, retaining the significant digits results in more accuracy [25].

Performing operations to delete the non-significant digits (zeros) becomes advantageous in

machines since the number of bits to represent the significand is fixed. A significand attains

a normalized state when the leading (leftmost) non-sign digit is significant (non-zero). In

radix-10 values for instance, 0.000456 x 107 can be normalized by left-shifting the significand

REY = larger of <REA,REB>
REX = smaller of <REA,REB>

REX = REY ? h = | EX - EY |

EZ = EX = EY

Yes

No

SX = SX >> h
EZ = EX + h

SZ = SX + SY

N = SZ x REZ

Figure 9: Flow diagram for floating-point addition.

29

by four spaces which means decrementing the exponent by four to become 4.56 x 103. In

the case of binary, or radix-2, numbers the normalization process remains the same; shifting

the significand until the most-significant digit has a one while decrementing the exponent by

the number of left shifts or incrementing the exponent by the number of right shifts to

attain the normalization. In the case from above, the value 110.0011 x 25 can be normalized

to 1.100011 x 23. In the IEEE 754 floating-point format, the significand always takes on an

implied, or hidden, ‘1’ for the most-significant digit assuming the value represented is

normalized. Although the IEEE 754 format according to [23] and [25], does have support

for denormalized numbers. Storing normalized numbers allow machines to maximize the

number of significant bits for higher accuracy.

The adder design pipelines the steps described in the previous paragraph to achieve

a summation every clock cycle. Each pipeline stage performs operations independent of

others. Input data to the adder continuously streams in from both the multiplier and the

accumulation data from the input bus. The operations have been divided into eight stages

in the pipeline to help sustain a target clock rate of 20 MHz. In addition, a particular

number of stages have been chosen to properly coordinate with the multiplier to sum the

products with the incoming accumulation values. The adder must accumulate the two real

parts from the complex multiplication with the real part of the incoming accumulation. The

same must be done for the imaginary parts. The filter design interleaves the accumulation

steps for the adder so that three passes through the adder have to be done before attaining

the complete accumulation of all the partial products. Multiple passes are needed since

some partial products cannot be readily available on the next clock cycle due to the pipeline

latency. Section 4 presents more detail on how the filter tap design incorporates the adder

and multiplier together to compute the accumulation value for the next tap.

Much of the design flow follows that of Shirazi’s 18-bit pipelined adder unit as

documented in [22]. Modifications have been made to lengthen the pipeline and thus

increase the speed at which the design may execute. After further analysis of Shirazi’s three

stage pipeline, extensive routing and logic have been used to implement the shifting and

leading-one detection operations. Different VHDL coding techniques to implement a

barrel-shifter helps to reduce the amount of routing for the shifting stages. Additional stages

30

and a slightly different technique to perform the leading-one detection operation have been

changed to reduce the amount of logic used in Shirazi’s exhaustive approach. The following

sub-sections describe each of the adder pipeline stages in more detail as shown in Figure 10.

Operand A Operand B

Comparator StageOperand A Operand B

Denormalization Shift
Calculation Stage

Operand A Operand BExponent Difference

Denormalization Shift
Stage

Denormalized Mantissa BMantissa A ExponentSign Bit

Mantissa Addition/
Subtraction Stage

Denormalized MantissaExponentSign Bit

Addition/Subtraction
Carry-Out Exception

Handling Stage
Denormalized MantissaExponentSign Bit

Leading-One Detection
Stage

Denormalized MantissaExponentSign Bit

Normalization Shift
Calculation Stage

Denormalized MantissaExponentSign Bit

Normalization Shift
and Assembly Stage

Normalized MantissaExponentSign Bit

Figure 10: Pipelined multiplier flow diagram.

31

3.2.2 Implementation in VHDL

As mentioned earlier, VHDL can be used to represent several different abstraction

levels [1,26]. The level chosen to represent the 32-bit floating-point adder includes a

mixture of register-level and gate-level logic blocks. To describe the register transfer level

and the data flow through the adder, VHDL constructs called processes provide the sequential

instructions that manipulate the data. Each process contains a sensitivity list that triggers the

actions within a process. [27] provides ideas on how to code more efficiently to use the

synthesis tool capabilities. Since more than one process can exist for a single entity, two

distinct processes can be used to describe the registered, or clocked part, of the algorithm

while the other describes the combinational aspect. The following section describes how

the 32-bit floating-point adder uses the two different type of processes to build the

pipelined adder architecture.

3.2.3 Stage 0: Comparator Stage

Determining which of the two operands has the greater magnitude alleviates

complex conditionals in later stages of the adder. The initial stage in the adder uses

comparator logic to place the larger of the two operands as operand A. The combinational

VHDL process compares the exponents to make an initial determination. If the exponents

are equal, the logic then compares the mantissa values. Sign bits do not effect the

comparison. The registered process handles insertion of the implied leading-one for each

new mantissa value. The leading-one insertion operation always takes place regardless of

the operand values. Stage 2 performs zero value exception handling.

3.2.4 Stage 1: Denormalization Shift Calculation Stage

In order to add two floating-point values in scientific notation, the two values must

have the same exponent in both sign and magnitude. The adder must perform this

operation by shifting one of the operands and making adjustments to the operand exponent

value. Stage 1 of the pipeline takes the difference of the two operand exponents to

32

determine how many shifts are needed on operand B. By shifting to the right, the operand

stands to lose only lower significant bits.

3.2.5 Stage 2: Denormalization Shift Stage

The adder performs a check on the two operands to see if they both have the same

magnitude and different signs resulting in a zero sum. If so, the resulting exponent,

mantissa, and sign value become zero. Zero checks for the result must be made before

further processing to prevent invalid results occurring due to the inserted leading-one of

Stage 0. Should the operands not produce a potential zero result, the rest of Stage 2

performs the shifting operation on operand B using a barrel shifter. The adder examines

the shift value obtained by taking the difference of the exponents in Stage 1. Shifts in

quantities of 1, 2, 4, 8, and 16 are done on the operand. Upon leaving the stage, the adder

only needs to keep a single exponent and sign bit along with the two mantissas.

3.2.6 Stage 3: Mantissa Addition/Subtraction Stage

Stage 3 of the adder pipeline performs the addition/subtraction of the two mantissa

integer values. The sign bit indicates whether addition or subtraction takes place and if the

carry-in bit to the adder/subtractor should be a 0 or 1, respectively. Performing subtraction

requires a 2’s-complement addition and adding in a 1 for the carry-in bit. Note that since

operand A is greater than operand B, a borrow cannot happen, and thus, the carry-out bit

of the result is cleared. The carry-out bit becomes important in the next stage of the

pipeline which may indicate the result needs no further normalization nor exponent

adjustment.

3.2.7 Stage 4: Addition Carry-Out Exception Handling Stage

The resulting mantissa value must always go through the leading-one detection

(LOD) logic regardless of the carry-out bit. If the pipeline stage determines a subtraction

33

took place or if an addition took place with no carry-out, no changes to the mantissa have

to be done. But if an addition took place with a carry-out, an immediate adjustment to the

exponent must be done prior to the LOD stage since the bit does not take part in the 23-bit

mantissa result vector. To do so, the stage must shift the result vector to the right by one

to accommodate the carry-out bit as the new leading-one. The LOD logic will then find the

leading-one in bit location 23.

3.2.8 Stage 5: Leading-One Detection Stage

Rather than using an exhaustive approach as Shirazi has in [22], another similar

technique has been used. The leading-one detection logic has been broken up into two

distinct phases. The first, in Stage 5, determines which of the six nibbles of the mantissa

value contains the leading-one. The VHDL builds a 6-bit word using gate-level constructs

that describe which nibble the leading-one resides in, if one exists. No more than four

4-Input
NOR

4-Input
NOR

4-Input
NOR

4-Input
NOR

4-Input
NOR

4-Input
NOR

Mantissa
Bits[23:20]

Mantissa
Bits[19:16]

Mantissa
Bits[15:12]

Mantissa
Bits[11:8]

Mantissa
Bits[7:4]

Mantissa
Bits[3:0]

L5 L4 L2 L0 L1

L3

Figure 11: Leading-one detection logic.

34

levels of logic are used to build such a word. In addition, no gates require more than four

inputs to simplify CLB usage in the FPGA. Table 1 illustrates the possible “nibble sector”

words that can be constructed from the LOD logic. Nibble sector 5 contains the most

significant bits while nibble sector 0 contains the least significant bits. Figure 11: Leading-

one detection logic. illustrates the LOD logic where the Lx output represents the different

sector word bits.

Table 1: Nibble Sector Words for LOD Detection.

Data Word [5:0] Description

000000 Nibble sector 5 contains leading-one

000001 None detected

000010 Nibble sector 0 contains leading-one

000100 Nibble sector 1 contains leading-one

001000 Nibble sector 2 contains leading-one

010000 Nibble sector 3 contains leading-one

100000 Nibble sector 4 contains leading-one

3.2.9 Stage 6: Normalization Shift Calculation Stage

Stage 6 works with Stage 5 to produce the number of shifts required to normalize

the resulting mantissa value after the addition/subtraction takes place. The stage constructs

the 5-bit shift value using the data word from Stage 5 that determines which of the six

nibbles in the resulting mantissa the LOD resides in as well as the four bits within that

particular nibble. The data word can be used to determine what the upper three bits of the

shift value are to be while the lower two bits are determined by the bit values in the nibble

containing the leading one. The combinational logic to determine the two bits can be

constructed from two, 4-variable logic equations:

s0 = (~n3 • n2) + (~n3 • ~n2 • ~n1 • n0) (3.11)

s1 = (~n3 • ~n2) • ((n1 ⊕ n0) + (n1 • n0)) (3.12)

35

where s0 and s1 are bits 0 and 1 of the constructed shift value, respectively. The n3, n2, n1,

and n0 values represent bits 3 to 0 of the nibble containing the leading-one, respectively.

The shift value along with the resulting mantissa, the exponent, and sign are passed onto the

next and final stage in the pipeline.

3.2.10 Stage 7: Normalization Shift and Assembly Stage

The final stage of the pipeline assembles the 32-bit floating-point result. The

previous stage passes in the sign, exponent, and denormalized mantissa result from the

Stage 3 addition/subtraction. In addition, Stage 6 passes in a shift value to normalize the

mantissa such that the leading-one in the mantissa resides in the most significant bit

location. The stage also uses the shift value to adjust the exponent to the number of shifts

required. The last stage uses another barrel shifter to perform the shift operation on the

mantissa allowing shifts of 1, 2, 4, 8, and 16.

3.3 32-bit Floating-Point Multiplier

The second basic arithmetic logic unit needed to perform digital filtering is a

multiplier. Constructing a fast multiplier in an FPGA presents a challenge due to the shear

amount of logic required which can be estimated as described in Section 3.1. The

implementation still follows some of Shirazi’s 18-bit pipelined multiplier [22] but deviates

somewhat due to the mere size of the logic and routing produced for a combinational,

integer multiplier. Shirazi’s design incorporates a straight-forward approach using the

VHDL multiplication operator which relies on the synthesis tool to construct the necessary

logic for the multiplier. The multiplication operator expects to produce the result after a

single clock cycle, thus producing a circuit requiring substantial amounts of CLB resources.

Instead, a pipelined approach for the integer multiplier has been examined to continue

producing a result each clock cycle. The pipeline latency remains the only drawback which

is not a concern since the filter continuously feeds the multiplier every clock cycle. By using

36

a pipelined multiplier, the resource consumption not only decreases but the speed may

actually increase.

3.3.1 Algorithm and Design

According to [25], floating-point multiplication is inherently easier to design than

floating-point addition or subtraction. Multiplication requires integer addition of operand

exponents and integer multiplication of significands which facilitate normalization when

multiplying normalized significands. These independent operations within a multiplier make

it ideal for pipelining. Shirazi’s multiplier in [22] shares the ideas with [25] in that the

following three steps can be done:

1. Unpack the operands, re-insert the hidden bit, and check for any exceptions

on the operands (such as zeros or NaNs).

2. Multiplication of the significands, calculation of the sign of the two

significands, and addition of the exponents take place.

3. The final result needs to be normalized and the exponent adjusted before

packing and removing the hidden bit.

Typically, an additional stage can be used to perform rounding and re-normalization, but in

order to save space and cut down on additional logic, truncation has been used. Results

may show slight discrepancies between those generated on a host computer but discussions

in a later chapter show that they stay well below 1% since the truncation affects low order

bits on a 23-bit significand. According to [25], the propagation of errors is such that in the

linear processes of addition and subtraction the magnitudes of the absolute errors in the

operands add up; whereas in multiplication and division, the magnitudes of the relative

errors in the operands add up. The absolute error is the difference between the

approximation and the true value, and the relative error is the ratio of the absolute error to

the true result. Earlier implementations of a 16-bit multiplier on Splash-2 show much larger

discrepancies due to a smaller significand where the lowest order bit in the significand

represents 1 x 10-3 of a value as opposed to 1 x 10-7. The amount of acceptable error

depends on the application specifications and tolerances.

37

Multiplication does not require shifting of the significands or adjustment of the

exponents as in the adder unit until the final stage for normalization purposes. For the

basic summation of partial products in a floating-point multiplication represented in

scientific notation (significand multiplied by the radix to some power), one multiplies the

two significands and adds the two radix powers. Normalization of the significand ensures

the decimal point of the significand has a exactly one significant digit to the left of it which

may or may not need to be done. For example, multiplying A = 5.436 x 108 by B = 8.995 x

10-4 would result in C = 48.89682 x 104 and 4.889682 x 105 with normalization. Similar

operations are performed on binary numbers as well. The format chosen for this design

follows the basic steps as described above to perform multiplication. Shirazi’s 18-bit

floating-point multiplier uses a single combinational logic multiplier in the second pipeline

stage getting the integer result within a single clock cycle [22]. Unfortunately, a 24x24

integer multiplier consumes much more space than that of an 11x11 multiplier; almost six

times the configurable logic blocks (CLBs) and considerably more routing resources. Speed

of the multiplier depends on how well the tools place-and-route the logic. If the tool

inefficiently routes signals within the multiplier and to supporting logic (such as registers and

control signals), long delays can affect the overall speed performance. Therefore, other

alternatives may need to be examined to compromise between area and speed.

The designed floating-point multiplier consists of the 13 stage pipelined integer

multiplier, pipeline delay elements, and an adder/subtractor unit to handle the exponent

computation. The multiplier cannot directly accept 32-bit floating-point operands as

discussed in Chapter 2 for operand B. Operand A may be issued directly to the multiplier,

however. The operand B mantissa must be given to the multiplier on a partial basis but

may be interleaved with other operand B values entering the multiplier pipeline. Since the

multiplier must be issued static coefficients, an interleaved pattern may be formed for

operand B to make implementation and design much easier. The exponent, however, must

be calculated before and after the mantissa multiplication. Before entering the exponent

pipeline delay, the exponents of operand A and B are added together. Once the mantissa

product completes, the most significant bit must be examined to ensure the implied one is

properly placed. The final stages of the pipelined floating-point multiplier ensure the

38

biasing of the exponent is properly done which relies on the most significant bit of the

integer multiplication product. The floating-point multiplier block diagram can be seen in

Figure 12.

Operand A Operand B

Exponent Bias Adjustment and
Product Assembly StageAdjusted Exponent Normalized MantissaSign

Mantissa Multiplication and
Exponent Addition/Delay Stages

Sign
Determination

Sign Pipeline
Delay

Exponent Addition

Exponent Pipeline
Delay

Mantissa Pipelined
Integer Multiplier

Figure 12: Pipelined Multiplier Block Diagram.

3.3.2 24-bit Pipelined Integer Multiplier

The pipelined floating-point multiplier generates a product every clock when the

pipeline has completely filled, and has a latency of 13 cycles. The pipeline stages for the

multiplier are much simpler in comparison to the adder stages. Twelve of the 13 stages are

used for the computation of the integer multiply. By simply relying upon VHDL, synthesis

tools for the creation of the multiplication produced a design consuming 576 CLBs, which

was deemed unacceptable considering the planned resource budget. For an XC4036EX

Xilinx part, the 24x24 multiplier would consume roughly half of the available CLBs.

39

An alternative integer multiplier was created using a parameterized multiplier

generation program [32]. The generated 24x24 integer multiplier utilizes Booth recoding

[33], and inserts RLOC information and pipeline stages to preserve routing, timing, and size

of the multiplier. The multiplier consumes roughly 300 CLBs. Two bits of the multiplier

are issued at a time for twelve consecutive clock cycles, starting with the lowest two bits.

Figure 13 illustrates this process with two eight bit integers (181)10 and (216)10. Partial

results are generated each clock cycle as the bits enter the multiplier. The upper half of the

product appears after all operand B bits have been issued. Even though Figure 13 shows

only two values being multiplied, the multiplier is constructed to concurrently process n/2

multiplications. The remainder of the bits, for instance, of Cycle 0 in Figure 13 may contain

bits for three additional multiplies where bits [2:3] belong to a multiplication at time, t-1.

Bits [4:5] belong to a multiplication at time, t-2.

Cycle Operand A Operand B Product

0 10110101 ------00 --------------00

1 -------- ----10-- ------------10--

2 -------- --01---- ----------11----

3 -------- 11------ --------10------

4 -------- -------- 10011000--------

Figure 13: Example integer multiplication.

Figure 12 illustrates the pipeline multiplier stages for the floating-point multiplier.

The exponent and mantissa operations can be performed concurrently until the final stage

where normalization takes place. In floating-point multiplication, the exponents must be

added together as they are in this implementation during the first stages. The result from

the exponent addition continues through a pipeline delay until the mantissa result

completes. Carry-out logic from the mantissa multiplication informs the control logic not

to perform a 1-bit shift since the implied one exists. Note that the exponent must continue

through several pipeline delays which requires registered logic.

40

For additional resource savings, the multiplier implementation does not perform

rounding. The design truncates the mantissa value, saving only the upper half of the

multiplier result. By truncating the lower bits of the mantissa, [4] describes the error value

as an equivalent random variable under a uniform distribution serving as additive noise.

3.3.3 Pipelined Delay Component

The pipelined delay component takes advantage of the RAM capabilities of the

Xilinx CLBs. The delays may only be 16 deep but have been constructed in a generic

fashion to provide variable pipeline delays from lengths 2 to 16. Each CLB contains a RAM

array which can be used in conjunction with a 4-input function generator to provide the

write decoding signals. In addition, the delay has been made synchronous in conjunction

with other pipelined components.

3.3.4 Implementation in VHDL

The multiplier VHDL consists of several different components that rely on a

clocked process and registered signals. The components consist of a pipeline delay element,

a 9-bit adder, a 9-bit subtractor, and a 24x24 pipelined integer multiplier as described in

Section 0. The VHDL clocked process provides much of the glue logic for the

components used in order to ensure signals to each component are registered properly and

to avoid timing hazards. The pipelined integer multiplier, for instance, requires that the

inputs be registered for expected results. The inputs to the floating-point multiplier need to

be checked for a possible zero outcome and assert a flag through the pipeline to indicate a

zero value be given as the result during the last stage in the pipeline. The VHDL code

provides concurrent operations for some of the initial stages. As the mantissa undergoes

integer multiplication, calculations on the exponent are done and passed through a pipeline

delay to remain synchronized with the integer multiplier data. The VHDL used in the

multiplier differs from the 32-bit floating-point pipelined adder in that no state machines are

41

required for the multiplier. Instead, the VHDL provides minimal control logic to ensure

the components are given data on the correct cycles.

3.3.5 Stages 0-12: Mantissa Multiplication and Exponent Addition

The multiplier undergoes two separate, parallel operations during the first 12 stages.

One of the operations includes multiplying the two 24-bit mantissa values using the 24x24

pipelined integer multiplier. As Section 0 explained, the multiplier generates the result on

the thirteenth clock cycle. During the mantissa calculation, the exponent addition takes

place using the 9-bit integer adder component. Nine bits, instead of eight, are used to

handle carry-out situations. The carry-out bit provides important information used in the

final stage of the floating-point multiplier to handle exponent biasing adjustments. Since

the exponent calculation does not require more than a clock cycle, a pipeline delay

component delays the calculated exponent result until the last stage when the bias

adjustments are ready to be done. In addition, two smaller logic operations take place. The

first determines if either of the input operands are zero. If so, a special zero-flag needs to

be set. The second uses XOR logic to determine the resulting sign bit of the two input

operands. The zero-flag and sign bit need to be delayed as well until the last stage in the

floating-point multiplier. All data going through the pipelined delay must continue to be

synchronized with operand B going through the pipelined integer multiplier.

3.3.6 Stage 13: Exponent Adjustment and Product Assembly Stage

The last stage receives the data from the pipelined integer multiplier and the other

pipeline delay elements. The stage logic checks the zero-flag bit to see if the output is

simply a zero. Otherwise, a one in the most significant bit of the mantissa indicates the

resulting mantissa value has already been normalized. If not, the exponent must be adjusted

by one and the mantissa output shifted by one. The exponent undergoes subtraction to

remove an extra biasing factor from the addition of an earlier stage in the pipeline.

Depending on the most significant bit of the mantissa, different values are subtracted from

42

the exponent. The final stage assigns the resulting values to the output signals of the

floating-point multiplier.

43

Chapter 4

Filter Tap Design and VHDL

Implementation

The following chapter presents the operation of the scalable filter tap. The scalable

filter tap design integrates the 32-bit floating-point adder and multiplier elements with the

necessary control logic and pipeline delays to perform FIR filtering using complex

arithmetic. The chapter presents a method to map the filter on a CCM possessing a systolic

array architecture using Xilinx XC4036EX FPGAs and 32-bit data buses.

4.1 1-D Time Domain Convolution on a CCM

The design uses the systolic array of processing elements to perform parallel

calculations for the filtering. The next two sections discuss how the algorithm for an nth

order filter maps onto the linear array of processing elements. The first section presents the

basic filter calculations and how the design needs to be partitioned across the CCM

processing elements. The second section describes how the algorithm translates into

VHDL code in order to be synthesized to execute on the hardware. The most important

concept in the first section involves algorithm partitioning which ultimately determines how

much of the design each processing element incorporates.

44

4.1.1 Algorithm and Design Considerations

The algorithm is based upon two taps per processing element and larger filters are

formed by cascading PEs. Chapter 2 covered information on convolution and the similar

calculations required for FIR filtering. The algorithm presented here uses a series of

weighted taps where the different weights represent the FIR filter coefficients. The

coefficients come from a specific filter design based on the type of filtering for which the

application needs. For time domain filtering, the weights are delayed relative to the input

sequence given to the filter, but for each data value entering the filter, the sum of the tap

products give the result for the filter output sequence. The partitioning of such an

algorithm must take into account speed and area consumption of the logic necessary. In

Chapter 6, another important limited resource that needs to be taken into consideration

includes routing resources.

Area consumption considerations depend greatly on the platform being chosen. In

this case, four Xilinx XC4036EX processing elements on a WILDFORCE board make up

the computing array. Since the computing array of processing elements can be expanded

over several boards, the algorithm does not have to be limited to these four processors

alone. Future expansion of the processing array with multiple boards allows higher order

filters to be mapped. The following discusses a mapping that allows one or more

processing elements at a time to be appended to the processing array to increase the filter

order. The algorithm for each processing element can be used in a cascaded manner such

that the data stream enters one side of the array and is then piped through the rest of the

processing elements in a linear fashion. The filter results exit the filter tap array in constant

time intervals. To provide flexibility, each processing element in the array needs to provide

multiplication of the input data stream with the proper filter coefficients as well as

accumulation of the tap product.

Some filter realizations offer distinct advantages over others depending on the

resources that are available. Block diagrams with interconnected multipliers, adders, and

delay elements are referred to as realizations, or structures, to represent the filter system.

The structure may exhibit advantages for software or hardware depending upon the

arrangement. [6] considers three major factors that influence the choice of a specific

45

realization including computational complexity, memory requirements, and finite-word

length effects in the computations. Computational complexity refers to the number of

arithmetic operations required to compute an output value for the system. Memory

requirements refer to the number of memory locations required to store the system

parameters, past inputs, past outputs, and any intermediate computed values. Thirdly, the

finite-word length effects refer to the quantization effects that are inherent in any digital

implementation of the system, either in hardware or software. Computations performed

are either rounded-off or truncated to fit within the limited precision [6]. Direct forms,

cascade, parallel, and lattice structures provide robustness in finite-word-length

implementations [4,6]. This thesis uses a direct form structure to implement the filter which

does not require computation of feedback paths and has a low computational complexity of

M multiplications and (M - 1) additions per output point where M is the number of

weighted taps. The direct form realization requires (M - 1) memory locations to store the

(M - 1) previous inputs. Figure 3 in Section 2.1.2 illustrates the direct form block diagram.

The block diagram manifests the repetitive computations necessary for each tap which

simplifies the algorithm partitioning.

A primary objective in designing and partitioning the logic for each processing

element includes making the architecture general. Using a general design allows the logic to

be easily replicated among several other processing elements. For the design in this thesis,

each processing element contains two filter taps which share a single floating-point adder

and a single floating-point multiplier. Sharing of resources must be done due to physical

constraints. With this design, the processing elements must perform eight multiplies and

eight additions for each set of complex data values that come from the input data stream.

The data stream format must not only contain both real and imaginary parts of the data

values to filter but also the real and imaginary parts of the accumulation values. The control

processing element constructs the data stream in a specific format to allow the processing

elements to properly compute the filter results as shown in Figure 14. As the data stream

enters the filter processing elements, a state machine continuously sends the data to the

multiplier and adder units to compute the results. The design maintains a high computation

rate through a pipelined design. Finite state machines in the processing element control and

46

provide exact timing for the different intermediate results that must be sent to the

arithmetic, delay, and register components.

Re(Data1)
Im(Data1)
Im(Data1)
Re(Data1)

0
0
0
0

Re(Data0)
Im(Data0)
Im(Data0)
Re(Data0)

Figure 14: Constructed input data stream by CPE0.

The control processing element (CPE0) reads data from the input FIFO which

consist of real and imaginary data values only. The zeros must be inserted between each set

of complex data values before being inserted into the filter for computation. The data

values must be inserted in the order as shown above in Figure 14 since the multiplier issues

the coefficients in another order to properly compute the complex multiplication. The

zeros inserted into the data stream serve two important roles: (1) provides multiplication

delay and (2) carries filter accumulation values. Recall that the multiplier must perform eight

multiplies for each set of new data that comes in from the data stream. The first four

multiplies include multiplying the four new data stream values with the tap 0 coefficients.

The next four multiplies use the previous four data stream values with the tap 1 coefficients.

Hence, while the zeros (or possibly accumulation values) are being passed in, the multiplier

computes the results for the second tap in the processing element. Figure 15 below

provides a high level data flow diagram of a processing element. The following sub-sections

discuss the state machines that control the data flow into each of the components of the

diagram.

47

Pipelined 32-bit Floating-
Point Multiplier

Input Data
Stream

Coefficients

MUX

MUX

Tap0 Re(Acc)

Tap0 Im(Acc)

MUX

Pipelined 32-bit Floating-
Point Adder

Multiplier
Result
Delay

Multiplier
Result
Delay

Data Stream
Delay

Tap 0 Data
Delay

MUX

MUX

Tap 1 Data

Data Stream
Delay

Tap1 Re(Acc) Tap1 Im(Acc)

MUX

Output Data Stream

Figure 15: Processing element component connectivity.

48

4.1.2 Implementation in VHDL

The VHDL code consists of four state machines that provide control logic for the

components shown in Figure 15 above. The processing element does not process any data

coming in from the input data bus until the data detection state machine identifies valid

data. Once valid data has been detected, a signal notifies the coefficient loading state

machine to begin reading the coefficient data from local memory in order to issue the

correct values to the floating-point multiplier. To correctly synchronize the coefficient data

with the input data stream values, the coefficient loading state machine notifies the

multiplier operand loading state machine when to begin accepting data from the input data

stream delay line. Finally, the multiplier operand loading state machine notifies the adder

operand loading state machine when to begin performing accumulations with the multiplier

results and the input data stream accumulation values. The state machines synchronously

transfer from one state to another using a variety of handshake signals to notify one another

when to start processing. Additional signals from each state machine provide control for

different components, such as registers, in order to store the correct values for each

computation cycle.

The VHDL code uses several pipeline delay elements to properly synchronize the

different data streams throughout the design. The floating-point adder and multiplier do

not compute results in the same amount of time and thus require pipelined delay insertions

between some data paths. During accumulation, certain multiplier values cannot be used

immediately and must be inserted into a pipeline delay until the correct operand becomes

available. Section 0 describes the state machine responsible for accumulation and the timing

pattern that must be used to correctly add the real and imaginary products with the

incoming accumulation value of the data stream from the previous tap.

49

4.1.3 Data Detection State Machine

The design incorporates a small state machine to determine whether or not the filter

should begin processing the incoming data. The series of handshake signals to begin

processing rely on the “dataDetected” signal to indicate when valid data has been found on

the input data bus. The state machine examines the four tag bits of the input data bus and

remains in a non-detected state until a single valid tag has been detected. Once detected,

the state machine continues to stay in the detected state forever, regardless of future tag

values. Some registers depend on the “dataDetected” signal to work in conjunction with

other control signals to enable storage of particular values only when valid processing

occurs. For instance, the tap accumulation registers do not register anything unless the

proper state machine enable signal logically ANDed with the “dataDetected” signal has

been asserted.

4.1.4 Coefficient Loading State Machine

Each processing element must provide a complex coefficient for each tap. The

coefficients are multiplexed as operand B to the multiplier to be multiplied with the input

data. Since operand B to the multiplier must be issued in a special format as described in

Section 0, different parts of each coefficient must be interleaved to form the operand value.

One approach to the problem uses twelve 4-to-1 multiplexers to build the mantissa part of

the B operand from the four registered 32-bit coefficients read from memory. Another

approach involves pre-processing of the coefficients such that they can be read directly

from memory and issued to the multiplier B operand. The design incorporates the second

approach that not only simplifies the implementation but also reduces the amount of CLB

logic and flip-flop consumption. Instead, a 3-bit counter continuously provides the eight

memory addresses from which to read the B operand patterns. In addition, the state

machine awaits the data detected signal and begins reading the memory contents for the

multiplier operand. The coefficient state machine must also signal the multiplier operand

loading state machine to begin accepting data from the input data stream pipeline delay.

50

4.1.5 Multiplier Operand Loading State Machine

The 32-bit floating-point multiplier must be shared between two filter taps in a

single processing element. For each new complex data value coming in on the input bus,

the multiplier performs four calculations for the first tap (tap 0) and another four for the

next tap (tap 1). The multiplier A operand multiplexes between the current input data

stream and a delayed version of the input data stream. The multiplier B operand accepts

data directly from the memory data register. The control and select signals to synchronize

Input Data
Stream

MUX

Pipelined 32-bit Floating-
Point Multiplier

Coefficients

Data Stream
Delay

MUX

Tap 0 Data
Delay

MUX

Tap 1 Data

Negation Logic

Multiplier Result

Figure 16: Multiplier component interconnections.

51

the data correctly between the two multiplier operand sources comes from the multiplier

operand loading state machine.

The state machine must provide the control signals at precise moments to

synchronize data to the multiplier. In addition, the state machine enables the adder operand

loading state machine to begin accumulation. When multiplication for the first tap occurs,

the control logic selects the data stream input values to be multiplied with the incoming

coefficients being read from memory. The coefficient loading state machine enables the

multiplier operand loading state machine at precisely the right moment for synchronization.

As the values come in from the input data bus, the four values not only go into the

multiplier but also into a pipeline delay component for the second tap. In addition to this,

another set of delay elements holding the current data values for the second tap are re-

circulated until the state machine is ready to perform the multiplication for the second tap

(see Figure 15). When the state machine finishes with the first tap calculations, the second

tap data values are selected from the multiplexer. During these states, the re-circulation

feedback paths to the second tap pipeline delays are no longer used but rather accept data

from the previous pipeline delays. The two pipeline delays can be seen in Figure 16 above

as the “Tap 0 Data Delay” and “Tap 1 Data” blocks. The state machine controls the two

input multiplexers to each of these pipeline delay elements. Aside from data flow control to

the multiplier input, the state machine controls the negation logic, as seen in Figure 16

above, accepting the pipelined 32-bit floating-point multiplier output. On certain states, the

negation logic inverts the sign bit to handle multiplication of two imaginary values.

4.1.6 Adder Operand Loading State Machine

The accumulation state machine to issue operands to the adder must provide

selection for two multiplexers. Operand A may be selected between different multiplier

result pipeline delay outputs or directly from the multiplier output. Operand B may be

selected directly from the input data stream, either of the two tap 0 accumulation registers,

or possibly a feedback path from the adder output. Pipeline delay mechanisms and

feedback paths provide appropriate synchronization for partial real and imaginary

52

summations. The adder has an eight cycle latency which prevents results coming out of the

multiplier to be correctly summed within a single pass through the adder. Hence, multiplier

result pipeline delays of eight and sixteen hold necessary multiplier results until needed by

the adder. Complete accumulation for a particular complex data input value requires three

passes through the pipelined adder. The following table outlines the eight states of the

adder operand loading state machine.

Table 2: Adder Operand Data Path Selections.

State Operand A Operand B
0 Multiplier Output Direct Input Data Stream
1 Multiplier Output Delayed 8 Adder Output Feedback
2 Multiplier Output Direct Input Data Stream
3 Multiplier Output Delayed 8 Adder Output Feedback
4 Multiplier Output Delayed 8 Tap 0 Re(Acc) Register
5 Multiplier Output Delayed 16 Adder Output Feedback
6 Multiplier Output Delayed 8 Tap 0 Im(Acc) Register
7 Multiplier Output Delayed 16 Adder Output Feedback

The adder operations in the state machine split the accumulations between the two

taps where the first four operations are associated with tap 0 and the second four associated

with tap 1. Real and imaginary results exiting the multiplier must be summed accordingly

with the real and imaginary accumulation values coming from the input data stream (which

are essentially accumulations from previous taps). The multiplier performs the following

calculations for t=0:

For Tap 0:

Re(D0) x Re(C0) = Re0(0)
Im(D0) x Im(C0) = Re1(0)
Im(D0) x Re(C0) = Im0(0)
Re(D0) x Im(C0) = Im1(0)

For Tap 1:

Re(D1) x Re(C1) = Re2(0)
Im(D1) x Im(C1) = Re3(0)
Im(D1) x Re(C1) = Im2(0)
Re(D1) x Im(C1) = Im3(0)

53

where D0 is the complex data value to be multiplied with the Tap 0 coefficients producing

two real and two imaginary values, and D1 is the complex data value to be multiplied with

the Tap 1 coefficients producing two real and two imaginary values. The processing

element must accumulate the real parts and imaginary parts of the Tap 0 products with an

incoming complex accumulation value made up of Re(Acc) and Im(Acc). During the same

computation phase, the processing element also begins a similar accumulation for the Tap 1

products. The primary difference between the two accumulation procedures is that Tap 0

accumulates with data coming from the input data stream while tap 1 accumulates with the

previous tap 0 accumulation values held in registers (Tap0 Re(Acc) and Tap0 Im(Acc)

registers as shown in Figure 15). Thus, the accumulation equations for the adder become:

For Tap 0:

Re0(0) + Re(Acc) = ReX(0)
Re1(0) + ReX(0) = Re0(Acc) (registered)
Im0(0) + Im(Acc) = ImX(0)
Im1(0) + ImX(0) = Im0(Acc) (registered)

For Tap 1:

Re2(0) + Re(Acc) = ReY(0)
Re3(0) + ReY(0) = Re1(Acc) (registered)
Im2(0) + Im(Acc) = ImY(0)
Im3(0) + ImY(0) = Im1(Acc) (registered)

The accumulation procedure essentially follows the above sequence of additions to

produce the intermediate and final accumulation values. Since the adder has an eight cycle

latency, the intermediate summations cannot be used immediately as implied by the

equations above. Instead, pipeline delays hold off certain input values for either eight or

sixteen clock cycles as shown in Figure 15 by the two delay elements following the

multiplier. For instance, the Re1(0) value needs to be added to the intermediate

summation of ReX(0). Since the result does not appear until eight clock cycles later, the

Re1(0) multiplier output must be delayed. Table 2 above describes where each state must

obtain its input to correctly accumulate the final tap 1 values, Re1(Acc) and Im1(Acc). The

adder latency prevents accumulation calculations to be interleaved and produces a larger

54

latency due to the addition of intermediate results. Since some multiplier results must be

delayed as many as sixteen cycles, the latency turns out to be 24 clock cycles from the

introduction of the first two adder operands.

4.1.7 Processing Element Output Stage

The processing element must interleave the data values with the accumulation

values, as similarly shown in Figure 14. Rather than zeros, between the two sets of data

values, accumulation values are inserted. The input data stream passes through a cascade of

pipeline delay elements such that the accumulation values are synchronized for the

following processing element. The input data stream actually follows the accumulation

stream by 24 clock cycles - the latency of the accumulation. Rather than create another

state machine, the multiplier operand loading state machine suffices to issue the multiplexer

select signals to build the output data stream.

4.2 MATLAB Filter Design Techniques

The MATLAB mathematical computation package in conjunction with digital signal

processing toolboxes help generate coefficients for the filter. In addition, the program

provides a means to help verify the design. Within the DSP toolbox, standard FIR filtering

functions can be used to filter signals, generate FIR coefficients with or without windowing

techniques, and graphically display the time-domain or frequency spectrum results.

The filter design meta-file allows for arbitrary length filters, selective frequency

cutoff, and the ability to apply different windowing techniques provided by MATLAB

which include Hamming, Hanning, Blackman, triangular, rectangular, and tapered

rectangular. Once the type of filter has been selected with the few parameters needed, the

program generates the filter coefficients and displays the frequency response. To display

the filtering capabilities with the selected parameters, four summed sinusoids undergo

filtering. The before and after filtered power spectrums have been plotted. Appendix B

55

illustrates the different type of filters the MATLAB meta-files can generate, which includes

lowpass, highpass, bandpass, and bandstop filters.

The use of windowing functions to supplement the filter design reduce Gibbs

phenomenon [4,6,24]. Gibbs phenomenon stems from the abrupt truncation of the infinite

series described by the ideal impulse response [24]. When dealing with FIR filters, the

length, or number of coefficients, used to represent the filter determines the effective cutoff

of frequencies outside the passband. Hence, a longer filter results in a smaller transition

band. Increasing the size of the FIR filter has drawbacks, which include increased delay and

computational burden [6,24]. The use of windowing functions in the design techniques help

reduce the width of the transition band and energy of the sidelobes for the shorter length

filters constructed. In the previous sections of the chapter, the design can only fit two taps

per processing element which comes to a total filter length of L= 8. Although the length

may be short with a single board, larger FIR filters can be constructed as Section 5

discusses.

4.3 SIRCIM Channel Model Coefficient Generation

Coefficients to model wireless indoor channel impulse responses can be generated

by a program developed by Ted Rappaport, Scott Seidel, Prabhakar Koushik, and Scott

McCulley, called SIRCIM (Simulation of Indoor Radio Channel Impulse response Models)

[10,15]. The program is based on measurements taken in indoor locations from which

statistical models are developed [10]. The model data includes the number of distinct multi-

path signals, the arrival times, and amplitudes of individual multi-path components [15].

The results of the program give detailed information about the channel model, including

wide band path loss, RMS delay spread statistics, and temporal fading effects over time - all

which can be plotted to be visually examined.

The channel model coefficients are computed based on several different user input

parameters, such as carrier frequency, LOS (Line of Sight) or OBS (Obstructed Sight)

visibility, transmitter-receiver separation, and even the type of partitioning the building

56

possesses which includes open, hard, or soft. The information found in [10], [11], and [15]

give a better understanding of how the different parameters affect the channel impulse

response. Therefore, depending on the designer’s needs for modeling, SIRCIM offers the

means to customize the channel according to the environment. The SIRCIM output files

contain the necessary data which has the complex impulse response coefficients in

magnitude-phase form, which can be translated into filter coefficient memory files.

According to [15], SIRCIM could be used to provide the necessary data to drive hardware

simulators. Hence, the FIR filter design on a CCM which supports complex computations

may accelerate large simulations.

57

Chapter 5

FIR Filter Data Flow Design on CCMs

The implementation of the algorithm presented in Chapter 4 has been tailored for

the WILDFORCE custom computing machine. On WILDFORCE as described in Section

0, five processing elements make up the processing array in which the algorithm has been

partitioned over. The algorithm for the filter can be mapped onto any CCM that possesses

a similar processing array architecture. Slight modifications to the implementation can be

done to port the design over to other CCMs. Although the design attempts to stay away

from data flow control based on timing constraints, injection of the data into the filter

requires specific delay intervals which Section 5.1.2 covers. In conjunction with the

hardware, the host software plays an important role in continuously issuing data to the input

FIFO on the board while at the same time reading filtered data from the output FIFO. In

addition, the host software control program is responsible for initializing the filter, setting

up the clocks, and downloading the algorithm to the board. Despite having only four

processing elements to represent the filter, Section 0 presents a method to increase the filter

length by re-circulating the data through the filter and dynamically loading the filter

coefficients.

58

5.1 Filter Data Flow Through the WILDFORCE

Architecture

Although the processing elements have a pipelined adder and multiplier, the

calculations cannot be completed so that a complex result occurs each clock cycle. The

input stream from the data source issues the real part of the data value first, then the

imaginary part. The filter must also share the data stream bus between the data to be

filtered and the accumulation results as Figure 14 in Section 0 shows. Each complex value

input consumes four data slots while accumulation values consume another four slots

before repeating the same pattern for the next input data value and accumulation value.

Thus, each new complex data value requires eight slots, or cycles, to represent a calculation

cycle. Once valid data has been detected from the input source, the filter continuously

receives data from the control processing element.

CPE0 reads data in from its FIFO and sends them to the first filter processing

element by means of the crossbar in the case of the WILDFORCE implementation. Since

the processing element expects a particular pattern for the data stream, CPE0 must format

the data stream accordingly. The data stream pattern passed into the first processing

element must issue the real and imaginary part of each data value twice followed by four

zeros for accumulation data value place holders. Hence, CPE0 does not read data from the

input FIFO every clock cycle. To mark the data as valid, the control processing element

sets the tag bits which the filter processing elements recognize and acts upon. The control

processing element continues such a cycle of operations until all the data has been read

from the FIFO. The following sections describe the timing issues involved with injecting

the data into the filter processing array and how the processing element state machines

move the data through the WILDFORCE custom computing machine.

5.1.1 Data Flow Specifications

The number of data items to be filtered can be of any size and, therefore, is typically

stored on disk or some other non-volatile storage media. The host software role includes

59

reading the data from the media and continuously sending it into the CCM input FIFO for

filtering. The host needs to monitor the FIFO full and empty flags in order to regulate the

input flow. The control processing element of the filter regulates the intake of the data into

the FIFO, injecting data from the FIFO at a fixed rate. If the FIFO runs out of data and

starves the filter, the end of the sequence simply finishes and does not get acknowledged by

the control PE. Since the FIFO runs out of data, the read does take place from the FIFO

and no valid data goes to the first processing element.

Essentially, two data streams flow through the filter: (1) the data values to be

filtered, and (2) the accumulation of products from the multiplication of the filter

coefficients and the data values. In order to make the proper accumulations of the

products, the input data values associated with accumulation values going through the filter

need to be delayed behind the accumulation values by exactly two computation cycles.

Each processing element contains internal delay registers to provide the delay needed.

Depending on the architecture of the CCM, the data flow from the control processing

Data Storage
Device

Host
Computer

Input FIFO

Control
Processing

Element

Processing
Element 1

Processing
Element 2

Processing
Element 3

Processing
Element 4

Output FIFO

Figure 17: Data flow through WILDFORCE.

60

element may differ. On WILDFORCE, the data comes into the first processing element

through the crossbar. After the data has gone through the internal taps within each

processing element, the data and accumulation values get transferred out the right systolic

array bus and into the neighboring PE. The above diagram in Figure 17 shows the flow of

data coming from the storage media, through the host computer, through WILDFORCE,

and back to the host computer to be possibly stored on the media. Should the filter need

to be expanded with more processing elements, WILDFORCE and similar platforms allow

the data to be sent to another board via a SIMD connector. The data can then flow into

the processing array of another board. The following section provides more detail on the

internal flow of the tap state machines. The last processing element in the array may either

transfer both, the accumulation values and the data values, or just the accumulation values

depending on whether or not the filter length is to be lengthened by re-circulation. The

host software must also monitor the output FIFO in order to keep the FIFO from

completely filling and storing the data to either a large memory buffer or non-volatile media

for post-processing and analysis.

5.1.2 Data Flow Control within the Processing Element

The finite state machines within each processing element move the data from the

input bus to several holding and delay registers. To ensure the data moves about correctly

within the processing element, one state machine moves data into the processing element

and another moves data out. The state machine that moves data into the processing

element looks for a specific tag on the input data bus and continues to select different

multiplexers to register the data coming in on the bus. The output shifting state machine

not only shifts data out of the processing element but also moves data from the first

internal tap to the next by means of delay registers. In the figure above, the data comes

from the input data bus which on WILDFORCE could be the crossbar or left systolic bus.

Holding registers within the PE keep the data values and running accumulation for the

computing engine state machines. Data values enter the computation cycles through the

adder and multiplier which are regulated by separate adder and multiplier state machines.

61

Data values that have to be filtered need to go through both the feedback path into the

multiplier unit and also through the delay registers depending upon the state of the PE.

Accumulation values coming from the adder need to go through the delay registers and if

from the second tap of the PE, directly out to the right systolic bus. Feedback data paths to

the adder allow accumulation of products from the complex multiplication to be performed

using multiple passes.

Data Input
Stream

Accumulation
Input Stream

Pipelined 32-bit Multiplier Pipelined 32-bit Adder

Delay

Delay

Holding
Registers

Coefficients

Delay

Delay

Delay

Ouput
Accumulaion

Stream

Delay

Output Data
Stream

Figure 18: Processing element internal data flow paths.

5.2 Filter Architecture on Other CCMs

Although each PE has been customized for WILDFORCE, portability to other

custom computing machines has not been excluded but do require similar capabilities. The

62

architecture must first possess a data path through an array of computational elements.

Having such an architecture allows for the array to be either lengthened or shortened as

needed. Handshake signals need to exist between each element to signal when valid data

transfers from one PE to another in the array. In the case of WILDFORCE, the tag bits

allow detection of valid data packets off the input data bus. To regulate data flow into the

filter, a control processing element at the head of the computing array needs to be able to

accept data and transfer the data with some indication of valid data packets. WILDFORCE

again uses the tag bits to identify valid data packets. The last processing element in the array

needs to have the capability to transfer data to the host for possible post-processing. Each

last element on WILDFORCE allows the data to continue on to the next board for filtering

through the SIMD connector or can place the results in an output FIFO for the host to

read.

5.3 Variable Filter Lengths Using Re-circulation

The design presented implements two filter taps per processing element which

severely limits the length of the filter and thus, may reduce the effectiveness of the filter. In

order to increase the length of the filter, the results may be re-circulated through the filter

multiple times. For each pass through the filter, new coefficients to represent the next

consecutive taps must be loaded. Note that the results from the filter may already have the

data stream interleaved with the accumulation values which only require that the stream be

directly passed through the filter once the new coefficients have been loaded. Section 6

illustrates the differences between using filter lengths of 7 and 31 to perform lowpass,

highpass, bandpass, and bandstop filters on similar signals. Higher order filters provide

better frequency cutoff and lower sidelobes to minimize unwanted frequencies.

63

Chapter 6

Synthesis Results and Implementation

Verification

This chapter covers the results from synthesizing the VHDL and from the

verification of the implementation on a WILDFORCE board. The verification process

includes filter comparisons between a 7-tap and 31-tap FIR filter. Each set of filter

coefficients have also been convolved with a rectangular window. Error analysis plots have

been included to compare the implemented floating-point format with the IEEE 754

floating-point format. In addition, performance numbers have been included in terms of

MFLOPs based on the clock speed at which the filter may be executed.

6.1 VHDL Synthesis Results

Incremental construction and synthesis of the design help determine how much a

particular resource consumes. Furthermore, an incremental approach alleviates design

debugging and helps narrow the possibilities when errors occur during the implementation.

In the process of creating the filter in this paper, the first few iterations from the VHDL

coding step to synthesis did not utilize CLB resources efficiently and failed to make use of

the global reset line. As refinements were made in the coding style, more efficient use of

the logic blocks became apparent as the total usage of CLBs dropped by 15% in some cases.

Registers and other elements in the design can be connected to the global reset by using the

64

asynchronous reset signal in the registered process as shown in Figure 19. Therefore, not all

VHDL code produced the same results which depended greatly on the constructs and how

they were used.

The filter used three different tap designs to incorporate FIFO input (Block A),

FIFO output (Block C), and the processing elements in between (Block B). Figure 17

illustrates that Block A must receive data from the crossbar and pass the results onto the

next processing element through the right systolic data bus. Block B receives the data and

accumulation stream from the left systolic data bus and passes the data and accumulation

stream out the right systolic data bus. Block C receives data from the left systolic data bus

and passes the results to the host through the output FIFO. Table 3 lists the final synthesis

results of each different block (less the resources consumed by the 24-bit integer multiplier

and several of the pipeline delay elements) after using Synplify’s Synplicity tool to produce a

Xilinx netlist file. Table 4 provides the actual resource consumption during the place-and-

P_Reg : process(PE_Reset,
 PE_Pclk)

 begin

 if (PE_Reset = '1') then
 presentDetectState <= InitDetectState;
 presentCoeffLoadState <= InitLoadState;
 presentMultFeedState <= MultFeedState0;
 presentAdderFeedState <= AdderFeedState0;

 PE_MemAddr_OutReg(21 downto 0) <= (others => '0');

 tap0ReAcc_Reg <= (others => '0');
 tap0ImAcc_Reg <= (others => '0');
 tap1ReAcc_Reg <= (others => '0');
 tap1ImAcc_Reg <= (others => '0');

 PE_Right_Out(35 downto 0) <= (others => '0');

 elsif (rising_edge(PE_Pclk)) then

Figure 19: Asynchronous global reset coding technique.

65

route phase which may also include redundant or replicated logic to possibly meet timing

specifications or reduce lengthy routing.

Table 3: VHDL synthesis results for a XC4036EX device.

Block A 34% of CLB FG function generators
14% of CLB H function generators
49% of CLB flip-flops

Block B 34% of CLB FG function generators
14% of CLB H function generators
49% of CLB flip-flops

Block C 33% of CLB FG function generators
13% of CLB H function generators
44% of CLB flip-flops

Table 4: Place and route results for a XC4036EX device.

Block A 98% CLB usage
69% of CLB flip-flops

Block B 98% CLB usage
69% of CLB flip-flops

Block C 88% CLB usage
65% of CLB flip-flops

Unfortunately, the consumption of CLBs does not always give a good indication of

whether or not the processing element will both place and route on the chip. The place-

and-route phase depends greatly on the tool being used to perform these operations.

Efficient placement typically leads to efficient routing so that signals are not only routed

correctly but routed so that delays do not affect the entire design performance. Specially

constructed pipeline delay elements helped to reduce the number of 32-bit registers that

would have been required to provide the necessary delays between operations in the design.

The delay elements took advantage of the CLB RAM resources rather than consuming flip-

flops. The RAM resources within the CLB allowed for up to 16 different bit values to be

stored at any one time. By stacking 32 CLBs in such a manner allows for up to 16 delay

registers. Constructing the same number of 32-bit registers using VHDL synthesis would

66

consume 512 flip-flops. A combination of such techniques may be required to alleviate

resource consumption.

6.2 Results Verification Using MATLAB

MATLAB is a software mathematical computing environment for numeric

computation and visualization [29]. The environment allows users to enter problem

specifications through a command-line interface or scripts called meta-files. MATLAB

possesses its own language constructs in order to build meta-files. In addition to

computation, built-in functions allow users to graphically represent data through charts,

plots, or graphs. With additional libraries, signal processing support functions for filtering

and spectrum analysis can be done. MATLAB has been used to quickly generate

coefficients using techniques described in [24]. Meta-files provided by [24] allow users to

select the type of filter with a variation from six different windowing functions. As a

baseline, the filter coefficients are convolved with a rectangular window. To verify the

implementation on WILDFORCE, four types of filters have been designed in MATLAB

including a lowpass, highpass, bandpass, and bandstop filter.

6.2.1 Filter Verification with Real Numbers

One part of the verification exhibits the capability of the filter to process values

using real numbers. Since the filter accepts complex values, the imaginary part of the data

can be zeroed. The following section covers the bandpass filter verification. Appendix B

provides similar plots for the other filter types. Filter lengths of 7 and 31 shall be used to

illustrate differences and trade-offs between single and multiple passes through the filter.

The input signal to pass through each filter has been generated with the addition of four

sinusoids at different frequencies. The frequencies have been chosen to show not only the

distinct properties of each type of filter but the effectiveness according to their lengths.

Figure 20 shows a spectrum plot of the signal frequencies.

67

Figure 20: Frequency spectrum of input signal.

Figure 21: Filter of length 7 error analysis.

The first part of the verification involves an error analysis between MATLAB and

WILDFORCE executions. Data obtained from WILDFORCE are compared against the

calculated IEEE floating-point values by MATLAB. The conv() or filter() function

provides the same filtering operation performed on the WILDFORCE board. Figure 21

and Figure 22 provide the error in decibels for the 7-tap and 31-tap filters, respectively. The

68

average error stays well below the -100 dB range for both filters. Peak errors depicted in

the analysis plots indicate data points where the expected and actual values equaled zero.

For the 31-tap filter, re-circulation of the output may compound the error introduced in

each consecutive pass through the four processing elements. The mean error for the 7-tap

filter is approximately -122 dB and -118 dB for the 31-tap. With the anomalies excluded,

peak errors of -78 dB and -59 dB exist for the 7-tap and 31-tap filters, respectively. The

average error comes out to be about 0.0001% for both lengths. Table 5 provides mean

errors for the other filter types found in Appendix B.

Figure 22: Filter of length 31 error analysis.

Table 5: Mean filter error comparisons with IEEE 754 standard.

Filter Type Filter Length 7 Error Filter Length 31 Error
Lowpass -124 dB -114 dB
Highpass -125 dB -114 dB
Bandpass -122 dB -118 dB
Bandstop -123 dB -115 dB

69

The second part of the verification exhibits the capability to expand the filter to an

arbitrary length by simply re-circulating the output from the systolic array. As Figure 17

shows from Section 0, the FIFO output going to the host may be issued back to the input

FIFO once the new filter coefficients have been loaded. This technique has been done to

create filter lengths greater than the eight provided through the four processing elements.

Filter lengths may also be extended by cascading several boards but will not be as cost

effective as re-circulating the output. The trade-off poses the typical cost-performance

situation. By reducing on the number of boards, the host must intervene in order to reload

new coefficients and re-issue the data to the filter, whereas cascading several boards for one

large filter allows for possible real-time applications of the filter. Higher order filters affect

several aspects of the filter, including the sidelobes, the roundness of the cutoff, and the

transition band of the frequency response. Appendix B illustrates the different filter

frequency responses between 7-tap and 31-tap filters. Figure 23 shows some of the

different characteristics of the two filters. In the frequency response plot, notice the

considerable gain on the left sidelobe of the 7-tap filter which allows substantial amounts of

energy to pass for the lower frequencies outside the cutoff.

Figure 23: Spectrum plot of bandpass filtering for 7 taps (left) and 31 taps (right).

70

The typical cost-performance trade-off determines whether to use a lower order

filter with speed or a higher order filter with significant overhead processing. Lower order

filters provide simplicity and may be enhanced to an extent through the use of different

windowing techniques. If the signal possesses large gaps between different frequencies,

lower order filtering may be adequate. Applications requiring a more narrowband selection

of frequencies use larger order filters to achieve proper signal filtering. The overhead

processing associated with large data transfers may be alleviated using host and bus-master

DMA channels. In addition, high-priority interrupt service routines may handle new

coefficient loading for the filter. Such host processing techniques may reduce the turn

around time to get the data back into the filter for multiple passes.

6.2.2 Filter Verification with Complex Numbers

One of the motivating ideas behind this thesis includes a means to perform channel

model simulations in conjunction with SIRCIM as described in Section 0. SIRCIM

generated data may be used to provide the necessary complex valued coefficients to

represent different channel mediums for wireless indoor radio simulations. The verification

Figure 24: Spectrum plot of bandpass filtering for 7 taps (left) and 31 taps (right).

71

filtering shown in Figure 24 illustrates the error between complex convolution provided by

MATLAB and the same execution done on WILDFORCE using the same complex

coefficients and input data stream through a 32-tap filter. The average error in decibels

turns out to be about the same for both at -133 dB.

6.2.3 Filter Performance on WILDFORCE

The filter implementation incorporates a fully pipelined design which utilizes the

floating-point multiplier and adder units within each processing element to the fullest. With

each ALU producing a floating-point result each clock cycle, and the clock running at 20

MHz, each processing element achieves 40 MFLOPs/s. 160 MFLOPs/s can be achieved

with a single WILDFORCE board having four processing elements in the systolic array.

Cascading four WILDFORCE boards in a single host can achieve 640 MFLOPs/s for the

system.

Re-circulating data through the filter allows higher order to filters to be achieved but

at the expense of overhead processing done by the host. For each pass through the filter,

new coefficients need to be loaded into the filter memories which require the host control

program to halt processing, write to the PE local memories, and start the filter again. By

far, loading new coefficients consume the most time during the overhead processing. As

the number of filter taps increase, the overall performance degrades linearly since the time

to load coefficients remains the same for each pass through the filter. The time to write the

coefficients to memory for a single processing element takes roughly 8.5 milliseconds.

Additional overhead expense to reset and start up the filter again is about 6.5 milliseconds.

Therefore, the following equation can be used to roughly figure out the overhead for re-

circulation:

((8.5x)y + 6.5y)z = total overhead in milliseconds (6.1)

where x is the number of PEs on the board, y is the number of iterations, and z is the

number of boards in the host. The overhead calculated here accounts for the down-

processing time that the input signal is not being filtered. Hence, another important factor

includes the length of the data stream. For instance, if the filter executes at 20 MHz and the

72

host needs to perform a re-circulation every second, the effective PE MFLOPs/s rating

would drop from 40 MFLOPs/s to 36.76 MFLOPs/s. But as the size of the input stream

increases to where the overhead occurs once every 10 seconds, the effective computing rate

becomes 39.67 MFLOPs/s. From the empirical overhead data of Equation 6.1, the

effective MFLOP rating for higher filters can be quantified as shown in Figure 25. The plot

illustrates the MFLOP rating change as the size of the input data stream increases in length.

As the length increases, the distance in the time between re-circulation overhead

occurrences increases. The number of times the host code must re-circulate the data is

fixed depending on the size of the filter.

256-Tap
Filter

32-Tap Filter

128-Tap
Filter

64-Tap Filter

Figure 25: Effective filter performance with data re-circulation.

73

Chapter 7

Conclusions

This thesis has been motivated by finding ways to accelerate and off-load the

computing burden of complex FIR filtering to hardware. Thirty-two bit floating-point

representations attempt to make the FIR filter more feasible for simulation purposes and

possibly real-time applications. The representation and implementation provides another

means of 32-bit floating-point computing on re-configurable platforms and may contribute

to future continuing work. The following few sections discuss possible continuing work on

the filter to perhaps improve or utilize its current capabilities, describe some of the

limitations the filter implementation encountered, and finally, presents a reflection on the

results of the work presented.

7.1 Suggestions for Future Work

The current design of the FIR filter utilizes the floating-point multiplier and adder

units within each processing element every clock cycle. The current pipelined adder

requires 14% more resources than the multiplier according to the synthesis results and

approximately 26% more routing resources according to the place-and-route tools. Possibly

a more efficient pipelined adder may reduce the size and complexity of the design to fit into

smaller FPGAs and reduce the cost. Also, with a shorter pipeline, the adder may perform

all the necessary additions in a shorter time frame, thus reducing the size of pipeline delays

associated with feedback to the adder - another means to lessen the cost. Since the design

74

is fully pipelined, performance increases would mean increasing the clock rate which may

lead to simpler, yet faster components and data paths within the processing element. For

example, an early design trade-off issues pre-processed coefficient patterns to the filter

rather than using multiplexers to select from registers. Tremendous savings were made in

CLB resources and even more importantly, routing resources. Similar design trade-offs that

can be moved off-chip and pre-processed for the filter may help performance and resource

consumption.

Aside from the performance work that can continue, applications that use the filter

can be constructed with the use of external I/O interfaces. WILDFORCE provides a

means to send and receive data to and from the PE FIFOs directly. With such connections,

properly sampled digital data can be fed directly into the filter and directly out of the filter

to provide real-time filtering depending on the sampling rate. Near future capabilities to

WILDFORCE allow higher data transfers to and from the board which provide better

performance measures for host driven applications. Software programs that need to filter

stored data can use the CCM filter to perform intensive computations with little or no host

processor intervention through the use of DMA and multi-threading techniques.

7.2 Design Limitations

Limitations exist for the design, which impose different design strategies to

compensate. The challenge of constructing the filter not only lies in the design speed but

also in a design that will fit into low cost FPGAs. Limited number of CLBs and routing

resources bring about two of the foremost concerns when developing with FPGAs. Fast

but inefficient VHDL coded arithmetic units consume vast amounts of logic and routing

resources which may possibly limit the amount of supplemental control logic. Even

efficiently coded VHDL may result in unwanted, large arithmetic units. In turn, fewer taps

may be designed into each processing element. In this particular thesis, larger arithmetic

units which may result in shorter pipelines have been traded-off for longer pipeline latencies

and lesser resource consumption. Providing simpler logic stages and a longer pipeline, the

multiplier may still achieve feasible calculation speeds. Automated synthesis tools may not

75

always produce the most optimized results and therefore, designers may have to manually

optimize certain areas. For example, the integer multiplier provided by Annapolis Micro

Systems, was not generated by VHDL or synthesis but from C code that directly generated

a Xilinx netlist formatted file to be used directly by the place-and-route tool. Similar

techniques to generate the pipeline delay units had to be done. For simulation purposes,

models had to be created to reflect the exact timing and results for each of these entities. In

other cases, careful VHDL coding techniques may be used to produce the desired results to

help reduce resource consumption and possibly increase operating speeds. The floating-

point adder that uses two shifters for the mantissa denormalization and normalization

originally incorporated variables in the implementation. Instead, a VHDL coding technique

using signals rather than variables to implement a barrel shifter has been conceived. Signal

usage eliminated more than 42% of the routing according to the place-and-route tool when

performing a direct comparison of the two different types of implementations.

7.3 Conclusions on the Work

The design and implementation meet the primary FIR filter goals which include 32-

bit floating-point multiplication and addition with a scaleable filter architecture for real or

complex filtering. The filter can be enhanced by simply adding more processing elements

to the CCM computing array or by re-circulating the filter results. In addition, coefficient

loading into local memories provide dynamic filter changes without having to re-program

the processing elements. With larger FPGAs that have recently become available, better

implementations can be done to help improve routing and provide more logic for the

arithmetic units to help shorten the pipeline delays. The current pipeline design must

interleave the input data stream with the accumulation stream which limits the input

bandwidth by half. Future versions on larger FPGAs may introduce 64-bit data paths to

allow both streams to flow contiguously or possibly send the real and imaginary parts of

each value simultaneously where either one would increase the bandwidth. CCMs provide

such flexibility for DSP in that the hardware can be tailored precisely to the algorithm from

76

configurable logic. Whereas with DSPs, the algorithm must be fitted to a generic set of

fixed resources.

77

Appendix A

Filter Processing Element Finite State

Machines

The design of the processing element architecture has been created such that it may

be replicated across all FPGAs in the systolic array. Subtle differences to adjust for different

I/O buses may have to be done but the basic core set of state machines and control flow

remain the same across all processing elements. The following appendix provides some

diagrams to supplement Section 0 on the state machines that control the data flow

throughout each processing element. The four state machines include:

• Data Detection State Machine

• Coefficient Loading State Machine

• Multiplier Operand Loading State Machine

• Adder Operand Loading State Machine

78

A.1 Data Detection State Machine

Table 6: Data detection FSM states.

State Description Output(s)
0 The FSM starts in this state during a reset and

continues to stay in this state until the correct tag
word has been identified on the input bus. The
tagDetected flag indicates a valid tag has been
found on the input bus and continues to the next
state.

dataDetected = 0

1 After detecting valid data on the input bus, the
FSM asserts the dataDetected signal to notify the
rest of the control that the processing element
should begin processing the incoming data.

dataDetected = 1

State 0

State 1

tagDetected=0

tagDetected=1reset=1

Figure 26: Data detection finite state machine.

79

A.2 Coefficient Loading State Machine

Table 7: Coefficient loading FSM states.

State Description Output(s)
0 When the processing element resets, the FSM

returns to this state. Continue to request for the
memory bus from the DPMC. Continue to the
next state if we have a memory bus grant and
valid data has been detected.

multFeed = 0
memBusReq = 1
memStrobe = 1

1 The FSM has been granted access to the local
memory by the DPMC. Once a read has been
initiated, the data should arrive two clock cycles
later. Continue on into the next state.

multFeed = 0
memBusReq = 1
memStrobe = 1

2 Wait state for a memory read. Continue on into
the next state.

MultFeed = 0
memBusReq = 1
memStrobe = 1

3 The FSM remains in this state until a reset on the
processing element occurs. Continuous memory
reads are being performed to read the coefficient
data. The multiplier operand loading state
machine should be engaged.

MultFeed = 1
memBusReq = 1
memStrobe = 1

State 0/
011

State 3/
111

State 2/
011

State 1/
011

dataDetected=1 and
memBusGrant=1

dataDetected=0 or
memBusGrant=0

reset=1

State Output Key

xyz

memStrobe

memBusReq

multFeed

Figure 27: Coefficient loading finite state machine.

80

A.3 Multiplier Operand Loading State Machine

Table 8: Multiplier coefficient loading FSM states.

State Description Output(s)
0 Upon a processing element reset, the FSM enters

and continues to stay in the state until the
coefficient loading FSM asserts the multFeed
signal.

tapLoad_en = 0
negateMultResult = 0
startAdderFsm = 0
outSelects = 00

1 Selecting the tap 1 imaginary register value output
enable. Loading multiplier with data directly from
input bus and memory coefficients.

tapLoad_en = 0
negateMultResult = 0
startAdderFsm = 0
outSelects = 01

2 Selecting data stream delay as the output source
and loading the multiplier with data directly from
the input bus and memory coefficients.

tapLoad_en = 0
negateMultResult = 0
startAdderFsm = 0
outSelects = 11

3 Selecting data stream delay as the output source
and loading the multiplier with data directly from
the input bus and memory coefficients. Output
from the multiplier should be negated.

tapLoad_en = 0
negateMultResult = 1
startAdderFsm = 0
outSelects = 11

4 Selecting data stream delay as the output source
and loading the multiplier with data from the tap 1
delay line and memory coefficients. Not negating
the multiplier output anymore.

tapLoad_en = 1
negateMultResult = 0
startAdderFsm = 0
outSelects = 11

5 Selecting data stream delay as the output source
and loading the multiplier with data from the tap 1
delay line and memory coefficients.

tapLoad_en = 1
negateMultResult = 0
startAdderFsm = 0
outSelects = 11

6 Selecting tap 1 Re(Acc) component as the output
source and loading the multiplier with data from
the tap 1 delay line and memory coefficients.

tapLoad_en = 1
negateMultResult = 0
startAdderFsm = 0
outSelects = 10

7 Selecting data stream delay as the output source
and loading the multiplier with data from the tap 1
delay line and memory coefficients. Not negating
the multiplier output anymore.

tapLoad_en = 1
negateMultResult = 0
startAdderFsm = 0
outSelects = 10

81

State 0/
000 00

State 1/
000 01

State 2/
000 11

State 3/
010 11

State 4/
100 11

State 5/
100 11

State 6/
100 10

State7/
100 10

multFeed=1

reset=1

multFeed=0

abc xy

State Output Key

output mux select

startAdderFsm

negateMultResult

tap1Load_en

Figure 28: Multiplier loading finite state machine.

82

A.4 Adder Operand Loading State Machine

Table 9: Adder operand loading FSM states.

State Description Output(s)
0 Upon a processing element reset, the FSM enters

and continues to stay in the state until the
multiplier operand loading FSM asserts the
adderFeed_en signal. The mux selectors currently
choose the immediate multiplier result and the
input data stream. The state registers the adder
output into the tap 1 Im(Acc) holding register.

tap0ReAcc_en = 0
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 1
muxAddOpA = 00
muxAddOpB = 00

1 The FSM selects the delayed by 8 multiplier result
and the feedback path from the adder output as
the two operands. No adder results are registered.

tap0ReAcc_en = 0
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 01
muxAddOpB = 01

2 The FSM selects the immediate multiplier result
and the input data stream value as the two values
to add. The tap 0 Re(Acc) value should be ready
during this adder cycle and needs to be registered.

tap0ReAcc_en = 1
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 00
muxAddOpB = 00

3 The FSM selects the delayed by 8 multiplier result
and the feedback path from the adder output as
the two operands. No adder results are registered.

tap0ReAcc_en = 0
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 01
muxAddOpB = 01

4 The FSM selects the delayed by 8 multiplier result
and the tap 0 Re(Acc) register value to be added.
During this state, the tap 0 Im(Acc) value needs to
be registered.

tap0ReAcc_en = 0
tap0ImAcc_en = 1
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 01
muxAddOpB = 10

5 The FSM selects the delayed by 16 multiplier
result and the feedback path from the adder result
as the two operands. No adder results are
registered.

tap0ReAcc_en = 0
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 10
muxAddOpB = 01

6 The FSM selects the delayed by 8 multiplier result tap0ReAcc_en = 0

83

State Description Output(s)
and the tap 0 Im(Acc) register value to be added.
The tap 1 Re(Acc) value needs to be registered.

tap0ImAcc_en = 0
tap1ReAcc_en = 1
tap1ImAcc_en = 0
muxAddOpA = 01
muxAddOpB = 11

7 The FSM selects the delayed by 16 multiplier
result and the feedback path from the adder as the
two operands. No adder results need to be
registered at this time.

tap0ReAcc_en = 0
tap0ImAcc_en = 0
tap1ReAcc_en = 0
tap1ImAcc_en = 0
muxAddOpA = 10
muxAddOpB = 01

State 0/
0001 00 00

State 1/
0000 01 01

State 2/
1000 00 00

State 3/
0000 01 01

State 4/
0100 01 10

State 5/
0000 10 01

State 6/
0010 01 11

State7/
0000 10 01

adderFeed=1

reset=1

adderFeed=0abcd xy st
operand B mux selects

operand A mux selects

tap1ImAcc_en

tap1ReAcc_en

tap0ImAcc_en

tap0ReAcc_en

State Output Key

Figure 29: Adder operand feeding finite state machine.

84

Appendix B

Real Number Values Filter Verification

The real number values verification not only included the bandpass filter presented

in 0 but also included 7-tap and 31-tap lowpass, highpass, and bandstop filters as well. Each

of the filter frequency responses, filtered output signal, and error analysis plots have been

included for further comparisons. The input signal includes a mix of four different

sinusoids having the following frequencies:

• 62.83 rads/s (10 Hz)

• 1256.63 rads/s (200 Hz)

• 1570.79 rads/s (250 Hz)

• 2513.27 rads/s (400 Hz).

B.1 Lowpass Filter Verification

The frequency responses significantly differ between the two filter lengths where the

7-tap filter allows considerable energy for unwanted frequencies to pass through. Whereas

the 31-tap filter provides a sharper roll-off at the cutoff frequency and possesses sidelobes

lower than the -20 dB mark. Figure 31 illustrates the results of failing to provide a narrower

transition band. Energy from the 250 Hz sinusoid were allowed to pass through the filter

whereas the 31-tap filter completely eliminates the frequency.

85

Figure 32 shows the error comparison between the two different length filters which

continue to stay well below the -100 dB mark.

Figure 30: Lowpass filter frequency responses for 7-tap (left) and 31-tap (right)

filters with a target cutoff frequency of 1413.7 rad/s (225 Hz).

Figure 31: Lowpass filtered signal spectrums for 7-tap (left) and 31-tap (right) filters

with a target cutoff frequency of 1413.7 rad/s (225 Hz).

86

Figure 32: Lowpass filter output error analysis for 7-tap (left) and 31-tap (right)

filters.

B.2 Highpass Filter Verification

The highpass filter design simply reverses the allowable frequencies from those

found in the lowpass filter above. Using the same cutoff frequency, the lower sidelobes of

the 7-tap filter appear to stay well below the -20 dB mark but still does not provide a sharp

enough roll-off for the transition band. Thus, energy from unwanted frequencies continue

to pass through the filter. The higher order filter provides a better roll-off for the transition

band which performs the proper filtering out of the neighboring 200 Hz sinusoid

component of the signal. The error for each length of the FIR filter continues to operate

below the -100 dB mark.

87

Figure 33: Highpass filter frequency responses for 7-tap (left) and 31-tap (right)

filters with a target cutoff frequency of 1413.7 rad/s (225 Hz).

Figure 34: Highpass filtered signal spectrums for 7-tap (left) and 31-tap (right)

filters.

88

Figure 35: Highpass filter output error analysis for 7-tap (left) and 31-tap (right)

filters.

B.3 Bandpass Filter Verification

The bandpass filter attempts to only pass frequencies in the 180 Hz - 270 Hz range.

A significant difference between the two filter frequency responses can be seen where the 7-

tap filter allows much more energy from unwanted frequencies to pass. In addition, the left

sidelobe for the lower frequencies does not fall below the -20 dB mark. However, the 31-

tap filter provides much sharper roll-offs for both cutoff frequencies and exhibits a better

sidelobe characteristic. Operating error conditions continue to stay well below the -100 dB

mark as shown in Figure 38.

89

Figure 36: Bandpass filter frequency responses for 7-tap (left) and 31-tap (right)

filters with a target cutoff frequency of 1130.97 rad/s (180 Hz) and 1696.46 rad/s (270

Hz).

Figure 37: Bandpass filtered signal spectrums for 7-tap (left) and 31-tap (right)

filters.

90

Figure 38: Bandpass filter output error analysis for 7-tap (left) and 31-tap (right)

filters.

B.4 Bandstop Filter Verification

The bandstop filter manifests the advantages of using a 31-tap filter of a 7-tap filter.

The frequency response of the 7-tap filter provides very little, if any, filtering capabilities for

a narrowband exclusion. In fact, no cutoff below the -20 dB mark can be found. However,

the 31-tap filter continues to show sharp roll-offs for both cutoff frequencies and eliminates

frequencies in between below the -20 dB mark. Despite frequency responses, the operating

error falls well below the -100 dB mark as shown in Figure 41.

91

Figure 39: Bandstop filter frequency responses for 7-tap (left) and 31-tap (right)

filters with a target cutoff frequency of 1130.97 rad/s (180 Hz) and 1382.30 rad/s (220

Hz).

Figure 40: Bandstop filtered signal spectrums for 7-tap (left) and 31-tap (right)

filters.

92

Figure 41: Bandstop filter output error analysis for 7-tap (left) and 31-tap (right)

filters.

93

Bibliography
[1] J. R. Armstrong and F. G. Gray, Structured Logic Design with VHDL, Prentice

Hall, 1993.

[2] R. W. Hamming, Digital Filters, Prentice Hall, 1983.

[3] Jeffrey M. Arnold and Margaret A. McGarry, Splash 2 Programmer’s Manual,
Supercomputing Research Center (unpublished), 1993.

[4] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice Hall,
1975.

[5] V. Cappellini, A.G. Constantindes, and P. Emiliani, Digital Filters and Their
Applications, Acedemic Press, Inc., 1978.

[6] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing,
Macmillan Publishing Company, 1988.

[7] R. E. Bogner and A. G. Constantinides, Introduction to Digital Filtering,
John Wiley & Sons, Ltd., 1975.

[8] Andreas Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, 1979.

[9] Herman J. Blinchikoff and Anatol I. Zverev, Filtering in the Time and Frequency
Domains, John Wiley & Sons, Inc., 1976.

[10] Theodore S. Rappaport, Scott Y. Seidel, and Koichiro Takamizawa,
Statistical Channel Impulse Response Models for Factory and Open Plan
Building Radio Communications System Design, IEEE Transactions on
Communications, Vol. 39, No. 5, May 1991.

[11] Theodore S. Rappaport, Characterization of UHF Multipath Radio Channels
in Factory Buildings, IEEE Transactions on Antennas and Propagation,
Vol. 37, No. 8, August 1989.

[12] John N. Little and Loren Shure, Signal Processing Toolbox, The MathWorks,

94

Inc., 1988-93.

[13] David Parsons, The Mobile Radio Propagation Channel, John Wiley & Sons,
1994.

[14] Rodger E. Ziemer and Roger L Peterson, Introduction to Digital
Communcations, Macmillan Publishing Co., 1992.

[15] Theodore Rappaport, Scott Y. Seidel, Prabhakar M. Koushik, and Scott L.
McCulley, A User’s Manual for SIRCIM: Simulation of Indoor Radio Channel
Impulse response Models, VTIP, 1992.

[16] Mobile Portable Radio Group of Virginia Polytechnic Institute and State
University, A Users Manual for BERSIM: Bit Error Rate SIMulator,
Virginia Polytechnic Institute and State University/VTIP, 1992.

[17] Dan Burns and Wally Kleinfelder, Splash 2 Interface Board Engineering
Document, Supercomputing Research Center (unpublished), 1994.

[18] Xilinx, Inc., The Programmable Logic Data Book, 1993.

[19] Kai Hwang, Advanced Computer Architecture, McGraw-Hill, 1993.

[20] John A. Eldon and Craig Robertson, A Floating Point Format for Signal
Processing, Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1982, pp. 717-720.

[21] Nabeel Shirazi, Al Walters, and Peter Athanas, Quantitative Analysis of
Floating Point Arithmetic on FPGA Based Custom Computing Machines,
FCCM, 1994.

[22] Nabeel Shirazi, Implementation of a 2-D Fast Fourier Transform on an FPGA
Based Custom Computing Platform, Master’s Thesis (in progress), Virginia
Polytechnic Institute and State University, 1995.

[23] J.L. Hennessy and D.A. Patterson, Computer Architecture a Quantitative
Approach, Morgan Haufmann Publishers, Inc., 1990.

[24] Samuel D. Stearns and Ruth A. David, Signal Processing Algorithms in MATLAB,
Prentice Hall, Inc., 1996.

[25] Amos R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture,
and Implementations, Prentice Hall International (UK) Limited, 1994.

[26] Peter J. Ashenden, The Designer’s Guide to VHDL, Morgan Kaufmann Publishers,

95

Inc., 1996.

[27] Synplicity, Inc., Synplify User’s Guide, Synplicity, Inc., 1994-1996.

[28] Duncan A. Buell, Jeffery M. Arnold, and Walter J. Kleinfelder, Splash 2: FPGAs in a
Custom Computing Machine, IEEE Computer Society Press, 1996.

[29] The MathWorks, Inc., MATLAB Reference Manual, The MathWorks, Inc., 1992.

[30] Peter M. Athanas and Lynn Abbott, Addressing the Computational Requirements of Image
Processing with a Custom Computing Machine: An Overview, The Ninth International
Parallel Processing Symposium, 1995.

[31] D. Gajaski, Silicon Compilation, Addison-Wesley, Reading, Massachusetts, 1988.

[32] J. Peterson, Multiplier Module Generation Program, Annapolis Micro Systems, Inc.,
1997.

[33] K. Eshraghian and N.H.E. Weste, Principles of CMOS VLSI Design, A Systems
Perspective, 2nd Edition, Addison-Wesley Publishing Company, 1993.

96

Vita

Allison L. Walters

Al Walters was born in April, 1970 and grew up in Sterling, Virginia. After

graduating from Park View High School, he received early acceptance to Virginia Tech’s

engineering program. In 1992, he completed his undergraduate degree in Computer

Engineering and continued immediately to start a Master’s program in Electrical

Engineering. Al worked under Dr. Peter Athanas and the Center for Wireless Technology

to research high-performance algorithms on re-configurable computing platforms. While

working for Annapolis Micro Systems, he received his Master’s degree in 1998. Seeking

further goals in the field of wireless communications, he now works for ioWave in

Georgetown.

After completing his work at Virgina Tech, he continues to learn more about re-

configurable computing and wireless communications using spread spectrum technology.

Most of all, he can enjoy more time playing his favorite sport of volleyball with his fiancée,

Joyce.

