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Summary

Orientationa filters have been used to solve many computer vision problems. However, their
use in real—time applications has been limited due to high computational load of the filters. This
thesis investigates the computational scheme of the filters and proposes an efficient and inexpensive
way of computing and implementing them. The proposed scheme is called Separable Approxima-
tion. Using the scheme, non—separable orientational filters are decomposed into a sum of separable
filters. The scheme can be implemented efficiently using afilter bank structure. Two algorithms are
developed for decomposing filters into a separable form. They are Orthogonal Sequence Decom-
position and Singular Value/Orthogonal Sequence Decomposition (SV/OSD). The thesis shows that
SV/OSD achieves the best performance/implementation trade—off.

The second part of the thesisis concerned with multi—resol ution image decomposition. An effi-
cient decomposition method is developed, which is a combination of SV/OSD and a functional
approximation using abasic spline. The thesis shows that the method can perform the decomposition
with small amount of error, and the amount of computation and hardware required for the decomposi-
tion is much less than the direct implementation.

Thethird part of the thesisis concerned with a steerable system where the orientation of the filter
can be dynamically changed in real-time. The system can be constructed effectively using SV/OSD
and Fourier Series Approximation.

Finally the thesis proposes a VLSl architecture for an efficient orientational filter system with

multi—resolution decomposition capability and steerability.

XIV



CHAPTER 1

The Problem

In the last two decades, an immense amount of research has been conducted on how to construct a machine system which
is capable of seeing and understanding a visual scene as well as humans. This problem is referred to as the computer vision
problem. The problem has two major sub—problems; (1) to identify some particular object in a scene, or (2) to understand and
describe al the objects in a scene. Computer vision problems are usually grouped with the most computationally intensive
problems; global weather modeling, fluid turbulence and molecular dynamics[14]. The computational requirement for avision
system can be estimated by assuming that 1024x1024 pixels will be processed at arate of 30 frames/sec. This system will need
to process 30 million data elements (pixels) per second. If one thousand operations have to be performed on each pixel to fulfill
the goal of understanding the scene, thiswill require 30 billion operations per second. For most systems, the number of opera-
tions per pixel will be higher by afactor of 10 to 100 leading to an estimated requirement of computational power between 100
and 1,000 billion operations per second[14]. To build such a system will require parallel processing and special hardware.

Another difficulty in computer vision is that the problem is not well-posed from a computational perspective. For exam-
ple, a system must detect a chair from image sequences which represent dynamic viewsinside aroom. A simple pattern match-
ing algorithm which compares an image with a small template representing the chair does not work, since the chair can be any
size and at any orientation relative to the image frame. The chair can aso be partialy blocked by other objects (occlusion),
and obscured by lighting and signal noise. Thus input images representing the scene have to be processed in such away that
the result produces a data representation of each object which is minimally dependent on an affine transformation, partial occlu-
sion and noise. This representation is often expressed as a collection of characteristic called s’ features’. Edges[43][58], cor-
ners[61] and texture] 19][37] have been suggested as good features for image analysis.

A reasonable approach for attacking the problem is to apply the human visual processing mechanism to computer vision
algorithms.[57][88][89][93][98] Thisinteraction of neuro—physiological research and computer engineering not only produces
better vision algorithms, but also helps understand the mechanism of the human visual system. However, only asmall portion
of human visual processing is understood. Thus, no consensus has been established on how to solve vision problems.

In order to make the vision problem tractable, the problem is divided into three levels of processing: low, intermediate,
and high.[14][62][73][81] Low level processing takes pixel data as inputs and extracts primitive features such as edges, texture,
depth map, and optical flow. This level of processing is mostly regular and data—independent, requiring numeric operations
on huge amounts of pixel data. The intermediate level takes the primitive features generated from low level processing and
extracts more meaningful features such as surfaces and contours. Thislevel of processing is data dependent and irregular. The
computations are often both symbolic and numeric. High level processing interacts with the database of objects to determine
types of objectsin theimage. Thislevel of processing is highly data—dependent and very diverse. The focus of this research
ison the low level part of computer vision processing. As stated above, the processing at this level requires very large amounts
of numeric computation in aregular and data—independent form. The input data rate can easily exceed 30 million pixels/sec.
Because of the high input rate and the quantity of operations involved, a hardware based algorithm is needed.

In low—evel vision processing, two types of information have to be extracted from images simultaneously. Oneisafea
ture type which can be characterized well in the frequency domain. The second is the location of the feature in the spatial do-
main. Taking a Fourier transform of the image is not acceptable since it loses all the spatial information and the location of
features cannot be determined. In order to extract the information from two domains, spatial—frequency analysis needs to be
performed on images. Also, in order to extract features of various orientations, the spatial—frequency analysis must have direc-
tional selectivity. In thisthesis, an operator which performs spatial—frequency analysis with directional selectivity is called
an orientational filter. The operator can be performed in either the spatial domain or the frequency domain. Many such opera-
tors appear in computer vision research. Some examples are the windowed Fourier transform, Gabor filters and Gaussian deriv-
atives. Figure 1-1 illustrates the operation of orientational filters. The simple test image has two features: a bar oriented at
approximately 45 degrees and another bar oriented at approximately 135 degrees. The test image is processed using two orien-
tational filters; the real part of Gabor filter oriented at 45 degrees and 135 degrees respectively. As can be seen, the two filters
could extract the edges of the bars and their location precisely.

According to neuro—physiological research, the very early stage of processing in the human visual system performs a
localized frequency analysis with directional selectivity[2][28][32][39][51][56][63][95]. (Appendix A gives a more detailed



description of the human visual system.) The research suggests that the spatial—frequency analysisis an essentia part of the
early stage processing, and the later stage processing is often performed on top of the decomposition[32][39][51][57][92][95].
It has been demonstrated by many researchers in computer science that orientational filters are indeed useful for many image
analysis tasks including texture analysis[9][88][102][44], texture segmentation[41][52][68], edge detection[17][53], contour
following[98][ 78], shape analysig42], stereo analysis100] and motion detection[23][8]. (Section 2.3 describes the use of ori-
entationa filtersin image analysis applications.) For these reasons, this research assumes that orientational filters can be the
core of the low—level part of a computer vision system if efficient algorithms and implementation schemes to perform the de-
composition can be found.

Asseenin Figure 1-1, many filters tuned to different orientations would be needed to detect features with various orienta-
tions. In order to detect features with various sizes, filters with different sizes are needed. Thus, a computer vision system must
contain many filters tuned to different frequency regionsin order to be flexible enough to solve different problems. Therefore
it isimportant to investigate an inexpensive implementation scheme of each filter because the implementation cost of the sys-
tem depends heavily on the implementation cost of each filter. In order to minimize cost without losing flexibility, it is essential
to be able to tune the filter to a particular frequency response dynamically from frame to frame, or even within aframe. The
system can then be adapted to a particular problem and to changes of input images.

1.1.0bjectives of The Research

1.1.1.Primary Objective
The primary objective of this research isto develop an efficient algorithm and implementation scheme for orientational
filters suitable for real-time computer vision applications. Real-time applications require processing of many pixels (high
throughput) and producing outputs in a reasonable time (low latency) using a system which is inexpensive to implement[46].
In order to attack the problem in a constructive manner, these requirements are formulated in such away that they are indepen-
dent of technology and applications. These requirements are called implementation criteriain thisthesis.
The following assumptions are made;
1) Input images consists of NxN pixels, and they are processed in a scan line order.
2) The number of filtersin the system is Fy.
3) For simplicity, all the filters have the same size, MxM where M << N.
4) The critical time, ty, isthe longest operation time between one multiply—accumul ate operation and one memory
write/read operation. These two operations govern the speed of arealtimefilter system in current VLS| technology.
Based on these assumption, the implementation criteria can be defined as the following.

1. High throughput
The system must be capable of handling an input rate of O(1/ty,) and producing outputs at the same rate. With current
VLSI technology, a multiply—accumulate operation on 16-hit integers can be easily done in 30 nsec, and fast RAM can provide
an access timein under 30 nsec. Thisimplies a possible throughput of about 33 million pixels/sec in current technol ogy.

2. Low latency

g \

(a) Test Image (b) Output from Orientational  (€) Output from Orientational
Filter | Filter I

Figure 1-1: Simple Demonstration of Orientational Filtering



Latency is defined as the time delay between the first input available and the output produced by thisinput. The require-
ment on system latency is to be bounded by O(t,NM). Thisis the best that can be done when the input stream is arriving in
ascan line order, since the system requires at least M rows of datain order to perform afilter operation of size MxM.

3. Small computational complexity

Computational complexity is defined as the order of the total amount of computation required to complete the filtering
operation for the whole image. The requirement is that the computational complexity of the system to be less than O(FyN2M32).
A direct implementation of the filters has a complexity of O(FyN2M?). This research explores a computational scheme that
is better than direct implementation. Small computational complexity implies that real—time performance can be achieved with
less hardware.

4. Small storage

The storage is the amount of memory in bytes required to implement the filters. A system which requires small storage
isless expensive in terms of chip count, board size, and cost than a system which requires larger storage. Although commercial
RAMSs have become more dense and less expensive, smaller size memory chips are faster than larger size memory chips with
the same technology. Thus by keeping the storage requirements smaller, a faster system can be designed with the same imple-
mentation cost. Storage requirement can easily grow largeif every filter in a system requires its own storage since the number
of filtersin a system can be fairly large (6 different orientations, 7 different radial frequencies and 1 quadrature pair amounts
to 6 x 7 x 2 = 84filters). Also storage requirement of an algorithm to perform one orientational filter tend to measure the latency
of the algorithm. For example, suppose Algorithm A requires O(NxN) bytes of memory to implement an orientational filter
whereas Algorithm B requires O(N) bytes of memory. It impliesthat Algorithm A needs to wait for O(NxN) data before produc-
ing an output whereas Algorithm B needs to wait for only O(N) data. Thus the latency of Algorithm A isat least O(NxN) and
the latency of Algorithm B isat least O(N). Note that at least O(N) words of storage are necessary when the inputs are coming
in raster order since at least M rows of data are needed to perform MxM filtering operations.

From the above arguments, the storage requirement of the system is O(N), and is not dependent on Fy;.

Thefirst objective isto design an algorithm and implementation scheme which satisfies the four implementation criteria

1.1.2.Second Objective — Multi—Resol ution Decomposition

The second objective isto develop an efficient multi—resolution decomposition algorithm of orientational filters without
violating the implementation criteria. Multi—esolution decomposition (MRD) is a technique to produce a hierarchical image
representation suitable for many image processing/analysis algorithmg[3][13][55][76][98]. The first level of decomposition
isthe set of filtering operations using orientational filters. The second level of decomposition is the set of filtering operations
using the orientational filters dilated by 2 in both directions.

For decimated MRD, the outputs of the filtering operation in the second level are decimated typically by 2x2. Subsequent
levels of decomposition are done in asimilar way with the dilation factor of the filter and the decimation factor of outputsin-
creased by 2x2 as the decomposition level increases. The structure of the decimated MRD is shown in Figure 5-1. Thusthe
decomposition produces a pyramid like data representation with the first level of the decomposition being the bottom of the
pyramid. Algorithms utilizing the decomposition first examine the top level of the pyramid which is small in size and coarse
in resolution. Then the algorithms examine lower levels of the pyramid for more detailed analysis. This type of processing
is called coarse-to—fine processing.

Assumea L-evel decomposition isto be performed. At the k! level, the size of filters is 2k-IMx2k-IM due to the dilation
of the filters, and the size of the output images is 21-\x21*N due to the decimation of output images. Thus it appears that
the computational complexity of the decomposition at the kth level is O(Fy\N2M?) and the computational complexity of the
whole decomposition is O(LFyN2V?). However, when the filters possess certain properties, the kh level decomposition can
be obtained from the result of the k—1t"level decomposition. With this recursive algorithm, the computational complexity of
the whole decomposition reduces to O(FyN2M?2).

For undecimated MRD, the outputs of the filtering operation at any level are not decimated. Thus, the size of the output
isthe same as the input at any level. The amount of computation increases exponentially due to the dilation of the filters. At
the Lt" level, the amount of computation is O(4L-1FyN2vi2).

The second and third implementation criteria have to be modified for MRD since MRD involves more computation than
single level orientational filtering.

2 Low latency

Define the latency for the MRD as the time delay between when the first input available and the output at the Lt level
produced by the input. Then, the smallest latency possible is 25-14,,NM since the filter size increases to 2L-1M at the Lt level
dueto dilation. Thus, the requirement in this paper is that the latency be bounded by O(24,,NM).

3 Small computational complexity



The computational complexity for MRD is defined as the order of the total amount of computation required to complete
the whole decomposition. The complexity of implementing MRD directly on the spatial domain is O(LFyN2V?) for decimated
MRD, and O(Fn4N2V9) for undecimated MRD. The third criterion for MRD is that the computational complexity be less
than the complexity of direct implementation.

1.1.3.Third Objective — Dynamic Tuning (Steerability)

The third objective is to investigate the feasibility of a system which can tune filters dynamically in real-time without
violating the implementation criteria used for the primary objective. In thisthesis, only directional tuning will be considered
sinceradial tuning can be implemented through multi—resolution decomposition. In some literature, directional tuning is called
steerability[31][66]. The ability to dynamically tune the filters enhances its potential in computer vision research.

Some vision applications require capability of tuning the direction of filters from frame to frame, or even pixel to pixel.
It requires too much time for real—time applications if the host must reload a new set of coefficients in each filter every time
the direction tuning has to be modified. One approach to achieve steerability without violating the implementation criteriais
to compute the output of afilter at an arbitrary direction through aweighted linear sum of a set of basisfilter outputs. The basis
filters are independent of the orientation of the filter, and only the weights are orientation dependent. Thus, the orientation
tuning can be done by modifying the weights rather than the filter coefficients. Equation (1.1) shows how the orientation tuning
can be achieved.

Q
Wxy) = > a() G(xy) . (1.1)

where Q is the approximation order, Gj(x,y) isabasisfilter and g (6) isaweight.
An extension to the steerable system is a steerable MRD system. The modified implementation criteria used in the second
objective should be used here.

1.1.4.Fourth Objective — VLS| Implementation
The fourth and final objectiveisto design a system satisfying the implementation criteria, MRD capability, and steerabil-
ity using VLSI. The design implements the algorithm obtained through the first, second, and third objectives of this research.
Another issue considered in the design is scalability of the system. Four types of scalability are considered,
1. Input image scalability
The system can accommaodate any input image size by only changing the size of the input buffer which is implemented
with discrete memory chips.
2. Filter number scalability
The design is modular so that the number of filters can be increased by adding extrafilter componentsto the system. The
amount of hardware increases only linearly as the number of filtersincreases.
3. Filter size scalability
The size of filters can be increased by adding extra filter components to the system. No new design is necessary for a
different filter size. The amount of hardware increases only linearly as the filter size increases.
4. Approximation order scalability

The order of approximation can be increased by adding extra filter components to the system. No new design is necessary
for adifferent approximation order. The amount of hardware increases linearly as the order of approximation increases.
The numbers of VLSI chips needed to construct various filter systems will be evaluated based on VLS| design techniques.

1.2.0rganization of the thesis

Therest of the thesisis organized in the following way. Chapter 2 provides background information on various orienta-
tional filters and implementation schemes. These filtering operations are compared based on the implementation criteria. The
chapter also reviews how orientational filters are applied to image analysis. Chapter 3 develops the separable approximation
algorithms. They are Singular Value Decomposition (SVD), Orthogonal Sequence Decomposition (OSD) and Singular Value/
Orthogonal Sequence Decomposition (SV/OSD). They are compared in terms of approximation performance and implementa-
tion cost. In Chapter 4, an extensive performance evaluation of SV/OSD is presented to substantiate its ability to meet the im-
plementation criteria, and shows how the approximation can be incorporated into low level processing for computer vision.
In Chapter 5, a scheme to achieve the second objective of this research, an efficient MRD scheme, is presented. Chapter 6 shows
an extensive performance evaluation of the MRD scheme. Chapter 7 introduces an agorithm to achieve the third objective



of this research, a real—time steerable system. Chapter 8 shows performance evaluation results of the steerable filter scheme.
Chapter 9 studies detailed VL SI architecture and VLS| design for the system based on the results of Chapter 3, 5, and 7. Finally
Chapter 10 summarizes the research with conclusions and future research.



CHAPTER 2

Filter Investigation

The purpose of this chapter is to provide background material relevant to the development of algorithms and implementa-
tion schemesin later chapters. This chapter gives adetailed review of various orientational filters and implementation schemes
followed by areview of applications of orientational filtersin computer vision problems.

2.1.Orientational Filters

Orientational filters (directional filters) are a class of filters which have a narrow angular bandwidth in the frequency do-
main and are used for spatial—frequency analysis. Their applicability has been demonstrated in texture analy-
siq9][88][102][44], texture segmentation[41][52][68], edge detection[17][53], contour following[98][ 78], shape analysig[42],
stereo analysig100], image coding[22][4][45], video coding[96], image restoration[97], image enhancement[64] and motion
detection[23][8]. Their advantagesin computer vision problems are; 1) the ability to be tuned to a certain radial frequency and
orientation, and perform as a spatially localized frequency analyzer, 2) the ability to extract many image features easily, and
3) the resemblance to certain functions in the human visual system[51][39].

In computer vision problems, objects of interest are often any size and orientation relative to the image frame, and their
size and orientation can change from frame to frame due to the movement of the camera or the movement of the objects. For
this reason orientational filters have to be tuned to a particular angular/radial frequency and a spatial/frequency resolution so
that the analysis can be performed on multiple objects, and follow the dynamic motion of the objects.

Filtersin two dimensions have several methods of tuning as shown in Figure 2—1. The representations in Figure 2—1 are
all in the frequency domain. Which set of filters performs best depends on the application and objects of interest. For a comput-
er vision system to be used in various applications, the orientational filters need to be tunable in the four aspects shown in
Figure 2—1 so that they can be matched to the applications and situations.

A shift between imagesis caused by either asmall time difference or a different viewing point. Applications such as mo-
tion analysis and stereo analysis need to find a match between certain features in multiple images and compute the distance
between the matched features. However if the transform does not preserve tranglation, the distance cannot be computed proper-
ly. Since motion analysis and stereo analysis form a core in image understanding problems, preserving image trandlation is
essential. Denote F as an orientational filter operation and I[m,n] asan input image. Then #is shift invariant if

Fl[mn] = Jm,n], (2.1)

(@) Orientation (Angular Center Frequency) (b) Radial Center Frequency

HEN BE8

(c) Radial Frequency Bandwidth (d) Angular Frequency Bandwidth

Figure 2-1: Examples of Filter Tuning



implies
FIm+A4,n+ 4, =Jm+A4,n+4,] (¥ 4,4, € integer). (2.2)

The next two lemmas describe shift invariance of two operators; convolution and decimation. They are used to investigate
shift invariance of orientationa filtersin this section.



Lemma 1: A convolution operation is shift invariant.

Proof: Denote afilter kernel as h[m,n], the image the filter operates on as f{m,n] and the output of the convolution
asy[m,n]. Denote their Fourier transforms as H(w 4, w,), F(w4, w,) and Y(wq, ,) respectively. Then the
convolution of ashifted imageis

fim+ A,n+ A4]* himn] = F(o,, 0)H(q, 0,)e?1°1"122 = Y(w,,w,)@41°1"422 — y[m + A,n + 4,)]. (2.3)

Thus a convolution operation is shift invariant.

Lemma2: A decimation operation is not shift invariant.
Proof: Denote the image to be decimated as f{ m,n] and the output of the decimation asy[m,n]. After decimation by
factors of 1 and up aong each dimension, the image becomes

yimn] = flusmu.n] . (2.4)
For ashifted input f{m,n] = f[m + 4 1, N + 4], the corresponding output y{m, n] is
yimn] = flum+ A, u,n+ 4,] =y[m+4,n+4,] . (2.5)

Thus a decimation operator is not shift invariant.

The following sub—sections describe several orientational filters and evaluate their applicability to computer vision prob-
lems based on their frequency response tunability and shift invariance.

2.1.1.Gabor Functions
Gabor functions g, (x,y) are exponentially modulated Gaussian functions and defined as

Op(X,Y) = Ga (X, Y) 4%, (2.6)

where ga(x,y) = e X% ¥*/%isa2D Gaussian filter, X = Ux + Wy, ¥ = — Vx + Uy, U = cos6, V = sing, 6 is
the angle of orientation, a determines the oscillation frequency, and ox and oy are standard deviations of gy(x,y). This class
of filtersisthe most popular of all orientational filters used in computer vision research[9][22][41][52][68][88]. The frequency
response of this class of filtersis

Gy(u,v) = e (FRu-av? + Gu-av?a 2.7
Thus, Gy(u,v) is abandpass Gaussian function centered at (aU, aV) with aminor axis oriented at an angle 6 = tan—}(\V/U) from
the u axis and aspect ratio oy/0y.

It is very important in computer vision applications to know precise space (time) information and frequency information
of input images at the same point in time. The uncertainty principle states that no function can be both time-limited and band—
limited at the same time, and as the resolution in either domain increases, the resolution in the other domain decreases.
Figure 2-2 illustrates this principle. The spatial resolution of the analysis can be increased by using smaller filters. However,
asmaller filter stretches over a larger region in the frequency domain, thus has less resolution in the frequency domain. On
the other hand, the frequency resolution of the analysis can be increased by using alarger filter at the expense of losing resolution
in the spatial domain.

Define an effective duration of afilter function f(x) as the square root of the second moment of its energy distribution;

o

J f () (X)x2dx

— (2.8)

where f*(X) is the conjugate of f(x), and E is the total energy of f(x) defined as

0

E = f f(X)f" (x)dx . (2.9

—



Similarly, define an effective bandwidth of f(x) in terms of its Fourier transform F(w);

o

[ F(w)F* (w)w2dw

Ao = == = . (2.10)

Then the uncertainty principle specifies alower bound on the possible values of their product;

AxAdo = ﬁ . (2.11)

Gabor found the general class of functions which achieves the lower bound of (2.11). Namely,

Oy(X) = e ¥/otgat (2.12)

In [24], the uncertainty principle is extended to 2D signals. The energy distribution of a 2D function f(x,y) has an effective
widthAx and effective height Ay . They are defined by the square root of the second moment around the x and y axes, respec-
tively;

© o

J f f(x, Y)f (X, y)"x2dxdy

Ax = - = £ : (2.13)

f f f(x, ) (x, y)"y?dxdy

Ay = = - = (2.14)

where E is the total energy of f(x,y). In the frequency domain, an effective bandwidth of F(u,v) along both the u and v axes
are defined similarly and denoted asAu and Av. Then the 2D uncertainty principleiswritten as
1

AxAyAudv = Ten? - (2.15)
In[24], it is shown that the 2D Gabor function achieves the lower bound of this 2D uncertainty principle. This makesthe 2D
Gabor function very attractive in many computer vision applications. Also neuro—physiological studies indicate that the 2D
Gabor function resembles the response of simple cellsin the human visua cortex[56][2]. This similarity of processing to the
human vision system is another reason for the 2D Gabor function’s popularity. The mechanism of the human visual system
based on the pioneer work of Hubel and Wiesel[39] is discussed in Appendix A.

Gabor filters have four parameters, 6, ox, oy anda. The frequency response of the filters can be tuned easily by changing
these parameters. The orientation of the filters can be modified by changing 6. The radial center frequency can be increased

() Filter | (15x15) (b) Filter 11 (31x31) () Filter 111 (63x63)

Gaussian filters of different sizes are shown in both the spatial domain (left) and the frequency
domain (right).
Figure 2—2: Spatial/Frequency Resolution of Orientational Filters




by increasing the value of a. The radial frequency bandwidth can be increased by decreasing oy while holding the value of
oy. Theangular frequency bandwidth can be increased by increasing oy while holding the value of oy.

Since the Gabor filtersinvolve only a convolution, they are shift invariant (Lemma1).

2.1.2.Gaussian Derivatives
This class of filtersis constructed by taking kh derivatives of the Gaussian, ga(x,y), along adirection n,

dg.(x,y) = % . (2.16)

Thefirst derivative and second derivative are used most frequently in image analysis applications. The appearance of this class
of filters dates back to Marr’s theory of vision[57].

Variations of Gaussian derivatives are Difference of Gaussian (DOG) and Difference of Offset Gaussian (DOOG)[101].
DOG isdefined as

Guog(X,y) = Z Ci Ga (X, Y; 0, 0y) (2.17)
and DOOG is defined as
Guoog(X%,Y) = z CiGa (X + OX;, y + Oy : 0:,04) . (2.18)

One of the important DOG filtersis Wilson's DOG[99] implemented in the Georgia Tech Vision (GTV) model[25] and defined
as

f(x,y) = ALe /il @im — Be~@ime 4 Qi) (2.19)

An advantage of using these variations instead of derivatives of the Gaussian isthat variousfilters can be obtained with relative-
ly few convolution operations. Laplacian of Gaussian can be approximated by a subtraction of two concentric circular Gaussian
filterswith different variances (ox, ay),

Ga(X, Y;01) — Qu(X,Y,0,)  0,/0, = 15. (2.20)
The second derivative of the directional Gaussian along the x axis can be approximated by a weighted addition of three direc-
tional Gaussian filters with small offsets,

- ga(X,y + dy, Oy, Oy) + 29a(x, Y, Ox,Gy) - ga(Xiy - 6Yr Oy Gy) 5)/ = 0Oy . (221)
A similar approximation is used along they axis,

— Ga(X + OX,Y; 05,0y + 20a(X, Y; 05, 0y) — Qa(X — OX,Y;04,0y)  OX = 0y . (2.22)

Gaussian derivatives of the form (2.17) have three parameters, 6, oxandoy. The frequency response of the filters can
be tuned by changing these parameters. The orientation of the filters can be changed by changing 6. The radia frequency
bandwidth can be increased by decreasing o while holding the value of gy. The angular frequency bandwidth can be increased
by increasing oy while holding the value of 0. However, thereis no parameter to change the radial center frequency.

Since the filter involves only a convolution, it is shift invariant (Lemma 1).

2.1.3.Prolate Spheroidal Functions

The uncertainty principle in the form of (2.11) based on the definition of the effective duration (2.8) and the effective
bandwidth (2.10), gives a somewhat unclear picture of what is happening. An aternativeisto consider the proportion of energy
e inside afinite time duration [-T/2, T/2] and another energy proportion, e, inside afinite bandwidth [—w¢, wc/, i.€.

T/2

J f (1) ()t
—-T1/2

= - & and (2.23)

wc

j F(w)F (w)dw

—wc

_ e, (2.24)

E
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where E represents the total energy of f(t) intheinterval [ — oo, «]. One of the questions concerning the uncertainty principle
isthat which time limited function f(t) has the most energy concentrated inside [—w¢, w¢/.

Itiswell known that the answer to the above question is the eigenfunction Tyo(t; w¢) corresponding to the largest eigenva-
lue A of the equation[83],

Boucwc D 1o To®) = 4 Tp(t) (2.25)
where D is atime-limiting operator defined by

1 (—-T/2=st=<T/2
Dor2r = [0 otherwise ' (2.26)

and B is aband-imiting operator defined by

B weue F(1) = F7D g, F (1) (2.27)
with F being the Fourier transform operator. In the time domain, (2.25) can be rewritten as

wc T/2 T/2
, o sno(t — 71 B
% j do €t J dr To(z) e = j ﬁn(r)dr = AT). (2.28)
—wc -T/2 -T/2

Eigenfunctions of the operator BD are called prolate spheroidal wave functions (PSWFS) and have the following proper-
tieg[50][83].
1. {Ti(t; Toc)} are bandlimited in [—wc, wc] and span al band-imited function in [—wc, wc/.

2. Intheinterval [ — o, ], {Tpi(t; T,wc)} are orthonormal to each other,

J Tu() Ty(dt = ;. (2.29)

3. Intheinterval [-T/2, T/2], { Tpi(t; T,wc)} are orthogonal to each other,
T/2

-T/2
In the discrete domain, the equivalent of a PSWF is called a prolate spheroidal sequence (PSS) and is defined as the solu-
tion to the linear equation[85].

Nzl sin(n — m)ep

0 Tl = ATl n=0,1,2, . N-1 (2.31)

m=0

where N isthe samplesizeand ep = w¢/7. Prolate Spheroidal Sequences, Ty[N; (], possess the following properties[85].

N—1
1. They satisfy adiscrete orthonormality condition assuming the PSSs are normalized ( Z T,%i = 1).
n=0
N-1
> Teln]Taln] =0, (2.32)
n=0
2. Foreveni, Tp[n] iseven symmetric and for odd i, Tp[n] isodd symmetric.
Teln] = (- DT[N-1-n] . (2.33)
3. Eigenvaues/; represent the energy ratio
M-1 R N-1 R
b= > eI/ > eIk, (2.34)
k=0 k=0
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where 'IA'Pi[k] isthe DFT of T[K],and M = €pN.
To save computation time, the NXN matrix in (2.31) can be tridiagonalized and PSS can be derived from the linear equa-
tion,

MesTei = AiTpi (2-35)
where Mpg isthe tridiagonal matrix given by

(1
Em(N—m) n=m-1

Megn,m] =

N—-1 2
———— — M)“cos2tw. N =m
{( 2 ) @ (2.36)

%(m+1)(N—1—m) n=m+1

0 nN—m > 1

"

There are many ways to extend the theory of PSWF to two dimensions[84]. In image processing applications, two useful
forms are Cartesian separable and Polar separable forms.
For the Cartesian separable case, a 2D PSWF is a Cartesian product of two 1D PSWFs. Thus,

T4V T Tpwewy) = ToX T )ToY; Ty 0) . (2.37)

For the Polar separable case, the band-limiting and time-limiting operators limit signals within a circle Sin the spatial
domain and acircle Rin the frequency domain, respectively, with the centers located at the origin. Thus,

fxy) (*+y?<9)
D:f(x.y) = {O otherwise  and (2.38)
B. f(x,y) = FID,Ff(xy) . (2.39)

For this case, the PSWFs are eigenfunctions of the operator By Ds.

B, Dsf(x,y) = #J dwxdwyéwxxﬂwyyf dydé f(n, &) e lo iy
R S

f(,8) dnpdZ, (2.40)

_r f I(ryx—m2+ (y - 8)?)
2] Jox=mp + (v - &y
where J; () isthe Bessel functions of the first kind of order 1[26].
The frequency response of the filters can be tuned by re—defining the bandlimited operator B. This is done by defining
B such that it passes only a region where the filters frequency responseislocated. This method of tuning filters, however, in-

volves finding eigenfunctions of (2.25) which is often computationally intensive.
Since the filter involves only a convolution, it is shift invariant (Lemma 1).

2.1.4 Multirate Filter Banks and Wavelets

Croisier, Esteban and Galand first observed the fact that asignal could be split into multiple channels using non-ideal
filters, sub—sampled and reconstructed without aliasing[16]. This coding schemeis called multirate filter banks. The structure
using P bands of multirate filter banksis shown in Figure 2-3. Hy(w) isan analysis (decomposition) filter and G (w) isa synthe-
sis (reconstruction) filter. Later Smith and Barnwell demonstrated that tree-structured subband coders based on 2—channel
multirate filter banks can reconstruct, not only alias free, but the exact replica of the input (named a perfect reconstruction filter
bank)[87]. P. P. Vaidyanathan extended the perfect reconstruction filter bank design to the case of M channels, with arbitrary
M[94], and J. Kovacevic extended it to arbitrary rational sampling rates[45].

The effectiveness of multirate filter banks was first demonstrated for speech coding. Later the scheme was extended to
multidimensional signals for image and video coding. In multidimensional cases, sampling (down sampling and up—sampling)
plays an important role. A straightforward and popular way is rectangular sampling. Also hexagonal sampling is often used
in coding because 1) the spectra of the signal and its repeated occurrences do not overlap, and 2) the human eyeisless sensitive
to resolution along the diagonal, hence it is more reasonable for the low pass filter to have a diagonal cutoff. Finer separability
can be accomplished by using more general non—separable sampling.

12
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Figure 2-3:Structure of a Multirate Filter Bank
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Figure 2—4: First or Second Stage of a Directional Filter Bank

R. H. Bamberger [4] and J. Kovacevic [45] developed directional filter banks independently based on non-separable
sampling. In[4], 2D signals are decomposed into P=2"directional banks using modulation, resampling, and two types of fil-
ters. a diamond shaped filter and a parallelogram shaped filter. The structure of the decomposition/reconstruction system is
shown in Figure 2—4 and an 8-band directional filter bank is described here as an example. The frequency response of the
diamond shaped filter and the parallelogram shaped filter are shown in Figure 2-5(a) and (b). The frequency partition pattern
for an 8-band directional decomposition is shown in Figure 2-5 (c). Flrst an image is modulated by 7 in either wy or wy in
the frequency domain. The result of modulation in the wy direction is shown in Figure 2-5(d). The frequency components 1-4
and 5-8 are separated by the diamond shaped filter. The output of the filters are downsampled by u;, and the results after the
down sampling are shown in Figure 2-5(e). Another modulation is applied after the down sampling and the diamond shaped
filters are applied to separate the frequency components 1-2, 34, 5-6 and 7-8. The result of the 4-band partition after the
down sampling is shown in Figure 2-5(f). As can be seen in Figure 2-5(f), each frequency component can be extracted by
applying the parallelogram shaped filter or its rotated/reflected version. Each output is downsampled by u, in order to maintain
the sampling size. Other 2" decomposition systems can be constructed in asimilar way. In [4] it is shown that the decomposi-
tion/reconstruction system can be either alias free or provide an exact reconstruction. The 2D filters can be implemented effi-
ciently using 1D polyphase filters.

Advantages of using filter banks are computational efficiency and simple implementation. The primary application is
image compression coding. Much research has been focused on the reconstruction part of the system. In image analysis ap-
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Figure 2-5: 8-Band Directional Decomposition by Bamburger [4]
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plications, reconstruction of imagesis usually unnecessary, and the aliasing introduced after decimation causes the transforma-
tion to be shift variant. Moreover, it isdifficult to tune the orientation and bandwidth of the filter dynamically by using a multi-
rate filter bank structure.

Independent of the development of filter banks, the theory of wavelets first appeared in the mid 80's for the purpose of
non-stationary signal analysis. Wavelets are a set of functions obtained by dilation and translation of a single function which
is often called the mother wavelet. The analysisis performed by taking a projection of an input signal over each wavelet (wave-
let transform). The wavelet transform of afunction f(t) is defined as

Wi(@a,b) = az I f(t)z/;(% - b)dt, (2.41)

where 1 (t) is amother wavelet, and a and b are dilation and translation parameters respectively. By changing the dilation pa-
rameter, one can perform the analysis at different scales, and by changing the translation parameter, one can perform the analy-
sisat different time points. Hence the wavelet transform is called time—scale analysis which is related to time—frequency analy-
sis. As the scale parameter increases, the wavelets expand and the frequency responses shift toward a lower frequency. As
the scale parameter decreases, the wavelets contract and the frequency responses shift toward a higher frequency. The time—
scale behavior of the wavelet is shown in Figure 2—6. The advantage of analyzing signals using wavelets is based on the trade—
off in time/frequency resolution. The resolution in the time—frequency domain is constrained by the uncertainty principle. The
wavelet transform achieves a high frequency resolution in the low frequency region at the expense of time resolution, and
achieves a high time resolution in the high frequency region at the expense of frequency resolution. This trade—off has a good
fit for many applicationsincluding image analysis. Most natural images consist of high frequency components with short dura-
tion such as edges and low frequency components with long duration such as texture surfaces. Image analysis applications
require precise locations of the high frequency components, but do not require precise frequency information of those compo-
nents. On the other hand, the applications require good frequency information on the low frequency components (texture sur-
face), but location information is not required to be precise.

The dilation and the trandation parameters can be either continuous or discrete leading to different analysis schemes simi-
lar to Fourier analysis. Both parameters can vary continuously leading to the continuous wavel et transform (CWT). They can
be discrete, and the set of basis wavelets construct an orthonormal set leading to the wavelet series (WS). The wavelet itself
can be discrete leading to the discrete wavelet transform (DWT). It has been observed that the DWT is a particular type of
multi—rate filter bank.

it A A

Figure 2—6: Characteristic of the Wavelet Transform Basis

(a) Wavelets scaled in time. Note that the window size varies as the scaling changes. They con-
tract as the scaling gets larger and expand asit gets smaller. (b) The corresponding Fourier trans-
form of (a). They contract as they move to alower frequency and expand as they moveto a
higher frequency.
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The wavelet transform is discussed in detail in Chapter 5 in conjunction with multi—resol ution image decomposition.

2.1.5.Frequency Domain Filters

In this class of orientational filters, the filtering is done in the frequency domain. Hence it involves Fourier transforms
of input images. After the filtering, the output is transformed back to the spatial domain using the inverse Fourier transform
for further precessing. The advantage of this scheme is that orientation and bandwidth tuning are trivial and it is often more
efficient to implement a complicated filter in the frequency domain using the FFT and the inverse FFT than by a direct imple-
mentation in the spatial domain. However, this increases latency and the amount of hardware because of the FFT and the inverse
FFT.

One disadvantage of using the Fourier Transform in image analysisis that there is no joint spatial/frequency information
after the Fourier Transform. Thisisthe reason that the image has to be transformed back to the spatial domain for further analy-
sis. This problem can be somewhat alleviated by using the Windowed Fourier Transform or Short—time Fourier Transform.
It isimportant to choose the right window size and window functions for the application. If the window size is too small, the
transform loses resolution in the frequency domain, and if it istoo big, it loses the resolution in spatial domain.

The cortical transform [98] uses the global Fourier Transform. The transform is constructed from two types of filters:

amesa filter and a bisection filter. The mesa filter My(u, V) is alow—pass filter in the radia frequency with unit gain within
the pass-band and Gaussian fall—off beyond some corner frequency, f., at which the gain fallsto /2. It is created by convolving
acylinder of radius f; centered at the origin, with a Gaussian. Thus,

2 . 2
MU y) = (L) e (B) + H(L) , (2.42)
fe 2f,

where u and v are two coordinates of the frequency space, r = v u? + V2, I1(r) isaunit disc with unit height centered at the
origin, and the parameter y controls the sharpness of fall-off at f.. The larger the value of vy, the sharper the fall-off becomes.
In order to construct a multi—resolution pyramid, multiple mesa filters with different cut—off frequencies are required. They
can be obtained by scaling the original mesa filter by a factor of 2, 4, 8, etc. The scaled mesa filter with the scaling factor 2k
isdefined as

m(u,v) = my(2ku,2%v) . (2.43)

By subtracting m, . ;(u, v) from m,(u, V) for each k, adisc shaped filter is obtained, which is used to decompose the frequency
space into different radial frequency regions.
The bisection filter bisects the frequency space in half. The filter which bisects along the horizontal frequency axisis

)

bo(v) = UM)*pe ™ = J ne~™*%dr (2.44)
where U(v) is the step function and the parameter # controls the sharpness of fall off along the bisection line. The bisection
filter oriented at an angle 6 is

by(V) = U@*pe ™" | (2.45)

where V.= ucosf — vsiné.

By using the mesa and bisectional filters in a repeated way, the frequency plane can be split into directional and radial
components. This procedure is shown in Figure 2—7.

The operator in [34] uses the Windowed Fourier Transform. It is designed such that it is general purpose and can perform
anumber of useful operationsin parallel. The operator uses 2D Gaussian for the window function. First it calculates the Win-
dowed Fourier Transform in position (X, Yo), at the single radial frequency (r), and several different directions (6,,) using

F(r60) = F@U,Vv,) = j f f(Xy) gX — Xo, Y — Yo)e 2 iidxdy (2.46)

where f(x,y) isthe input image, U, = I €0SHOp, V, = I Siny, and ga(x,y) isthe 2D Gaussian. Next, the maximum vaue
of |F(r, 6,)| as afunction of 6, is obtained from

A(rxy) = n;?X |F (r, en)lxo,yo . (247)
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The operator returns a complex function f(x, y) defined by

fy) = A(r,x,y)e?m (2.48)

For frequency domain filters, tuning the frequency response is easy. The filters are not shift invariant unless processing
on the frequency domain is applied to only the amplitude part of the Fourier Transform and not applied to the phase.

2.1.6.Comments

Gabor filters have the optimal spatial—frequency localization in the sense of the uncertainty principle, and tuning the fre-
guency response is quite straightforward. However, in general, Gabor filters are non—separable and computationally intensive.
Thus, they have rarely been used in real-time applications.

Gaussian derivatives have good spatial—frequency localization. It is easy to tune the orientation to an arbitrary direction.
However, it is difficult to tune the radial frequency of the filter. Although computational complexity is similar to that of the
Gabor filters, when multiple filters are to be implemented, this complexity can be reduced by using DOG and DOOG.

Prolate spheroidal functions have an excellent spatial—frequency localization. It isdifficult to update the frequency/orien-
tation tuning, since it involves solving alarge linear system of equations for eigenvectors. Thefilters are generally non—separa-
ble, and computationally intensive.

Orientational filters implemented using afilter bank structure can be designed to have an efficient computational structure
and inexpensive implementation. However, it is difficult to tune the frequency responses and this type of filter is not shift invari-
ant due to the decimation process introduced when decomposition of the directional componentsis done.

Frequency domain filters can be designed for good spatial—frequency localization, and it is easy to tune the frequency
responses. The computational complexity isinsensitive to the filter size and smaller than the direct computation of non—separa-
ble filters with alarge mask size. However, they are expensive to implement since both the FFT and the inverse FFT are in-
volved. They also introduce alarge latency.

Table 2-1 summarizes the orientationa filters introduced in this section. Table 2—1 (a) summarizes the applicability of
each type of filter to computer vision problems based on their frequency response tunability and shift invariance. Table 2—1
(b) shows the implementation characteristics associated with each type of filter. Gabor filters, Gaussian derivatives and PSSs
have high computational complexity since they are non—separable in general. Filter banks have a small complexity since in
most cases they are separable, and can be implemented by using poly—phase structures and tree-structures. Freguency domain
filters have smaller complexity than non—separable filters when the size of thefiltersislarge. Latenciesare small in al cases
except the frequency domain filter since it involves a FFT of an input image and an inverse FFT of the output. The last column
in Table 2—-1 (b) measures how computational complexity increases as the filter sizeincreases. If afilter sizeis denoted as MxM,
then the complexity is a factor of M2 for non—separable filters (Gabor, Gaussian Derivatives and PSS), M for separable filters
(Filter banks) and insensitive for frequency domain filters.

Overall, Gabor filters have good performance characteristics for computer vision problems, but they are computationally
expensive.

Table 2—1: Comparison of Orientational Filters
(a) Filtering Performance Characteristics

Radial Frequency Re- | Angular Frequency Shift Invariance
sponse Tunability Response Tunability
Gabor easy easy invariant
Gaussian Derivatives difficult easy invariant
PSF difficult difficult invariant
Filter Banks difficult difficult often variant
Frequency Domain easy easy often variant
(b) Filtering Implementation Characteristics
Computational Latency Hardware Effect of Filter Size
Complexity on Computation
Gabor high small fairly expensive high
Gaussiz_:\n Deriva- high small fairly expensive high
tives
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PSS high small fairly expensive high
Filter Banks low small inexpensive low
Frequency Domain fairly high large expensive none

2.2.Computational Schemes

In this section, different implementation schemes are described, and comparisons are made in terms of the implementation
criteria; throughput, latency, computational complexity and storage. Certain other hardware requirements are also examined.
The following assumptions are made; input images are processed in a scan line order, the image size is NxN, the filter size is
MxM, the number of filters to be implemented is Fy, the frame rate is R frames/sec, and values of both the images and the
filtersarereal. Theinput rateis (RN?) pixels/sec.

2.2.1.Direct Methods

In this scheme, a 2D filter mask is directly applied to an input image. Computation of each output pixel involves comput-
ing MxM 2D convolutions. Figure 2-8 depicts this scheme. The number of multiplications required to process one input frame
is M2NZ2, and the number of additionsis (M2-1)N2. Thus the computational complexity is O(M2N?). Using a pipeline structure
the throughput is O(Uty,). Thelatency is O(NM) since a convolution requires only M rows of pixel values, and the amount of
storage required is O(NM).

For a system with multiple filters, the input buffer can be shared among the filters. Hence the storage requirement is inde-
pendent of Fy andis O(NM).

2.2.2.FFT Methods

In this scheme, both an input image and afilter are transformed into the frequency domain (The frequency response of
the filter is pre-computed.), the input image and the filter are multiplied in the frequency domain, and the inverse FFT is applied

~2 ~
to the result of multiplication. The size of the FFT hasto be at least (N+ M-1)x(N+M-1)=N ,where N = N + M — 1,in

- - ) -
order not to introduce any aliasing. Assume a 2x2 vector radix FFT isused. Then a FFT of size NxN requires % N logN

complex multiplications and 4N2 log N complex additionsg[26]. Since values of both the input image and the filter are assumed
to be real, only a half plane of the Fourier Transform needs to be computed, reducing the complexity by half. One complex
multiplication is equal to 4 real multiplications and 2 real additions, and one complex addition is equal to 2 real additions. The
transformation based on the FFT requires aforward FFT, an inverse FFT, and a multiplication of an input image and the filter

-2 -
in the frequency domain. Considering these operations, the total number of multiplications for this methodis N (6logN + 2)

-2 -
and the total number of additionsis N (11logN + 1). The FFT method isinsensitive to the mask size of the filter. Therefore
as the filter becomes larger, the FFT method has an edge over the direct method. The computational complexity is

-2 - -2 - ~2
O(N logN). Thelatency is O(N logN) using serial processing, and the storage requirement is O(N ).
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When Fy filters are to be implemented, the amount of storage increases by Fy. Thus the storage requirement increases

-2
to O(F\N ).

To find ways of implementing a real—time transformation system using the FFT, it is necessary to examine real—time FFT
systems. Active research has been speeding up FFT operations using parallel processing and special purpose hard-

ware[70][79][6]. In[70], aparalel 2D FFT architecture is presented. The system computes aNxN 2D FFT in O(/N Nlog/N)
which is a speed—up of O(/N) over the conventional row—column approach. It performs the transformation by decomposing
NXN kernel into two smaller NgXNs kernels where Ng = /N Define the 2D discrete Fourier Transform (DFT) of X[y, np]
(0= ny,n, < N)as

Ng—1Ng—1
Xkpkol = > > xIng,ng Wt (2.49)

L)

where 0 < k;,k, < Nand Wy, = e~ "2/N. The regular row—column FFTstake atotal of 2N 1D FFTs, N times for the row
direction and N times for the column direction. The 2D DFT can also be performed by decomposing the NxN kernel into two
smaller NgXNs kernels. Then the formula of the 2D DFT becomes

Ns—1 Ng—1 Ng—1 Ng—1

X(rl, Sy ry, 52) = z z z z X(|1, my; 1, mz)\N(NNsI1+m1) (N 1 +57) +(Ngl 5 +m5) (Ngr 5 +5,) (250)

my=0 my=0 ;=0 1,=0

with the substitution of variables, n; = Nd; + m;, ki = Ngf; + 5,1 = 1,2and 0 < |;,m,,r;,S; < Ns. The equation
(2.50) can be rewritten as
Ns—1 Ng—1 Ns—1 Ng—1
X(riSyrss) = z Z \/\/('\’1“151+m252) W,Slrlmzrzz z X(Iy, mg; 1, mz)Wlellzsz . (2.81)
M0 M=o l1—0 '2-0

The second double summation yields a NsxNs 2D DFT of x addressed by I; and I,. The outer double summation is another

NsxNs 2D DFT addressed by my and mp, except for the twiddle factor, Wy, ™" ™2, Thus by using equation (2.51), the 2D
DFT can be computed by the system shown in Figure 2-10. The index mapping memory provides the parallel inputs to the
2D FFT blocksin proper order. The 2D parallel FFT computes a NgXNs FFT in row—column using a Ns—points FFT unit followed
by Ns, Ns—point FFT units.

The scheme requires the following hardware (the quantity is indicated inside parentheses): Ns-hit shift registers(2N\s),
radix—4 butterfly units (3NslogsNs), memory (2N2words), interconnection networks of size N (4), and address generators (2).
Itisclaimed that the system can perform a 256x256 FFT in 3.27 msec assuming a clock rate of 12.5 MHz. When multiple filters
are to be implemented, this hardware has to be duplicated for each filter.

It is possible to build area—time FFT system around a special purpose FFT chip[6]. The LH9124 DSP chip is a 24-bit
fixed point processor with a maximum clock speed of 80 MHz. It performs not only the FFT but also cosine and sine transforms,
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Figure 2-10: System Diagram of the FFT Using A Smaller Kernel

complex and real FIRs and convolution operations. Unique to this processor isthe use of the quasi radix—16 approach instead
of the more common radix—2 or radix—4 approaches. The bottleneck of a high speed FFT processor is often found at its I/O;
the processor’s I/0 cannot keep up with the speed of itsinternal computation. Hence it is desirable to implement the FFT using
as high aradix as possible for butterfly operations so that data once brought on chip is processed many times before going out.
However aradix beyond 2 or 4 for butterfly operations increases the hardware complexity tremendously. The chip compensates
the trade—off by implementing a radix—16 butterfly operation using eight radix—4 butterfly units and on—chip memory.

With asingle LH9124 operating at 80 MHz, a 1k complex FFT can be donein 80.7 usec. Multiple chips can be cascaded
to enhance the performance. With 3 stages of a cascaded configuration, a 1k complex FFT can be donein 25.6 nsec. If arow—
column FFT is performed on 1k x 1k images with 3 stages cascade configuration, it will take 25.6 usec x 1024 = 26.2 msec
to finish the transform. 1t requires the following amount of hardware: LH9124 chips (3), LH9320 address generator chips (11),
and 1k memory chips (22).

It isthus possible to implement a real-time orientational filter system using the real—time FFT system. However, the sys-
tem becomes very complicated and requires an immense amount of hardware. It needs at least twice as much hardware as
the FFT system described above, since filtering in the frequency domain involves both forward and inverse FFTs. For a system
with multiple filters, independent hardware is needed for each filter.

2.2.3.Parallel 1D Convolution

This scheme computes the convolution for each row of an orientationa filter, in parallel, and the result of each convolution
is accumulated to generate the result of the 2D convolution (Figure 2-11). M, 1D convolvers compute the parallel portion of
the 2D convolution. The processing required at the k" 1D convolution unit when the center of the filter mask islocated at [y,
] is

M-1

P = ZI[nl—M2_1+m,n2—M2_1+k]h[M—m—1,M—k—1] . (2.52)

m=0

Then the final result of the 2D convolution is

yln,n] = E_:pm . (2.53)

Theidea of this parallel 1D convolution schemeis applied to Gabor functionsin [71]. It also takes advantage of symmetric
and anti—symmetric characteristics of the Gabor functions.

Figure 2-11 shows only M 1D convolvers, 1 Accumulator and 1 image plane. However, in order for the convolvers to
operate in paralel, M independent memory banks are necessary to let each convolver access image data simultaneously. Also
after each row, filter coefficients in each 1D convolver must be updated. The computational complexity of this scheme is
O(N2V1?), and the latency is O(NM). The throughput can be O(1/ty,) by using a pipeline structure. It requires NM words of
memory with M independent banks. For amultiplefilter system, the memory banks can be shared, thus M banks of N memory
words are enough for the system.
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2.2.4.Separable Approximation Method
The separable approximation method approximates a 2D filter by alinear sum of separable filterg91],

hixy) = > a()be). (2.54)

Its computational schemeisillustrated in Figure 2-12. If a 2D filter is separable, the convolution of the filter can be computed
by first applying the horizontal filters to the data along the rows and applying the vertical filters along the columns to the hori-
zontal filtering results. Hence the computational complexity of the filter changes from O(N2V12) to O(N2M P). Computational
savings over direct implementation and parallel convolution can be achieved when 2P < M. In Chapter 3, it will be shown
that more computational savings can be achieved using the separable approximation method when multiple filters are to be
implemented. By using the separable approximation method, each pair of separable filters, g (X)bi(y) can be computed indepen-
dently.

The biggest advantage of separable approximation in real—-time computer vision applicationsliesin itsintrinsic parallel-
ism; each term in (2.54) can be computed in parallel. The latency is O(NM), and the storage requirement is O(NMP). The
throughput can be O(L/t,) by using a pipeline structure. In Chapter 3, it will be shown that the amount of storage required can
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be O(NM) no matter how many filters are to be implemented. Because of the regular filter bank structure, implementation of
this schemeisvery simple.

2.2.5.Comments

The direct method can be implemented to achieve a small latency and a high throughput using parallel processing. The
storage requirement is small and does not grow as the number of filters increases. However, the computational complexity
becomes high for large filters. Thisimpliesthat alarge amount of hardware is needed to achieve the small latency and the high
throughput. The method satisfies the first, the second and the fourth criteria of the implementation criteria, but violates the
third criterion.

Parallel 1D convolution can be viewed as a parallel implementation of the direct method. Thus the same arguments can
be applied to this method as the direct method. It satisfies the first, the second and the fourth criteria of the implementation
criteria, but violates the third criterion. Due to the high computational complexity, the amount of hardware islarge. It requires
MFy 1D convolversto implement Fy orientational filters.

The FFT based method can be implemented to achieve a high throughput by using real-time FFT modules. The computa-
tional complexity is smaller for large filters than the direct and the parallel 1D convolution methods. However, it has alarge
latency due to the FFT and inverse FFT operations involved, and the storage grows linearly as the number of filters increases.
Thus the method satisfies the first and third requirements, but fails to satisfy the second and fourth requirements.

The separabl e approximation method can achieve a high throughput and a small latency. The computational complexity
is smaller than the direct method provided that a good approximation can be achieved with a small number of filters. The simple
filter bank structure of the method is very attractive for an inexpensive implementation. The storage requirement does not grow
as the number of orientational filters in the system increases by employing a parallel—pipelined implementation described in
Chapter 3. The method satisfies all the implementation criteria provided that a good approximation is achieved with the approx-
imation order smaller than M/2. For a multiple filter system, this approximation accuracy and implementation advantage trade—
off can be relaxed, and the method satisfies all the implementation criteria provided that a good approximation is achieved with
the approximation satisfying P(1 + Fy) < FyM. Chapter 3 givesadetailed explanation. Table 2—2 summarizes the filtering
schemes described in this section.

In the next chapter, three different algorithms to derive the separable filters, g (x) and Iy (y),in (2.54), are described. The
first two algorithms are the singular value decomposition method (SVD) originally described in [91] and the orthogonal decom-
position method. Orthogonal decomposition has two variations; orthogonal function decomposition (OFD) and orthogonal
sequence decomposition (OSD). OSD is adiscrete version of OFD and more suitable for digital computation than OFD. The
performance of OSD is equivalent to that of OFD, athough it can perform the approximation much faster. SVD produces less
error in the approximation than the OSD approximation with the same order. However, OSD has a simpler implementation
when a system is comprised of multiplefilters, and it is easier to update the OSD filter coefficients. The third algorithmis called
SV/OSD and possesses the implementation advantages of OSD and the performance advantages of SVD.

Table 2-2: Comparison Summary of Computational Schemes
The comparison summarized in this table is based on the computation of a single orienta-
tional filter. The comparison based on the computation of multiple orientational filters dif-
fers, and will be discussed in the next chapter after the separable approximation technique

isfully defined.
Comp. Complexity Latency Storage Remarks on
Hardware
Direct N2m2 NM NM
FFT (N+M)(N+MlogN | (N+M)(N+M)logN | (N+M)(N+M) FFT and IFFT
modules
Parallel N2Mm2 NM NM M 1D convolvers
Conv
Separable N2MP NM NM P 1D convolvers
Approx.

Another advantage of separable approximation is that a multi—resolution image decomposition can be performed effi-
ciently by using a tree-structured filter bank. The algorithm for multi—resolution decomposition is described in Chapter 5.

23



2.3.Applications in Computer Vision

This section reviews the use of various orientational filtersin computer vision applications. The purpose is to show how
useful and important orientational filters are in computer vision applications.

As stated in the previous chapter, orientational filters are useful for detecting features, mainly edges, and for analyzing
spatial—frequency characteristic of images. This section is divided into two parts. orientational filters as feature extractors
(edge detectors) and as frequency analyzers.

2.3.1.Feature Extraction

David Marr and his colleagues were the first to approach computational vision problems based on the human visual sys-
tem in a systematic way[57]. Their pioneering work in the late 70s opened new directions in computer vision research. Their
motivation was to produce a primitive but rich description of the image to be used for image analysis. They suggested that
intensity changes or edges are good features for image description, hence a good edge detector is essential for image analy-
sig[58].

Various edge operators appeared in the literature during the 70s, such as the Sobel operator, Robert operator and Prewitt
operator[40]. They are small in size (normally 3x3), and most of them are separable. Their performances are acceptable for
simple images such as binary images and simple applications. However, these operators are prone to noise and respond well
only to sharp edges. Also their orientational selectivities are quite limited. Asimages and applications become more compli-
cated, pre—processing for noise suppression and post—processing for orientational analysis, edge connection, and spurious edge
elimination have to be combined to fulfil the goal, and the computational advantage of these operatorsis|ost.

The contributions of Marr’s work in edge detection algorithms can be summarized in two points. First he suggested to
perform edge detection at multiple different resolutions, since intensity changes can occur at different scales. Gaussian filters
of different sizes are used to smooth the image in different resolutions. The Gaussian is used because of its good spatial—fre-
guency localization. The second point is the use of a zero—crossing of a second derivative operator rather than a peak of afirst
derivative operator. Both are sensitive to intensity changes, but finding a zero crossing is computationally easier than finding
apeak. Theresult isan edge detector called a Laplacian of Gaussian operator. It isexpressed as

2
viG() = - -1 [1 - %] e-r2a? (2.55)

The function looks like a Mexican hat and resembles the response of ganglion—cells (Appendix A). Ascan be seen from
(2.55), the Laplacian of Gaussian is not directionally sensitive. It was designed this way because of computationa and imple-
mentational advantages.

As Marr himself pointed out, the Laplacian of Gaussian cannot locate edges properly if intensity varies non-inearly
around the edges, and some experiments show that directional selectivity is an important property for a good edge detec-
tor[36][30]. There are two approaches for introducing directional selectivity to edge operators. One is a post—processing ap-
proach and the other is a multiple filter approach. In the post—processing approach, edge direction and edge strength are esti-
mated from outputs of two directional filters hy and hy, normally tuned to horizontal and vertical directions respectively. The
edge strength at alocation (x,y) of animage | is estimated by

SxY) = VAW + A0 ) (2.56)
and the edge direction is estimated by

A% y)}
0, (x,y) = tan 1= ) 2.57
d ( y) {A Z(Xa y) ( )
where A; = | * hy and 4, = | * h, with * being a convolution operator. An advantage of the post—processing approach

is simple implementation; only two orientational filters are needed. Disadvantages are that the edge direction computed by
post—processing is hot precise, especially around a texture, multiple edges, and corners.

In the multiple filter approach, more than two orientational filters are provided, and each orientational filter detects edges
of aparticular direction and its vicinity. Advantages of this approach arethat it is more robust and flexible than the post—proc-
essing approach, and it can be used for region analysis such as texture analysis. A disadvantage is that it is more expensive
to implement.

Based on three criteria, Canny derived a 1D optimal edge detector for step edges with the presence of white noise[17].
Thefollowing isthe criteria.
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e The produced outputs have low probability of failing to mark real edges, and alow probability of mark-
ing spurious edges.

e The points marked as edges should be as close to the true edge as possible.

e Only one response should be marked for a single edge.

These criteria were mathematically formulated and the optimal step edge detector was generated numerically. It turned
out that the numerical result is very closeto the first derivative of the Gaussian. For 2D cases, his edge detector is a concentric
first derivative of the Gaussian written as:

Ecanny(xv y) = n-Vgixy) (258)
where N is an estimated edge orientation obtained by

= _ V(@*1)
"= NN (259)
where | isthe input image. The edge location is estimated as alocal maximum in the direction of N, and the edge strength is
obtained by | V(ga* 1) | .

He also discussed the importance of having edge detectors with different widths (multi—resolution edge detectors) for dif-
ferent sizes of edges, and having orientational tuning of the operator for improving both detection and localization of edges.

Natural scenes are composed of not only step edges but typically a combination of steps, peak and roof edges. In [65],
Perona and Malik concluded that a linear filter cannot localize these composite edges properly, but they can be localized by
quadratic filtering using alinear filter h[n] and its Hilbert transformed pair ﬁ[n]. The edge detection looks for local maxima
in[(h* D2+ (h* 17 .

2.3.2.Frequency Anayzer

Another strength of orientational filtersin image analysis applications is their region analysis capability that is very impor-
tant in analyzing textured regions. Texture is a very important cue in image analysis[3], especially for natural images which
are comprised of arich set of textures each corresponding to a different object or part of an object. Although thereisno rigid
definition for the notation 'texture’, it is apt to say that texture is ” something composed of closely interwoven elements’[3].
Examples of natural textures are shown in Figure 2—14 along with their frequency spectra. These textures are extracted from
the Brodatz's photo album[11]. As can be seen, they have their energy concentrated in small regions scattered over the frequen-

cy domain, and they can be characterized well by observing the locations of the energy concentrations in the domain. Hence
itis natural to utilize frequency domain analysisin order to distinguish different textures.

Orientational Non-inear Local Energy
Filter Operation Computation
— 0; — — —
Square Error
Clustering
Ok — — g —
Input Clustered
Image : : : Image
— On — — —

Figure 2-13:Multi—channel Texture Segmentation System Using Orientational Filters
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Figure 2—14: Samples of Natural Texturesand Their Fourier Transforms (M agnitude)
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As stated in Chapter 1, an orientational filter useful for image analysis should have good spatial—frequency localization.
Many texture segmentation/analysis methods based on orientational filters have been  proposed
[71[10][15][18][12][29][35][41][54][72][77]. They all consists of multiple orientational filters tuned to different angular and
radial frequency ranges followed by some non-inear transforms forming multiple parallel channels. Outputs of the channels
are combined at the last stage for robust unsupervised texture segmentation. An example of such a system proposed in [41]
isshown in Figure 2-13. Many non-inear operations have been proposed in order to improve the segmentation performance.
Since most clustering algorithms are designed to distinguish between classes with non—overlapping centroids, the purpose of
these operators is to convert variance disparities into mean value differences. Typical operators are f(X) = [x|, tanh(X), x°

and log |X].

2.3.3.Comments
In summary, orientational filters can be used as a feature extractor and region analyzer. Hence, they are useful as alow—
level operator for image analysis.
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CHAPTER 3

Separable Approximation

Assume that the discrete orientational filters to be approximated originate from continuous orientational functions, and
the filters are derived from sampling the continuous functions using a rectangular sampling grid. Throughout this chapter, h(x,y)
denotes the orientational function. It is sampled at {(Xm, Yn)} to form a discrete orientational filter h[m,n]. The size of the
discretefilterisM x M as before

In the separabl e approximation method, an orientational filter h(x, y) is approximated by alinear sum of separable filters
as

P
hxy) = > a()b(y) . (3.1)
i=1
In thisform, the orientational filter can be implemented by P banks of separable filters operating in parallel followed by accu-
mulators (Figure 2-12). Asdescribed in 2.2.4, this scheme enables fast operation of the filter and reduces the hardware com-
plexity significantly. The remaining question is whether the scheme provides a sufficiently accurate approximation. Three
approximation methods are introduced in this section. They are (1)Singular Value Decomposition (SVD), (2)Orthogonal Se-
guence Decomposition (OSD) and (3)Singular Value/ Orthogonal Sequence Decomposition (SV/OSD).

3.1.Singular Value Decomposition

3.1.1.Algorithm

The idea of using SV D for decomposing a non—separable 2D filter into a separable form first appeared in[91]. The SVD
method is a discrete approximation that is performed on a discrete filter. The approximation is applied directly to h[m,n].
Consider h[m,n] as a MyxMy matrix A, where My is the number of columns, My is the number of rows and My = My. If My >
My, A represents the transposition of h[m,n]. Then the matrix A can be decomposed into the form
A = UWVT. (3.2

U isaMyxMy column—orthonormal matrix, and each column vector is an eigenvector of AAT. Visa MyxMy, column—orthonor-
mal matrix, and each column vector is an eigenvector of ATA. AAT and ATA are non—negative, symmetric and have the identical
set of eigenvaues, {4j}. W isaMyxMy diagonal matrix with positive or zero elements. Each non-zero diagonal element w
in W is asquare—root of the eigenvalue, 4;. This decomposition is called Singular Value Decomposition (SVD). Equation (3.2)
can be also written as

My
A = Z W;; Ui X Vi, (3'3)
i=1

where 4 and v areith column vector of U and V, respectively, and X represents an outer product operator. Suppose W is ar-
ranged so that w; = wj; if i < j, and corresponding rowsin U and V are shuffled so that equation (3.3) still holds. Then matrix

A can be approximated by A, where
P
A = Z W Ui X Vi . (34)
i=1

Thisisa Pt order separable approximation of A , where the us are horizontal filters and the vis are vertical filters, or vice
versa. Theweight wi; can be incorporated into either u or v, or can be split between y and ;.

3.1.2.Properties
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The coefficients {w;} are non-negative, since they are square roots of the eigenvalues of the matrix AAT. If the rank of
Alisrp, thenthereareat most r, < My nonzero eigenvalues. Given {Ui}, {Vi} can be computed by
v, = Wi” AT . (3.5)

The approximation (3.4) is the best |east squares rank—P approximation of A if the elements w;; are in decreasing order
of magnitude. The least square error of the approximation (3.4) is

z |Ai,j - Ai,j|2 (3-6)

j=1

M N
2 —
€swo =
i1

where A is the result of approximation (3.4). Equation (3.6) reducesto

"A
€ap = Z Wi . (3.7)
i=P+1

Hence by increasing the order of the approximation, P, up to ra, the algorithm is guaranteed to converge to the original filter
to be approximated.

Given the precision of the approximation required for a certain application, it is easy to determine the order of approxima-
tion necessary to achieve the requirement by observing the eigenvalues {4;}. For example, if the application requires the approx-
imation error to be less than e, then the approximation order should be the smallest P which satisfies

"A

= > w . (3.8)

3.2.0rthogonal Sequence Decomposition

The orthogonal decomposition method approximates a continuous orientational function by orthogonal projection. The
approximation is performed at discrete points to form a discrete orientational filter.

As stated above, the SVD method is optimal in aleast squares sense. Hence other approximation methods cannot perform
better than the SVD in the same sense. However, the method requires distinct pairs of horizontal and vertical filters for each
orientational filter to be approximated. Thus the total computation is approximately 2FyN2PM. With the orthogonal decom-
position method described here, the number of filtersis less than the SVD method for the same order of approximation. This
is because one set of filters, either the horizontal or the vertical direction, is merely a set of orthogonal sequences used for the
decomposition, and are independent of the functions to be approximated. By performing orthogonal filters prior to the other
set of filters (projection filters), the output of the orthogonal filters can be shared among all other orientational filters in the
system. Figure 3—1 compares systems with multiple orientational filters implemented by the SVD method and the OSD method.
Thetotal computation for OSD is approximately,

Cow = N2MP + F\N°MP = N2MP(F + 1) . (3.9)

Therefore it is possible for OSD to achieve a better approximation than SVD with the same amount of computation. Figure
3-2illustratesthisclaim. It plots
2F N2PM 2F

y o= = N (3.10)

N?PM(1 + F) 1+ Fy
which isthe ratio of computation between SVD and OSD at the same approximation order. At Fy=10, y isequal to 1.82. Sup-
pose a sufficient approximation of Fy orientational filters can be achieved with the approximation order at Ps using SVD.
OSD cannot achieve the same performance as SVD with the approximation order at Ps, however, if OSD can achieve the same
performance with the approximation order at Po<1.82Ps, OSD achieves the same performance with less computation than
SVD.

Therefore it is possible that even though OSD cannot outpeform SVD with the same approximation order, it can outper-
form SV D with the same amount of computation and implementation cost.

3.2.1.Algorithm

This section describes the orthogonal decomposition algorithm. First, Theorem 1 provides a proof that orthogonal decom-
position can be used for separable approximation.
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Figure 3-1: System Implementation of Multiple Orientational Filters

Definition 1: A set of functions {¢i(x)}. 0 is orthogonal over theinterval [a,b] with respect to aweighting function

1=

w(x) if it satisfies the orthogonality condition:

b

jW(X)¢i(X)¢j*(X)dX = G ,

a

where ¢*(x) is the conjugate of ¢(X), G is a constant and d; j isthe Kronecker delta function.
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Figure 3—2: Computation Ratio of SVD vs OSD

Definition 2: A 2D function f(x,y) belongs to §[a;, bi]xS$[a, p] where § and S are 1D linear sub—spaces, if

f(xy) €S, VY E [a,by] and f(xy) €S, VX E€E [a,b,l.

Theorem 1: Let {¢(x)}, _ , bethe set of orthogonal functions over [a,b], and assume {¢;(x)}. _ , forms abasis of alinear

1= 1=

sub—space S[a,b]. Then any set of functions {f(x,y)} € (SxS,) can be decomposed into a separable form

f(xy) = D v , where

by

wm=éfmmmwmm

Proof: Since {¢(X)},_,spans S, atanyliney = Y, f(x, ¥) can be represented by {¢(X)}, _ &

9 = D> v -

Dueto orthonormality of {¢;(X)}, _

by by by

I W(X)gi(X)f (x, y)dx = j W()Pi0) D YN = > ;) f W(X)¢i(X)¢p;(x)dx = Citpi(y) -
j j

a1 a ar

Hence (3.13) holds. Now, at any line X = X, f(X, y) can be written as
fxY) = D v = DAy €S

where B; = ¢,(X). Therefor y,(y) € S,.
Therefore, any continuous function h(x, y) € Ja_,a:]xghb_,b:] can be decomposed by

hxy) = S amTE, with
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a4

aly) = Ci f w(x) h(x,y) T,6)dx, (3.18)

a—

and [Tj(x) }j 0 isan orthogonal basis of alinear sub-space Ja_, a,].

If h(x,y) is not in XS, then the decomposition is not exact. However g (y) obtained by (3.18) minimizes the distance,

[ hoey) = > amTie) |

i
In order to approximate h[m,n], {Ti(X)} and {c; (y)} are sampled at {xn} and {y} respectively. Alsoin reality, the summa-
tion has to be truncated at some point. A Pth order approximation selects the first P set of functions. This decomposition is
called Orthogonal Function Decomposition (OFD) and is expressed as

hm.n] = > a ()T - (3.19)

The support ranges of {Tj (X)]. o and h(x,y) are not necessarily the same. It ismore likely that they are different. If the
]=

support range of h[x,y] is [0, X ]X[bY, b” ], the range of {TJ- (X) } . needs to be adjusted by a change of variable
1=
A (ap —a)x— (ajbx —a_b)
X = . 3.20
(0% — bx) (3.20)
It is often time consuming to evaluate the integral of (3.18). Instead of using orthogonal functions {Tj(x)}, discrete ortho-
gonal sequences associated with {T;(x)} can be utilized. The orthogonal functions {Tj(x)} are sampled at a set of discrete points

{x¢} (0 = k < Mp) toform aset of discrete sequences {Ti(xk)} which satisfy the following discrete orthogonality

O0=<ik<Mp
condition,

DT T(x) = C(,) (3.21)

where Mp is the sampling size for the orthogonal sequences and G isa constant. Then the decomposition is similar to the contin-
uous case,

i = S ] Team) (3.22)

where g is the sampling period of h(x,y), and

aln] = Cizp h(X, ) Ti(X) - (3.23)

Mp is different from the sample size of the discrete filter g[n] which is assumed to be M. Equation (3.23) can be viewed as
an approximation to the integral of (3.18) with areasonably smooth filter h(x,y) as stated in the following lemma. This discrete
version of the OFD is called Orthogonal Sequence Decomposition (OSD).

Lemma 3: Denote Apgx asthe largest sample step in {x}, i.e.

Amax = max (Xk+l - Xk) . (3.24)

0§k<MP

If

g = d%([h(x, yn)Ti(x)]’ < o ina<x<as,theng[n] in (3.23) convergesto & (Yn) asAmax—>0. Thus,

Jim afn] = a(yn) - (3.25)
Proof:
a) = f O YT = &> Mt Y Ti(x) + My O )

a—
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= a[n] + Ol 9') - (3.26)
Hence, (3.25) holds.

Table 3-1 compares computation time and accuracy of the approximation using OFD and OSD with the approximation
order P=12. Sine functions and sine sequences are used for orthogonal functions and orthogonal sequences, respectively. The
integration of OFD is computed using Simpson’s method, and the computation terminates when the result does not change more
than 1.08. Mp is set to 10M+ 1 for the OSD. Therea part of Gabor functions with various parameters are approximated. The
computation time is measured as the time required to compute one projection operation, (3.18) and (3.23), on a Sparc |1 worksta-
tion. The criteria of approximation performance are a normalized peak error and a normalized energy error. The normalized
peak error is defined as max;; [I[i,j] — Ap[i, ]I/ max;; |I[i, ]| where | isthe original filter to be approximated and Ap is the result

of the approximation. The normalized energy error is defined as Zi,j(l[i,j] — Ap[i,j1)?/ Zi’i I[i,j]% Ascanbeseenin Table
3-1, the OSD performs as well as the OFD, and has much less computation time.

Table 3-1: Comparison of Approximation Using OFD and OSD
e  0=mn/4,a=10.0, 0y=0.6, gy/0x=1.5, M=13

Computation Time Peak Error Energy Error
OFD 1.3 sec 1.86 % 0.0245 %
OsD 0.033 sec 1.86 % 0.0245 %

e 0=m/4,a=10.0, 0y=0.4, 0y/0x=2.0, M=19

Computation Time Peak Error Energy Error
OFD 1.8 sec 1.63% 0.0607 %
OsD 0.045 sec 1.63% 0.0607 %

e 0=n/4,a=10.0, 0y=0.45, 0y/0x=3.0, M=23

Computation Time Peak Error Energy Error
OFD 2.2sec 4.56 % 0.421 %
(OX'D) 0.053 sec 4.56 % 0.421 %
3.3.SV/OSD

The comparison of SVD and OSD showed that SVD has an advantage in its approximation performance and a disadvan-
tagein itsimplementation, while the reverseistruefor OSD. Hence there are two approaches to improve the separable approxi-
mation method. The first one is to improve the implementation of SVD by adapting the implementation structure of OSD.
The other is to improve the performance of OSD by obtaining the set of orthogonal sequences which provides the best fit to
agiven set of orientational filters to be approximated. It will be shown that these two approaches lead to the same algorithm.

3.3.1.Algorithm

A set of orientational filters {h(xy)} (0 = k < Oy) isto be approximated, where each filter is represented as an FIR
filter of the size MxM. Typically, {h(x,y)} is generated from the same prototype filter with different orientations. The orienta-
tional filters are combined to form a M x MFy matrix A as shown in 3-3. The matrix A is called an approximation matrix.
A set of M adjacent columns from column kM (0 < k < F,) through column (k+1)M-1 constitutes the orientational filter
he. SVD is performed on the approximation matrix to produce ra vectors of length M, ra vectors of the length (MFy) and the
corresponding eigenvalues. The first set of vectors are denoted u; (O < i < r,), the second set of vectors are denoted v;
(0 < i < rp), and the square root of the eigenvalues are denoted as wi;. Then h, can be expressed by the separable form,
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A

h{mn] = z Wii Un Viany+n - (3.27)

Assume the weights, wj, are sorted by magnitude in descending order, and the corresponding vectors, uj and V;, are shuffled
in correspondence with w;j so that the decomposition (3.27) still holds. Then the Pt order separable approximation is

P
hfm n] = ZWH Un Vigy+n -~ - (3.28)

Since the u; are orthogonal vectors, and are common to all the orientational filters to be approximated, it is an OSD, al-
though the vectors are generated from SVD. Hence this separable approximation method accomplishes the advantages of both
SVD and OSD; it has the good approximation performance of SVD and the simple implementation of OSD. The amount of
computation required to implement Fy orientational filtersis
Csyjoo = N°MP + F\N°MP = N°MP(F + 1) . (3.29)
The error ep introduced by the approximation is measured as a sum of approximation errorsin aleast squares sense,

FN P 2
Ep = z Z{hk[ma n — Z WiiUkaM+n} = z Wi (3.30)
k=1 mn i=0 i

Inthissense, uj arethe optimum orthogonal sequences for approximating { h}. Since this algorithm is a combination of SVD
and OSD, it is denoted as SV/OSD.

3.4.Convergence of Approximation

In this section, the convergence of the separable approximation method is examined. The next lemma gives an upper
bound of the energy error for SVD and SV/OSD.

Lemma 4: A normalized energy error for an approximation order P is at most M I\] P for SVD and SV/OSD.

Proof: From (3.7), anormalized energy error for an approximation order P is

>

€ = i:PNr—l . (3.31)
Zwii
i1

By choosing the P largest eigen values (w;) for the approximation, the worst case is when all the eigenvalues have the same
magnitude. In the case, the normalized energy error is

g=M_P 4 (3.32)

There is no guaranteed upper error bound for OSD. The approximation may not converge to the function being approxi-
mated if the function does not reside in the sub—space spanned by the set of orthogonal functions used for the approximation.

hFN—l

<
S
=

Figure 3-3: Construction of Matrix A with Multiple Orientational Filters
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3.5.Implementation Scheme for SV/OSD

As described above, SV/OSD possesses good approximation performance (its performance will be demonstrated in Chap-
ter 4.), good implementation characteristics, and good convergence behavior. Finally, this section addresses the implementa-
tion scheme tailored for SV/OSD so that al the implementation criteria are satisfied.

Before discussing the details of the design, basic 1D filter units are discussed. There are two possible schemesto imple-
ment 1D spatia filtering. They are called pipelined filtering and parallel filtering, and are depicted in Figure 3—4. Pipelined
filtering takes one input at atime sequentially. Theinput is multiplied with all the filter coefficients at the same time, and each
result of multiplication is accumulated at an accumulator attached to the multiplication unit. All the accumulators are con-
nected together through delay units, and the output of the last accumulator in the chain is the output of the filter. The parallel
filtering takes M inputs at atime, and each input is multiplied with a corresponding filter coefficient. The results of the multi-
plications are added through the binary tree adder to form the output. Both schemes require M multipliers and M—1 adders.
Pipelined filtering is suitable for a sequential input stream, and parallel filtering is suitable for a parallel input stream. For
SV/OSD, pipelined filtering is suitable for horizontal filtering since the input is coming sequentially in araster order, and paral-
lel filtering is suitable for vertical filtering since the input can be provided in parallel so that the latency of the system reduces
to O(NM). It isimportant to note that the parallel filtering requires an input buffer so that M parallel inputs can be provided
to the filter unit simultaneously.

A point very influential to the structure of the filter system isthe order of filtering. Separable filtering can be donein either
the horizontal—vertical order or the vertical—horizontal order. With the horizontal—vertical order, the system requires an inter-
mediate memory of size NM after each horizontal filter, thus requires atotal of NMP words of memory. With the vertical-hori-
zontal order, the intermediate memory can be shared among the vertical filters because the inputs to the vertical filters are identi-
cal. Thusthe system requires atotal of NM words of memory. Figure 3-5 depicts this difference. The amount of intermediate
memory needed is NM no matter how many orientational filters are to be implemented.

Note that the orthogonal filters are implemented as horizontal filters and the projection filters are implemented as vertical
filtersin the horizontal—vertical filtering scheme. On the other hand, the orthogonal filters are implemented as vertical filters
and the projection filters are implemented as horizontal filters in vertical—horizontal filtering scheme. A care must be taken
upon constructing an approximation matrix for target orientational filters. With the vertical—horizontal filtering scheme, each
column in the matrix corresponds to a vertical slice of afilter, and with the horizontal—vertical filtering scheme, it corresponds
to ahorizontal slice of afilter. Figure 3—6 depicts these two ways of constructing the approximation matrix.

Because of the memory requirement advantage the vertical—horizontal filtering scheme possesses over the horizontal—
vertical filtering scheme, it is assumed from now on that the vertical—horizontal filtering is employed to implement SV/OSD.

Due to Lemma 4, the approximation converges at least linearly to the original filter as the approximation order approaches
M. Thus, even for the worst case, the computational complexity of the filters using the SV/OSD is only slightly more than the
complexity of the direct method. In the worst case, the ratio of the computational complexity between the separable approxima-
tion and the direct method is

35



——={ Horizontal filter 1——={ Intermediate Memory |

Vertical filter 1
0;

— ] Horizontal filter ——{ Intermediate Memory |

(a) Horizontal—Vertical Filtering

Vertical filter P
0;

Vertical filter 1
Oc

\ertical filter P
Oc

—={ Intermediate Memory ————={ \ertical filter 1 |

| \ertical filter P |

Horizontal filter 1
0;

(b) Vertical—Horizontal Filtering

Horizontal filter H
0;

Horizontal filter 1
Oc

Horizontal filter H
O

Figure 3-5: Two Implementation Schemesfor SV/OSD
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Figure 3-6: Construction of Approximation Matrix for Different Filtering Scheme

O(SV/OD) ~ M2 + F M2
O(Direct) ~  F M2

=1+ 1/Fy . (3.33)

andiscloseto 1 for large Fn. However, the convergence and speed of SV/OSD is much faster than linear convergence in most
cases as demonstrated in Section 4.1, and sufficient approximation for computer vision applications can be achieved with a
much smaller approximation order than M. Thus, SV/OSD satisfies all the implementation criteria. Table 3-2 compares the
various schemes discussed in Section 2.2 when the comparison is based on the implementation of multiple filters. The computa-
tional advantage of SV/OSD increases as the number of filtersin the system increases.
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Table 3-2: Comparison Summary of Computational Schemes

Comp. Complexity Latency Storage Remarks on Hardware
Direct FuNavi2 NM NM
FFT Fn(N+M)(N+Mylog | (N+M)(N+M,log | Fn(N+M)(N+M) | Fy FFT and Fy IFFT
N N modules
Parallel FaNav2 NM NM FnM 1D convolvers
Conv
Separable N2MP(Fn+1) NM NM (Fn+2)P 1D convolv-
Approx ers
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CHAPTER 4

SV/OSD Performance Evaluation

In this section, the separable approximation method described previously is evaluated using SV/OSD. Gabor filters with
various parameters are used for the evaluation. Gabor filters are often used in computer vision applications since they have
an optimal spatial—frequency joint resolution and good smoothing effects. The real part of continuous Gabor filtersis defined
as

Re[gy(%, V)] = gpr(x Y) = ga(%Y) cosla(Ux + W) , (4.1)

where ga(x,y) = e X/205-Y/200 g = Ux + Wy, ¥ = — Vx + Uy, U = cosh, V = siné, 6 isthe angle of orienta-
tion, a determines the oscillation frequency, and oy and gy are standard deviations of ga(x,y). Theimaginary part of continuous
Gabor filtersis defined as

Im{gp(x Y)| = 95(x¥) = ga(%, Y) Sin(@(Ux + W) . (4.2)

These continuous filters are sampled at aregular rectangular grid to form discrete counterparts.

The size of the filter is chosen such that very little aliasing is introduced after sampling. It isinevitable to have aliasing
since Gabor filters are not bandlimited. However, the frequency response of the Gabor filter has an exponential decrease as
the frequency moves away from the center frequency of the Gaussian at (¢U, aV), and the aliasing can be reduced to a negligi-
ble amount by proper sampling. First the sampling is done within the range [-1<x,y<1]. The parametersoy and oy are chosen
so that a significant portion of the Gabor function stays in this range for any orientation. The sample size is determined from
the prototype filter whose orientation () is zero. The center frequency of the prototype filter lieson the u axisat (a, 0). The
cut—off frequency of the prototype filter is set at the center frequency plus four times the standard deviation of the Gaussian

whichis 1/0y. The sampling interval Ts is derived from

fc=%=a+0ix, (4.3)
which implies a sampling size of

a, —a_
M=+T=T%=%(a+0£x) (44)

where a, and a_ are the sample range along the x axis, which are 1 and —1 respectively. Note that the sampling size in both
the vertical and horizonta directions are set to be equal and the sampling size of thefiltersis the same for al orientations. This
is done for simplicity in performance evaluation. However in areal implementation, it is better to have smaller filters. The
filter size can be reduced if the sampling size is determined for each direction independently and for each filter with a different
orientation.

The approximation error for each case is measured in terms of a normalized energy error (L2). The normalized energy
error isthe L2 norm of the approximation difference normalized by the L2 norm of the origina filter. Thus,

L2 = > [i(n,m) — Ap(n,m)P2 / > fi(n, m)?. (4.5)

4.1.Enerqgy Error Analysis

First, the performance of SV/OSD is evaluated on Gabor filters with a fixed approximation order (P), various frequencies
(a) and Gaussian aspect ratios (ox/oy). Theresult is shown in Figure 4-1 for the real part of Gabor filters and Figure 4-2 for
the imaginary part. Each figure contains three 3D plots. The top oneisfor P=10, the middle one for P=15, and the bottom
onefor P=20. Each plot shows the maximum L2 error among Fy filters which constitute an approximation matrix. The approxi-
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mation matrix is constructed using 16 filters with the same a and ox/oy but different orientations which are uniformly distributed
in[0, x].

Second, the performance of SV/OSD is evaluated on both real and imaginary parts of Gabor filters with various frequen-
cies (a) and Gaussian aspect ratios (ox/oy). The approximation order is adjusted so that the the ratio of approximation order
and filter length (P/M) isfixed. Thisisto show the performance characteristic in terms of computational savings over the direct
implementation. Figures 4-3 and 4-4 show the results of the evaluation for P/M=0.3, and Figures 4-5 and 4-6 show the results
for PIM=0.5. Figures 4-3 and 4-5 are the results of approximating the real part of Gabor filters, whereas Figures 44 and 46
are the results of approximating the imaginary part of Gabor filters. An approximation matrix is generated by uniformly sam-
pling the filter’'s orientation within [0,7]. The evaluation is done with Fy=4, 8, and 16. So when Fy=4, the approximation
matrix consists of Gabor filterswith 6=0, 7/4, /2, and 37t/4. In each figure, the top chart isfor Fy=4, the middle chart isfor
Fn=8, and the bottom chart is for Fy=16. A small table next to each chart shows the computational saving of using SV/OSD
over the direct method. The computational saving is computed by the following formula,

_PM+FRPM _ 1- P+ Fy
FuM?2 FuM

Third, the approximation order is increased gradually, and the convergence behavior of SV/OSD is observed using the
real part of Gabor filters. Four filters are used for thistest: (a, ox, oy) = (10, 0.2, 0.4), (20, 0.2, 0.4), (10, 0.15, 0.45), (20, 0.15,
0.45). The approximation matrix is formulated with 16 filters whose orientations are uniformly distributed in [0, zz]. The maxi-
mum energy error among 16 filtersis plotted in Figure 4—7. It exhibits much faster convergence than the linear convergence.
The convergence speed of SV/OSD is compared with other convergence types, and the result is shown in Figure 4-8. The real
part of Gabor filter with (a, o, gy) = (20, 0.15, 0.45) is used for the comparison. As can be seen, the convergence speed of
SV/OSD is much faster than any of polynomial convergences, and is very close to the exponential convergence.

Some remarks based on the evaluation results are the following.

n =1 (4.6)

. The approximation becomes more difficult as the frequency parameter a and the deviation ratio oy/oy increases.
. The approximation becomes more difficult as Fy increases.

. SV/OSD exhibits much better convergence than linear convergence

The approximation results are similar for the real part and the imaginary part.

o~ w0 D P

. It was observed that all the 1D filters are either symmetric or anti—-symmetric since the Gabor filters are also
either symmetric or anti—-symmetric.

4.2.Frequency Distortion

Second, performance is evaluated based on frequency response distortion introduced by the separable approximation
method. Figure 4-9 shows the magnitude of the energy error in the frequency domain. The frequency distortion tends to match
the frequency response of the filter at any orientation. The distortion energy is concentrated at the point where the energy con-
tent of the filter issignificant. Thus, the effect of the distortion isinsignificant in most cases compared to the effect of the filter.
It can be also seen that the distortion energy is concentrated along the V axis. Distortion in the spatial domain is seen along
the axis on which the projection filters are implemented, or perpendicular to the axis on which the orthogonal filters are imple-
mented. Thisisdue to the fact that the projection filters can be tailored to match each individua filter, whereas the orthogonal
filters are tailored to match the whole set of filters. Thus, errors are dominant aong the direction of the projection filters. This
directionality of error appearsin the distortion along the V axisin the frequency domain.
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Figure 4-1: SV/OSD Approximation Results (Test 1)

Therea part of Gabor filters with various parameters are approximated using SV/OSD.
Fn is set to 16, and the approximation order is fixed in each plot to either 15, 10, or 20.
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Figure 4-2: SV/OSD Approximation Results (Test 1)

The Imaginary part of Gabor filters with various parameters are approximated using

SV/OSD. Fy isset to 16, and the approximation order is fixed in each plot to either
10, 15, or 20.
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Figure 4-3: SV/OSD Approximation Result (Test 2)
Therea part of Gabor filters with various parameters are approximated using SV/
OSD. The approximation order is set to round(0.3M).
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Figure 4-4: SV/OSD Approximation Result (Test 2)

The imaginary part of Gabor filters with various parameters are approximated using
SV/OSD. The approximation order is set to round(0.3M).
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Figure 4-5: SV/OSD Approximation Result (Test 2)

Therea part of Gabor filters with various parameters are approximated using SV/
OSD. The approximation order is set to round(0.5M).
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Figure 4-6: SV/OSD Approximation Result (Test 2)

The imaginary part of Gabor filters with various parameters are approximated using
SV/OSD. The approximation order is set to round(0.5M).
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Figure 4-9: Frequency Distortion of Approximation Filters

Thereal part of Gabor filters are approximated using SV/OSD. The approximation
order is 6, and the number of filtersin the approximation matrix is 8.
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4.3. Applicability to Computer Vision Algorithms

In this section, the performance of approximation filters are evaluated by applying the filters to vision algorithms. The
two algorithms selected are edge detection and Jain and Farrokhnia's unsupervised texture segmentation[41].

4.3.1.Edge Detection

A simple edge detector is implemented for this purpose. It consists of orientational filters, zero crossing detectors and
thresholding operations. The process of edge detection is shown in Fig. 4-10. For a performance evauation, one bank of the
process is applied to a simple test image shown in Fig. 4-11(a). The image consists of four step edges and Gaussian noise super-
imposed on the edge. The step edges start at the center of the image and extend to each corner of the image. The Gaussian
noise has zero mean and its variance is set to 100, while the edge intensity is set to 100. Gabor filter gy:(a, ox, gy, w ) = (15.0,
0.2, 0.4, 7/4) is used with amask size of 27x27, and the lower threshold value set adaptively to 1/2 of the maximum intensity
in the intermediate image after the zero crossing detector. The zero crossing detector looks for zero crossings along both hori-
zontal and vertical directions, and outputs the larger gradient at the zero crossing points. Thus, the zero crossing map Z; of an
image | can be expressed as

if Ifm,n]Ifm — 1,n] < 0 or I[m,n]i[m,n — 1] < O then
Z[mn] = max( ABS(I[m,n] — I[m — 1,n]), ABSI[m,n] — I[m,n — 1])) . 4.7)
else 0

Since the Gabor filter is oriented at 7/4, the edge detector should extract only the edges oriented at 7/4 (the diagonal edge
from the left lower corner to the right upper corner) and ignore the other diagonal edge (the one from the left upper corner to
theright lower corner). The performance is evaluated in terms of the number of pixels which are detected as a part of an edge
but should not be detected as edge pixels, plus the number of pixels which are not detected as a part of an edge but should be
detected as edge pixels. These pixels are called spurious edge pixels. Fig. 4-11(b) shows the correct edge map. The result
of the edge detection using the Gabor filter is shown in Fig. 4-11(c). It only misses the point where all the four edges meet.
Thus, the number of spurious edge pixelsis 1.

The same edge detection is performed using approximation filters. SVD and SV/OSD are used to approximate the Gabor
filter gy:(a, ox, 0y, w ) = (15.0, 0.2, 0.4, 7r/4). In the SV/OSD, the approximation matrix is formed through 8 filters which are
a prototype filter gy:(a, ox, oy) = (15.0, 0.2, 0.4) oriented at O, /8, 7/4, 37/8, 7/2, 57/8, 3m/4 and 7x/8. The results of the
evaluation are shown in Table Table 4-1. The right two columns show the errors of the approximations. The quantities shown
in these two columns are normalized peak error (PE), normalized absolute sum error (L1) and normalized energy error (L2).
PE and L1 are defined as

PE = max [[(n,m) — Ap(n, m)|/ max [l(n, m)| , and (4.8)
L1 = > li(n,m) — Ap(n,m)[/ > Ji(n,m)] (4.9)

where [(n,m) isthe original filter and Ap(n,m) is the approximation filter. L2 isdefinedin (4.5).
The number of spurious edge pixelsisidentical to the Gabor filter when P = 4 for SVD and P = 5 for SV/OSD. As
the order of approximation decreases, the approximation filter loses its orientational selectivity and the filter cannot distinguish

Filter 6; Zero Crossing |[—® Thresholding— Edge Map 1

Input Image

Filter Ok Zero Crossing |—®| Thresholding — Edge Map K

Figure 4-10: A Simple Edge Detector Using Orientational Filters
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edges oriented in different directions. It also loses its smoothness as the approximation order decreases, and picks up the Gaus-
sian noise edges. In terms of the approximation error, the edge detector shows no degradation until the peak error, the absolute
sum error and the energy error reach 18%, 29% and 5.6% respectively. Fig. 4-11(d) and Fig. 4-11(e) show the edge maps
resulting from these approximation filters.

Table 4-1: Edge Detection Results Using Approximated Filters

Approxima # of Spurious Edge Pixels Approximation Errors
tion Order (PE, L1, L2)
Gabor 1 0,00
SVD SV/OSD SvD SV/OSD
P=8 1 1 0.631, 1.45, 6.55e-3 2.70,7.29,0.177
P=7 1 1 1.47, 2.90, 0.0290 3.91, 10.1, 0.330
P=6 1 1 2.95, 5.26, 0.107 8.45,21.2,1.66
P=5 1 1 6.27, 9.70, 0.451 12.1, 27.9, 30.8
P=4 1 6 9.23,16.1, 1.29 18.6, 38.5, 6.25
P=3 37 8 23.2,29.1, 5.56 26.5,44.4,13.6
pP=2 150 14 28.1,42.6,11.6 41.3,55.7,22.8
P=1 309 256 74.3,75.4,54.8 73.6,84.2,64.8

4.3.2.Jain and Farrokhnia’'s Texture Segmentation

(a) Test Image (b) Correct Edge Map (c) Gabor Filter

(d) SVD: Order=1 (e) SV/OSD: Order=1

Figure 4-11: Test Image and the Segmentation Result
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This unsupervised texture segmentation algorithm consists of four phases, orientational filters using Gabor filters, non—
linear transform, local energy computation, and clustering[41]. The structure of the algorithm is shown in Figure 2-13. A hy-
perbolic tangent which resembles the sigmoidal activation function used in neural networks is used for the non-inear trans-
form. It isdescribed by

N+(x,y) = tanh(an px,Y)) = T ey (4.10)

where p isthe pixel value of afiltered image, and the parameter o, is set to 0.25.
Thelocal energy computation is an absolute sum within alocal window, and is described as

Exxy) = > I+ =iy =]l (4.11)
()EWs
where Wr is alocal window.

The Isodata clustering algorithm [90] is used for the clustering.

Fig. 4-12(a) showsthe testimage. It consists of two synthetic textures; the background texture is a repetitive bar pattern
oriented at 7z/4, and the foreground texture within a circle is the same pattern oriented at 37/4. Four orientational filters are
used to process thisimage. They contain both real and imaginary parts of Gabor filters gy:(a, ox, oy, ) = (10.0, 0.2, 0.4, r/4)
and (10.0, 0.2, 0.4, 37/4). Thewindow size for the local energy computation is 7x7. The segmentation result is shown in Fig.
4-12(b), and misclassified pixels are shown in white in Fig. 4-12(c). The number of misclassified pixelsin Fig. 4-12(c) is 90.

The same segmentation is performed by replacing the Gabor filters with SV/OSD approximation filters. The performance
is evaluated using the number of misclassified pixels. The results are shown in Table 4-2. For order 5 or greater, the results
using approximation filters are identical to the result using Gabor filters. Asthe order of the approximation decreases below
order 5, the number of misclassified pixels increases. Table Table 4-2 also shows approximation error for peak error (PE),
absolute sum error (L1) and energy error (L2) used for the segmentation. Based on the approximation errors, texture segmenta-
tion produces the same result until the errors reach 4.8%, 10% and 0.4% respectively.

Table 4-2: Texture Segmentation Results Using Approximated Filters

Approxima- # of Mislabeled Pixels Approximation Errors
tion Order (PE, L1, L2)
SvD SV/OSD SvD SV/OSD

P=8 90 90 0.189, 0.565, 6.55e4 | 0.189, 0.565, 6.55e4
P=7 90 90 1.03, 1.81, 9.44e-3 1.02, 1.81, 9.44e-3
P=6 90 90 1.05, 2.66, 0.0182 1.05, 2.66, 0.0182
P=5 90 90 4.74, 6.98, 0.221 5.16, 7.67, 0.221
P=4 91 92 4.82,10.7, 0.424 4.82,10.7, 0.424
P=3 111 116 23.8,28.1,4.01 23.2,27.9,4.01

(a) Test Image

(b) Segmentation Result

(c) Misclassified Pixels(90)

Figure 4-12: Test Image and the Segmentation Result
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CHAPTER 5

Multi—resolution Decomposition

Multi—resolution image decomposition (MRD) produces multiple output images. Each output represents the contents of
an input image over a certain frequency region. The output image corresponding to alower frequency region has alower resolu-
tion and can be decimated (decimated MRD). Hence, the multiple output images have a pyramid structure wherein the lowest
frequency planeisthe smallest and the size increases as the frequency band associated with the image increases. This multi—res-
olution image decomposition is suitable for an image analysis platform for the following reasons.

» The objectsto be recognized often have very different sizes. Hence it isimpossible to define the optimal

resolution for all the objects.

e The objects can be recognized easily if the context of the image isknown. For example, if ahouseis rec-
ognized first, then it is easy to find awindow as arectangle inside the house. But it is more difficult to
recognize the window if the house is not recognized first. Using the multi—resolution technique, it is
easy to first process the coarse image to understand the context of the original image and then move to

finer images for further processing. (coarse-to—fine processing)

e Coarse-to—fine processing can speed up processing since the coarse information can be represented by
fewer samples. The finer details require more samples, but the prior information derived from the con-
text, constrains the region of observation. Moreover, if an object can be recognized from a coarse de-

scription, then processing finer details is not needed.

e Decomposing an image into different frequency bandsis useful in analyzing theimage. For example, an
edge consists of higher frequencies while most texture information has its energy concentrated in narrow
frequency bands.

Therest of this chapter discusses computation applied to MRD. The discussion is based on wavelets because the time—fre-
guency characteristic of the wavelet transform is suitable for image analysis, and recent research on MRD has been discussed
in the context of the wavelet transform[55][21][45]. More specifically, MRD is described in terms of Wavelet Series (WS)
defined by

don = D L1272 = m27y —n) = D[] i - 2 0m,j — 2 i) (5.1)

where dkmyn is the k!h decomposition output at location (m,n), f[i,j] is the input signal, v(x) is the orientational filter, and
YK = 27%2p(27%X). Itisassumed that the sampling period of f{m,n] is 1 in both directions for simplicity. For general
sampling, wk(m, Nn) has to be replaced by wk(mTX, NnTy) where Ty and Ty are sampling periodsin the x direction and y directions
respectively.

Note that Equation (5.1) describes decimated MRD. The formulafor undecimated MRD is

di, = D flijl 27k 2kl - 27k im 2ok — 2oken) (5.2)
ij
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The decimated MRD involves decimation by 2 in both directions. Thus, the size of the image decreases by 2x2 from one
level of the decomposition to the next level. The first level decomposition requires N2 convolutions with each convolution
having a complexity O(M?). Hence the total complexity of the first level decomposition is O(N2M?). Similarly the kih level
of decomposition requires N24%-1 convolutions. Each convolution at this level has a complexity O(4%-1M?) due to the dilation
of the filter. Hence the total complexity of the ki level decompositionis O(N2V2). Now if the decomposition is performed
up to the Lt [evel, the complexity of the whole decomposition is O(LN2M?). The process of decomposition is shown in Figure
5-1. It seemsinevitable that the amount of computation will increase linearly as the level of decomposition increases. Howev-
er, the discrete wavelet transform (DWT) performs MRD in arecursive fashion. The kih level decomposition is performed on
the k=1t decomposition using the same filter kernel. This recursive scheme is possible when the wavelets are orthogonal to
each other. With DWT, the decomposition can be done in O(N2M?) and is independent of L. Then at the k! level of decomposi-
tion, the complexity is O(N2MZ/4k-1). Thus, the total amount of the computation is

L
DT NAMZ/4t < %NZMZ . (5.3)
k=1

Recently, Shensa and Rioul developed independently an algorithm which approximates 1D continuous wavelets by their
samples and an interpolation function in such away that the DWT can be applied using the approximated wavel ets even though
the wavelets are not orthogonal [ 74][80]. This approximation algorithm will be called the Wavelet Approximation in this thesis.
The Wavelet Approximation can be extended to 2D continuous wavelets by first decomposing the wavelets using Separable
Approximation and applying Wavel et Approximation to each 1D filter separately. This new approximation algorithm is called
the Separable Wavel et approximation (SWA)[47].

For undecimated MRD, the size of the image stays the same, whereas the size of the filter increases by 2x2. Thus the
amount of computation increases exponentially as the decomposition level increases. For the level L MRD, the total computa-
tionis

L
D ACINM? = (4 — IN2MZ/3 . (5.4)
k=1
Thus, the computational complexity of undecimated MRD is O(4LN2M?2).

First, this chapter describes the Discrete Wavelet Transform (DWT) which computes a decimated 1D MRD efficiently.
Second, it introduces the Wavelet Approximation. Third, it introduces SWA. Fourth, it discusses implementation issues for
undecimated MRD, and suggests an efficient computation scheme based on SWA.

5.1.Discrete Wavelet Transform

Let Vo define a vector space which includes all the functions of interest. Assume {¢s(X — i)}, isan orthonormal basis
of Vp, and satisfies adilation relation,

b0 = 2 S RIlgLx— i) . (55)

i=— o

Note that the coefficients ﬁ[i] in the dilation equation are different from the orientational filtersh[m,n]. Since {@s(X — 1)};<5
is an orthonormal basis, any f(X) € V, can be expressed as,

©

f) = > cgdx—i) with (5.6)

j=—

Cm = If(X)(P;(X — mdx . (5.7)

Next define the successive sub-spaces, Vi, Vo, ..., W, .... where Vg is a vector space spanned by an orthonormal set
{¢2"‘¢s(2‘kx - i)} . Inthe literature, ¢4(X) is often called a scaling function[75]. Because of the dilation relation (5.5),

iez

the following relation holds;
VoDV, DV,D V,... . (5.8)

Define another set of vector spaces [Wk} as an orthogonal complement of Vi in Vi_1. Thisimpliesthat

keEZ k=0
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Figure 5-1: Direct Computation of Decimated MRD
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Then there exists an orthonormal basis {¢ 2 K27 — n)} which spans W, where
neZ

) = 2 Y (- DT - ) = 2 allgdex— ), and (5.10)

gil = (=) h[—i+1] (5.11)

with h[n] given by (5.5). The set [%2_kwa(2_kx — n)] is called an orthogonal wavelet[21]. Dueto (5.8) and (5.9),
nkeZ

Wi,y 120 @ orthogonal to each other,

W, LW, LW, LW, L... . (5.12)

Vo can be decomposed into {Wl}l c7 |1 Where

VO = Wl U W2 U W3 U ver U Wk U e . (5.13)

Thus, any function f(x) € V, can be uniquely described by {vZ_ktpa(Z‘kx — n)] . The set of wavelet coeffi-
nkezk=1

cients {dK} where

dk, = f £(x) V2 kp(m — 2% X)dx (5.14)

iscalled awavelet series[ 75]. Note that the wavelet seriesis critically sampled.

Although the decomposition can be done directly to each subspace W by (5.14), amore efficient way is to use recursion.
The first decomposition divides \;, into two sub—spaces, V1 and W;. The second decomposition divides V1 into two sub—spaces,
Vo and Wo. The kth decomposition divides Vi1 into Vic and Wk. If an input is given as a continuous function ( f(X) € V),
it is mapped to a discrete sequence c%, by

cd = J f(X)p(x — mdx . (5.15)

If the input is given in discrete form (f{m]), it can be viewed as a set of projection coefficients associated with a function
f(X) € V,by (5.6), or f{m] isviewed ascY,. Now the DWT can be performed as follows. First the projection of f(x) € V,
onto V1 and W gives

ch = Jf(x)/;gbs(zlx — mydx = Jf(x) Z hlilp«(x — 2m — i)dx

= z hi — 2mj J f(X)po(x — i)dx = Zﬁ[i — 2m| ¢?, and (5.16)
d = Jf(x)/sza(Z‘lx — m)dx = Jf(x) 2 alilp«x — 2m — i)dx

= Zg[i — 2mj f f(Q)pdx — i)dx = Zg[i — 2mj] c?. (5.17)

The decomposition is merely afiltering of cO by the lowpass filter ﬁ[i] for V1 and by the high passfilter g[i] for Wy. Similarly
the ki level decomposition gives

ck = Jf(x)/z_-kqf)s(z-kx — mdx = Jf(x) D R]V2 7K g2 % — 2m — i)dx
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= >l — 2m] jf(x)JZk“(pS(Zk“x —i)dx = > hli — 2m| ¢-*, and (5.18)

dk = Jf(x)mlpl(ka — m)dx = ff(x)zg[i] 27k 127K+ 1x — 2m — i)dx

= >ali — 2m| jf(x)JZ‘k“q)s(Z‘k“x —i)dx = > gli — 2m] ¢t (5.19)

Note that all the computation is done in the discrete domain. The above equations imply that the filter outputs are decimated
by afactor of 2 at each decomposition due to the fact that the filters are applied at location 2m rather than m. The structure
of the DWT isshown in Figure 5-2. Thisisan iterative 2—channel filter bank structure with octave splitting done on only the
low—pass portion. Thisisacritically sampled system (the sample size after decomposition is the same as the input size), and
the original sequence can be perfectly reconstructed after the decomposition because of the orthogonality of the wavelets.

Due to the decimation by 2 at each stage of the decomposition, the computation complexity at the kih level is 1/2 of the
k=1th level decomposition. Thus, the total computation complexity of the L level multi—resolution decomposition is

L
1
;NM/Z" - NM(l - g) < NM . (5.20)

5.2.Wavelet Approximation

This algorithm allows the wavelet series to be computed in a recursive fashion, the same way as the DWT even though
the wavelets are not orthonormal to each other. The computational saving results from decomposing awavelet filter into small-
er filters for a cascaded implementation[26], and moving a decimation operation prior to the FIR operation.

A mother function of dyadic waveletsis denoted as 1,,(X). The continuous wavelets are approximated by

w0 = > dlilgix— ) . (5.21)

The original form of this approximation uses ¢,(2x) rather than ¢,(X)[74]. The modification of the approximation is to keep
the first level decomposition shift invariant. Dilation on both sides of the equation resultsin

P27 = > glil @2 —i),or (5.22)
i = D dlilgi(x — 29) where (5.23)
Pl = V2 kg2 %) and (5.24)
Y = 2y 274 (5.25)

Equation (5.23) shows that as the wavelet is dilated, the discrete filter g[m| also expands with zeros being padded between each
filter coefficient. This suggests that a dilation operation at each level of decomposition can be moved prior to the discrete filter
g[m] due to an operator identity

2

cl N c
i FO————

gln] » gn
d? d2

Figure 5-2: Computational Structure of DWT
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DKG(Z) = G(2)DX (5.26)
where DK is decimation by K, and G(2) is a z-transformed representation of a discrete filter. It also shows that the wavelets
w'g(x) can be implemented in a cascaded fashion with two filters, g[m] and ¢'|<(x).

The mother wavelet decaysas t — + o and can be truncated at some time point in the above approximation. The se-
quence g[m] is derived in such away that the approximation (5.21) is exact at integer time points within the truncation points.

@,(X) is some smooth interpolation function, and satisfies the dyadic equation,

B = V2 D il g2x — ), or (5.27)

$i0) = > hlilgl(x — 24 (5.29)

Equation (5.27) implies that the interpolation operation involved in (5.21) can be implemented using the interpolation filter,
¢,(X) and a sequence of small discrete filters, h[m] .
Once the approximation of (5.21) is obtained, the wavelet decomposition for k = 1 can be recursively performed as,

ds, = Zf[i]wt*(i — 2 'm)

= Zf[i] 272kt —m) ~ Zf[il/z-_mlzguwz-k“i -m-j)

- ng[,- - m| Zf[i] pi — 29) = Zgn — mlgt, where (5.29)
o = iZf[i]¢:<(i — 2m) = /F(Zf[i]gb,(Z‘k —m-i) = iZﬂi]/ﬁJZH[J']@(Z‘“” - 2m—j)

= DA —2m Y Al 9l M2y — i) = D hlj — 2ml ¢, with (5:30)

0 = Zf[i]¢|(i—m) . (5.31)

After the prefiltering stage (Equation (5.31)), the subsequent decomposition is performed recursively on ckin the same way
as DWT. Note that the low pass sequence cKis decimated by 2 at each decomposition, however, the high pass sequence dXis
not decimated. Thus the decomposition is not critically sampled.

A basic spline function is often used as the interpolation function, ¢(X). With the basic spline of order k, the discrete
filter h[n] becomes

A = 2-k-1/2("f, 1) . (5.32)

Appendix B gives aderivation of the filter ﬁ[m] when abasic spline function is employed as the interpolation function ¢, (X).
There are no constraints on the mother wavelet, 1 (X). The agorithm works for any function as long as a sufficient

approximation of the wavelet is done with (5.21). The computational structure of the wavelet approximation is shown in Figure
5-3.

5.3.Separable Wavel et Approximation

Most of the notations and approximations are 2D extensions of ones in the previous section. First a 2D mother wavelet
Yp(X,y) is decomposed into a separable form using SV/OSD,

P

wo6Y) = > atb(y) (5.33)
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Then each 1D function is approximated by the basic spline.

U

ai(x)

2. gl ¢(x — j) and (5.34)

U

by) = > @lilely—1i) - (5.35)
j

Following the development in Section 5.2, the decomposition can be done in a recursive fashion using discrete filters
h[ml, g{{m] and g¥[m.

din = > flix, i 95, — 2t iy — 20) = > fiy, )] 275 27Kl — m, 27K, — )

ixly ixly

~ > fix, i) 2 k*lza(z i, — mb(27%* i, — n)

ixly

ixdy

~ > fliy, iylzk“z{Zgruxwl(zkﬂix —m- jx)][z ofliJpi(2 "<ty —n — jy)}
| ix iy
= > > glix—m > gliy - nl ¢t where (5.36)
I x iy

Chn = > flix, 1] 9l — 2M)pli, — 2) = > Fli, i,] 272 i — mp(275, — n)

ixdy ixly

= Dt iJ2” {fzzﬁtm.(z-kﬂix —2m - jo]{ﬁzﬁnywz-k“iy - 2n - jy)}

ixly

= > hlj - 2m]Zhuy— 2n) > fli, i)l — 279,00k, — 2<7Y)

ix ixly
= > >'hlj - 2m > hfjy — 2njclc , with (5.37)
I x iy
Chn = D flix, (M= i) gi(n —iy) (5.38)

The level k decomposition is performed on a decimated k—1 level decomposition, namely ck-1,

Note that the low pass part of the decomposition (5.37) is merely a separable 2D filtering by the same filter ﬁ[m] in both
dimensions. The prefiltering part of the decomposition (5.38) is also a separable 2D filtering by the interpolation filter ¢,(m).

Plots of ¢,(m) and ﬁ[m] for various spline orders are shown in Figure 5-4. The high pass part of the decomposition ((5.36))

f 0 ~ 1 _ 2
M gm < . —— i FO——

aln] > Gn]
l dt le

Figure 5-3: Computational Structure of the Wavelet Approximation
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Figure 5-4: Low Pass Filtersfor SWA
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uses afilter bank structure to implement the separable approximation. It contains a set of separable filters with gﬁ[m] for the
orthogonal direction and g{[m] for the projection direction. Figure 5-5 shows the structure of SWA. There can be multiple

high—pass banks for a system with multiple orientational filters. In that case, the same prefilter stage and the low—pass bank
can be shared among the multiple high—pass filter banks. Also the set of orthogonal filters, gﬁ[n], can be shared among the
multiple orientational filters when SV/OSD is used for Separable Approximation. Figure 5-6 shows an example of multi—+eso-
lution image decomposition using SWA. Two gabor filters are involved in the decomposition. They are gy:(a, ox, 0y, 0 ) =
(10.0, 0.15, 0.45, 7/4) and (10.0, 0.15, 0.45, 37/4). Only the real parts are used for the decomposition.

Benefits of SWA are examined in terms of the implementation criteria. Assume the size of ﬁ[m] is My, and the size of
the splinefilter isM;.

Since the decomposition can be implemented in a pipeline fashion as shown in Figure 5-5, and every filter is separable,
the throughput can be as small as 1/ty,. Thus, the SWA satisfies the first implementation criterion.

As soon as the pre-filtering stage starts generating outputs, the first stage decomposition can proceed. Also the kth level
of the decomposition can proceed as soon as the ck1 is generated. Thus, the whole filter system operates in a pipeline fashion.
The timing diagram of the pipeline operation is shown in Figure 5-7. The latency at the pre-filter is NM;t,. The pixel input
rate decreases by 1/4 from one level to the next level because of the decimation at each stage. This implies that the latency
increases at each stage since it takes more time to collect necessary pixels. Theinput rate at the k! level decomposition is 4t-1
tm. Also the size of the output image decreases by 2 in each dimension. Thus, the latency of the low pass filter bank at the
kth level decomposition is (N/2 )M, (4 't,) = 2 NMit,, and the latency of the high bass filter bank at the L™ level is
2L-INM. Thetotal latency of the Lt level decomposition is approximately

L-1
NMitn + > 2 NMyf + 25 *NMty, = Nig[M, + (25 = )M, + 2-7M]

k=1

~ 25 IN(M,, + M)t (5.39)

with M = M. Note that M;=5 and Mn=7 when the 5th order basic spline is used for the wavelet approximation. If the Lt
level decomposition is done directly using a dilated filter whose size is 2--IMx2L-1M, the latency in this case is also

O(2-~ 1ty NM). Therefore, the SWA satisfies the second implementation criterion.

The direct implementation requires computation of O(FNLN2M). When SWA is employed, the first level of decomposi-
tion requires 2N2vl, multi ply—accumul ate operations (macs) for pre-filtering, 2N2M, macs for low—pass filtering, N2PM macs
for vertical filtering in the high—pass banks, and FyNZPM macs for horizontal filtering in the high—pass banks. The second
level of the decomposition requires N2vi,/4 macs for low—pass filtering, PN2M/4 macs for horizontal filtering in the high—pass
banks, and F\y\NZPM/4 macs for vertical filtering in the high—pass banks. Thus, the whole decomposition requires 2N2M; macs
for prefiltering, 4N2Mp/3 macs for low—pass filtering, 4PN2M/3 macs for vertical filtering in the high-pass banks, and
4FNN2ZPM/3 macs for horizontal filtering in the high—pass banks. Horizontal filtering in the high—pass banks dominates the
complexity of the computation. Therefore the amount of the computation for the decomposition is 4FyN2PM/3. The computa-
tion increases only slightly from single—resolution to multi—esolution decomposition, and is much less than the direct method.
The SWA satisfies the third implementation criterion.

The pre-filtering stage requires NM; words of memory. At the kih level of the decomposition, the size of the input image
to the filter banks (i.e. c&2) is 2k-INx2k-IN due to the decimation. Thus, at the kih stage, the low—pass filter bank requires
NM/2Kkwords of memory and the high pass filter bank stage requires NM/2%-1 words of memory. Both the low—pass and high—
pass filter access the same part of the input image, thus the input buffer can be shared. Assume M>M;,. Then only NM/2k-1
words of memory are required instead of NM/2k-1 + NMy,/2%-1, Thetotal storage required is

L
NM, + > N(max(M, Mp))/2<"1 < N(M, + 2max(M, My) . (5.40)
k=1
This quantity isindependent of Fy and O(N), and the approximation satisfies the fourth implementation criterion.
Another benefit of SWA isthat alarge part of the decomposition structure can be shared with other decomposition struc-
tures associated with different orientational filters. In Figure 5-5, the portion which can be shared with different orientational
filtersis enclosed in dashed boxes. Figure 5-6 shows an example image of the multi—resolution decomposition using SWA.
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Figure 5-6: Example of Multi—resolution Decomposition Using SWA

63



5.4.Undecimated Separable Wavelet Approximation

As described in Section 5.3, the decimation at each level of the SWA plays an essential role in efficient decomposition.
However, in some applications, it is preferred to have the decomposition without decimation. Thisis common for image analy-
sis applications since the decimation introduces aliasing and causes the transformation to be shift invariant. This section ex-
amines how to produce an undecimated MRD without losing computational and implementational advantages of the SWA.

In [80], Shensa described two schemes for undecimated DWT. The first scheme is equivalent to the Trous Algorithm
introduced in [27] and [38] except the constraints imposed on filters in the Trous Algorithm are removed to be more general.
In this algorithm, the wavelets are dilated consecutively at each decomposition level, and the input sequence is convolved with
the dilated wavelet. The dilation operator is equivalent to inserting a zero at every sample. So the dilated sequence is twice
as long as the sequence before dilation. This scheme is depicted in Figure 5-8.  Since the dilation operator inserts zero, the
number of multiplications for each convolution using the dilated filter is the same as that for using the non—dilated filter. If

the non—decimated output dkis decimated by 2K the sequence becomesidentical to the decimated output dk,

The other scheme is to use duplicate hardware to compute a set of decimated DWTs. which are combined to form an
undecimated DWT. The scheme is depicted in Figure 5-9. The ideais to use multiple DWT modules, where each module
performs a DWT at different time points. This scheme increases the amount of hardware exponentially as the decomposition
level increases. The utilization of the DWT modules becomes worse for later decomposition stages.

The idea of undecimated DWT schemes can be expanded for SWA. The 2D expansion of the second scheme (using dupli-
cate DWT modules) is depicted in Figure 5-10. In the 2D case, shifting needs to be done in the horizontal direction only, the
vertical direction only, and both the horizontal and the vertical directions. Thus, the scheme introduces 4 duplicate DWT mod-

cO prefilter 777777
7]
cl 1st level low—pass filter V777777
7]
th L 1st level horizontal high-passfilter 7777777
72
d,L:1st level vertical high—pass filter 77777777
73
¢Z 2nd level low—pass filter 7777777777777
73
th22nd level horizontal high—pass filter V7777777777777 7777A
T4 -
d,22nd level vertical high—pass filter F7777777777777m
75
¢ 3rd level low-pass filter Y7777777777777777772
Description Time
7] Delay from cCtoclor d,?! NM; tm
7 Delay from d,1tod,?! NM tm
73 Delay from clto c?or d,? NMp tm
4 Delay from d, to d,? 2NM t,
T5 Delay from cto c3 2NM, tm

Figure 5-7: Pipeline Operation of the Separ able Wavelet Approximation



ules at each parent DWT module as shown in Figure 5-10. An enormous amount of hardware is required for a system with
alarge decomposition level, and the utilization of the hardware becomes very poor.

Another scheme is developed based on Shensa's first scheme (Trous Algorithm). The Trous Algorithm can be adapted
for 2D SV/OSD by dilating each 1D filter after the separable approximation. As discussed in Section 3.5, the horizontal filters
can be efficiently implemented using pipelined filtering, and the vertical filters can be implemented effectively using parallel
filtering. For horizontal filters, a suitable implementation of a dilated filter isto add a shift register with a programmable length
between two adjacent adders. The number of shifts is the number of zeros introduced by the dilation and is equal to 2% at
the kM level decomposition.

Assume VLSI chips are to be designed for the horizontal filtering. The design using shift registers as mentioned above
has some disadvantages in terms of its scalability and the utilization of its silicon area. The number of shifts required in the
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Figure 5-8: Structure of Trous Algorithm
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Figure 5-9: Structure of Undecimated DWT using Duplicate hardware
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shift registers increases exponentially as the decomposition level increases. At decomposition level seven, the number of shifts
required is 2/-1=64. If the number of multiplication units within the chip is 8, and the width of the shift registersis 16. The
total number of bits to implement the shift registersis 64 x 8 x 16 = 8192. The number increases exponentially as the maximum
decomposition level supported by the chip increases, and the design is not scalable. Also, all the shift registers are used only
at the maximum decomposition level, and most bits are unused for lower decomposition levels.

An alternative to the above design is to use an external buffer (Reorder Buffer). The reorder buffer stores one row of data
after vertical filtering, and feeds input to the horizontal filtering units so that the long shifting delay between two multiplication
units can be deleted. Theideaisrelated more closely to the duplicate DWT module than to the Trous Algorithm. The scheme
uses one DWT module which is time-multiplexed to compute multiple DWTs at different time—points. Figure 5-11 illustrates
the reordering scheme of the reorder buffer. A counter and a PAL programmed for each decomposition level is used to provide
aproper address to the reorder buffer. This scheme is scalable and the utilization of the chip area for the horizontal filter unit
ismuch better. The filter unit can contain more multipliers reducing the number of chips needed for implementing a horizontal
filter. The scheme requires an extra PAL and counter. However, they can be shared among other horizonta filters at the same
level.

For vertical filters, a suitable implementation of a dilated filter is to introduce Mx2%-3M multiplexers between the input
buffer and the filter unit. The multiplexer selects the rows where non—zero filter coefficients are aligned. The structure of the
vertical filter module is shown in Figure 5-12. These modifications to the pipelined and parallel filtering schemes are shown
in Figure 5-13. The complete structure for an undecimated multi—resolution decomposition system using SWA is shown in
Figure 5-14.

Using the scheme, the latency of the decomposition stays the same with the decimated SWA case, which is approximately
2" IN(M,, + M)t,,, the throughput also stays 1/ty, the amount of computation is 2N2Vl+ 2LN2Mp+ LN2MP+ LFyN2MP=
2N2V, + LN2(2M+MP+FyMP), and the amount of storage is NM;+LN max(M,Mp) + NL(FyP+1). The number of reorder
buffersin the system is L(FnP+ 1) and the number of reorder buffer address generatorsisL.

From:

Vertical Filter Output Reorder Buffer
-0 1] 2] 3] [N=2] N

the numbers indicated are the pixel indices

To:
» Horizontal Filter Input

Pixel Order [ N-1]- - {5][3] [1] [N=2]- - {4][2] [q]
N

at Level 2

To:
» Horizontal Filter Input

pixel Order [ N-AJ- - - [7][3] [ N=2]- - [e][2] [ N-8] - - -[ 5] [1] [ N-4] - - [ 4[]

at Level 3

At~ mark in the above pixel orders, the accumulation chain in the pipelined filter unit has to be
broken, and a new accumulation has to start.

Figure 5-11: Reorder Buffer and Its Reordering Scheme
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The horizontal filters are implemented in

apipelined filtering structure.
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CHAPTER 6

M RD Performance Evaluation

This chapter examines the performance of SWA using energy and frequency distortion as measurement criteria. The chap-
ter then examines the application of SWA in specific computer vision problems.

6.1.Energy Error Analysis

The behavior of the approximation error is studied in the spatial domain using Gabor filters with various parameter values.
The real part and the imaginary part of the filters are investigated separately. The energy error (L2 error) defined in (4.5) is
used for measurement. In thiscase, I[m,n] isthe original dilated filter obtained by sampling the Gabor function, and Ap[ m,n]
is obtained using the SWA. Thus, the filter isfirst separably approximated and each 1D filter isinterpolated using a basic spline.

The results of the evaluation are shown in Figures 6-1 through 6-4. Figures 6-1 and 6-3 show the results of approximating
thereal part of Gabor filters with a separable approximation order of 5 and 10, respectively. Figures 6-2 and 64 show the results
of approximating the imaginary part of Gabor filters with a separable approximation order of 5 and 10, respectively. Inall cases,
the spline order is set to 7. In each figure, the results are plotted separately for different dilation levels (Level 1 through 4),
and the aspect ratio (ox/ay) and frequency (a) of the filter are varied within each plot.

The amount of error increases only slightly as the dilation level increases. The error characteristics are very similar be-
tween the real part and the imaginary part of the filter. The approximation becomes more difficult as the frequency increases.
It also becomes more difficult as the aspect ratio increases/decreases away from 1.0.

6.2.Basic Spline Order

The effect of changing the order of the basic spline function is examined by approximating a Gabor function gy: (e, o,
0y, 0) = (10.0,0.2, 0.4, w/4) using SVD. Theresultisshownin Table 6-1. The L2 error decreases as the spline order increases,
and it stops decreasing after the order reaches 5. Note that the larger the order becomes, the larger the sizes of both the pre-filter

¢[m, n] and low pass filter h[n] become. Hence the spline function of order 5 achieves a good performance/implementation
trade—off.

Table 6-1: Effect of Basic Spline Functions on Approximation Performance
The real part of Gabor filter gy:(a, ox, gy, 6 ) = (10.0, 0.2, 0.4, 7r/4) is approximated using
SV/OSD with Oy=16. The errors shown are L2 error at the fourth level of the multi—resolu-
tion decomposition.

Spline Order 1 3 5 7 9
L2 % 98.4 1.60 0.0934 0.0690 0.0648

6.3.Frequency Distortion

Next, the error introduced by SWA is observed in the frequency domain. Asan example, Figure 6-5 shows the frequency
response of adilated Gabor filter (6x=0.2, 6y=0.4, and =10.0) and the frequency distortion introduced by the approximation.

The frequency distortion tends to match the frequency response of the filter at any orientation as was the case for SV/OSD
(see Section 4.2). The distortion energy is concentrated at the same points where the energy content of the filter is significant.
Thus, the effect of the distortion is insignificant in most cases compared to the effect of the filter. The same can be said for
Gabor filters with other sets of parameters.

6.4.Applicability to Computer Vision Problems

6.4.1.Edge Detection
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(c) MRD Level =3

(d) MRD Level = 4

Figure 6-1: The Result of MRD Performance Evaluation

MRD using the real part of Gabor filters are approximated by SWA. The SV/
OSD approximation order is set to 5, and the order of basic splineisset to 7
throughout the eval uation.
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(©) MRD Level =3 (d) MRD Level = 4

Figure 6-2: The Result of MRD Performance Evaluation
MRD using the imaginary part of Gabor filters are approximated by SWA. The

SV/OSD approximation order is set to 5, and the order of basic splineis set to 7
throughout the eval uation.
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Figure 6-3: The Result of MRD Performance Evaluation

MRD using the real part of Gabor filters are approximated by SWA. The SV/
OSD approximation order is set to 10, and the order of basic splineissetto 7

throughout the eval uation.

74



(s—=O0L D

doaam ABaeudm XBW

=2

(b) MRD Level

(& MRD Level =1

(g—®0L) o443 ASaeudm PN
0 9Q
re

(c—=0L) 42443 ASaesulm xXOBW

(d) MRD Level =4

(c) MRD Level =3

Figure 64: The Result of MRD Performance Evaluation

MRD using the imaginary part of Gabor filters are approximated by SWA. The
SV/OSD approximation order is set to 10, and the order of basic splineis set to

7 throughout the eval uation.
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(a) Frequency Response of the Original Filter
(Peak Value = 18.0)

(b) Frequency Distortion of the Approximated Filter
(Peak Value =1.2)

Figure 6-5: Frequency Distortion Characteristic of the SWA

The real part of Gabor filter with =10, 0x=0.2 and 6,=0.4 is used for this evalu-
ation. The frequency distortion shown in (b) isfor the dilated filter at the 1st

level of the decomposition. The approximation order for SV/OSD is 5, and the
order of basic splineis7.
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In this section, an edge detection algorithm is implemented on a decimated multi—resolution image pyramid. Performance
is compared between the case when the algorithm is applied to the original multi—resolution pyramid and the case when it is
applied to an approximated pyramid. The approximated pyramids are obtained by using the SWA.

The algorithm utilizes a decimated multi—resolution image structure. It performs edge detection recursively starting from
the top level of the multi—resolution pyramid which is the smallest in size and coarsest in resolution. The algorithm searches
for edges in the subsequent level only in the neighborhood where edges are detected in the previous level[3].

The edge operator is similar to the one introduced in Section 4.3.1 It uses the second derivative of the Gaussian,
d?g/dx2 (o, gy, 6) = (0.15, 0.45, 7r/4). The test image is also similar to the one used in Section 4.3.1 It consists of four step
edges with Gaussian noise superimposed on the edges. The step edges start at the center of the image and extend all the way
to each corner of the image. The Gaussian noise has zero mean and a variance of 100, while the edge intensity is set to 100.
The size of the image is 256x256.

Without the multi—resolution image structure, the number of edge operations to detect all the edgesis 256x256 = 65536.
However, with the multi—resol ution image structure, the number of edge operationsis significantly reduced. The performance
evaluation in this section shows that approximately 6000 edge operators are necessary to detect all the edges, approximately
10% of the operations necessary on a single layer image structure.

The performance is evaluated in terms of the number of spurious edge pixels. The orientational filter d%g/dx2 (o, oy, 0
) = (0.15, 0.45, 7/4) is approximated using SV/OSD. The approximation matrix for the SV/OSD is obtained through a set of

filters{d2g/dx? (o, 0y, 6 ) = (0.15, 0.45, 6): 0, = g_k (0 = k < Oy)}. Theevaluation isdonefor Oy=1, 4, 8 and 16. The
N
results are shown in Table 6-2.
Table 6-2: Performance of Edge Detection on SWA

# of False Edge Pixels
d?g/dx2 1
P On=1 On=4 On=8 On=16
P=10 1 1 1 1
P=8 1 1 9 9
P=6 1 9 13 13
P=5 1 9 16 16
P=4 1 40 24 21
P=3 5 31 23 22
P=2 54 531 511 22
P=1 821 480 511 507

The results show that the edge detection algorithm is effectively implemented on an approximated multi—resol ution image
pyramid using SWA. The vaue, P, required for the separable approximation increases as Oy increases.

6.4.2.Texture Segmentation

In this section, unsupervised texture segmentation is implemented using the undecimated multi—resolution image pyra-
mid. Performance is compared between the case when the algorithm is applied to the original multi—resolution pyramid and
the case when it is applied to the approximated pyramids. The approximated pyramids are obtained by using the SWA.

The same segmentation algorithm described in 4.3.2 is used here. However, the input textures consist of natural textures
taken from Brodatz's photo album [11] instead of synthetic ones, and the texture boundaries are more complicated hand—drawn
ones. Thetemplates used to create textured images are shown in Figure 6-6. The objective of the algorithm is to segment the
textured image so that the result is as close to the template image as possible. In order to successfully segment the images, 7
levels of decomposition are required as stated in [41]. The number of orientations in each decomposition level is 4, and 4 Gabor
filters oriented at O, r/4, r/2 and 37/4 are used. The Gaussian deviations of the filters are set to 0x=0.6 and 0y=0.4. In [41],
filtering is implemented in the frequency domain. In order to incorporate the SWA into the segmentation agorithm with the
least modification to the algorithm, the original filters used in the algorithm are transformed into the spatial domain, extracted
at the center with a smaller window (9x9), and the extracted filters are approximated using the SWA. The approximated filters
are transformed into the frequency domain, and they replace the original filters. During this process, errors other than the
approximation errors are introduced due to the truncation of the filters. However, the effect of the extra errors appear to be
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(a) Template | (b) Template I
Figure 6-6: Template Images Used for Creating Textured | mages

insignificant. The results are shown in Figure 6—7. First two textured images were created using Template |, and the last two
textured images were created using Template I1. Results are very similar between Gabor filters and approximated filters in
all test cases.

6.4.3.Georgia Tech Vision Model

The Georgia Tech Vision model (GTV)[25] simulates the human vision search and detection based on computational vi-
sion studies. The model includes multiple orientation filtersin its pattern perception units. The filters are DOG (Difference
of Gaussian)[99] and cortex filtersintroduced in [98]. In this section, SWA is applied to these orientational filters, and the per-
formance is evaluated in terms of the normalized energy error.

The DOG in GTV isdefined in the frequency domain as

Faog(U, V) = A7rsYe*(’“"V“Z{sle*(”slt')2 — Bs,e” =% 4 Csse*(ﬂss“ﬂ} . (6.1)

The inverse Fourier transform of Fqog is

f(xy) = %e‘yz/“”sy{e‘xz/“”sl — Be¥4ms; 4 Ce‘xz/“”%} . (6.2)

It has 7 parameters, A, B, C, 51, $, 83, and s, For the luminance channel in GTV, 24 DOG filters are implemented, which are
divided into 6 radial frequencies (F1, F2, F3, F4, Fs, and Fg as shown in Table 6-3) and 4 orientations (0, 7/4, 7/2, 37/4). The
amplitude parameter A can be assumed to be 1, and s, is set to 2.25; in the luminance channel of GTV. Table 6-3 shows the
remaining five parameter values for DOG filters with different radial frequencies.

Now the DOG filters are approximated using SV/OSD. Thefilter isfirst derived in the frequency domain (128x128), and
isinverse transformed to the spatial domain. Thefilter in the spatial domain is truncated by a square window so that all coeffi-
cientslarger than 1% of the maximum coefficient are retained. Table 64 shows the result of the approximation.

Table 6-3 Basic Parameter s of the Luminance Channel First Stage Filter in GTV

Parameter F1 F F3 Fa Fs Fe
B 0.267 0.333 0.894 0.894 1.266 1.266
C 0 0 0.333 0.333 0.500 0.500
S 0.198 0.098 0.084 0.059 0.038 0.019
) 0.593 0.294 0.189 0.132 0.060 0.030
) - - 0.253 0.177 0.076 0.038

Table 64 Approximation Result Using SV/OSD
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Original Texture Result using Gabor filters Results us ?ﬁt@r r;proxi mated

(a) Texturel

The approximated filters are obtained with the Wavelet Approximation (spline order = 5)
and Separable Approximation (order = 5). The result using Gabor filters has 1211 mis-

classified pixels whereas the result using the approximated filters has 1029 misclassified
pixels.

Origina Texture Result using Gabor filters Results using Approximated
filters
(b) Texturell

The approximated filters are obtained with the Wavelet Approximation (spline order = 5)
and Separable Approximation (order = 5). The result using Gabor filters has 3315 mis-

classified pixels whereas the result using the approximated filters has 3390 misclassified
pixels.

Figure 6-7: Theresult of Texture Segmentation
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Original Texture Result using Gabor filters Results using Approximated
filters

(c) Texture 11

The approximated filters are obtained with the Wavelet Approximation (spline order = 5)
and Separable Approximation (order = 5). The result using Gabor filters has 2538 mis-

classified pixels whereas the result using the approximated filters has 2494 misclassified
pixels.
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Original Texture Result using Gabor filters Results using Approximated
filters

(d) Texture IV

The approximated filters are obtained with the Wavelet Approximation (spline order = 5)
and Separable Approximation (order = 5). The result using Gabor filters has 1437 mis-

classified pixels whereas the result using the approximated filters has 1629 misclassified
pixels.

Figure 6-7: Theresult of Texture Segmentation
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24 Wilson DOG filters are approximated using SV/OSD. The table below shows the L2
error of each approximation. The approximation order is set to 6.

F1 F> F3 F4 Fs Fo
Filter Size 128x128 123x123 128x128 103x103 51x51 25x25
0=0 2.04e-10 5.46e-7 5.46e-7 211e-5 6.02e—7 6.00e-7
O=m/4 6.33e—7 3.38e4 3.38e4 7.71e4 3.20e4 3.19e4
O=m/2 1.55e-10 7.42e—7 7.42e—7 2.77e-5 8.94e-6 8.93e-6
0=3n/4 6.33e—7 3.38e4 3.38e4 7.71e4 3.20e4 3.19e4

As can be seen in Table 64, the filter sizes are relatively large, and the amount of computation is still large even with
SV/OSD. The computation can be significantly reduced by approximating these filters using SWA. When the above 24 filters
are applied directly to an image, it requires 16740N2 macs. By using SWA, the amount of computation reduces to 3128N2 as-
suming a 7th order basic spline is used, and the decomposition levels for F, through Fg are 3, 3, 3, 2, 2, and 1 respectively.
The result of the approximation using SWA is shown in Table 6-5. For comparison, if the above filters are implemented in
the frequency domain and the input image size is 1024x1024, then the number of multiplications is 4384N2 using a row—column
FFT. Asdiscussed in Section 2.2.2, real—time filtering using the FFT requires an immense amount of hardware. Thus, even
for large filters, implementation of SWA has advantages over the FFT in both the amount of computation and the amount of
hardware.

Table 6-5 Approximation Result Using SWA

24 Wilson DOG filters are approximated using SWA. The table below shows L2 error of
each approximation. The approximation order is set to 6 and the spline order is set to 7.

F1 F2 F3 Fa Fs Fe
Filter Size 16x16 16x16 16x16 27x27 14x14 13x13
dilation factor 3 3 3 2 2 1
0=0 241e4 1.60e-5 4,794 2.29e-5 4.54e-3 8.97e-3
O=m/4 8.97e-5 3.38e4 7.9e4 1.71e-3 4.54e4 6.74e4
O0=m/2 241e4 1.79e-5 5.10e4 3.43e-5 4.58e-3 9.05e-3
0=3m/4 8.93e-5 3.38e4 7.9e4 1.71e-3 4.52e4 6.74e4
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CHAPTER 7

Steerable System

7.1.Introduction

In many image analysis and image processing tasks, it is useful for the filter system to have a capability of changing its
orientation dynamically under adaptive control. Such afilter system is called steerable[31], and those tasks which utilize the
steerability include local orientation analysis, contour following, target tracking and image enhancement[31][67]. In [31],
steerability is defined in the following manner.

Definition 3: Filter h(x,y) is steerableif arotated copy of h(x,y) at an arbitrary orientation can be expressed by afinite
linear sum of rotated copies of itself. Thus,

hx.y) = > a(®) h, (xy) (7.0)

Freeman and Adelson claimed that "all functions that can be expressed as a Fourier seriesin angle or in a polynomial expansion
inx and y times aradially symmetric window function” are steerable.

Perona extended the idea of Freeman and Adelson, and provided an approximation of f(x,y) at an arbitrary orientation with
alinear sum of basic filters. In[67], the definition of steerability is modified to a more general form.

Definition 4: Filter h(x,y) is steerableif arotated copy of h(x,y) at an arbitrary orientation can be expressed by afinite
linear sum of basisfilters. Thus,

h(xy) = > a) G(xy) - (7.2)

In thisthesis, the latter definition of steerability is adopted.

The next section briefly describes the work by Freeman and Adelson. The second section derives the approximation meth-
od proposed by Perona. Perona proposed a technique to closely approximate the separable system (7.2) using Singular Value
Decomposition. SVD is used to derive a set of basisfilters. Thistechniqueis referred as Deformable Kernel Approximation
(DKA) here. The decomposition generates an infinite set of basisfilters, and a sub—set of filters are chosen for the approxima-
tion. The basis filters of histechnique are intrinsically complex even though the filter to be approximated isreal. Thisthesis
proposed to use Fourier series expansion instead of SVD. Then a steerable system of area filter is approximated by a set of
real filtersinstead of complex filters. The latter method isreferred as Fourier Series Approximation (FSA). It can accomplish
the same approximation performance as DKA, and it has more flexibility on selecting a set of basis filters for the approximation.
Section 7.5 describes how to combine SV/OSD with FSA for afast and inexpensive implementation, and Section 7.6 describes
how to build a steerable MRD system using FSA and SWA. The chapter concludes with the performance evaluation of SV/OSD
+ FSA.

7.2.Freeman—Adelson’s Steerable System

Freeman and Adelson appear to be the first to address the issues of steerable filters. Definition 3 is their definition of
steerability. One example of steerablefiltersisthe first derivative of a concentric Gaussian. The concentric Gaussian is written
as

ga(x,y) = e~ ¢+ (7.3)
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where its deviations are set to 1 for convenience. Thefirst derivative of the Gaussian oriented at 0 is

ga(x y) = 0059 S Ja(xY) + sing-> x5 A%, y) (7.4)

Thus, the first Gaussian derivative is shiftable with 6; =0 and 6, =x/2, and g1 (0) = cosf and p(0) = sinb.
Freeman and Adelson provided two theorems. Each theorem describes afamily of steerable functions. Their first theorem
states that the functions are steerable if they can be expanded in a Fourier seriesin polar angle ¢:

h(r,¢) = i G(ne* , (7.5)

wherer = /X% + y2 and ¢ = atan(y/x). The number of basis functions needed to steer this type of functionsis the number
of frequencies between —N and N where the expansion has nonzero coefficients ac(r).
The other theorem states that the functions in the following form are steerable:

h(x,y) = W(r)Py(x,y) (7.6)
where W(r) is an arbitrary concentric window and Py(x,y) is an Nt" order polynomial in x and y whose coefficients can depend
onr. At most 2N+ 1 basis functions are enough to steer this type of function.

7.3.Deformable Kernel Approximation

In the deformable kernel decomposition, hy(x,y) is considered to be a kernel of alinear operator L mapping from (6) to
(%, y), written as

o ©

La(x,y) = b(0) = J J hy(x, y)a(x, y)dxdy . (7.7)

—® — o

Similarly the adjoint of L denoted asL" is

L'b(d) = a(x,y) = j hy(x, y)b(0)do . (7.8)

Now the SVD is equivalent to finding eigenfunctions &;(X, y) and Bi(Q) for L*L and LL" respectively. More specifically, the
following equations have to be solved.

L'La(xy) = j ha(x,y) f f hy(X, )& (X, y)dxdydo = f fxe(X, %Y, V)&%, y)dxdy = & (x,y) (7.9)
where 7 o o

266 %Y, Y) = f ha(%, Y)hy(x, y)do (7.10)
and -

LL b(0) = I J hy(X, ) f hi(x, y)b,(6)dfdxdy = j K(0, 0)b,(0)d0 = 1,5,(6) (7.11)
where _ -

K (0,0) = J J hi(x, y)hy(x, y)dxdy . (7.12)

Note that %yy(0, é) is afunction dependent on the difference 6 — 0. Thus, (7.11) becomes
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LL'B(6) = J k(0 — O)B(O)d = AB,(0) . (7.13)

Taking the Fourier transform of (7.13) gives

K.(O)B(O) = 1B(O) , (7.14)
where Ky (@) isthe fourier transform of xy(6). Non-trivial solutions of (7.14) are

A = 27h and (7.15)
B(®) = 276(® — i) , or (7.16)
b,(0) = e where, (7.17)

F\i isaFourier series coefficient of a2x periodic function xy y(6).
The solution for a(x,y) can be found by using the fact that L*Bi(O) isan eigenfunction of L*L, since

L'L(L"b,(8)) = L"(LL"b,(8)) = L"Ab,(8) = A,(L"b,(6)) . (7.18)
Thus,
axy) = L'b(®) = Jh;(x, y)eli?do . (7.19)

Qth order DKA is accomplished by selecting & (x,y) and b () which corresponds to the set of Q largest ﬁi. Thus the approx-
imation formulais

Q

h(xy) = > ha(xy)b(®) (7.20)
i=0

where [ﬁ} is assumed to be sorted in a descending magnitude order.

7.4.Fourier Series Approximation

Asseenin (7.17) and (7.19), the deformable kernel decomposition involves complex filters. Thisis true even when the
filter to be approximated is real and does not have the imaginary part.

Since ﬁe(x, y) is 2z periodic in 6, it can be decomposed using the Fourier series expansion as,

0

hy(Y) = 2ax,y) + > [an(x y) cos(n) + B(x.y) sin(ne)| where, (7.21)
an(xy) = % I hy(x, y) cos(nd)dd and (7.22)
Bulxy) = & j hy(x,y) Sin(n)dé . (7.23)

Then a Q" order approximation to the steerable system can be accomplished by selecting Q basis filters from a; (x,y) and i (x,y)
with the Q largest energy values. The approximation formulais

Q
hix.y) = > 7(x.y)q(6) where (7.24)

i=1
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Figure 7-1: Structure of FSA

{r} Cla,pi| and (7.25)
1/2 if yi=a

q(®) = scos(ng) if yiE{a}, i =0 (7.26)
sin(nv) if y €}

Note that (7.19) is the complex Fourier series of by *(x,y) which is 2z periodical in. Thus,

a(x.y) = a’i(xy) +iB7(xy), (7.27)
and FSA can produce the identical approximation result with DKA. The difference in the two approximation methods resides
in their ways of selecting basisfilters. In DKA, acomplex filter g (x,y) consists of two filters: areal part and an imaginary part,
and these two filters are always selected as a pair for the approximation. In FSA, more flexibility is added in itsfilter selection,
and ¢ (x,y) and §j(x,y) which correspond respectively to the real and imaginary part of the complex filter g(x,y) are separate
entitiesin the filter selection process.

Since the decomposition process is equivalent to DKA and FSA is more flexible in its filter selection, FSA can achieve
the same performance as DKA. The computational structure of FSA is shown in Figure 7-1.

7.5.FSA + SV/OSD

The basis filters y;(X, y) in (7.24) are non—separable, in general, and the algorithm does not satisfy the implementation
criteria. For the steerable system to satisfy the criteria, SV/OSD can be applied to {yj(x,y)} for the separable approximation

at the expense of additional error. The approximation matrix is formed by combining [yi(x, y)] 0<i<Q for the Q" order FSA.

Using this combination of FSA and SV/OSD, denoted as FSA+SV/OSD, an orientationa filter at an arbitrary orientation can
be approximated as,

Q P
hixy) = > a(6) > ayb,(x), where (7.28)
nxy) = > ayby(x) - (7.29)

j=1

The computational structure of FSA + SV/OSD is shown in Figure 7-2. To implement a system with multiple orientations,

the number of orientation control units (inside the dashed box in Figure 7-2) must equal the number of orientations are needed.
The throughput of the system can be 1/t the latency is O(NM), the amount of computation is NAMQP+Fy), and the

storage requirement is NM.

7.6.FSA + SWA

The next extension for the steerable system is to add MRD capability. FSA and SWA can be combined in the following
way. First, thefilter of interest is decomposed with FSA. Second, each basisfilter is decomposed into a separable form using
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SV/OSD. Third, each separable pair is approximated using the Wavelet Approximation. The describes this approximation
process is defined by

Q P

die = > ad0) > > gilic — m > gliy — nl ¢, where (7.30)
c=1 I ix iy

Cn = > > hlj,— 2m] > Afj, — 2nlci} , with (7.31)
I ix iy

o = > flic, i p(m — i) pi(n = iy) . (7.32)

ixly
Figure 7—3 shows the structure which corresponds to the approximation. The pre-filter and low—pass modules are the same
as SWA. The high pass modules are divided into three parts: orthogonal filters, projection filters, and interpolation units. The
orthogonal filters and projection filters approximate the FSA basis functions using SV/OSD. They are followed by the inter-
polation unit to steer the filter to a particular orientation. The orthogonal filters and projection filters can be shared among filters
at different orientations. An independent interpolation unit is necessary for each orientation.

The throughput, latency, computational complexity, and storage requirement of decimated steerable MRD system using
FSA+SWA can be derived in asimilar way as decimated SWA as described in 5.3, and are 1/ty, Ntqm(M; + (2k-2-1)Mp+ 2k-1M)
~ 2" IN(My, + M)t,,,, 4N2PQM/3, and N(M, + max(M,M,)) respectively.

Theidea of undecimated MRD discussed in 5.4 can be easily extended for steerability in avery similar way as the above
decimated MRD scheme. Figure 7—4 shows the structure of the undecimated steerable MRD. The only difference between
Figures 5-14 and 7—4 in terms of the hardware structure is the addition of the interpolation units which steer the filter. The
lower portion of the MRD module in Figure 7—4 approximates a set of FSA basis functions, whereas the counterpart in Figure
5-14 approximates a set of orientational filters.

The throughput, latency, computational complexity, and storage requirement of an undecimated steerable MRD system
using FSA+SWA can be derived in a similar way as undecimated SWA as described in 5.4, and are 1/ty, 25 *N(M,, + M)t,,
2N2V), + LN2(2Mp+ MP+MPQ), and NM,; + LNmax(M,Mp)+ NL(PQ+ 1) respectively. It also requires LQ(P+1)+1 reorder buffer
and L reorder buffer address generators.

L e s I oy o S

— () I

Interpolation Unit

Figure 7—2: Structure of an SV/OSD Combined with FSA
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CHAPTER 8

FSA Performance Evaluation

8.1.Energy Error Analysis for FSA+SV/OSD

The behavior of the approximation error is studied in the spatial domain using Gabor filters with various parameter values.
The real part and the imaginary part of the filters are investigated separately. The energy error (L2 error) defined in (4.5) is
used for the measurement. Four types of Gabor filters are used for this evaluation. Their parameter values are (a, ox, 0y) =
(10.0, 0.2, 0.4), (10.0, 0.15, 0.45), (20.0, 0.2, 0.4) and (20.0, 0.15, 0.45). The orientation of each filter is changed from O to
ot with 0.01 increments, and the energy error is computed at each orientation. The evaluation studies the approximation behav-
ior by changing two approximation orders, FSA approximation order and SV/OSD approximation order. The results of the
evaluation are shown in Figures 8-1 through 8-4. Each plot shows the maximum energy error for al the orientations of the
filter tested.

Energy errors decreases almost exponentially as SV/OSD order decreases. |n Figures 8-1 through 84, every plot shows
that the maximum error does not decrease smoothly as the FSA order (noted as FA Order in the axis) increases, but rather de-
creasesin steps. For example, in Figure 8-1(a), the maximum error does not change much from FSA order = 3 to FSA order
= 4. It seemsthat the 4t basis filter for FSA does not do much to improve the approximation. However, the average error does
decrease smoothly as the FSA order increases, and the 4t basis filter does contribute to the approximation performance.

Table 8-1 lists the results of the approximation at (P,Q)=(5,5), (10,10), (15,15). The approximation becomes more diffi-
cult as the frequency parameter o increases, and the aspect ratio oy/oy increases.

8.2.Frequency Distortion

The frequency domain error introduced by FSA is considered next. As an example, Figure 8-5 shows the frequency re-
sponse of a Gabor filter (0x=0.2, 0y=0.4, and =10.0) at various orientations (=0, /4, and 7r/2) and the frequency distortion
introduced by the approximation. The peak of the distortion energy matches the peak in the frequency response, but the distor-
tion is more widely spread than SV/OSD (Figure 4-9) and SWA (Figure 6-5). In all casesin Figure 8-5, the amount of energy
content for the frequency responseis normalized to 1.

Table 8-1: Performance Evaluation: Numerical Results

This table shows the numerical values of the performance evaluation results shown in Fig-
ures 8-1 through 84 at (P,Q)=(5,5), (10,10), and (15,15).

Gabor Parameters (a, ox, ) P=5,Q=5 | P=10, Q=10 | P=15 Q=15

(10.0, 0.2, 0.4) Redl 0.0299 0.00128 4.86-5

Imag 0.0750 7.866-4 3.1e-5

(10.0, 0.15, 0.45) Redl 0.0587 0.00608 2.356-4

Imag 0.153 0.00680 75564

(20.0, 0.2, 0.4) Redl 0.203 0.320 0.0116

Imag 0.300 0.193 0.00208

(20.0, 0.15, 0.45) Redl 0.260 0.0605 0.00550

Imag 0.266 0.0432 0.00852

8.3.Energy Error Analysisfor FSA+SWA

This section investigates the performance of FSA+SWA in terms of the normalized energy error using go(a, ox, gy) = (5.0,
0.25, 0.4). Thefilter is decomposed into a set of basis filters using FSA and the dilation of the basis filters are approximated
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Figure 8-1: Performance Evaluation Result for FSA (1)

Both the real and imaginary parts of Gabor filters gy:(a, ox, gy) =
(10.0, 0.2, 0.4) with various orientations are approximated using FSA.
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Figure 8-2: Performance Evaluation Result for FSA (1)

Both the real and imaginary parts of Gabor filters gy:(a, o, gy) = (10.0,
0.15, 0.45) with various orientations are approximated using FSA.
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Figure 8-3: Performance Evaluation Result for FSA (I11)

Both the real and imaginary parts of Gabor filters gy:(a, ox, gy) =
(20.0, 0.2, 0.4) with various orientations are approximated using FSA.
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Figure 84: Performance Evaluation Result for FSA (1V)

Both the real and imaginary parts of Gabor filters gy:(a, ox, oy)

= (20.0, 0.15, 0.45) with various orientations are approximated
using FSA.
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Figure 8-5: Frequency Distortion of Approximation Filters

Therea part of Gabor filters are approximated using FSA. The SV/OSD order is set
to 8, and FSA order isset to 8.
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with SWA. The SV/OSD order and the FSA order are incrementally changed from 3 to 11 and 3 to 15, respectively. The spline
order isfixed at 7. Figures 8-6 and 87 show the maximum of the energy error among various orientations from 0 to ;z with
0.1 increment. The energy error decreases rapidly until the SV/OSD order (indicated by ' SA Order’ in the plots) reaches 6 and
the FSA order (indicated by 'FA Order’) reaches 7. For these approximation orders, the maximum energy error is 1.87e-3 at
all the decomposition levels (1 to 4) of the real part of the gabor filter, and 1.31e-3 at al the decomposition level of the imaginary
part. The amount of energy error isvisually constant as the decomposition level increases.

Table 8-2 lists the results of the approximation at (P,Q)=(5,5), and (10,10). Similar convergence behavior can be ob-
served for other types of filters, however the knee of the plot may differ slightly.

Table 8-2: Performance Evaluation: Numerical Results

This table shows the numerical values of the performance evaluation results shown in Fig-
ures 8-1 through 84 at (P,Q)=(5,5), and (10,10).

MRD Level P=5,Q=5 | P=10, Q=10
1 Redl 0.00311 0.00179
Imag 0.313 0.0198
4 Redl 0.00311 0.00179
Imag 0.0349 0.0215

8.4.Texture Segmentation with FSA+SWA

Jain’s unsupervised texture segmentation isimplemented using FSA+SWA. The approximation produces an undecimated
steerable multi—resolution image pyramid using the schemes described in Section 7.6 and Section 5.4 Performance is compared
between the case when the algorithm is applied to the original multi—resolution pyramid and the case when it is applied to the
approximated pyramids.

The algorithm is the same as that described in Section 4.3.2 and the textured images are also the same as these used in
Section 6.4.2 The number of decomposition levelsis 7, and the number of orientationsis 4. Gabor filters oriented at O, 7z/4,
7/2 and 37/4 are used for the segmentation.

The results of the segmentation tests are shown in Figure 8-8. Theresults are all very similar between original pyramids
and the approximated pyramids. The number of misclassified pixels differs (approximation — original) by —86, 171, —151, and
110.
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Figure 8-6: Performance Evaluation Result for FSA+SWA (1)
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Origina Texture Result using Gabor filters Results using FSA, WA and
SV/OSD

(a) Texturel

The approximated filters are obtained with a Wavelet Approximation (spline order = 5),
Separable Approximation (order = 6) and Fourier Series Approximation (the order = 6).
The result using Gabor filters has 1211 misclassified pixels whereas the result using the
approximated filters has 1056 misclassified pixels.

Origi naI Texture Result using Gabor filters Results using FSA, WA and
SV/OSD

(b) Texturell

The approximated filters are obtained with a Wavelet Approximation (spline order = 6),

Separable Approximation (order = 6), and Fourier Series Approximation (the order = 6).
The result using Gabor filters has 3315 misclassified pixels whereas the result using the

approximated filters has 3425 misclassified pixels.

Figure 8-8: Theresult of Texture Segmentation
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Origina Texture Result using Gabor filters Results using Approximated
filters

(c) Texture 1

The approximated filters are obtained with a Wavelet Approximation (spline order = 5)
and Separable Approximation (order = 5), and Fourier Series Approximation (the order
=5). Theresult using Gabor filters has 2435 misclassified pixels whereas the result us-
ing the approximated filters has 2349 misclassified pixels.

Origina Texture Result using Gabor filters Results using Approximated
filters

(d) Texture IV

The approximated filters are obtained with a Wavelet Approximation (spline order = 9)
and Separable Approximation (order = 6), and Fourier Series Approximation (the order
=6). Theresult using Gabor filters has 1437 misclassified pixels whereas the result us-
ing the approximated filters has 1608 misclassified pixels.

Figure 8-8: Theresult of Texture Segmentation
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CHAPTER9

Hardware Design

This chapter discusses detailed hardware design of aset of VLSI chips which implements SV/OSD, SWA and FSA+SWA.
The design has to satisfy the implementation criteria. Another design is scalability. Four types of scalability are considered:
input image size, the number of orientational filters, filter size, and approximation order. A description of scalability is given
in Chapter 1. First, the design for SV/OSD is considered. The main component of the design is the 2D separablefilter. Itis
divided into a vertical filter unit and a horizontal filter unit. Second, the design for SV/OSD is adapted for SWA. Again, the
2D separablefilter isthe main functional component of the design. Third, the design for undecimated SWA will be discussed.
Fourth, it will be shown that a modification on the design for SWA can implement FSA+SWA.

Dueto alack of VLSI design tools, the size of the design is estimated by counting the number of major componentsin
the design. The types of components which influences the size of the chips are multiplier, adder, D flip—flop, global bus,
memory, multiplexer, and register file. At each section, the number of each componentsis counted. Also the number of input/
output ports external to the chip is counted so that an estimated number of I/O pads can be calculated. Only those carrying the
filter inputs/outputs or the filter coefficients are counted since most 1/0 pads will be taken up by them, and obtaining a more
accurate pin counts involves very detailed design with power dissipation analysis. Thisis beyond the scope of thisthesis. The
core of the design is the sequential/parallel multiply—accumulate operation. By placing D flip—flops at the output of every mul-
tiply—adder and binary adder, the chips can operate as fast as 1/ty, Hz assuming one multi ply—accumul ate operation takes more
time than aregister access, propagation in a PAL, multiplexing, and routing delay.

In the following designs, it is assumed that a memory chip allows simultaneous write and read operations in one clock
cycle. This can be done by either using dual port RAM, using two separate memory chips for read and write, using a video
RAM for random writes and sequential reads, or using fast RAM so that on one phase (high clock) the memory can be read
and on the other phase (low clock) it can be written.

e Notation

The width of the input pixelsto the system is denoted as Bp.

Many signal names in the design have numeric post—fixes, such as houtl and vout2. Within the text, the notation <sig-
nal_prefix>$$ is used to refer to the set of signals with the same prefix but different numeric post—fixes. For example, hout$$
implies houtl, hout2, hout3, and so on.

Signalsinternal to the VLSI chip are indicated with a single underline. All signals without an underline are external to
the VLSI chip.

Figure 9-1 shows the symbols used in later figures to represent certain components in the designs.

9.1.5v/OSD

The implementation structure of SV/OSD is shown in Figure 3-5(b). The structure can be divided into three modules:
input buffer, vertical filters and horizontal filters. The vertical filters and horizontal filters are to be designed in separate VL SI
chips, since only one set of vertical filtersis needed for the whole system (for single stage filtering), whereas each orientational
filter needsits own set of horizontd filters.

9.1.1.Input Buffer

An intermediate memory module is used to provide M parallel inputs to the vertical filters. The memory module consists
of M independent memory banks whose size is N words each. One memory module is needed for all the orientational filters.
A separate intermediate memory module is needed at each level of MRD.

e Components Count

The memory module requires M memory chips of N words each.

9.1.2.Vertical Filter Chip (VFC)
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Asexplained in Section 3.5, aparallel filtering scheme is suitable for vertical filtering. Each filter requires M multipliers
and M-1 adders as shown in Figure 3-4(b). Assume Wy isthe width of afilter implemented in aVFC, and Ngy is the number
of filters implemented in the chip. The chip requires BoWgy input ports where input pixels are received in parallel. It also
requires 2BpNgy outputs ports where the output of Ngy vertical filters are sent to the horizontal filter chip. The pixel width
is doubled after multiplication to preserve accuracy. Each filter in the chip requires aregister file of BoWey bits where the filter
coefficients are stored. The coefficients for each multiplication do not change while the input is coming from the same row,
but change when the input moves to the next row since it is easier to update the coefficients at every new row than to change
the parallel input pattern from the memory banksto the chip. The secondary register file is provided to enable a smooth transi-
tion from one row to the next row. Its contents are updated with anew set of filter coefficients while the filter coefficients are
read from the primary register file. At the end of the row, the contents of the secondary register file are transferred to the primary
register file, and filtering for the next row can proceed continuously without any interruption. Either the host or alocal_control-
ler which resides on the same board with the filter chip can be used to store a new set of coefficients to the secondary register
file. The structure of the VFC is shown in Figure 9-2.

An extra adder at the end of each paralléel filter is used to add the output of the filter (sum$$) and a partial result (vpout$$)
which is provided externally. This adder is needed when the size of the filter islarger than Wiy,

e Component Count

Table 9-1 lists the magjor componentsin aVFC and their counts.
Table 9-1 Component Count of the Vertical Filter Chip

Component Type Count Size (bits)
Multiplier WEvNRy BpxBp
Adder Wy Ney 2Bp
D flip—flop NeyWey 2Bp
Register File 2\Wky Bp
Input Ports (Wev+ 2Ney+1)Bp 1
Output Ports 2NryBp 1
Global Bus Wey+1 Bp

9.1.3.Horizonta Filter Chip (HFC)

The horizontal filter unit employs a pipelined filtering scheme. Each filter requires M multipliers and M—1 adders as
shown in Figure 3-4(8). Thereisno need for abuffer between avertical filter and horizontal filter pair. The output of the vertical
filter can be directly fed to the HFC. Outputs of the horizontal filters are added together by a binary adder to form the linear
sum of the separable approximation. The structure of the HFC is shown in Figure 9-3.

Assume Wiy is the width of afilter implemented in a HFC, and Nry is the number of filters implemented in the chip.
Note that the number of bitsin the output of vertical filtering is 2Bp to preserve accuracy. The chip requires 2BpNgy input ports

+ ®

2—port adder with data width w 2 port adder followed by D flip—flops
with datawidth w
wl w2
X
I
global bus

w1 by w2 multiplier producing the
output with width wl+w2

Figure 9-1: Hardware Symbol Representation
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where input pixels are received sequentially for Ny filters. It also requires Bp input ports (coeff) for loading filter coefficients,
and 3BpNey input ports (hpout$$) for a partial result of the horizontal filtering, 3Bp input ports (psum) for a partial result of
the linear sum for the separable approximation. The ports hpout$$ are used when the filter size is larger than Wgy, and the
ports psum is used when approximation order is larger than Ney (See 9.1.4). It requires 3Bp output ports for the result from
the binary adder, and 3NFyBp output ports for the partial results from each filter before the binary adder. The latter outputs
are used together with hpout$$ when the filter size is larger than Wy (See 9.1.4). The secondary register files are provided
for updating the filter coefficients without an interruption to the filtering. Unlike vertical filtering, the coefficients are fixed
aslong as the orientational filter being approximated is the same.

e Component Count

Table 9-2 lists the mgjor components in a HFC and shows their sizes and counts.
Table 9-2 Component Count of the Horizontal Filter Chip

Component Type Count Size (bits)
Multiplier WeH NeH 2BpxBp
Adder WeH NEH 3Bp
D flip—flop NepyWen+1 3Bp
Register File 2WenH Bp
Input Ports (5Ney+4)Bp
Output Ports (3Ngy+3)Bp
Global Bus Nen+1 2Bp
9.1.4.Architecture

Figure 94 shows the VLSI architecture of SV/OSD with Fy orientational filters being implemented. Each box corre-
spondsto one VLS| chip. Every HFC obtains the same vout inputs from VFC, which may not be clear from the figure.

Only the input buffer module is affected by the input image size. Thus, the architecture satisfies the first scalability. The
number of orientational filtersimplemented can be increased by adding more HFC module as shown in Figure 9-4. Thus, the
second scalability is satisfied. When thefilter size M islarger than Wey and Wey, additional VFCs and HFCs can be connected
to as shown in Figure 9-5. Each VFC obtains inputs (in$$) from distinct memory banks. The outputs of the first VFC are con-
nected to the input (vpout$$) of the next VFC. Thelast VFC of the sequence produces the results of the vertical filtering which
are passed to HFCs in the same way as in Figure 9-4. Multiple HFC are connected in cascade. Every HFC obtains the same
vout$$ from the last VFC. Each HFC except the last one produces partial results from each filter (hout$$), which are connected
to hpout$$ of the next HFC in the chain. Thelast HFC produces the complete result of the separable approximation. The archi-
tecture satisfies the third scalability criterion. When the approximation order P is larger than Ny and Ngy, additional VFCs

pixel host/local_controller
coeff, host_addr, chip_id
wr, addr
—{ meml [——fin ot oot
_ VFC HFC T HFC
: VOUtNE VOUtNgy — VOUtNgy
memM INVEv hout hout
Filterl output FilterF\_output

Figure 9-4: VLS| Architecture of SV/OSD
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Figure 9-5: VL SI Architecture of SV/OSD with M >Wgy and M > Wey
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and HFCs can be connected to existing VFCs and HFCs as shown in Figure 9-6. Every VFC receives the same set of inputs
from the memory module. There is no interconnection among VFCs. The output of a VFC (vout$$) is connected to vout$$
of the corresponding HFC. Inthe HFC chain, the output hout is connected to psum of the next HFC, if any. Thelast HFC produce
the complete result of the separable approximation. The architecture satisfies the fourth scalability criterion.

9.2.SWA (Decimated MRD)

The structure of SWA is shown in Figure 5-5. It can be divided into three modules: pre-filter, low—pass filter, and high—
pass filter modules. Both the pre—filter and low—pass filter are separable filters, and each of them can be implemented with
asingle VLSI chip. The high—passfilters are implemented using SV/OSD.

9.2.1.Prefilter Unit

The prefilter is aseparable filter. Note that the size of the prefilter is k x k when ak™ order basic splineis used for the
approximation, and the spline order istypically set to 7. Assume Wks is the width/height of the filter implemented in the separa-
ble filter chip (SFC) shown in Figure 9—7. The chip contains 2Wes multipliers and 2Wes—2 adders. The result of the vertical
filter (vout) is an external output and the input to the horizontal filter (muxout) can be either vout or the internal signal, hin.
This extramultiplexing is needed for undecimated MRD. For the decimated MRD, the select signal for the multiplexer (deci-
mate) is 1, and the input to the horizontal filter is the immediate output from the vertical filter. For the undecimated MRD,
the select signal for the multiplexer (decimate) is 0, and the input to the horizontal filter is the external input, hin, which is
supplied from areorder buffer. Section 9.3 describes the architecture of the undecimated MRD in detail.

It requires the following input ports: BpWegs for parallel input pixels (in$$), 2Bp for hin, and Bp for filter coefficients
(coeff). It requires the following output ports: 2Bp for vout and 3Bp for the filter output (out).

e Component Count

Table 9-3 lists the major components in a SFC and shows their sizes and counts.

pixel host/local_controller
coeff, host_addr, chip_id
wr, addr
1 .
_4_% int voutl voutl — voutl
wr, addr VEC HEC A HEC
Y
1 i VOULNE VOUtNFy —{ VOUtNry
—-| memM iy hout o

[ psum psum
ni VOU'[l Voutl — VOUtl
VFC HFC T HFC
i VoutN VOUtNry — VOUtNRy
ey i hout hout
Filterl_output Filter F\_output

Note: coeff, host_addr and chip_id signals from the host are routed to every VFC and
HFC although the above figure does not show the connections to some of the chips.

Figure 9-6: VL Sl Architecture of SV/OSD with P > Ngy and P > Ngy
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Figure 9-7: 2D Separable Filter Chip for Prefilter and L ow—pass Filter in SWA

9.2.2.Low—pass Filter Unit

The SFC shown in Figure 9-7 can be used for low—pass filtering. The size of the low—pass filter is k+2 x k+2 for akth

order basic spline. Thus, the size of the low—passfilter isalittle larger than the prefilter. A typical filter length for the low—pass
filter is 9x9.

9.2.3.High—pass Filter Unit
The high—pass filters are implemented with SV/OSD. The structure shown in Figure 94 can be used.
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Table 9-3 Component Count of the Separable Filter Chip

Component Type Count Size (bits)
Multiplier | Wes Bp x Bp
Multiplier 11 WEks 2Bp x Bp

Adder | Wes—1 2Bp
Adder I Wes—1 3Bp
D flipflop | Wes 2Bp
D flipflop I Wes—1 3Bp
multiplexer 1 2Bp
Register File Mg Bp
Input Ports (West+3)Bp 1
Output Ports 5Bp 1
Global Bus 3Bp 1
9.2.4.Architecture

Figure 9-8 shows a VLSl architecture to implement SWA for decimated MRD.

The size of each memory bank at the ki level of decomposition is N/2%1 due to a decimation of the output. The host/lo-
cal_controller provides write signal to each memory bank. The decimation at the ki stage can be done by providing the awrite
signal to memory banks so that only every other row of outputs are stored in which only every other column is stored. No deci-
mation is done after the pre—filtering.

Only the memory chips have to be replaced when the input image size becomes large. Thus, the first scalability is satisfied.
The number of orientationa filters implemented can be increased by adding more HFCs in the high—pass filter module. Thus,
the second scalability is satisfied. The sizes of the pre—filter and low—pass filter are independent of the size of the orientational
filters and are dependent on the order of the basic spline used in the approximation. The size of the high—passfiltersis the same
asthe size of the orientational filters. The third and fourth types of scalability can be accomplished by employing the scheme
shown in Figure 9-5 and Figure 96 respectively for the high—pass filter module.

9.3.Undecimated SWA

9.3.1.Input Buffer

At the ki level decomposition, the total amount of the input buffer increases due to dilation of filters to 2k-IMN which
is divided into M memory banks each having a size of 2-IN. Consider each memory bank as a 2D memory array with the
number of columns being N and the number of rows being 2k-1. For the first N cycles, each memory bank outputs the data from
the first row. For the second N cycles, it outputs the data from the second row. After 2k-IN cycles, the memory access returns
to the first row. Thisway of dividing the memory buffer removes the M 2k-1 way multiplexers shown in Figure 5-12. The
input pixel iswritten to the input buffer at a consecutive location in the first memory bank for 2k-IN cycles, and the access moves
to the next bank, and so on. After 2-IMN cycles, the access returns to the first memory bank. The host or the local_controller
has to provide proper addresses to each memory bank.

9.3.2.Reorder Buffer

As described in Section 5.4, a reorder buffer stores one row of data after a vertical filtering. The reorder buffer and a
reorder buffer address generator provides a sequence of data to horizontal filters. The reordering scheme is discussed in Section
5.4 and depicted in Figure 5-11.

9.3.3.Architecture

Figure 9-9 shows the VLSI architecture for undecimated SWA. The host/local_controller generates all the addresses to
the reorder buffers as well as the input buffers instead of having a separate address generator as shown in Figure 5-13. The
reorder buffersin the ki level of the high—pass filters can be shared among the horizontal filters in the level. Notethat in a
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Figure 9-8: VLS| Architecturefor Decimated SWA

109

{1

—ff |-

in$$

VFC

vout$$

voutl

HFC

voutl

HFC




—

rbwrl, rbwr2,

110

Figure 9-9: VLSI Architecturefor Undecimated SWA

host/local_controller rbaddr1,
. . . rbaddr2
write, addr, write, addr write, addr
Ccoeff,
host_addr
—{ mem1 | el |
_— |
SFC SFC
—{memivi, | hin vout | ! [—[memiy |
(Prefilter)
(low—passfilter)
X in$$ E in$$
: VFC : VFC
' VoutsS$ ' rbwrl, rbaddrl Vout$s$
rowrl, rbadarl Jﬂ?‘ m : rbwr2, rbaddr2 ?l?‘ ’_i;
: jl.:—‘ L]'E‘ : El:—‘ L‘IE
E ©ovoutl E ©ovoutl
. HF Ch . Levell HFEC
' 0 . hou
! | + Filterl_output |
: voutl : voutl
' HF Ch ' Levell HFC
' (0] ] . hou
' |  FilterFy_output
(high—pass filter)



low—pass filter module, the SFC provides an input to the reorder buffer, and the output of the reorder buffer isfed back to the
SFC for horizontal filtering. Aninput signal, decimate, at the SFC hasto be O for this configuration. The architecture satisfies
all the scalabilities.

9.4.FSA+SV/OSD

FSA+SV/OSD can be implemented with a modification to the architecture for SV/OSD shown in Figure 9—4. Theinter-
polation module has to be designed and placed after the horizontal filters. The module interpolates the outputs from the basis
filtersto steer thefilter. The module requires Q multipliers and Q-1 adders assuming the order of FSA is Q.

9.4.1.Interpolation Unit

An interpolation unit takes an output of every basis filter as an input every cycle, and multiplies the output with an inter-
polation coefficient. The results of the multiplications are added together at a binary adder. Figure 7-2 depicts this computa-
tional scheme. It requires multiple interpolation units when the system implements multiple steerable filters.

It can be seen from Figure 9-2 that the VFC can be used to implement interpolation units. The parallel inputs (in$$) come
from the set of basis filters, the register file contains the interpolation coefficients, and each unit in VFC is assigned to steer
the orientational filter to a certain orientation.

9.4.2.Architecture

The VLSI architecture for FSA+SV/OSD is shown in Figure 9-10. The only difference from Figure 94 is the additional
VFC after the set of HFCs. The first, third and fourth scalability can be accomplished in the same way as SV/OSD as discussed
in Section 9.1.4. When the number of orientations the system must steer exceeds Nry, multiple VFCs are needed after HFCs
as shown in Figure 9-10. Thus the architecture satisfies the second scalability.

9.5.System Integration

Finally the VLSI architecture for FSA+SWA is considered. It achieves the implementation criteria, MRD capability, and
steerability. The architecture is constructed by modifying the architecture for SWA. Both decimated and undecimated
FSA+SWA are considered here.

9.5.1.Decimated FSA+SWA

pixel host/local_controller
coeff, host_addr, chip_id
wr, addr
—{ meml ity ot -
: VFC HFC o HFC
i VOULNE VOUtNry —{ VOUtNFy
memM inWey o o

1 aE

inl inWe inl inWe
coeff, host_addr, chip_id
VFC e VFC
voutl VOutNg voutl VvoutNg
Outputl  OutputWey OutputFy

Figure 9-10: VL SI Architecture of FSA+SV/OSD
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The architecture for decimated FSA+SWA is shown in Figure 9-11.

9.5.2.Undecimated FSA+SWA
The architecture for undecimated FSA+SWA is shown in Figure 9-12.

9.5.3.Chip Count Estimate

This section estimates the number of VLS| chips including memory to implement various systems. The major portion
of filter chips (VFC, HFC and SFC) are occupied by multipliers and adders. One factor which limits the number of multipliers/
addersin the filter chipsis the number of input/output ports available in the VLS| package used. Assume that 232 input/output
ports can be used for the filter inputs/outputs and the filter coefficient inputs. The chips needs power pads, a clock pad and
input pads for some control signals such as host address, chip select, and input synchronization signals. However, the number
of pads needed for the power, clock and control signals are small relative to the data 1/0, and the total number of pads can be
less than 300 if the number of datal/O pinsiskept under 232. Also assume that a two—phase clocking scheme with non—overlap-
ping clocks is used in the design. This scheme allows bi—directional pads to be output on one phase and input on the other.
Thus, some inputs and outputs can share the same pads reducing the number of pads required. In VFC, 2NgyBp output ports
for vout$$ can share the same bi—directional pads with 2N-yBp input ports for vpout$$ reducing the number of data pads re-
quired to (Wey+2Nry+1)Bp. In HFC, 3Bp output ports for hout can share the same bi—directional pads with 3Bp input ports
for psumand 3N Bp output ports for hout$$ can share the same bi—directional pads with 3Nk Bp input ports for hpout$$ reduc-
ing the number of data pads required to (5Nry+4)Bp. In SFC, 3Bp output ports for out can share the same bi—directional pads
with 2Bp input ports for hin and Bp input ports for coeff reducing the number of data pads required to (Wes+3)Bp.

Another factor which limits the number of multipliers/adders in the filter chips is the amount of silicon area available.
According to [59], the size of an adder using the genesil silicon compiler with a 1.0 um CMOS process is 31.3x7.1 mil2 and
55.9x7.5 mil? for a data width of 8 and 16 bits respectively. The size of amultiplier with 0.8 um CMOS processis 24.1x18.4
mil2 and 41.4x37.2 mil2 for a data width of 8 and 16 bits respectively. Thesize of aD flip—flop with a 1.0 um CMOS process
is18.5x1.6 mil2 and 30.9x1.6 mil2 for a datawidth of 8 and 16 bits respectively. The size of amultiplexer with 1.0 um CMOS
process is 17.2x2.8 mil2 and 29.5x2.7 mil2 for the data width 8 and 16 respectively. The size of a 3—port register file with a
1.0 um CMOS processis 18.5x11.1 mil2 and 30.8x19.3 mil2 for 8x8 bits and 16x16 bits respectively. A 3—port register allows
simultaneous reads and writes, and can implement both the primary and secondary register file in one component. Although
0.5 um process is common in current technology, the above conservative figures are used here. Assume that the chip size can
be as large as 400x400 mil2 and 2/3 of the area can be allocated for adders, multipliers, D flip—flops, multiplexers, and 3—port
register files. The rest of areais used for routing and miscellaneous logics. Also assume that the size of a multiplier increases
linearly as the width of one of the operands increases, and assume that the size of an adder increases linearly as the width of
operands increases. With these assumptions, estimated numbers of multipliers and adders can be obtained for VFC, HFC and
SFC. Table 94 below shows parameters, Wey, Nev, WeH, Ney, and Ws derived from the estimates.

Table 94 Estimated Values for Design Parameters (Wev, Nrv, Wen, NeH, and Wes)

Bp=8 Bp=12
Wey 16 12
Ney 6 3
Wi 13 11
NFH 5 3
Ws 11 11

Using the parameter values listed in Table 94, the number of VLSI chips including discrete memory chips can be derived
for various types of systems. The derivation is done with an input pixel size of 8 and 12, and the results are shown in Table 9-5.

Table 95 VLS| Chip Count for Various Types
e SV/OSD

1. Fn=6, P=5, M=11, N=1024 (the total number of orientational filters = 6)

Bp=38

Bp=12

VFC

1

2
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Figure 9-11: VL SI Architecturefor Decimated FSA+SWA

Note: Only thefirst level decomposition is shown here. However, the subsequent
decompositions are implemented in exactly the same way asthefirst level.
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HFC 6 12
SFC 0 0
Memory (1k x Bp) 11 11

2. Fy=6,P=5 M=21,

N=1024 (the total number of

orientational filters = 6)

Bp=8 Bp=12
VFC 2 4
HFC 12 24
SC 0 0
Memory (1k x Bp) 21 21

Decimated SWA

1. FN=6, L=4, P=5, M=11, N=1024 (the total number of orientational filters = 24)

Bpr=8 Bp=12
VFC 4 8
HFC 24 48
SC 5 5
Memory (1k X Bp) 18 18
Memory (512 x Bp) 1 1
Memory (256 x Bp) 1 1
Memory (128 x Bp) 11 11
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Table 9-5 VL SI Chip Count for Various Types

¢ Undecimated SWA

1. FN=6, L=4, P=5, M=11, N=1024 (the total number of orientational filters = 24)

Br=8 Bp=12
VFC 4 8
HFC 24 48
SFC 5 5
Memory(1k x Bp) 75 75

* Decimated FSA+SWA

1. FN=6, L=4, P=8, Q=8, M=11, N=1024 (the total number of orientational filters = 24)

Br=8 Bp=12
VFC 12 20
HFC 48 72
SFC 5 5
Memory (1k x Bp) 18 18
Memory (512 x Bp) 1 1
Memory (256 x Bp) 1 1
Memory (128 x Bp) 11 11

¢ Undecimated FSA+SWA

1. Fy=6, L=4, P=8, Q=8, M=11, N=1024 (the total number of orientational filters = 24)

Br=8 Bp=12
VFC 12 20
HFC 48 72
SFC 5 5
Memory (1k x Bp) 75 75

9.5.4.Improvement Using Better Technology

The chip counts derived in Table 9-5 are based on conservative assumptions using old technology. Using current technol-
ogy, the chip count can be significantly reduced.

The number of 1/0 pins tends to limit the number of multiplier and adders in a chip rather than the silicon area taken up
by them. One way of reducing the limitation of I/O pinsisto provide inputsin a half word at atime (it takes 2 cyclesto load
afull word.) reducing the number of 1/0 pins required for the data |/O by half at the expense of ausing faster clock. The chip
has to operate at a speed 2/t,, and faster RAMs are required. This 1/O scheme together with a better CMOS process (0.5 um,
for example) can double the number of multipliers and addersin a chip.

Another possibility is to implement input buffer on the same die with VFC and SFC, or to include the buffer in the same
package with VFC and SFC as a multi—chip module. These schemes reduce the number of memory chipsto almost zero. (Exter-
nal discrete memory is still needed for the reorder buffer.)

116



CHAPTER 10

Conclusion

10.1.Summary

This research has examined the role of orientational filtersin computer vision applications, and devised an efficient and
inexpensive implementation scheme to support many real—time computer vision applications. Some applications require mul-
ti—resol ution capability, and some require steerability of the filters. The scheme proposed in this research centers around ’sepa-
rable approximation” which approximates non—separable 2D filters using a set of separable filters.

10.2.Research Results

10.2.1.The Separable Approximation Method

It is possible to construct a system with real—time orientational filters using a FFT. However, a rea—time FFT is very
expensive in terms of the amount of hardware, and a typica vision system requires multiple orientationa filters. Thus, the
amount of hardware for areal-time vision system is enormous using the FFT.

It isalso possible to construct a real—time system using separable approximation. The method approximates a non-separa-
blefilter by alinear sum of separable filters as described in Equation (3.1). Such a system has three advantages for VLS| imple-
mentation; (1) aregular filter bank structure with simple data flow, (2) small latency since there is no need for a Fourier trans-
form, and (3) small memory requirements.

Singular Value Decomposition (SVD) achieves the best approximation performance in terms of energy error described
in Equation (3.6). The approximation converges to the original filter as the approximation order approaches M, and guarantees
alinear convergence.

Orthogonal Sequence Decomposition (OSD) does not achieve the same performance as SVD for the same approximation
order. However, the amount of computation and the number of filtersare less for OSD than SVD. Thus, OSD has an advantage
over SVD as far as the implementation costs are concerned. Hence it is possible for OSD to achieve a better approximation
than SVD using the same amount of computation or hardware.

SV/OSD is derived from both SVD and OSD so that it achieves the performance advantages of SVD and the implementa-
tion advantages of OSD. It produce a set of orthogonal filters which have better approximation performance than any other
orthogonal filters in terms of the energy error defined in (3.30). The number of multiply—accumulate operations is
N2MP(Fn+1) for SV/OSD, compared to 2N2VIPFy for SVD. The throughput is O(1/ty,), latency is O(NM), and the amount
of storage required is O(NM) for SV/OSD.

10.2.2.Implementation Scheme for SV/OSD

Two schemes are suggested to perform a 1D filter operation; pipelined filtering and paralel filtering. For 2D separable
filtering, the former is suitable for a filter whose direction aligns parallel to the input sequence, and the latter is suitable for
afilter whose direction is perpendicular to the input sequence. Assuming the inputs are in a raster order, pipelined filtering
issuitable for horizontal filtering, and paralléel filtering is suitable for vertical filtering.

In order to make use of the implementation advantage of SV/OSD, the orthogonal filters have to be performed on an input
image before the projection filters so that the outputs of the orthogonal filters can be shared among multiple sets of projection
filters. In this case, the system requires P(Fn+1) filters. If the filter order is reversed, the system requires 2PFy filters. The
amount of intermediate storage can be reduced to NM if the orthogonal filters are the vertical filters, and are performed before
the projection filters which are horizontal filters. Figure 3-5 depicts the scheme.

10.2.3.Convergence of SV/OSD

SV/OSD guarantees alinear convergence of the approximation. The approximation converges to the original filter asthe
approximation order approaches M. For all filters tested, the speed of convergence was much faster than linear convergence,
and was close to exponential.
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10.2.4.Performance Evaluation for SV/OSD

SV/OSD’s performance was eval uated by approximating various Gabor filters. The approximation becomes more diffi-
cult as the frequency parameter a and the deviation ratio oy/oX of the Gabor filtersincrease. It also becomes more difficult
asFy increases. The approximation results are similar for the real part and the imaginary part. Frequency domain error analysis
showed the approximation errors are concentrated in region where the energy content of the filtersis significant. Thus, the
effects of the errors are small compared to the frequency responses of the filters.

10.2.5.Multi—resolution Decomposition (MRD)

Separable Wavelet Approximation (SWA) is the proposed method for an efficient decimated MRD scheme. It isacom-
bination of separable approximation and wavelet approximation. Equations (5.36), (5.37), and (5.38) describe the process of
the decomposition method. The amount of computation for an L level decomposition using the method is approximately
4FNNZPM/3 compared to LFyN2M2 using the direct method, the throughput is 1/ty, the latency is approximately
2-7IN(M,, + M)t,,, and the amount of storage required islessthan N(M, + 2max(M, M,)).

The decomposition scheme of SWA employs a simple filter bank structure as shown in Figure 5-5. A large part of the
decomposition structure can be shared with other decomposition structures associated with different orientational filters.

SWA can be modified to perform an undecimated MRD. The scheme employs an intermediate buffer called a reorder
buffer, at the output end of each vertical filter, to provide a reordered input stream to the horizontal filter. The reorder buffer
arranges the order of a pixel stream so that the horizontal filtering can be done using a pipelined filtering scheme. The size
of each reorder buffer is N. The system requires LFy(P+1)+1 reorder buffers and L reorder buffer address generators. The
latency of the decomposition is the same as the decimated SWA case, which is approximately 2-~*N(Mj, + M)t,. The through-
put is 1/ty, amount of computation is 2N2M; + 2LN2Vih+LN2MP+LFyNZMP= 2N2Vi + LN%(2Mp+MP+FyMP), and the amount
of storage is NM;+LN max(M,My) + NL(FyP+1).

SWA uses a basic spline function as an interpolation filter. The length of the pre—filter and the low pass filter in SWA
depend on the order of the basic spline. If a k! order basic spline is used, then the lengths of the pre-filter and the low pass
filter are k and k+2 respectively. Based on the performance eval uation results, the basic spline of order 7 achieves a good perfor-
mance/computation trade—off.

10.2.6.Performance Evaluation for SWA

SWA's performance was eval uated by approximating various Gabor filters at several dilation levels. The amount of error
increases only slightly as the dilation level increases. The error characteristics are very similar for the real part and the imagi-
nary part of the filter. The approximation becomes more difficult as the frequency parameter, a, increases. It also becomes
more difficult as the aspect ratio ay/aX deviates from 1.0. Frequency domain error analysis showed the approximation errors

are concentrated in the region where the energy content of the filters is significant. Thus, the effects of the errors are small
compared to the frequency responses of the filters.

10.2.7.Applicability of SWA to Vision Algorithms

A multi—resolution edge detection algorithm was implemented using decimated SWA. The performance of the approxi-
mation filters was identical to Gabor filters for an approximation order larger than 8. An unsupervised texture segmentation
method proposed by Jain and Farrokhnia was also implemented using undecimated SWA, and the performance was compared
with the original method using Gabor filters. At an approximation order of 5, the approximation method produced very compa-
rable results with the original method. SWA has been incorporated into the Georgia Tech Vision Model (GTV) for DOG filters
in the pattern perception units, and its effectiveness has been demonstrated.

10.2.8.Steerable Filters

Fourier Series Approximation (FSA) can produce an identical approximation result as Deformable Kernel Approximation
(DKA). FSA has more flexibility in the filter selection process, since the real and the imaginary parts are separate entities in
the selection process, whereas they are treated asapair in DKA. Thus, basic filters obtained by DKA are complex filters even
though the filter to be steered isreal.

SV/OSD can be combined with FSA (FSA + SV/OSD) for an efficient steerable filter implementation. Equations (7.28)
and (7.29) describes the process. The throughput of the system can be 1/ty,, the latency is O(NM), the amount of computation
is NAMQP+Fy), and the storage requirement is NM.

FSA and SWA can be combined (decimated FSA+SWA) for an efficient decimated steerable MRD scheme. Equations
(7.30) through (7.32) describes the decomposition process. The throughput of the system can be 1/ty, the latency is
2-7IN(M,, + Mt,,, the amount of computation is 4AN2PQM/3, and the storage requirement is N(M;+ max(M,M)).
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FSA and SWA can be combined (undecimated FSA+SWA) for an efficient undecimated steerable MRD scheme. The
throughput of the system can be 1/t,, the latency is 2-"'N(M, + M)t,, the amount of computation is 2N2M,+
LNZ2Mp+MP+MPQ), and the storage requirement is NM, + LNmax(M,Mp)+ NL(PQ+1).

10.2.9.Performance Evaluation for FSA+SV/OSD and FSA+SWA

Various Gabor filters are used for the evaluation. The amount of error decreases rapidly as P and Q increase. The approxi-
mation becomes more difficult as the frequency parameter a increases, and the aspect ratio oy/oy increases.

10.2.10.VLSI Architecture for SV/OSD

Six VLSI architectures were defined. These architectures are proposed for (1) SV/OSD, (2) decimated MRD using SWA,
(3) undecimated MRD using SWA, (4) FSA+SV/OSD, (5) a decimated steerable MRD using FSA+SWA, and (6) an undeci-
mated steerable MRD using FSA+SWA.. Each of these systems satisfies the four scalability requirements listed in Chapter 1.

10.3.Contributions

The contributions of this research are briefly described below. Each subsection isrelated to one of the research objectives
described in Chapter 1.

10.3.1.Computation of Orientational Filters

Various filters and implementation schemes were investigated based on the implementation criteria which measures appli-
cability of thefilters to real-time image analysis applications. Based on the investigation, the thesis proposed to use the separa-
ble approximation method to implement orientational filters for real—time image analysis applications.

Three algorithms based on separable approximation have been investigated. They are Singular Value Decomposition
(SVD), Orthogonal Sequence Decomposition (OSD), and Singular Value/Orthogona Sequence Decomposition (SV/OSD). No
prior research was found related to OSD and SV/OSD. SV/OSD achieves the best performance/implementation trade—off.

An efficient implementation scheme tailored for SV/OSD was developed. It implements vertical filters with parallel fil-
tering and horizontal filters with pipelined filtering to reduce the latency and storage requirements.

Extensive performance evaluation has been done for SV/OSD to demonstrate the effectiveness of the approximation.

10.3.2.Multi—resolution Decomposition

SV/OSD and Wavelet Approximation have been combined to produce an efficient MRD scheme (SWA) with 2D orienta-
tional filters. An extension of SWA for undecimated MRD has also been devel oped.

Extensive performance evaluation of a MRD using SWA has been done. Undecimated SWA has been incorporated into
the unsupervised texture segmentation of Jain and Farrokhnia. The result shows that the scheme achieves comparable perfor-
mance with less computation and implementation cost. Undecimated SWA has been incorporated into the Georgia Tech Vision
model.

10.3.3.Steerable System

An efficient steerable system based on SV/OSD and Fourier Series Approximation (FSA) was developed. Extensive per-
formance evaluation of SV/OSD+FSA has been compl eted.

An efficient steerable MRD system based on SWA and FSA was developed. Extensive performance evaluation of
SWA+FSA has been completed.

10.3.4.VLSI Architecture

A VLSI architecture disign for SV/OSD, SWA, undecimated SWA, FSA, SV/OSD+FSA, decimated SWA+FSA, and un-
decimated SWA+FSA was used to estimate implementation complexity. Based on this evaluation, each system satisfies four
criteria: input image scalability, filter number scalability, filter size scalability, and approximation order scalability.

10.4.Research Direction

A next step in this research is to incorporate the approximation techniques in vision applications, and to evaluate the per-
formance of the algorithms with different approximation orders. Such attempts were initiated in Chapter 7 for multi—resolution
edge detection, unsupervised texture segmentation and pattern perception filtersin GTV. There are many algorithms not limit-
ed to vision agorithms which use multiple non—separable filters and require real—time performance. Such agorithms can bene-
fit greatly from the approximation methods proposed in thisthesis.

Another important step is to implement the designs described in Chapter 9 on silicon, and construct area system for real
applications. The design for VFC, HFC, and SFC need to be expanded to provide more details The estimatesin Chapter 9 are
very conservative, and will improve significantly with current technology.
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Appendix A.

Human Visual Systems

In this appendix, an overview of the human visual system (HVS) is given, and the processing of simple/complex cells
in visual cortex isdescribed. The purpose of this appendix is to show how orientational filtering is related to processing in the
HV'S. For this purpose, an emphasisis placed on computational schemes of the system.

A.l.Retina

Theretinais alayer of cellslocated on the inner surface of the eyeball. It contains millions of light—sensitive receptors
which spread over the whole retina.  There are two types of receptors: rods and cones. Different characteristics of rods and
cones result from different photosensitive substances called pigments. Rods are about 500 times more sensitive to light intensity
than cones. Cones contain pigments sensitive to color. There are about 120 millions rods and 6 million conesin a human eye.
The receptors are placed non—uniformly over the retina with more concentration around the center of the retina (fovea) and
less concentration away from the center. Cones are concentrated around the fovea with a density of about 150,000 cones per
square millimeter. Hence an image is sampled much more densely around the fovea, which enables a focused analysis of the
image[32].

The sampling rate near the foveais close to the highest frequency that the optics of the eye will pass. Thus, a human does
not observe aliasing around his focused area. However, the drastic fall—off in cell density in the near periphery causesthe retina
to undersample, and high contrast, high frequency gratings can cause aliasing. The effects of aliasing are not prominent in our
daily lives. Two reasons have been suggested[33]. First, irregular spacing of the cones causes the high spatial frequencies to
be aliased back as widely scattered noise. Second, natural scenes do not have sufficient power in the high frequenciesto pro-
duce aliasing.

Signals from receptors go through several cells before reaching the optic nerve. These cells are bipolar cells, horizontal
cells, amacrine cells and ganglion cells. Bipolar cells combine responses of multiple receptors and pass them to a ganglion
cell. Ganglion cells combine responses of multiple bipolar cells and pass these to an optic nerve. Horizontal cells transmit
signals across the retina, enabling different receptors or bipolar cells to communicate with each other. Amacrine cells transmit
signals across the retina, enabling different bipolar or ganglion cells to communicate with each other.

There are approximately 126 million receptors, and only 1 million optic nerves. Data size reduction is done along the
pathways from receptors to bipolar cells and from bipolar cells to ganglion cellg51].

Each ganglion cell respondsto alight stimulus falling within alimited retinal region, or receptive field, of the cell. There
are two types of ganglion cells: on—center cells and off—center cells. The receptive field of an on—center cell has a center region
where the rate of impulse discharge of the cell increases as illumination of light to the region increases (excitatory region),
and has an annular surrounding region of lower sensitivity where the rate of impulse discharge decreases as illumination of light
to the region increases (inhibitory region). Its spatial response (receptive field profile) has a concentric center—surround area.

On the other hand, the off—center cell has an inhibitory region at the center of its receptive field and excitatory region
surrounding the center. Inhibition of both cells is provided mainly from amacrine cells. The response of on/off—center cells
can be modeled by a difference of Gaussian[28],

Ru(f) = — Ry(r) = ce 7% — c,e " (A.1)

with gg>¢; and 0y < 0. Thisisalso called Laplacian of Gaussian. These cells act as edge operators.

Most Ganglion cells are also classified into two groups: X cell and Y cell. X cells respond in a sustained fashion to a
stimulus, producing a response as long as the stimulus lasts. Y cells respond in a transition fashion at the beginning and the
end of the stimulus, producing a strong impulse. Because of this behavior, they are also called sustained and transient cells.
X cells also exhibit linearity in their responses. When the cell’s receptive field is illuminated alternately by a uniform field
and by a sinusoidal grating of the same average luminance, the position of the grating can be found so that the response of the

120



cell does not change between the uniform and the sinusoidal stimuli. No such position can be found in Y cells. X cells are
mainly found in the central retina, whereasthe Y cells are mainly found in the periphery of the retina.

At the output of the ganglion cells, a signal becomes all-or—none, i.e. the signal is either on or off. The receptive fields
of ganglion cellsin general have larger sizes as they move from center to periphery.

A.2.Striate Cortex

Responses of the retinal ganglion cells are projected to the striate cortex through lateral geniculate nuclei. The striate
cortex consists of a cluster of many constituent columns of cells. Each column is about 0.5 mm? on the cortical surface and
about 34 mm deep. Columns are also divided into layers numbered from 1to 6. Layer 4 isfurther divided into 4A, 4B, 4Co.
and 4CB. Fibers from the lateral geniculate nuclel terminate at 4A, 4Co. and 4CB. Cellsin the striate cortex are classified as
simple cells, complex cells, and hypercomplex cells. These cells are all maximally excited by line stimuli oriented to certain
directions, a property different from the ganglion cells which have no orientation selectivity. Interestingly, cells in the same
column are tuned to the same orientation.

Simple cells have orientation preferences and respond best to lines of particular orientations. They have several aternat-
ing excitatory and inhibitory regionsin their receptive fields. Another interesting property isthat there are pairs of simple cells
in approximate quadrature phase relation to each other, and these pairs locate side by side. The whole set of simple cellsin
the striate cortex covers various orientations and radial frequency regions, thus acting as alocalized frequency analyzer. Simple
cellsreceive signals mainly from X cells of retinal ganglion cells.

Because of their ssimple receptive field profiles, some mathematical models for the simple cells have been suggested and
their rolesin image analysis have been studied in conjunction with computer vision research. The most popular model for sim-
ple cells is Gabor functiong[56]. Atick and Nedlich modeled the response of simple cells starting from ganglion affer-
entg[2][95]. Ganglion cells are modeled by (A.1) followed by a half rectification. The linear responses of simple cells can be
obtained from non-inear responses of ganglion cells only when both on and off cell of the same receptive field contribute with
the same weight.

Simple cells of the same orientation preference but different receptive fields are located close together in the cortex. This
region of the simple cells can be depicted as’a slag of columns'. Simple cellsin each column correspond to a particular recep-
tive field. Each column is occupied by simple cells with the same orientation preference and the same receptive field but a
different radial frequency preference. This structure istermed hypercolumn[39].

Complex cells do not have clear separation of excitatory and inhibitory regions asin simple cells. They respond to edges
of acertain orientation, however the position of the edges do not affect their response as long as they are inside the receptive
fields of the cells. If aline matched with the orientation preference of a particular complex cell moves across its receptive field,
the cell responds vigorously as soon as the line appears on the receptive field, and keeps responding until the line leaves the
receptivefield. It has been suggested that complex cells are motion detectors of objects moving in a particular direction.

Other typical properties of complex cells are that their receptive fields are larger than simple cells. They often respond
only to one direction of movements, i.e. a cell responds well to a movement from left to right, but not well to a movement from
right to left. They receive signals mainly from Y cellsrather than X cells and do not receive signals from simple cells.

Hypercomplex cells also do not have excitatory and inhibitory regions, and respond well to moving lines of certain direc-
tions. However, they are sensitive to stimuli length. They do not respond well to edges made too long at one end or both. This
length selectivity suggests that hypercomplex cells act as corner detectors.

A.3.0ther Cortical Area

Cellsin the striate cortex are the source of two major cortical projection systems[92]. The projection into the temporal
cortex isinvolved in object recognition. The projection into the parietal cortex is involved in spatial localization of objects
and motion perception. The computational mechanisms in these cortical areas are largely unknown.

Communication takes place by short association ”U” fibersin the underlying white matter. As the processing proceeds,
larger portions of the visual field and communication between two hemispheres are involved, suggesting the development of
more global perceptual mechanisms.

For object recognition, the processing has to satisfy the following three requirements92].

e shape consistency — ability to perceive a specific shape with any orientations and sizes.

e color consistency — ability to perceive a color independently from the illuminating lights of a different

spectral composition.
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e visua attention — ability to filter out unimportant visual stimuli.

After the properties of an object is analyzed and coded, a matching needs to be made at database memory for recognition
of the object.

A.4.Comments

Apparently, orientational selectivity isamajor characteristic of an early stage of the human vision system, and the direc-
tionally sensitive processing is a major source of inputs to later stages of the system. As physiological research reveals both
physical and computational structure of the human vision system, they can be incorporated into a computer vision system to
give amore robust and flexible performance.

Some important points of the human visual system which have been adapted into computer vision algorithms are the fol-
lowing.

1. Receptivefield profiles of simple cells are very similar to Gabor functions tuned to different radial frequencies
and orientations.

Adjacent pairs of simple cells form a quadrature pair.

Ganglion cells can be coupled into an on/off—center cells pair with the same receptive field.
Some interesting points which are not fully known and have a potential impact on computer vision algorithms are
How reduction of datais done from the retinal level to the striate cortex.

Computational models of complex and hypercomplex cells.
Structure of higher cortical areas and how stimuli from the striate cortex are processed there.
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Appendix B.
Derivation of L ow—Pass Filter h

Denote the B—spline of order k as ¢X(X). ¢*(X) can be generated by taking an auto—correlation of ¢~ 1(x) with ¢2(x).
Namely,

P = ¢ 1) * %) = f P )Py — Ndy (B.1)

where * denotes an auto—correlation operation.
Assume ¢¥~(x) satisfies a dilation relation,

90 = V2 ) hnlg M2 — n) (B.2)

Then,

P = ¢ 1) * p°(X) = [ P LY)POy — X)dy

f {Z h-3{n]g*(2y — n)}{z h[mlp°(2y — 2x — m)}dy

S5 hetn]hm] quk-l(zy — %2y — 2x —m)dy = > > h<n]h[m f¢k-1(y)¢°(y - 2X-m+ n)djy

= > him Y hngi@x — m+ n) (B.3)
Hence ¢X(x) also satisfies adilation relation. The B-spline of order Ois
500 {5 cvone 4
ho[n] = {% "ol . (B.5)

0 otherwise

Using (B.5), (B.3) becomes
$() = 2792 > (A m] + h<im + 1] | pKx — m) . (B.6)
Thus, m
he[m] = 274 W<t [m] + h*1[m+1]) . (B.7)

Using a combinatorial identity, (r?]) = (n m 1) + (r?]: ]i) ,and h[m] = 2_1/2(r]r-1)’
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h<[m] = 2= h 2 [m] + hk-1[m — 1] ) = 2712 (" - 1) . (B.9)
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